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Abstract We study a three-component consumer chain model which is based on Schnaken-
berg type kinetics. In this model there is one consumer feeding on the producer and a second
consumer feeding on the first consumer. This means that the first consumer (central compo-
nent) plays a hybrid role: it acts both as consumer and producer. The model is an extension
of the Schnakenberg model suggested in Gierer and Meinhardt (Kybernetik 12:30–39, 1972)
and Schnakenberg (J Theoret Biol 81:389–400, 1979) for which there is only one producer
and one consumer. It is assumed that both the producer and second consumer diffuse much
faster than the central component. We construct single spike solutions on an interval for
which the profile of the first consumer is that of a spike. The profiles of the producer and
the second consumer only vary on a much larger spatial scale due to faster diffusion of these
components. It is shown that there exist two different single spike solutions if the feed rates
are small enough: a large-amplitude and a small-amplitude spike.We study the stability prop-
erties of these solutions in terms of the system parameters. We use a rigorous analysis for
the linearized operator around single spike solutions based on nonlocal eigenvalue problems.
The following result is established: If the time-relaxation constants for both producer and
second consumer vanish, the large-amplitude spike solution is stable and the small-amplitude
spike solution is unstable. We also derive results on the stability of solutions when these two
time-relaxation constants are small. We show a new effect: if the time-relaxation constant of
the second consumer is very small, the large-amplitude spike solution becomes unstable. To
the best of our knowledge this phenomenon has not been observed before for the stability
of spike patterns. It seems that this behavior is not possible for two-component reaction–
diffusion systems but that at least three components are required. Our main motivation to
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study this system is mathematical since the novel interaction of a spike in the central com-
ponent with two other components results in new types of conditions for the existence and
stability of a spike. This model is realistic if several assumptions are made: (i) cooperation
of consumers is prevalent in the system, (ii) the producer and the second consumer diffuse
much faster than the first consumer, and (iii) there is practically an unlimited pool of pro-
ducer. The first assumption has been proven to be correct in many types of consumer groups
or populations, the second assumption occurs if the central component has a much smaller
mobility than the other two, the third assumption is realistic if the consumers do not feel the
impact of the limited amount of producer due to its large quantity. This chain model plays a
role in population biology, where consumer and producer are often called predator and prey.
This system can also be used as a model for a sequence of irreversible autocatalytic reactions
in a container which is in contact with a well-stirred reservoir.

Keywords Pattern formation · Consumer chain model · Predator–prey model ·
Autocatalytic reaction · Reaction–diffusion systems · Spiky solutions · Stability

Mathematics Subject Classification Primary 35B35, 92C40 · Secondary 35B40

1 Introduction

We consider a reaction–diffusion system which serves as a cooperative consumer chain
model. It takes into account the interaction of three components, one pure producer, one
pure consumer and a central component which acts as both producer and consumer. These
three components supply each other in a linear chain. This model is an extension of the
Schnakenberg model introduced in [12,27] which possesses only one producer and one
consumer. In the model under investigation we have a central component which plays a
hybrid role: it consumes the pure producer and it is consumed by the second consumer. It
is assumed that both the producer and second consumer diffuse much faster than the central
component.

The system can be written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ
∂S

∂t
= D1�S + 1 − a1

ε
Su2

1, x ∈ �, t > 0,

∂u1

∂t
= ε2�u1 − u1 + Su2

1 − a2u1u2
2, x ∈ �, t > 0,

τ1
∂u2

∂t
= D2�u2 − u2 + 1

ε
u1u2

2, x ∈ �, t > 0,

(1.1)

where S and ui denote the concentrations of the producer (food source) and the two con-
sumers, respectively. Here 0 < ε2 � 1 and 0 < D1, 0 < D2 are three positive diffusion
constants. The constants a1, a2 (positive) for the feed rates and τ, τ1 (nonnegative) for the
time relaxation constants will be treated as parameters and their choices will distinguish
between stability and instability of steady-state solutions.

We choose as domain the interval � = (−1, 1) and consider Neumann boundary condi-
tions

d S

dx
(−1, 0) = d S

dx
(1, 0) = 0,

du1

dx
(−1, 0) = du1

dx
(1, 0) = 0,

du2

dx
(−1, 0) = du2

dx
(1, 0) = 0. (1.2)
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These type of boundary conditions are also called “reflective” boundary conditions and
model a system which does not have exchange to the outside world by permeation through
the boundary.

Remark 1.1 Our choice of diffusion constants is essential for the type of spike solutions under
consideration. We need to have a very small diffusion constant for the central component to
get a spike and much larger diffusion constants for the other two components resulting in
profiles on the order unity scale only.

Remark 1.2 The choice of the coefficients − a1
ε

, 1, −a2,
1
ε
of the nonlinear reaction terms

in (1.1) allows us to have spiky solutions for which all three components have an amplitude of
order O(1) as ε → 0. Other choices of parameters in the model are possible, but they would
result in amplitudes which are not of order O(1). In that case, a rescaling of amplitudes is
possible which will lead to the scaling we used in (1.1) and amplitudes of order O(1). For
this reason we have used the system in the form (1.1) as our starting point.

The interaction of a spike in the central component of a consumer chain model with
two other components, one preceding it and the other succeeding it, results in new types of
conditions for the existence and stability of a spike. This was the main motivation for us to
study this problem in detail.

We first prove the existence of single spike solutions in an interval. It is shown that such
a pattern exists if the feed rates a1, a2 are small enough. We prove that there are two such
spiky solutions, one with a large-amplitude spike and the other with a small-amplitude spike.

We show that the large-amplitude solution can be stable for τ1 = 0, whereas the small-
amplitude solution is always unstable. However, for 0 < ε � τ1 � 1 the large-amplitude
solution is unstable due to an eigenvalue of order O( 1

τ1
) which has a positive real part (see

Corollary 2.1).
We expect that for 0 < τ1 � ε � 1 the system will be stable, i.e. the instability will

vanish if the time-relaxation constant τ1 of the last component is very small compared to the
square root of the diffusion constant of the spike component.

This is a new effect which to the best of our knowledge has not been observed before for
the stability of spike patterns. It seems that this behavior is not possible for two-component
reaction–diffusion systems but that at least three components are required.

We use a rigorous analysis for the linearized operator around a single spike solution based
on nonlocal eigenvalue problems.

Models involving a chain of components play an important role in biology, chemistry,
social sciences and many other fields. Well-known examples include consumer chains,
predator-prey systems, food chains, genetic signaling pathways, autocatalytic chemical reac-
tions and nuclear chain reactions. For food chains it is commonly assumed that there is
only limited supply of resources which leads to a saturation effect and the solutions remain
bounded for all times. On the other hand, for autocatalytic chemical or nuclear chain reactions
the interaction of the components in the chain has a self-enforcing effect and the solutions can
grow and become unbounded. In our model the cooperation of consumers is accounted for by
superlinear nonlinearities. In general we do not know the exact shape of the nonlinearities,
which will depend on more details of the application considered, and so for simplicity we
choose quadratic nonlinearities. This choice can be motivated for chemical reaction systems
by the mass balance law in the case of binary reactions. It can also be derived using mathe-
matical principles by expanding a general nonlinearity for small amplitudes around zero and
will then play a role in understanding solutions with small amplitudes.
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In this respect, it is interesting to consider the work of Bettencourt and West [2] who
collected extensive empirical data on typical activities in cities such as scientific publications,
patents, GDP, the number of educational institutions but also on crime, traffic congestion or
certain diseases indicating that they grow at a superlinear rate with population size. They
established a universal growth rate which applies to most of the activities in major cities
independent of geographic location, ethnicity of the population or cultural backgroundwhich
corresponds to a power lawwith power of around 1.15. Although this is less than the quadratic
power law considered in this paper we expect that many of our results will not change
qualitatively if we replace the quadratic law by this smaller power growth. The general
explanation behind this superlinear growth in societies is that they are able to attract those
people which will be most suitable to interact with the pre-existing population successfully.

In our model we further assume that the limited amount of resources is not felt which is
realistic if resources are plentiful or if consumption is practised wisely to use the remaining
supplies in a sustainable way.

We refer to the recent work [18] in which the stability of food chains was analyzed under
the assumption that supply of resources is limited.

In biological populations consumer and producer are often called predator and prey. For
more background on predator-prey models we refer to [21]. Our system can also be used as a
model for a sequence of irreversible autocatalytic reactions in a container which is in contact
with a well-stirred reservoir. Similar models have been suggested, see e.g. Chapter 8 of [29]
and the references therein.

Ourmain results are generalizations of similar statements for the Schnakenbergmodel. Let
us briefly recall some related results: In [15,30] the existence and stability of spiky patterns
on bounded intervals is established. In [39] similar results are shown for two-dimensional
domains. In [1] it is shown how the degeneracy of the Turing bifurcation [28] can be lifted
using spatially varying diffusion coefficients. In [22–24] spikes are considered rigorously for
the shadow system.

For a closely related system, the Gray-Scott model introduced in [13,14], some of the
results are the following: In [4–7] the existence and stability of spike patterns on the real line
is proved. The two-dimensional case is studied in [32,33,36,37]. In [16,17] different regimes
for the Gray-Scott system are considered and the existence and stability of spike patterns in
an interval is shown. In [25,26] a skeleton structure and separators for the Gray-Scott model
are established.

Other “large” reaction diffusion systems (more than two components) with spiky patterns
include the hypercycle of Eigen and Schuster [8–11,34,35], and Meinhardt and Gierer’s
model ofmutual exclusion and segmentation [19,20,40]. These results have been summarized
and reviewed in [42].

The paper [41] is a companion to the current one. In that work the diffusion constants
are chosen as follows: the diffusivity for the first component is much larger than for the
second, and for the second it is much larger than for the third. Results on the existence and
stability of a spiky cluster solution have been derived. That solution has a spike for the last
component which acts on a very small scale, for the central component there are two partial
spikes glued together acting on an intermediate scale, and for the first component there is a
profile which changes on the order unity scale only. This spiky solution can be stable, but to
achieve stability a fine balance is required between the three components.

The structure of this paper is as follows:
In Sect. 2, we state and explain the main theorems on existence and stability.
In Sects. 3 and 4, we prove the main existence result, Theorem 2.1. In Sect. 3, we compute

the amplitudes of the spikes. In Sect. 4, we give a rigorous existence proof.
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In Sects. 5 and 6, we prove the main stability results, Theorem 2.2 and Corollary 2.1. In
Sect. 5, we derive a nonlocal eigenvalue problem (NLEP) and determine the stability of the
O(1) eigenvalues. In Sect. 6, we study the stability of the o(1) eigenvalues.

Throughout this paper, the letter C will denote various generic constants which are inde-
pendent of ε, for ε sufficiently small. The notation A ∼ B means that limε→0

A
B = 1 and

A = O(B) is defined as |A| ≤ C |B| for some C > 0.

2 Main Results: Existence and Stability of a Single Spike Solution

We now state the main results of this paper on existence and stability. We first construct
stationary spike solutions to (1.1), i.e. spike solutions to the system

⎧
⎪⎪⎨

⎪⎪⎩

D1�S + 1 − a1
ε

Su2
1 = 0, x ∈ �, t > 0,

ε2�u1 − u1 + Su2
1 − a2u1u2

2 = 0, x ∈ �, t > 0,

D2�u2 − u2 + 1

ε
u1u2

2 = 0, x ∈ �, t > 0,

(2.1)

with the Neumann boundary conditions given in (1.2).
We will construct solutions of (2.1) which are even:

S = S(|x |) ∈ H2
N (�),

u1 = u1(|y|) ∈ H2
N (�ε), y = x

ε

u2 = u2(|x |) ∈ H2
N (�),

where

H2
N (�) = {

v ∈ H2(�) : v′ (−1) = v′ (1) = 0
}
,

�ε =
(

−1

ε
,
1

ε

)

,

H2
N (�ε) =

{

v ∈ H2(�ε) : v′
(

−1

ε

)

= v′
(
1

ε

)

= 0

}

.

Before stating the main results, we introduce some necessary notations and assumptions.
Let w be the unique solution of the problem

{
wyy − w + w2 = 0, w > 0 in R,

w(0) = maxy∈R w(y), w(y) → 0 as |y| → +∞.
(2.2)

The ODE problem (2.2) can be solved explicitly and w can be written as

w(y) = 3

2 cosh2 y
2

. (2.3)

We now state the main existence result.

Theorem 2.1 Assume that

D1 = const., ε � 1, D2 = const. (2.4)

Let G D1 and G D2 be the Green’s functions defined in (7.1) and (7.18), respectively. Assume
that

a2
1a2 <

|�|2
4

G2
D2

(0, 0) − δ0. (2.5)
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(Expressed more precisely, (2.4) means that ε is small enough; (2.5) means the following:
there are positive numbers δ0 and ε0 such that (2.5) is valid for all ε with 0 < ε < ε0.)

Then problem (2.1) admits two “single-spike” solutions (Ss
ε , us

1,ε , us
2,ε)and (Sl

ε, ul
1,ε, ul

2,ε)

with the following properties:

(i) all components are even functions.
(ii)

Ss,l
ε (x) = cs,l

1,εG D1(x, 0) + O(ε), (2.6)

u1,ε(x) = ξ s,l
ε w

⎛

⎝
|x |
√

1 + α
s,l
ε

ε

⎞

⎠+ O(ε), (2.7)

u2,ε(x) = cs,l
2,εG D2(x, 0) + O(ε), (2.8)

where w is the unique solution of (2.2),

(
ξ l
ε

)2 =
|�|2 +

√

|�|4 − 4a2
1a2|�|2G−2

D2
(0, 0)

72a2
1

+ O(ε), (2.9)

(
ξ s
ε

)2 =
|�|2 −

√

|�|4 − 4a2
1a2|�|2G−2

D2
(0, 0)

72a2
1

+ O(ε), (2.10)

cs,l
1,ε = 1 + αs,l

ε

ξ
s,l
ε G D1(0, 0)

+ O(ε), cs,l
2,ε =

√

1 + α
s,l
ε

6ξ s,l
ε G2

D2
(0, 0)

+ O(ε), (2.11)

where αs,l
ε is given by (3.8).

(iii) If ε is small enough and

a2
1a2 >

|�|2
4

G2
D2

(0, 0) + δ0.

for some δ0 > 0 independent of ε (in the same sense as in (2.5)) then there are no
single-spike solutions which satisfy (i) and (ii).

Remark 2.1 We choose to keep the factor |�| in the estimate (2.5) although of course in our
scaling we have |�| = 2.

Theorem 2.1 will be proved in Sects. 3 and 4.
The second goal of this paper is to study the stability properties of the single-spike solution

constructed in Theorem 2.1. We now state our main results on stability.

Theorem 2.2 Assume that (2.4) and (2.5) are satisfied. Suppose that τ = τ1 = 0. Then we
have the following:

(1) (Stability) The large-amplitude solution (Sl
ε, ul

1,ε, ul
2,ε) is linearly stable. There is a

small eigenvalue of exact order O(ε2) with negative real part which is given in (6.23).
(2) (Instability) The small-amplitude solution (Ss

ε , us
1,ε , us

2,ε) is linearly unstable. There is
a large eigenvalue of exact order O(1) with positive real part. There is also a small
eigenvalue of exact order O(ε2) with negative real part which is given in (6.23).

For the case of τ and τ1 positive and small we have the following result:
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Corollary 2.1 Assume that (2.4) and (2.5) are satisfied.

(1) (Stability/Instability) There exists a constant τ0 > 0 independent of ε such that for 0 ≤
τ ≤ τ0 and τ1 = 0 the stability properties of the large-amplitude solution (Sl

ε, ul
1,ε, ul

2,ε)

and the small-amplitude solution (Ss
ε , us

1,ε , us
2,ε) are the same as in the case τ = τ1 = 0.

There is also small eigenvalue of exact order O(ε2) with negative real part which is
given in (6.23).

(2) (Instability) There exists a constant τ0 > 0 independent of ε such that for 0 ≤ τ ≤ τ0
and 0 < ε � τ1 � 1 for both the large-amplitude solution (Sl

ε, ul
1,ε, ul

2,ε) and the
small-amplitude solution (Ss

ε , us
1,ε , us

2,ε) there is an eigenvalue

λε = ρ0

τ1
+ O(1)

with corresponding eigenfunction

φε = w + O(τ1).

Thus both solutions (Sl
ε, ul

1,ε , ul
2,ε) and (Ss

ε , us
1,ε , us

2,ε) are unstable. There is also small

eigenvalue of exact order O(ε2) with negative real part which is given in (6.23).

We would like to make a few remarks on the stability results.

Remark 2.2 This result can be interpreted as follows: to have this type of spiky solution, the
feed rates a1 and a2, in particular their combination a2

1 a2, must be small enough. Otherwise
the food source S and the hybrid u1 will not be able to sustain u1 and u2, respectively. Instead,
among others, one of the following three behaviors can happen:

(i) The consumer u2 dies out resulting in the long-term limit u2,ε = 0 and a spike for the
two-component Schnakenberg model remains for which only the components Sε and
u1,ε are non-vanishing. We get the same solution by setting αε = 0 in Theorem 2.1.
This solution has been analyzed in [15].

(ii) The component u2 dies out and u1, S will both approach positive constants. It can easily
be seen that we have

S = a1
ε

, u1 = ε

a1
.

(iii) The components approach a positive homogeneous steady state which solves

S = ε

a1u2
1

, u2
1 − ε

a1
u1 + a2ε

2 = 0, u2 = ε

u1
.

Remark 2.3 In the proof ofCorollary 2.1we expand the eigenvalue and eigenfunction further,
see (5.16) and (5.17).

Remark 2.4 We do not rigorously study the dynamics of this model. Instead we analyze
the stability or instability of the steady states. Then the dynamics can be understood locally
near the equilibrium points by using the fact that the unstable eigenfunctions will grow in
amplitude, whereas the stable eigenfunctions will decay to zero as time progresses.

Next we plot the large-amplitude and small-amplitude spike solutions.
Figure 1 shows the spatial profiles of the large-amplitude spike (Sl

ε, ul
1,ε , ul

2,ε), i.e. u1 is
large.
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Fig. 1 The spatial profiles of the large-amplitude spike steady state (Sl
ε , ul

1,ε , ul
2,ε ) for parameters D1 =

10, ε2 = 0.01, D2 = 1, a1 = 1, a2 = 0.04

 0

 200

 400

 600

 800

 1000

-1 -0.5  0  0.5  1

s

s

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-1 -0.5  0  0.5  1
 0

 5

 10

 15

 20

 25

 30

 35

 40

u1 u2

u1
u2

Fig. 2 The spatial profiles of the small-amplitude spike steady state (Ss
ε , us

1,ε , u2,ε ) for parameters D1 =
10, ε2 = 0.01, D2 = 1, a1 = 1, a2 = 0.04

Figure 2 shows the spatial profiles of the small-amplitude spike (Ss
ε , us

1,ε, us
2,ε), i.e. u1 is

small.
Here by the choice of parameters the amplitudes of the three components are very different.
We will rigorously derive the existence result Theorem 2.1 in Sects. 3 and 4. The stability

results Theorem 2.2 and Corollary 2.1 will be proved in Sects. 5 and 6.

3 Existence I: Computation of the Amplitudes in Leading Order

In this section and the next, we will show the existence of spike solutions to (2.1) and prove
Theorem 2.1.We begin by computing the amplitudes in leading order and will give a rigorous
existence proof in the next section.

Proof of Theorem 2.1 Wewill show the existence of spike solutions to (2.1) which in leading
order are given by (2.6)–(2.8). More precisely, we choose the second component of the
approximate solution as follows:
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ũ1,ε(x) = ξε w

( |x |√1 + αε

ε

)

χ(|x |) (3.1)

for some positive constants ξε and αε . Here χ is a smooth cutoff function which satisfies

χ ∈ C∞
0 (−1, 1), χ(x) = 1 for |x | ≤ 5

8
, χ(x) = 0 for |x | ≥ 3

4
. (3.2)

The main reason for using the cut-off function (3.2) in the ansatz (3.1) is that Neumann
boundary conditions are satisfied exactly. ��

We set

y = x

ε
,

and consider the limit

ε → 0.

We substitute (2.7) into the second equation of (2.1) and, using (2.2), we note that
w
(
y
√
1 + αε

)
satisfies

wyy − (1 + αε)w + (1 + αε)w
2 = 0. (3.3)

Comparing coefficients between the second equation and (3.3) gives

αε = a2u2
2,ε(0) + O(ε), (3.4)

ξε = 1 + αε

Sε(0)
+ O(ε). (3.5)

We remark that in leading order Sεu2
1,ε agrees with Sε(0)u2

1,ε since u1,ε decays rapidly away
from 0.

Substituting (2.7) into the third equation of (2.1) and using (2.2), we get

u2,ε(x) = G D2(x, 0)u2
2,ε(0)

ξε√
1 + αε

∫

R

w(y) dy + O(ε),

where G D2 has been defined in (7.18). This implies

u2,ε(0) =
√
1 + αε

G D2(0, 0)ξε

∫
w(y) dy

+ O(ε), (3.6)

u2,ε(x) = G D2(x, 0)
√
1 + αε

G2
D2

(0, 0)ξε

∫
w(y) dy

+ O(ε). (3.7)

In the next step, we will derive two conditions, by substituting (3.1), (3.6) with (3.4), (3.5)
in (2.1). Then we will solve these two conditions to determine αε and ξε .

Integrating the first equation in (2.1), using the Neumann boundary condition and balanc-
ing the last two terms, we get the first condition

|�| = a1Sε(0)
ξ2ε√
1 + αε

∫

R

w2(y) dy + O(ε).

From (3.4), we compute

αε = a2(1 + αε)

ξ2ε G2
D2

(0, 0)(
∫

R
w(y) dy)2

+ O(ε).
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Summarizing these results, (αε, ξε) solve the system

αε = a2
ξ2ε G2

D2
(0, 0)(

∫

R
w(y) dy)2 − a2

+ O(ε), (3.8)

|�| = a1ξε

∫

R

w2(y) dy
√
1 + αε + O(ε). (3.9)

Using
∫

R

w(y)2 dy =
∫

R

w(y) dy = 6,

the system (3.8), (3.9) can be rewritten as a quadratic equation in ξ2ε

362a2
1G D2(0, 0)

2ξ4ε − 36G D2(0, 0)
2ξ2ε |�|2 + a2|�|2 = O(ε)

which has the two solutions

(
ξ s,l
ε

)2 =
|�|2 ±

√

|�|4 − 4a2
1a2|�|2G D2(0, 0)−2

72a2
1

+ O(ε) (3.10)

under the condition

a2
1a2 <

|�|2
4

G D2(0, 0)
2.

The last condition states that, all other constants being equal, the combination a2
1a2 must be

small enough.
This implies that under the condition

a2
1 a2 <

|�|2
4

G D2(0, 0)
2 − δ0 for some δ0 > 0

there are two solutions for ξε which satisfy

0 < ξ s
ε <

|�|2
72a2

1

< ξ l
ε .

On the other hand, if

a2
1 a2 >

|�|2
4

G D2(0, 0)
2 + δ0 for some δ0 > 0,

then there are no such solutions.
Resulting from the two solutions ξ s

ε and ξ l
ε there are also two solutions for αs

ε and αl
ε

which are computed from (3.8).
Now we show that

αl
ε < 1 and αs

ε > 1. (3.11)

Substituting (2.10) and (2.9) in (3.8), we get

αε = 2a2
1a2

|�|2G D2(0, 0)2 ±
√

|�|4G D2(0, 0)4 − 4a2
1a2|�|2G D2(0, 0)2 − 2a2

1a2

Thus it remains to show that

|�|2G D2(0, 0)
2 − 4a2

1a2 <

√

|�|4G D2(0, 0)4 − 4a2
1a2|�|2G D2(0, 0)2
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which follows easily after taking squares on both sides.
Finally, this results in the two single-spike solutions (Ss

ε , us
1,ε , us

2,ε) and (Sl
ε, ul

1,ε, ul
2,ε)

of (2.1). In the next section we will rigorously prove the existence of these two solutions.

4 Existence II: Rigorous Proofs

In this section we show the existence of solutions of (2.1) for which the central compo-
nent has a spike. As we have shown in the previous section, there are two such solutions,
(Ss

ε , us
1,ε, us

2,ε) and (Sl
ε, ul

1,ε, ul
2,ε) which differ by the size of the amplitude. The existence

proof applies to both of them. Therefore we will not write the superscripts s and l in this
section.

The second component of the approximate spike solution introduced in (3.1) is given by

ũ1,ε(x) = ξε w

( |x |√1 + αε

ε

)

χ(|x |) + O(ε),

where ξε and αε have been computed to leading order in (3.8), (3.10), and χ has been
introduced in (3.2).

Further, S̃ε and ũ2,ε solve a partial differential equationwhich depends on ũ1,ε only. There-
fore we denote S̃ε = T1[ũ1,ε] and ũ2,ε = T2[ũ1,ε], respectively. We insert this approximate
spike solution into (2.1) and compute its error.

The LHS of the second equation in (2.1) at (S̃ε, ũ1,ε , ũ2,ε) = (T1[ũ1,ε], ũ1,ε, T2[ũ1,ε])
is calculated as follows:

�y ũ1,ε − ũ1,ε + S̃ε ũ2
1,ε − a2ũ1,ε ũ2

2,ε = �y ũ1,ε − ũ1,ε + S̃ε(0)ũ
2
1,ε − a2ũ1,ε ũ2

2,ε(0)

+ [S̃ε − S̃ε(0)
]
ũ2
1,ε − a2ũ1,ε2

(
ũ2,ε

− ũ2,ε(0)
)
ũ2,ε(0) + O

(
ε2
)

=: E1 + E2 + E3 + O
(
ε2
)

in L2(�ε), where �ε = (− 1
ε
, 1

ε

)
.

We compute

E1 = O(ε)

by the definition of ξε and αε in (3.4) and (3.5). Computing S̃ε(x), using the Green’s function
G D1 defined in (7.1), we derive the following estimate:

E2 = [
S̃ε(εy) − S̃ε(0)

]
ũ2
1,ε(εy)

= −ũ2
1,ε(εy)a1

∫ 1/ε

−1/ε

[
G D1(εy, εz) − G D(0, εz)

]
S̃ε(z)ũ

2
1,ε(z) dz

(
1 + O(ε)

)

= a1
ũ2
1,ε(εy)

S̃ε(0)
ε
(
1 + αε

)2
∫

R

(
1

2D1
|y − z| − 1

2D1
|z|
)

w2(z
√
1 + αε

)
dz
(
1 + O (ε|y|) )

+ a1
(
1 + αε

)3/2 ũ2
1,ε(εy)

S̃ε(0)
ε2y2HD1,xx (0, 0)6

(
1 + O (ε|y|) ) = O

(
ε|y|)ũ2

1,ε .

Thus we have

E2 = O(ε) in L2(�ε).
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Here we have used that HD1,x (0, 0) = 0 by (7.4).
Similarly, we compute

E3 = −a2ũ1,ε(εy)2
(
ũ2,ε(εy) − ũ2,ε(0)

)
ũ2,ε(0)

= 2a2ũ1,ε(εy)ũ3
2,ε(0)

∫ 1/ε

−1/ε

[
G D2(εy, εz)

−G D(0, εz)
]
ũ1,ε(εz) dz

(
1 + O(ε)

)

= 2αε(1 + αε)ũ1,ε(εy)
ũ2,ε(0)

S̃ε(0)

∫

R

(
K D2

(
ε|y − z|)

−K D2

(
ε|z|)

)
w(z

√
1 + αε) dz

(
1 + O(ε|y|))

−2αε

√
1 + αε ũ1,ε(εy)ũ2,ε(0)ε

2y2HD2,xx (0, 0)

(∫

R

w dy

)
(
1 + O(ε|y|))

= −2αε(1 + αε)ũ1,ε(εy)
ũ2,ε(0)

S̃ε(0)

∫

R

(
K D2

(
ε|y − z|)

−K D2

(
ε|z|)

)
w
(
z
√
1 + αε

)
dz (1 + O(ε|y|))

−2αε

√
1 + αε ũ1,ε(εy)ũ2,ε(0)ε

2y2 HD2,xx (0, 0)6 (1 + O(ε|y|))
= O(ε|y|)ũ1,ε .

Thus we have

E3 = O(ε) in L2(�ε).

By definition, the first and third equations of (2.1) are solved exactly and so do not
contribute to the error.

Writing the system (2.1) in the form Rε(Sε, u1,ε , u2,ε) = 0, we have now shown the
estimate ∣

∣
∣

∣
∣
∣Rε

(
T1[ũ1,ε], ũ1,ε , T2[ũ1,ε]

)∣∣
∣

∣
∣
∣
L2(�ε)

= O (ε) . (4.1)

Next, we investigate the linearized operator L̃ε around the approximate solution
(S̃ε, ũε,1, ũε,2). It is defined as follows:

L̃ε : H2
N (�) × H2

N (�ε) × H2
N (�) → L2(�) × L2(�ε) × L2(�),

L̃ε

⎛

⎝
ψ1,ε

φε

ψ2,ε

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

D1�ψ1,ε − 2
a1
ε

S̃ε ũ1,εφε − a1
ε

ψ1,ε ũ2
1,ε

ε2�φε − φε + 2S̃ε ũ1,εφε + ψ1,ε ũ2
1,ε − a2φε ũ2

2,ε − 2a2ũ1,ε ũ2,εψ2,ε

D2�ψ2,ε − ψ2,ε + 1

ε
φε ũ2

2,ε + 2

ε
ũ1,ε ũ2,εψ2,ε

⎞

⎟
⎟
⎟
⎟
⎠

.

(4.2)

We will show this operator will lead to a uniformly invertible one for ε small enough.
To study the kernel of L̃ε , we first solve its first and third components. Therefore, we

have ψ1,ε = T ′
1[ũ1,ε]φε and ψ2,ε = T ′

2[ũ1,ε]φε , where T ′
1[ũ1,ε] and T ′

2[ũ1,ε] are linearized
operators which can be expressed by the Green’s functions G D1 and G D2 defined in (7.1) and
(7.18), respectively. Substituting these expressions into L̃ε , the first and third components
vanish and it only remains to consider the second component. We obtain the following
operator:
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L̄ε : H N
2 (�ε) → L2(�ε),

L̄ε(φε) = �yφε − φε + 2S̃ε ũ1,εφε +
(

T ′
1[ũ1,ε]φε

)
ũ2
1,ε − a2φε ũ2

2,ε

−2a2ũ1,ε ũ2,ε

(
T ′
2[ũ2,ε]φε

)
. (4.3)

In order to introduce a uniformly invertible operator, we define approximate kernel and
co-kernel as

Kε = span
{
ũ′
1,ε

} ⊂ H2
N (�ε),

Cε = span
{
ũ′
1,ε

} ⊂ L2(�ε).

Then the linear operator Lε is defined by

Lε : K⊥
ε → C⊥

ε ,

Lε = π ◦ L̄ε

(
φε

)
(4.4)

where K⊥
ε and C⊥

ε denote the orthogonal complement with the scalar product of L2(�ε) to
Kε and Cε , respectively, and π is the L2-projection from L2(�ε) into C⊥

ε .
We will show that this operator is uniformly invertible for ε small enough. In fact, we

have the following result:

Proposition 4.1 There exist positive constants ε̄, λ such that for all ε ∈ (0, ε̄),

‖Lεφ‖L2(�ε) ≥ λ‖φ‖H2(�ε)
for all φ ∈ K⊥

ε . (4.5)

Further, the linear operator Lε is surjective.

Proof of Proposition 4.1: We give an indirect proof. Suppose (4.5) is false. Then there exist
sequences {εk}, {φk} with εk → 0, φk = φεk , k = 1, 2, . . . such that

∥
∥Lεk φ

k
∥
∥

L2(�ε)
→ 0 as k → ∞, (4.6)

∥
∥φk

∥
∥

H2(�ε)
= 1, k = 1, 2, . . . . (4.7)

By using the cut-off function χ defined in (3.2), we define the following functions:

φ1,ε(y) = φε(y)χ
(|x |), y ∈ �ε.

φ2,ε(y) = φε(y)
(
1 − χ(|x |)), y ∈ �ε. (4.8)

At first the functions φ1,ε, φ2,ε are only defined in �ε . However, by a standard extension
result, φ1,ε and φ2,ε can be extended to R such that the norms of φ1,ε and φ2,ε in H2(R) are
bounded by a constant independent of ε for all ε small enough. In the following we shall
study this extension. For simplicity, we use the same notation for the extension. Since for
i = 1, 2 each sequence {φk

i } := {φi,εk } (k = 1, 2, . . .) is bounded in H2
loc(R) it has a weak

limit in H2
loc(R), and therefore also a strong limit in L2

loc(R) and L∞
loc(R). We call these limits

φi .

Taking the limit ε → 0 in (4.4), then � =
(

φ1

φ2

)

satisfies

∫

R

φ1wy dy = 0 (4.9)

and it solves the system
Lφ1 = 0, (4.10)
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where the operator L is defined by

Lφ1 = �yφ1 − (1 + α)φ1 + 2(1 + α)wφ1 − 2(1 + α)

∫

R
wφ1 dy

∫

R
w2 dy

w2 + 2α

∫

R
φ1 dy

∫

R
w dy

w.

In Lemma 5.1 below we will show that the system (4.9), (4.10) has only the solution φ1 = 0
in R.

Further, trivially, φ2 = 0 in R.
By standard elliptic estimates we get ‖φi,εk ‖H2(R) → 0 for i = 1, 2 as k → ∞.
This contradicts the assumption that ‖φk‖H2(�ε)

= 1.
To complete the proof of Proposition 4.1, we need to show that the adjoint operator of Lε

(denoted by L∗
ε ) is injective fromKε

⊥ to Cε
⊥. We first pass to the limit ε → 0 for the adjoint

operator L∗
ε . This limiting process follows along the same lines as for Lε and is therefore

omitted. Thenwe have to show that the limiting adjoint operatorL∗ has only the trivial kernel.
This will be done in Lemma 5.2 below. ��

Finally, we solve the system (2.1). It can be written as

Rε

(
S̃ε + ψ1, ũ1,ε + φ, ũ2,ε + ψ2

) = Rε

(
Uε + �

) = 0, (4.11)

where Uε =
(

S̃ε, ũ1,ε, ũ2,ε

)
, � = (ψ1, φ, ψ2). Since Lε is uniformly invertible if ε is

small enough, we can write (4.11) in function space with even � as

� = −L−1
ε Rε

(
Uε

)− L−1
ε Nε(�) =: Mε(�), (4.12)

where L−1
ε is the inverse of Lε and

Nε(�) = Rε

(
Uε + �

)− Rε

(
Uε

)− R′
ε

(
Uε

)
�. (4.13)

Note that the operator Mε defined by (4.12) is a mapping from H2
N (�)× H2

N (�ε)× H2
N (�)

into itself. We are going to show that the operator Mε is a contraction on

Bε,δ ≡ {
� ∈ H2

N (�) × H2
N (�ε) × H2

N (�) : � even, ‖�‖H2(�)×H2(�ε)×H2(�) < δ
}

if ε is small enough and δ is suitably chosen. By (4.1) and Proposition 4.1, we have

‖Mε(�)‖H2(�)×H2(�ε)×H2(�) ≤ λ−1
(

‖Nε(�)‖L2(�)×L2(�ε)×L2(�)

+‖Rε(Uε)‖L2(�)×L2(�ε)×L2(�)

)

≤ λ−1C0
(
c(δ)δ + ε

)
,

where λ > 0 is independent of δ > 0, ε > 0 and c(δ) → 0 as δ → 0. Similarly, we show

‖Mε(�1) − Mε(�2)‖H2(�)×H2(�ε)×H2(�) ≤ λ−1C0
(
c(δ)δ

)‖�1 − �2‖H2(�)×H2(�ε)×H2(�),

where c(δ) → 0 as δ → 0. Choosing δ = C1ε for λ−1C0 < C1 and taking ε small enough,
then Mε maps from Bε,δ into Bε,δ and it is a contraction mapping in Bε,δ . The existence of
a fixed point �ε ∈ Bε,δ now follows from the standard contraction mapping principle, and
�ε is a solution of (4.12).

We have thus proved
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Lemma 4.1 There exists ε > 0 such that for every ε with 0 < ε < ε there is an even
�ε ∈ H2

N (�) × H2(�ε) × H2
N (�) satisfying Rε(Uε + �ε) = 0. Furthermore, we have the

estimate
‖�ε‖H2(�)×H2(�ε)×H2(�) ≤ Cε. (4.14)

In this section we have constructed two exact spikes solution of the form Uε + �ε =
(Sε, uε,1, uε,2). We are now going to study their stability.

5 Stability I: Derivation, Rigorous Deduction and Analysis of a NLEP

We study a small perturbation of a single-spike steady state (Sε, uε,1, uε,2) which could
be either the small-amplitude solution (Ss

ε , us
1,ε, us

2,ε) or the large-amplitude solution

(Sl
ε, ul

1,ε, ul
2,ε).

We linearize (1.1) around the single-spike solutionwederive in leading order Sε+ψ1,εeλε t ,
uε,1 + φεeλε t , uε,2 + ψ2,εeλε t , where the three perturbations ψ1,ε ∈ H2

N (�), φε ∈ H2
N (�ε)

ψ2,ε ∈ H2
N (�) are small in their respective norms Then the perturbations in leading order

satisfy the eigenvalue problem

L̃ε

⎛

⎝
ψ1,ε

φε

ψ2,ε

⎞

⎠ =
⎛

⎝
τλεψ1,ε

λεφε

τ1λεψ2,ε

⎞

⎠ , (5.1)

where L̃ε denotes the linearized operator around the steady state steady state (Sε, uε,1, uε,2)

which has been defined in (4.4) and has the domain H2
N (�) × H2

N (�ε) × H2
N (�). Here we

have λε ∈ C, the set of complex numbers.
We say that a spike solution is linearly stable if the spectrum σ(Lε) of Lε lies in a left

half plane {λ ∈ C : Re(λ) ≤ −c0} for some c0 > 0. A spike solution is called linearly
unstable if there exists an eigenvalue λε of Lε with Re(λε) > 0.

We first consider the case τ = 0 and τ1 = 0 and show stability. Then we study the stability
for τ ≥ 0 small or τ1 ≥ 0 small. We will show that for τ ≥ 0 small and τ1 = 0 we still have
stability, but for τ ≥ 0 small and 0 < ε � τ1 � 1 the solution will be unstable.

Writing down L̃ε explicitly and expressing ψi,ε = T ′
i [ui,ε]φε, i = 1, 2, using Green’s

functions G Di defined in (7.1) and (7.18), respectively, we can rewrite (5.1) as

ε2φε.xx − φε + 2Sεu1,εφε + (
T ′
1[u1,ε]φε

)
u2
1,ε − a2φεu2

2,ε − 2a2u1,εu2,ε
(
T ′
2[u2,ε]φε

) = λεφε.

(5.2)

Then, arguing as in the proof of Proposition 4.1, a subsequence of the sequence φε con-
verges to a limit which we denote by φ. Next we derive an eigenvalue problem for φ.

Integrating the first equation of (5.1), we get

ψ1,ε(0)
∫ 1

−1
u2
1,ε dx = −2Sε(0)

∫ 1

−1
u1,εφε dx + O(ε)

which implies

ψ1,ε(0) = −2Sε(0)

ξε

∫

R
wφ dy

∫

R
w2 dy

(
1 + O(ε)

)
(5.3)
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This gives

ψ1,ε(0)u
2
1,ε = −2

Sε(0)

ξε

∫

R
wφ dy

∫

R
w2 dy

ξ2ε w2 (1 + O(ε)
)

= −2(1 + αε)

∫

R
wφ dy

∫

R
w2 dy

w2 (1 + O(ε)
)

in H2(�ε

)
,

using (3.5). We also derive from (2.11) that

u2,ε(0) =
√
1 + αε

G D2(0, 0)6ξε

+ O(ε)

and compute

ψ2,ε(0) = G D2(0, 0)

[

u2
2,ε(0)

1√
1 + αε

∫

R

φ dy

+ 2ψ2,ε(0)u2,ε(0)
ξε√

1 + αε

∫

R

w dy

]
(
1 + O(ε)

)

= u2,ε(0)G D2(0, 0)
1√

1 + αε

[

u2,ε(0)
∫

R

φ dy + 2ψ2,ε(0)ξε

∫

R

w dy

]

which implies

ψ2,ε(0) = −u2,ε(0)

ξε

∫

R
φ dy

∫

R
w dy

(
1 + O(ε)

)
.

Finally, we get

ψ2,ε(0) = −
√
1 + αε

G D2(0, 0)6ξ2ε

∫

R
φ dy

∫

R
w dy

(
1 + O(ε)

)
. (5.4)

Therefore, we compute

−a2u1,ε2u2,εψ2,ε = −a2u1,ε2u2,ε(0)ψ2,ε(0)
(
1 + O(ε)

)

= −2αεw
ξεψ2,ε(0)

u2,ε(0)

(
1 + O(ε)

)

= +2αε

∫

R
φ dy

∫

R
w dy

w
(
1 + O(ε)

)
in H2(�ε),

using (3.4).
Putting all these expressions into (5.2) and taking the limit ε → 0, we derive the NLEP

Lφ = �yφ−(1+α)φ+2(1+α)wφ−2(1+α)

∫

R
wφ dy

∫

R
w2 dy

w2+2α

∫

R
φ dy

∫

R
w dy

w = λφ, (5.5)

where α = limε→0 αε .
Although this derivation has been only made formally, we can rigorously prove the fol-

lowing separation of eigenvalues.

Theorem 5.1 Let λε be an eigenvalue of (5.2) for which Re(λε) > −a0 for some suitable
constant a0 fixed independent of ε.

(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 �= 0. Then λ0 is an
eigenvalue of the NLEP given in (5.5).
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(2) Let λ0 �= 0 be an eigenvalue of the NLEP given in (5.5). Then for all ε sufficiently small,
there is an eigenvalue λε of (5.2) with λε → λ0 as ε → 0.

Remark From Theorem 5.1 we see rigorously that the eigenvalue problem (5.2) is reduced
to the study of the NLEP (5.5).

Now we prove Theorem 5.1.

Proof of Theorem 5.1: Part (1) follows by an asymptotic analysis combined with passing to
the limit as ε → 0 which is similar to the proof of Proposition 4.1.

Part (2) follows from a compactness argument by Dancer introduced in Sect. 2 of [3]. It
was applied in [38] to a related situation, therefore we omit the details.

The stability or instability of the large eigenvalues follows from the following results:

Theorem 5.2 [31] Consider the nonlocal eigenvalue problem

φ′′ − φ + 2wφ − γ

∫

R
wφ

∫

R
w2

w2 = αφ. (5.6)

(1) If γ < 1, then there is a positive eigenvalue to (5.6).
(2) If γ > 1, then for any nonzero eigenvalue λ of (5.6), we have

Re(λ) ≤ −c0 < 0.

(3) If γ �= 1 and λ = 0, then φ = c0w′ for some constant c0.

In our applications to the case when τ > 0 or τ1 > 0, we need to handle the situation
when the coefficient γ is a complex function of τλ. Let us suppose that

γ (0) ∈ R, |γ (τλ)| ≤ C for λR ≥ 0, τ ≥ 0, (5.7)

where C is a generic constant independent of τ, λ. Then we have

Theorem 5.3 (Theorem 3.2 of [38])
Consider the nonlocal eigenvalue problem

φ′′ − φ + 2wφ − γ (τλ)

∫

R
wφ

∫

R
w2

w2 = λφ, (5.8)

where γ (τλ) satisfies (5.7). Then there exists τ0 > 0 such that for all 0 ≤ τ < τ0,

(1) if γ (0) < 1, then there is a positive eigenvalue to (5.8);
(2) if γ (0) > 1, then for any nonzero eigenvalue λ of (5.8), we have

Re(λ) ≤ −c0 < 0.

Now we consider the stability of the eigenvalue problem (5.5).

Lemma 5.1 (1) If α < 1, the eigenvalue problem (5.5) has only stable eigenvalues, i.e. for
any nonzero eigenvalue of (5.5), we have

Re(λ) ≤ −c0 < 0.

If α > 1, the eigenvalue problem (5.5) has an eigenvalue with Re(λ) > 0.
(2) If α �= 1 and λ = 0, then φ = c0w′ for some constant c0.
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Proof of Lemma 5.1
Proof of (1): Integrating (5.5), we derive

(λ + 1 − α)

∫

R

φ dy = 0.

Then for all the eigenvalues we have (i) λ+1−α = 0 or the corresponding eigenfunction
satisfies (ii)

∫

R
φ dy = 0.

Let us first consider case (i). If α < 1 then (i) implies that λ < 0 and this eigenvalue λ is
stable for (5.5). Ifα > 1, thenwe construct an eigenfunctionφ with eigenvalueλ = α−1 > 0
as follows and the eigenvalue problem (5.5) is unstable: first we set

φ = (L + 1 − α)−1 [c1w
2 + c2w

]
, (5.9)

where

L : K ⊥ → C⊥, Lφ := �φ − (1 + α)φ + 2(1 + α)wφ,

K ⊥ =
{

v ∈ H2(R) :
∫

vwy dy = 0

}

, C⊥ =
{

v ∈ L2(R) :
∫

vwy dy = 0

}

,

c1 = 2(1 + α)
∫

R
wφ dy

∫

R
w2 dy

, c2 = −2α
∫

R
φ dy

∫

R
w dy

.

Then we multiply (5.9) by w and 1, respectively, and integrating we get a linear system
for the coefficients (

∫

R
wφ dy,

∫

R
φ dy) which has a unique nontrivial solution. Solving this

system, using the identities

Lw = (1 + α)w2, L

(
y
√

α + 1

2
wy + w

)

= (1 + α)w,

we can eliminate φ in the definitions of c1 and c2. We finally get

c1 =
∫

R

w
(
L + 1 − α

)−1
w dy,

c2 = −
∫

R

w
(
L + 1 − α

)−1
w2 dy + 3

1 − α
.

Thus the eigenvalue problem is unstable for α > 1.
Next we consider case (ii). Rescaling the spatial variable, NLEP (5.5) reduces to the

familiar NLEP considered in Theorem 5.2 with γ = 2 which implies that the real parts of
all eigenvalues are strictly negative and we have stability.

Proof of (2) Integrating (5.5), we derive
∫

R

φ dy = 0.

Rescaling the spatial variable, NLEP (5.5) reduces to the familiar NLEP considered in The-
orem 5.2 with γ = 2 and we derive φ = c0w′ for some constant c0. ��

Proof of Theorem 2.2 By (3.11) we have αl
ε < 1 and αs

ε > 1. Then the theorem follows by
combining the results of Theorem 5.1 and Lemma 5.1. ��
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We also need to consider the adjoint operator L∗
ε to the linear operator Lε . Expressing L∗

ε

explicitly, we can rewrite the adjoint eigenvalue problem as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D1�ψ1,ε + 1

ε

(
φε − a1ψ1,ε

)
u2
1,ε = τλεψ1,ε ,

ε2�φε − φε + 2Sεu1,ε
(
φε − a1ψ1,ε

)+ (
ψ2,ε − a2φε

)
u2
2,ε = λεφε,

D2�ψ2,ε − ψ2,ε + 2

ε
u1,εu2,ε

(
ψ2,ε − a2φε

) = τ1λεψ2,ε .

(5.10)

We need to consider the kernel of this adjoint eigenvalue problem. (In the proof of Propo-
sition 4.1 we need the result that this kernel is trivial.) Taking the limit ε → 0 as in the proof
of Proposition 4.1, we derive the following nonlocal linear operator which is the adjoint
operator of (5.5):

L∗φ = �yφ − (1 + α)φ + 2(1 + α)wφ − 2(1 + α)

∫

R
w2φ dy

∫

R
w2 dy

w + 2α

∫

R
wφ dy

∫

R
w dy

= 0.

(5.11)

We are now going to show the following Lemma:

Lemma 5.2 The kernel of the operator (5.11) is trivial.

Proof of Lemma 5.2: Integrating (5.11), we derive
∫

R
wφ dy = 0 since otherwise there is

an unbounded term. Further, we get the relation
∫

R

φ dy + 2
∫

R

w2φ dy = 0. (5.12)

Multiplying (5.11) by w and integrating, we derive
∫

R

w2φ dy = 0. (5.13)

Then from (5.12) we get
∫

R
φ dy = 0. Finally, going back to (5.11), all the nonlocal terms

vanish and by Theorem 5.2 in the special case γ = 0 we derive φ = c0w′ for some constant
c0. Thus the kernel of L∗ is trivial. ��

Now we extend the consideration of the stability problem for the linearized operator to
the conditions τ ≥ 0 or τ1 ≥ 0 and prove Corollary 2.1.

Proof of Corollary 2.1 To emphasize the possible different behaviors if τ ≥ 0 or τ1 ≥ 0, we
consider the cases separately:

Proof of (1): 0 ≤ τ ≤ τ0 for some τ0 > 0 and τ1 = 0.
We first compute, using (3.5), (7.8),

ψ1,ε(0) = −a1
ε

∫ 1

−1
G D1,τλ

[
ψ1,εu2

1,ε + 2Sεu1,εφε

]
dx

= −a1
ε

G D1,τλ(0, 0)

[

ψ1,ε(0)
∫ 1

−1
u2
1,ε dx + 2Sε(0)

∫ 1

−1
u1,εφε dx

]
(
1 + O(ε)

)

=−a1G D1,τλ(0, 0)

[

ψ1,ε(0)
ξ2ε√
1+αε

∫

R

w2 dy+2
√
1 + αε

∫

R

wφε dy

]
(
1 + O(ε)

)
.
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This implies

ψ1,ε(0) = −2a1G D1,τλ(0, 0)
√
1 + αε

∫

R
wφε dy

1 + a1G D1,τλ(0, 0)
ξ2ε√
1+αε

∫

R
w2 dy

= − 2(1 + αε)
∫

R
wφε dy

√
1+αε

a1G D1,τλ(0,0) + ξ2ε
∫

R
w2 dy

(
1 + O(ε)

)
. (5.14)

Putting everything together, we compute

ψ1,ε(0)u
2
1,ε = − 2(1 + αε)

∫

R
wφε dy

√
1+αε

a1G D1,τλ(0,0) + ξ2ε
∫

R
w2 dy

ξ2ε w2 (1 + O(ε)
)

= − 2(1 + αε)

1 +
√
1+αε

6a1G D1,τλ(0,0)ξ2ε

∫

R
wφε dy

∫

R
w2 dy

w2 (1 + O(ε)
)

= − 2(1 + αε)

1 + c3,ετλ

∫

R
wφε dy

∫

R
w2 dy

w2 (1 + O(ε + |τλ|)) in H2(�ε),

where c3,ε =
√
1+αε

3a1ξ2ε
> 0, using formula (7.9). In particular, the factor

−2(1 + αε)

1 +
√
1+αε

6a1G D1,τλ(0,0)ξ2ε

is bounded if Re(λ) ≥ 0. Therefore, by Theorem 5.3, both the stability and instability result
extend from τ = 0 to a range 0 ≤ τ < τ0 (for some constant τ0 > 0).

Proof of (2) We prove this case in two stages. In the first stage we only allow τ1 to be
nonzero, i.e. we assume τ = 0 and 0 < ε � τ1 � 1.

Similar to the derivation of (5.14), we have

ψ2,ε(0) = G D2,τ1λ(0, 0)

[

u2
2,ε(0)

1√
1 + αε

∫

R

φε dy

+ 2ψ2,ε(0)u2,ε(0)
ξε√

1 + αε

∫

R

w dy

]
(
1 + O(ε)

)

= u2,ε(0)G D2,τ1λ(0, 0)
1√

1 + αε

[

u2,ε(0)
∫

R

φε dy + 2ψ2,ε(0)ξε

∫

R

w dy

]

which implies

ψ2,ε(0)

(
2G D2,τ1λ(0, 0)

G D2(0, 0)
− 1

)

= −G D2,τ1λ(0, 0)

G D2(0, 0)

u2,ε(0)

ξε

∫

R
φε dy

∫

R
w dy

(
1 + O(ε)

)
.

Thus we have

ψ2,ε(0) = − G D2,τ1λ(0, 0)

2G D2,τ1λ(0, 0) − G D2(0, 0)

√
1 + αε

G D2(0, 0)6ξ2ε

∫

R
φε dy

∫

R
w dy

(
1 + O(ε)

)
. (5.15)

Finally, we get

−a2u1,ε2u2,εψ2,ε = 2αε

G D2,τ1λ(0, 0)

2G D2,τ1λ(0, 0) − G D2(0, 0)

∫

R
φε dy

∫

R
w dy

w
(
1 + O(ε)

)
in H2(�ε).
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It is now essential to study the asymptotic behavior of the function

f (τ1λ, D2) = G D2,τ1λ(0, 0)

2G D2,τ1λ(0, 0) − G D2(0, 0)

= 1

2 − G D2 (0,0)
G D2,τ1λ(0,0)

= 1

2 −
√
1+τ1λ coth θ2

coth(θ2
√
1+τ1λ)

,

using the formulas (7.19), (7.20), (7.24). Thus we have

f (0, D2) = 1, f (ρ, D2) → 0 as ρ → ∞;
f (ρ, D2) → ±∞ as ρ → ∓ρ0,

where ρ0 is the unique positive solution of
√
1 + ρ0 coth θ2 = 2 coth(θ2

√
1 + ρ0).

We expand the eigenvalue problem (5.1) with respect to τ1 for |τ1λ− ρ0| = O(τ1), Thus we
get the expansions

f (τ1λ) = f1
ρ0 − τ1λ

+ f2 + O(τ1),

λ = ρ0

τ1
+ λ1 + λ2τ1 + O

(
τ 21
)
,

φε = w + φ1τ1 + O
(
τ 21
)

in H2(�ε),

which satisfy

2αε

(
f1

ρ0 − τ1λ
+ f2

)

w + (1 + αε)w
2 − 2(1 + αε)

1 + c3,ετλ
w2

+�φ1 − (1 + αε)φ1 + 2(1 + αε)wφ1 − 2(1 + αε)

1 + c3,ετλ

∫

R
wφ1 dy

∫

R
w2 dy

w2

+2αε

(
f1

ρ0 − τ1λ
+ f2

) ∫

R
φε dy

∫

R
w dy

w − 2(1 + αε)

1 + c3,ετλ

∫

R
wφ1 dy

∫

R
w2 dy

w2

=
(

λ0

τ1
+ λ1 + λ2τ1 + O(τ 21 )

)
(
w + φ1τ1 + O(τ 21 )

)
in H2(�ε).

Comparing powers of τ1, we get

f (τ, λ) = − f1
τ1λ1

+ f1
λ2

λ21
+ f2 + O(τ1),

the eigenvalue

λ = ρ0

τ1
+ λ1 + λ2τ1 + O

(
τ 21
)
, (5.16)

where

λ1 = −2αε f1
ρ0

, λ2 = λ21

2αε f1
− f2

f1
λ21 +

∫

R φ1 dy
∫

R w dy
λ1,
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and the eigenfunction

φε = w + 1 + αε

λ0

(

1 − 2

1 + c3,ετλε

)

w2τ1 + O
(
τ 21
)

in H2(�ε). (5.17)

In conclusion, the eigenvalue problem (5.1) is always unstable for 0 < τ1 small enough,
although it is stable for τ1 = 0.

This behavior stands in marked contrast (1), where in the regime 0 < τ < τ0 (for some
τ0 > 0) the stability behavior is the same as for τ = 0.

In the second stage we allow both τ and τ1 to be nonzero. We assume 0 ≤ τ < τ0 for
some τ0 > 0 small enough and 0 < ε � τ1 � 1.

Combining the formulas in the proofs of (1) and (2), it follows that now we have the same
behavior as in (2) since the leading terms in (2) which are of exact order 1

τ1
dominate those

in (1) which are of exact order 1.
The analysis in the proof has been performed considering the limiting eigenvalue problem

for ε = 0 and then letting τ1 → 0. The proof extends to the case 0 < ε � τ1 � 1 in (5.1)
by a perturbation argument as in Theorem 5.1. ��
Remark 5.1 We expect that in the regime 0 < τ1 � ε � 1 and 0 ≤ τ < τ0 for some τ0 > 0
small enough the system will be stable.

6 Stability II: Computation of the Small Eigenvalues

We now compute the small eigenvalues of the eigenvalue problem (5.1), i.e. we assume that
λε → 0 as ε → 0. We will prove that these eigenvalues satisfy λε = O(ε2). We emphasize
that the analysis in this section applies to both (Ss

ε , us
1,ε, us

2,ε) and (Sl
ε, ul

1,ε, ul
2,ε). Further, it

includes nonzero values for τ or τ1 , i.e. we assume 0 ≤ τ < τ0, where τ0 > 0 is a constant
which is small enough and may be chosen independent of ε, and 0 ≤ τ1 � 1. Let us define

ũ1,ε(x) = χ
(|x |)u1,ε(x). (6.1)

Then it follows easily that

u1,ε(x) = ũ1,ε(x) + e.s.t. in H2(�ε). (6.2)

Taking the derivative of the system (2.1) w.r.t. y, we compute

ũ′′′
1,ε − ũ′

1,ε + 2Sεu1,ε ũ′
1,ε + εS′

εu2
1,ε − a2ũ′

1,εu2
2,ε − 2εa2u1,εu2,ε ũ′

2,ε = e.s.t.. (6.3)

Here ′ denotes derivative w.r.t. the variable of the corresponding function, i.e. it means
derivative w.r.t. x for Sε and u2,ε , and w.r.t. y for u1,ε .

Let us now decompose the eigenfunction (ψ1,ε , φε, ψ2,ε) as follows:

φε = aε ũ′
1,ε + φ⊥

ε (6.4)

where aε is a complex number to be determined and

φ⊥
ε ⊥ Kε = span

{
ũ′
1,ε

} ⊂ H2
N

(

−1

ε
,
1

ε

)

.

We decompose the eigenfunction ψ1,ε as follows:

ψ1,ε = aεψ0
1,ε + ψ⊥

1,ε ,
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where ψ0
1,ε satisfies

{
D1�ψ0

1,ε − a1
ε

ψ0
1,εu2

1,ε − 2 a1
ε

Sεu1,ε ũ′
1,ε = τλεψ

0
1,ε ,

ψ0
1,ε

′
(±1) = 0

(6.5)

and ψ⊥
1,ε is given by

{
D1�ψ⊥

1,ε − a1
ε

ψ⊥
1,εu2

1,ε − 2 a1
ε

Sεu1,εφ
⊥
ε = τλεψ

⊥
1,ε ,

ψ⊥
1,ε

′
(±1) = 0.

(6.6)

Similarly, we decompose the eigenfunction ψ2,ε as follows:

ψ2,ε = aεψ0
2,ε + ψ⊥

2,ε ,

where ψ0
2,ε satisfies

{
D2�ψ0

2,ε − ψ0
2,ε + 2

ε
u1,εu2,εψ

0
2,ε + 1

ε
ũ′
1,εu2

2,ε = τ1λεψ
0
2,ε ,

ψ0
2,ε

′
(±1) = 0

(6.7)

and ψ⊥
2,ε is given by

{
D2�ψ⊥

2,ε − ψ⊥
2,ε + 2

ε
u1,εu2,εψ

⊥
2,ε + 1

ε
φ⊥

ε u2
2,ε = τ1λεψ

⊥
2,ε ,

ψ⊥
2,ε

′
(±1) = 0.

(6.8)

Note that ψ1,ε and ψ2,ε can be uniquely expressed in terms of φε by solving the first and
third equation using the Green’s functions G D1,τλε and G D2,τλε defined in (7.8) and (7.23),
respectively,

ψ1,ε = aεψ0
1,ε + ψ⊥

1,ε = aεT ′
1,τλε

ũ′
1,ε + T ′

1,τλε
φ⊥

ε . (6.9)

ψ2,ε = aεψ0
2,ε + ψ⊥

2,ε = aεT ′
2,τ1λε

ũ′
1,ε + T ′

2,τ1λε
φ⊥

ε . (6.10)

Using the Green’s function G D1 defined in (7.1) we compute S′
ε near zero. We get

εS′
ε(εy) − εS′

ε(0) = a1ε
∫ 1/ε

−1/ε

[
1

2D1

(
sgn(y − z) − sgn(−z)

)

+ HD1,x (εy, εz) − HD1,x (0, εz)

]

Sε(εz)u2
1,ε(εz) dz + O

(
ε3|y|2)

= a1
ε

D1

∫ y

0
Sε(εz)u2

1,ε(εz) dz

+ a1ε
2y
∫ 1/ε

−1/ε
HD1,xx (0, 0)Sε(εz)u2

1,ε(εz) dz + O
(
ε3|y|2)

= a1(1 + αε)
2

Sε(0)

ε

D1

[∫ y

0
w2(z) dz − εy

2

∫

R

w2(z) dz

]

+ O
(
ε3|y|2)

= a1(1 + αε)
2

Sε(0)

ε

D1

[∫ y

0
w2(z) dz − 3εy

]

+ O
(
ε3|y|2), (6.11)

where sgn is the sign function (sgn(x) = 1 if x > 0, sgn(0) = 0, sgn(x) = −1 if x < 0.)
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Similarly, we compute using the Green’s function G D1,τλε defined in (7.8) that

ψ0
1,ε(εy)−ψ0

1,ε(0) =−a1ε
∫

�ε

[
G D1,τλε (εy, εz)−G D1,τλε (0, εz)

]
2Sεu1,ε(z)

1

ε
ũ′
1,ε(εz) dz

+ O
(
ε3|y|2)

= εa1(1 + αε)
2

Sε(0)

[ ∫ 1/ε

−1/ε

1

D1
ε
(|y − z| − |z|)zww′ dz

+ 2 HD1,xz(0, 0)
︸ ︷︷ ︸

=0

εy
∫

R

zww′ dz

](
1 + O

(
(τ + τ1)|λε |

)+ O(ε|y|)
)
.

(6.12)

Note that from (6.5), we derive

ψ0
1,ε(0) = O

(
ε + τ |λε |

)
. (6.13)

Adding the contributions from (6.11) and (6.12), we get

d

dy
[Sε(εy) − Sε(0)] − [

ψ1,ε(εy) − ψ1,ε(0)
]

= ε2
(
HD1,xx (0, 0) + HD1,xz(0, 0)

) 6a1(1 + αε)
2

Sε(0)
y
(
1 + O

(
ε|y| + (τ + τ1)|λε |

))

= − ε2

D1

3a1(1 + αε)
2

Sε(0)
y
(
1 + O

(
ε|y| + (τ + τ1)|λε |

))
. (6.14)

Similarly, we from (6.7) we get

ψ0
2,ε(0) = O

(
ε + τ1|λε |

)
. (6.15)

Using G D2 , we compute that

d

dy

[
u2,ε(εy) − u2,ε(0)

]− [
ψ2,ε(εy) − ψ2,ε(0)

]

= ε2
(
HD2,xx (0, 0) + HD2,xz(0, 0)

) 6u2
2,ε(0)(1 + αε)

Sε(0)
y
(
1 + O

(
ε|y| + (τ + τ1)|λε |

))

= − ε2

D2

3(1 + αε)

Sε(0)
u2
2,ε(0) θ2(coth θ2 − tanh θ2)y

(
1 + O

(
ε|y| + (τ + τ1)|λε |

))
,

(6.16)

where θi = 1√
Di

, i = 1, 2.

Suppose that φε satisfies ‖φε‖H2(�ε)
= 1. Then |aε | ≤ C .

Substituting the decompositions of ψ1,ε , φε and ψ2,ε into (5.2) and subtracting (6.3), we
have

aεu2
1,ε

(
ψ1,ε − εS′

ε

)− aε2a2u1,εu2,ε
(
ψ2,ε − εu′

2,ε

)

+ (φ⊥
ε

)′′ − φ⊥
ε + 2u1,ε Sεφ

⊥
ε + u2

1,εψ
⊥
1,ε − 2a2u1,εu2,εψ

⊥
2,ε − 2a2φ

⊥
ε u2

2 ε − λεφ
⊥
ε

= λεaε ũ′
1,ε . (6.17)
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Let us first compute, using (6.13) and (6.14),

I1 := aεu2
1,ε

(
ψ1,ε − εS′

ε

)

= ε2aε a1(1 + αε)

D1
(ξε)

3yw2(y)3
(
1 + O

(
ε|y| + (τ + τ1)|λε |

))
. (6.18)

Similarly, we compute from (6.15) and (6.16),

I2 := −aε2a2u1,εu2,ε
(
ψ2,ε − εu′

2,ε

)

= ε2aε 2a2
D2

(ξε)
2u3

2,ε(0)θ2(coth θ2 − tanh θ2)yw(y)3
(
1 + O

(
ε|y| + (τ + τ1)|λε |

))
.

(6.19)

We now estimate the orthogonal part of the eigenfunction which is given by (T ′
1,τλε

φ⊥
ε ,

φ⊥
ε , T ′

2,τ1λε
φ⊥

ε ). Expanding, we get

L̄εφ
⊥
ε = g1,ε + g2,ε

where

‖g1,ε‖L2(�ε)
= O

(
ε3 + ε(τ + τ1)|λε |

)
.

and

g2,ε ⊥ C⊥
ε .

By Proposition 4.1 we conclude that
∥
∥φ⊥

ε

∥
∥

H2(�ε)
= O

(
ε3 + ε(τ + τ1)|λε |

)
. (6.20)

This implies that ∥
∥T ′

1,τλε
φ⊥

ε

∥
∥

H2(�)
= O

(
ε3 + ε(τ + τ1)|λε |

)
(6.21)

and ∥
∥T ′

2,τ1λε
φ⊥

ε

∥
∥

H2(�)
= O

(
ε3 + ε(τ + τ1)|λε |

)
(6.22)

Multiplying the eigenvalue problem (5.2) by w′ and integrating, we get

LHS =
∫

R

(I1 + I2)w
′ dy

= ε2aε a1(1 + αε)

D1
(ξε)

33
(
1 + O

(
ε + (τ + τ1)|λε |

))
∫

R

yw2(y)w′(y) dy

+ ε2aε 2a2
D2

(ξε)
2u3

2,ε(0)θ2 (coth θ2 − tanh θ2) 3

(
1 + O

(
ε + (τ + τ1)|λε |

))
∫

R

yw(y)w′(y) dy

= −ε2aε(ξε)
2
[
7.2a1(1 + αε)

D1
ξε + 18a2

D2
u3
2,ε(0)θ2

(
coth θ2 − tanh θ2

)
]
(
1 + O(ε)

)
.

Here we have used the elementary computations
∫

R

yw2(y)w′(y) dy = −
∫

R

w3

3
dy2 = −

∫

R

9

8 cosh6 y
2

dy = −2.4,

∫

R

yw(y)w′(y) dy = −
∫

R

w2

2
dy2 = −

∫

R

9

8 cosh4 y
2

dy = −3.
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Further, the contributions to LHS which coming from orthogonal part of the eigenfunction
can be estimated by O(ε3 + ε(τ + τ1)|λε |), using (6.20)–(6.22).

Further, we compute

RHS = λεaε

∫

R

(w′)2 dy
(
1 + O(ε)

)

= 1.2aελε

(
1 + o(1)

)
.

Note that in the previous calculation

(τ + τ1)|λε | = O(ε2)

and thus the error terms involving τ or τ1 can be neglected. Therefore

λε = −ε2ξ2ε

[
6a1(1 + αε)

D1
ξε + 15a2

D2
u3
2,ε(0)θ2

(
coth θ2 − tanh θ2

)
]

+ o
(
ε2
)
.

We summarize our result on the small eigenvalues in the following theorem.

Theorem 6.1 The eigenvalues of (5.1) with λε → 0 satisfy

λε = −ε2ξ2ε

[
6a1(1 + αε)

D1
ξε + 15a2

D2
u3
2,ε(0)θ2

(
coth θ2 − tanh θ2

)
]

+ o
(
ε2
)
. (6.23)

In particular these eigenvalues are stable.

This completes the proof of Theorem 2.2. ��
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Appendix: Two Green’s Functions

Let G D1(x, z) be the Green’s function of the Laplace operator with Neumann boundary
conditions:

⎧
⎪⎪⎨

⎪⎪⎩

D1G D1,xx (x, z) − 1
2 + δz(x) = 0 in (−1, 1),

∫ 1

−1
G D1(x, z) dx = 0,

G D1,x (−1, z) = G D1,x (1, z) = 0.

(7.1)

Here δz(x) denotes the Dirac delta distribution concentrated at the point z.
We can decompose G D1(x, z) as follows:

G D1(x, z) = − 1

2D1
|x − z| − HD1(x, z), (7.2)

where HD1 is the regular part of G D1 .
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Written explicitly, we have

G D1(x, z) =

⎧
⎪⎨

⎪⎩

− 1
D1

[
1
3 − (x+1)2

4 − (1−z)2

4

]
, −1 < x ≤ z < 1,

− 1
D1

[
1
3 − (z+1)2

4 − (1−x)2

4

]
, −1 < z ≤ x < 1.

(7.3)

By simple computations, we have

HD1(x, z) = − 1

2D1

[
1

3
+ x2

2
+ z2

2

]

. (7.4)

For x �= z, we calculate

∇x∇zG D1(x, z) = 0.

Further, we have

∇x∇zG D1(x, z) = 0, ∇x G D1(x, z) =
⎧
⎨

⎩

x+1
2D1

, −1 < x < z < 1,

x−1
2D1

−1 < z < x < 1.
(7.5)

We further have
〈∇x G D1(x, z)|x=z

〉 = −∇x HD1(x, z)|x=z = z

2D1
, (7.6)

where 〈·〉 denotes the average of the limits from both sides.
Taking another derivative, we get

G D1,xx (0, 0) = 1

2D1
,

G D1,xz(0, 0) = 0.

Note that in particular

G D1,xx (0, 0) + G D1,xz(0, 0) = 1

2D1
> 0. (7.7)

Next we define
{

D1G D1,τλ,xx (x, z) − τλG D1,τλ(x, z) + δz(x) = 0 in (−1, 1),
G D1,τλ,x (−1, z) = G D1,τλ,x (1, z) = 0.

(7.8)

We calculate explicitly

G D1,τλ(x, z) =

⎧
⎪⎪⎨

⎪⎪⎩

θ1√
τλ sinh(2θ1

√
τλ)

cosh
[
θ1

√
τλ(1 + x)

]
cosh

[
θ1

√
τλ(1 − z)

]
, −1 < x ≤ z <1,

θ1√
τλ sinh(2θ1

√
τλ)

cosh
[
θ1

√
τλ(1 − x)

]
cosh

[
θ1

√
τλ(1 + z)

]
, −1 < z ≤ x <1,

(7.9)

where

θ1 = 1√
D1

. (7.10)

We can decompose G D1,τλ(x, z) as follows:

G D1,τλ(x, z) = − 1

2D1
|x − z| − HD1,τλ(x, z), (7.11)

where HD1,τλ is the regular part of G D1,τλ.
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Closely related, let G̃ D1,τλ(x, z) be the Green’s function given by
{

D1G̃ D1,τλ,x (x, z) − τλG̃ D1,τλ(x, z) − 1
2 + δz(x) = 0 in (−1, 1),

G̃ D1,τλ,x (−1, z) = G̃ D1,τλ,x (1, z) = 0.
(7.12)

We calculate explicitly

G̃ D1,τλ(x, z)

=

⎧
⎪⎪⎨

⎪⎪⎩

θ1√
τλ sinh(2θ1

√
τλ)

cosh
[
θ1

√
τλ(1+x)

]
cosh

[
θ1

√
τλ(1−z)

]
− 1

2τλ
, −1 < x ≤ z < 1,

θ1√
τλ sinh(2θ1

√
τλ)

cosh
[
θ1

√
τλ(1−x)

]
cosh

[
θ1

√
τλ(1+z)

]
− 1

2τλ
, −1 < z ≤ x < 1,

(7.13)

We can decompose G̃ D1,τλ(x, z) as follows:

G̃ D1,τλ(x, z) = 1

2D1
|x − z| − 1

2τλ
− HD1,τλ(x, z), (7.14)

where HD1,τλ is the regular part of G̃ D1,τλ. Then an elementary computation shows that
∣
∣
∣
∣HD1(x, z) − HD1,τλ(x, z) − 1

2τλ

∣
∣
∣
∣ ≤ C |τλ| (7.15)

uniformly for all (x, z) ∈ � × �. For the first two derivatives we have
∣
∣
∣∇[HD1(x, z) − HD1,τλ(x, z)

]∣∣
∣ ≤ C |τλ| (7.16)

uniformly for all (x, z) ∈ � × � and
∣
∣
∣∇2[HD1(x, z) − HD1,τλ(x, z)

]∣∣
∣ ≤ C |τλ| (7.17)

uniformly for all (x, z) ∈ � × �, where ∇ in (7.16) and (7.17) can mean derivative w.r.t. to
x or z.

Further, let G D2(x, z) be the following Green’s function:
{

D2G D2,xx (x, z) − G D2(x, z) + δz(x) = 0 in (−1, 1),
G D2,x (−1, z) = G D2,x (1, z) = 0.

(7.18)

We calculate

G D2(x, z) =
⎧
⎨

⎩

θ2
sinh(2θ2)

cosh
[
θ2(1 + x)

]
cosh

[
θ2(1 − z)

]
, −1 < x ≤ z < 1,

θ2
sinh(2θ2)

cosh
[
θ2(1 − x)

]
cosh

[
θ2(1 + z)

]
, −1 < z ≤ x < 1,

(7.19)

where

θ2 = 1√
D2

. (7.20)

We set

K D2

(|x − z|) = θ2

2
e−θ2|x−z| (7.21)

to be the singular part of G D2(x, z). Then we decompose

G D2(x, z) = K D2(x, z) − HD2(x, z), (x, z) ∈ � × �.
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Note that G D2 is C∞ for (x, z) ∈ � × � \ {x = z} and HD2 is C∞ for all (x, z) ∈ � × �.
Explicitly, we calculate

HD2,xx (0, 0) = −θ32

2
coth θ2,

HD2,xz(0, 0) = θ32

2
tanh θ2.

Note that in particular

HD2,xx (0, 0) + HD2,xz(0, 0) = θ32

2

(− coth θ2 + tanh θ2
)

< 0. (7.22)

Closely related, let G D2,τ1λ(x, z) be the Green’s function defined by
{

D2G D2,τ1λ,xx (x, z) − (1 + τ1λ)G D2,τ1λ(x, z) + δz(x) = 0 in (−1, 1),
G D2,τ1λ,x (−1, z) = G D2,τ1λ,x (1, z) = 0.

(7.23)

We calculate explicitly

G D2,τ1λ(x, z)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ2√
1+τ1λ sinh(2θ2

√
1+τ1λ)

cosh
[
θ2
√
1+τ1λ(1+x)

]
cosh

[
θ2
√
1+τ1λ(1−z)

]
, −1 < x ≤ z < 1,

θ2√
1+τ1λ sinh(2θ2

√
1+τ1λ)

cosh
[
θ2
√
1+τ1λ(1−x)

]
cosh

[
θ2
√
1+τ1λ(1+z)

]
, −1 < z ≤ x < 1.

(7.24)

We can decompose G D2,τ1λ(x, z) as follows

G D2,τ1λ(x, z) = K D2

(|x − z|)− HD2,τ1λ(x, z), (7.25)

where HD2,τ1λ is the regular part of G D2,τ1λ. Then an elementary computation shows that
∣
∣HD2(x, z) − HD2,τ1λ(x, z)

∣
∣ ≤ C |τ1λ| (7.26)

uniformly for all (x, z) ∈ � × �,
∣
∣
∣∇[HD2(x, z) − HD2,τ1λ(x, z)

]∣∣
∣ ≤ C |τ1λ| (7.27)

uniformly for all (x, z) ∈ � × �, and
∣
∣
∣∇2[HD2(x, z) − HD2,τ1λ(x, z)

]∣∣
∣ ≤ C |τ1λ| (7.28)

uniformly for all (x, z) ∈ � × �, where ∇ in (7.27) and (7.28) can mean derivative w.r.t. to
x or z.
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