AGGREGATE ECONOMY RISK AND COMPANY FAILURE:
AN EXAMINATION OF UK QUOTED FIRMS

17 March 2006

John Hunter
Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
Natalia Isachenkova
Faculty of Business & Law, Kingston University, Kingston upon Thames, Surrey, KT2 7LB, UK

24 March 2006

Abstract

Considerable attention has been directed in the recent finance and economics literature to issues concerning
the effects on company failure risk of changes in the macroeconomic environment. This paper examines the
accounting ratio-based and macroeconomic determinants of insolvency exit of UK large industrials during
the early 1990s with a view to improve understanding of company failure risk. Failure determinants are
revealed from estimates based on a cross-section of 369 quoted firms, which is followed by an assessment
of predictive performance based on a series of time-to-failure-specific logit functions, as is typical in the
literature. Within the traditional for cross-sectional data studies framework, a more complete model of
failure risk is developed by adding to a set of traditional financial statement-based inputs, the two variables
capturing aggregate economy risk - one-year lagged, unanticipated changes in the nominal interest rate and
in the real exchange rate. Alternative estimates of prediction error are obtained, first, by analytically
adjusting the apparent error rate for the downward bias and, second, by generating holdout predictions.
More complete, augmented with the two macroeconomic variables models demonstrate improved out-of-
estimation-sample classificatory accuracy at risk horizons ranging from one to four years prior to failure,
with the results being quite robust across a wide range of cut-off probability values, for both failing and
non-failed firms.

Although in terms of the individual ratio significance and overall predictive accuracy, the findings of the
present study may not be directly comparable with the evidence from prior research due to differing data
sets and model specifications, the results are intuitively appealing. First, the results affirm the important
explanatory role of liquidity, gearing, and profitability in the company failure process. Second, the findings
for the failure probability appear to demonstrate that shocks from unanticipated changes in interest and
exchange rates may matter as much as the underlying changes in firm-specific characteristics of liquidity,
gearing, and profitability. Obtained empirical determinants suggest that during the 1990s recession, shifts
in the real exchange rate and rises in the nominal interest rate, were associated with a higher propensity of
industrial company to exit via insolvency, thus indicating links to a loss in competitiveness and to the
effects of high gearing. The results provide policy implications for reducing the company sector
vulnerability to financial distress and failure while highlighting that changes in macroeconomic conditions
should be an important ingredient of possible extensions of company failure prediction models.

JEL Codes: G33

Keywords: Company Failure, Aggregate Economy Risk, Unexpected Changes in Interest and Exchange
Rates, Logit.
1 Introduction

The central objective of the present paper is to investigate the impact of aggregate economy risk on company failure in a cross-section sample representative of 369 UK large quoted industrials in 1989-92. We proxy failure by the event of legal insolvency due to debt default, and consequently define failure risk as the potential that a company will enter a formal insolvency state. We refine the analysis of firm-level characteristics by controlling for variations in macroeconomic conditions. The key macroeconomic indicators, augmenting in this study a conventional, accounting ratio-based model of failure risk, were the nominal interest rate and the real effective exchange rate. Results from logit provide evidence that over the years before and during the 1990s recession, unanticipated shifts in the real effective exchange rate and in the nominal interest rate were associated with a higher propensity of industrial company to exit via insolvency. These effects seem to point to the adverse effect of inflation on highly geared firms, to a loss in competitiveness for the firms relying on exports and to a possible decline in performance via reported equity values for the firms with assets denominated in foreign currency.

The determinants of failure risk are of natural interest to investors and lenders. At the macro level, the issue of corporate distress and failure has important implications of financial stability and economic growth. Given the potential severity of economic and social consequences of sharp rises in company failures, the knowledge of factors driving the corporate sector vulnerability to default and insolvency is important for informing forward-looking policies of banks and public bodies. The risk of failure through insolvency can be decomposed into three components: financial risk associated with highly geared capital structure, business risk, inherent in the firm’s operations, and aggregate economy risk. At the firm level, conventional quantitative analysis of failure risk involves a detailed examination of a firm’s balance sheet, income statement and cash flow, assuming that information on financial and business risks is reflected in financial accounts. However, an analysis of historical statements alone may present the incomplete picture of the relations underlying the failure process. Aggregate economy risk, arising from uncertainty regarding trading conditions due to business and credit cycles and other macroeconomic influences, affects the volatility of cash flows and thus clearly conditions the risk of corporate failure. In order to achieve a better approximation of complex interrelations between factors influencing the failure process, the business environment variables should be incorporated into a modelling framework. Recent academic research and commercial models of credit risk have attempted to take account of the role of macroeconomic conditions in explaining the process of corporate failure due to insolvency (see e.g. Moody’s Report № 53853, 2000; Bhattacharjee, Higson, Holly, Kattuman, 2002).

The next section reviews the literature. Section 3 presents our examination of the role of macroeconomic instability in failure of UK quoted industrial firm in the early 1990s. Section 3.1 defines the proxy for failure and gives details of the data set structure. Section 3.2 describes factors driving failure risk in our model, while the modelling approach is discussed in Section 3.3. The estimation results are presented in Section 3.4 and Section 4 offers our conclusions.

2 Company Failure Theories and Stylised Facts on the Role of Macroeconomic Factors

There is of course a voluminous literature on company failure dating back to Beaver (1966). Much of it argues that, at the firm level, company failure is explained by economic inefficiency, debt financing and management mistakes. Neo-classical economics equates failure to the firm’s exit from the market (Mueller, 1991). From this angle, failure is a manifestation of Schumpeterian ‘creative destruction’ through which the market selects between efficient and inefficient firms. According to neo-classical analysis, insufficient profitability is the main factor that in the long run forces the firm to reduce its presence in the market and exit the industry. Firms that do not supply the product at the competitive price-cost margins face financial difficulties generated by the inevitable discipline of factor and product markets and exit. Obviously, failure in the economic sense need not be accompanied immediately by financial distress arising from liquidity shortages and external financing constraints. Within this framework, the possible exit rout of formal
Insolvency proceedings can be viewed as a welfare-enhancing device and way of re-allocating industry-specific resources.\(^1\)

In business language, the word ‘failure’ generally means that a company has become involved in certain legal consequences. The company unable to meet or renegotiate the cash claims upon it exercises its right to default, which usually follows by the firm’s creditors instituting legal proceedings whereby all claims against the company are settled. The risk of business failure is associated with debt financing and the lack of liquidity, but ultimately depends on the limits of lenders’ willingness to support the firm. As argued by Armour and Frisby (2001), a rational secured creditor will cease supporting the firm where the returns from enforcement are greater than the returns from negotiations. However, these returns are not directly observable.

In economic terms a firm may exit the market due to a lack of profitable opportunities and this may not be accompanied by financial distress (Lambrecht, 2001). Although financial distress does not accurately represents economic failure, it may be caused by economic distress at firm and industry levels. Economic inefficiency is usually not directly observable, while financial distress may straightforwardly be inferred from such outcomes as debt defaults and legal insolvency cases. For ease of tractability debt default and legal insolvency are often used to proxy the state of failure in empirical work. The financial economics emphasises that indebtedness is the main determinant of failure because financial distress is induced by debt and because default is an attribute of a credit asset. However, as the finance literature argues, debt performs an important function of contingent control allocations (Aghion and Bolton, 1992), enabling involved in complex financial contracts creditors to take over control of the firm once default occurs and resolve distress. Viewed in this light, debt is an invaluable controlling device while default and bankruptcy serve as a particular kind of catalyst for restructuring of claims. Consequently financial distress may not necessarily entail exit from the industry and a welfare loss.

The management strand of theories (e.g. Argenti, 1976; Hambrick and D’Aveni, 1988; The Society of Practitioners of Insolvency Fifth Survey, 1996) suggests the primary role of management error and poor corporate governance in company failure. If failure is due to bad governance, default may create value by forcing the management to reduce production capacity and rethink operating policy and strategy decisions. Financial distress will also generate value when the firm value is the highest in liquidation and the management is reluctant to liquidate. Thus the insolvency mechanism may help financially distressed but economically viable companies stay in business and facilitate exit of inefficient firms.

Notwithstanding the possibility of potential benefits of distress and bankruptcy, which are yet to be quantified empirically, these processes involve substantial direct costs (legal, administrative and advisory fees) and indirect (opportunity) costs of real resources to the firm and to its stakeholders (see e.g. Wruck, 1990). In a highly geared firm faced with credit constraints, a small decline in performance due to a change in the macro-environment, may adversely affect its liquidity position and capacity to meet interest payments, triggering debt default. Even when the firm is economically viable in the long run, it may not, due to borrowing constraints, escape going bust in the short run. This will generate an additional welfare loss when the firm’s assets are more productive within the firm than when transferred to another owner. At the economy level, inefficiently high rates of failures in a fragile corporate sector can have serious welfare and macroeconomic consequences. Financial distress can lead to inefficient excessive piecemeal liquidations, especially when an industry is hit by the industry-wide or economy-wide shocks. In the situation when losses on corporate loan book are unanticipated, high liquidation rates can, by gradually eroding bank capital, weaken the banking system and trigger a financial crisis. Furthermore, as Vlieghe (2001) points out, a heightened state of financial fragility at a single firm leads to inefficient allocation of resources because a reduction in available credit causes valuable investment opportunities to be missed while resources devoted to renegotiating debt contracts are crowding out resources required for production.

\(^1\) It should be noted, however, that a firm might disappear from the industry as a result of merger. Rivals possibly may acquire the successful firm’s assets and expertise and apply it to the products of both firms. In this case exit comes from success.
Numerous empirical studies have examined the determinants of corporate failure risk with firm-level information available from historical financial statements. Such analyses are intended to aid understanding the risk of bankruptcy and to facilitate its monitoring at the firm level as well as to provide appropriate, failure incidence reducing policy responses at the economy level. This said, it should also be noted that the current empirical literature on the determinants of company failure lacks a unifying structural model². Stylised models of company failure, constructed for UK firms have involved multiple discriminant analysis, logit and neural networks as statistical settings for the problem of identifying risk factors. Taffler and Tisshaw (1977), Marais (1979), Taffler (1982), Peel, Peel, and Pope (1986), Goudie (1987), Keasey and McGuinness (1990), Goudie and Meeks (1991), Cosh and Hughes (1995), Alici (1995), and Morris (1997) have modelled failure with cross-sectional data using accounting ratios-based explanatory variables. The competing risks framework has recently been employed for an exploration of the joint influence of firm-specific and macroeconomic factors on bankruptcy risk in Bhattacharjee, Higson, Holly and Kattuman (2002). In relation to the importance of firm-level attributes, observable from financial accounts, these studies have summarily documented that high gearing, declining profitability and insufficient liquidity increase the likelihood of distress and insolvency.

However, the failure process is not completely determined by firm’s characteristics alone, being in part related to environmental factors. Failure risk of a geared firm is amplified by macroeconomic instability and therefore the question of failure determinants should be seen in a macroeconomic context. Relevant to our objective of an integrated analysis of impacts of firm-level and aggregate economy factors, are empirical studies on the aggregate liquidation rate based on the experience of UK firms. These studies have produced several stylised facts regarding the strong impact on failure risk of the business cycle, inflation, and movements in interest and exchange rates.

Increases in inflation and in the nominal interest rate heighten aggregate rates of failure (Wadhwani, 1986; Davis, 1995; Robson, 1996) consistent with the notion that in the absence of indexed economy and perfect capital markets, firms financed with variable-rate debt may be unable to increase their borrowing and therefore inevitably face cash shortages. Wadhwani (1986) explored the determinants of UK corporate failure with quarterly data on total liquidations and found that declining profitability and the nominal interest rate determined aggregate insolvency rates. Having experimented with both real and nominal interest rates, Wadhwani interpreted the fact that the nominal interest rate was a highly significant determinant as evidence that inflation had driven corporate liquidations in the study period. When debt is not indexed and capital markets are imperfect, price inflation raises nominal interest charges. Due to historical cost accounting, inflation tends to distort the company’s valuation worsening its financial position and limiting its ability to raise external funds. Inflation badly affects cash flows for capital allowances fixed in nominal terms as a proportion of historic costs implying that taxes tend to rise in real terms due to inflation. By affecting negatively interest cover, inflation reduces the firm’s chances in obtaining new loan finance. Aside from that, inflation can also engender expectations of a subsequent tightening of macroeconomic policy, leading to a decline in business confidence. Recent empirical findings on the exit behaviour of listed UK firms over 1965-98 presented by Bhattacharjee, Higson, Holly and Kattuman (2002), have corroborated Wadhwani’s results that uncertainty in the form of sharp increases of inflation heightened bankruptcy risk.

Analyses of the impact of interest rates on aggregate rates of company failure have also been undertaken in Hudson (1986), who focused on rates of compulsory liquidations and creditors’ voluntary liquidations, and in Simmons (1989) for bankruptcies of small, unincorporated businesses. Results from these studies, however, documented the inverse relation between the real interest rate and the liquidation rate, in contrast to the findings of Wadhwani. The inverse relation can be interpreted as evidence for adverse selection in credit markets. At high real rates, credit is likely to be diverted to high-risk borrowers, i.e. distressed firms, which are consequently less likely to fail. Vlieghe (2001) observed the long-run impact of the real interest

² In academic research, much empirical modelling of company failure determinants at the firm-level has been based on cross-section data and therefore made no attempt of applying analytical approaches typical of analyses of the timing of default problem in the line of Merton (1974). The event of default as such is deduced from the evolution of the firm’s market value, for instance, in commercial models of failure risk presented in Crosbie (1998), where of course the analysis question is rather different, related to measuring the probability and time of default.
rate on corporate sector fragility in a recent investigation of the UK over the period 1975-99. Vlieghe also found the short-run effect of the nominal interest rate, suggesting the adverse impact of high inflation upon company cash flows in imperfect capital markets. A modification of Wadhwani’s model was tested for the UK corporate sector during 1969-90 in Davis (1995), who found that rising inflation, the business cycle (recession), and factor prices were as important for explaining business failure rates as gearing.

Bankruptcy risk is procyclical (Turner, Coutts and Bowden, 1992; Davis, 1995). As sales and earnings of companies are directly related to the overall business activity, most defaults occur during or immediately after recessions, which are often coincident with periods of monetary and fiscal constraints. The link from recession to bankruptcy is an increased incidence of technical insolvency – inability to meet current cash obligations. This effect is influential in imperfect capital markets, which prevent companies from being able to borrow as much as they would to cover cash flow shortages resulting from a fall in demand. However, an empirical study of company exit by Bhattacharjee, Higson, Holly, Kattuman (2002), relying on a large panel data set, reported that the business cycle did not emerged as a key factor explaining bankruptcy risk over the period 1965-1998.

Unexpected changes in inflation and interest rates, rather than their levels, are critical as to bankruptcy risk (Young, 1995; Robson, 1996). Since observed values of the interest rate may be to some extent anticipated, then only the unanticipated component represents a ‘surprise’ impacting adversely on company survival. Evidence on the extent to which ex post inflation and real interest rates differ from their expected levels and its relevance to the rate of compulsory and creditors’ voluntary liquidations has been provided by Young (1995). Macroeconomic instability, associated with high inflation and rapid, unanticipated movements in the real interest rate and demand, led to a higher liquidation rate of UK companies in 1977-92. Young argued that the firm’s response to changes in interest rates depended on the composition of its debt contract.3 Companies financed by variable-rate debt would be adversely affected by unexpected increases in real interest rates as that reduces the market value of their capital, but does not affect the value of variable-rate debt, causing the firm’s net worth to fall. Firms financed at fixed nominal interest rates would be vulnerable to unanticipated reductions in inflation. Young’s results show that a rise in nominal interest rates may either increase, decrease or have no effect on the rate of liquidations, depending on whether it corresponds to a rise in real interest rates or inflation, is anticipated or unanticipated, and debt is at fixed rates or variable rates. Rises in long-term interest rates by increasing the cost of capital may increase failure risk by forcing firms to shift their preferences towards riskier investment projects associated with higher rates of expected return required to afford debt finance. Robson’s (1996) examination of the influence of macroeconomic factors on the extent of UK businesses’ dissolutions for 1980-90, confirmed the findings reported in Wadhwani and Young, but also emphasized the explanatory power of the real interest rate.

As mentioned earlier, creditors’ willingness to support the distressed firm is an additional factor for explaining insolvency risk, but information of the relevant motives is hard to come by. Turner, Coutts, and Bowden (1992) highlighted, the prevalence of short-term cash flow considerations in deciding distressed companies’ fate in their time series study of liquidations over the period 1951-89. The macroeconomic component in their model was represented by the nominal interest rate, the rate of price inflation, the rate of growth of money stock capturing credit market constraints, and the rate of company formation reflecting the age structure of companies. The nominal rather than real rate of interest explained failure probabilities in their data. They concluded that credit markets did not allow firms to adjust their debt levels for inflation, with the overall implication that the short-term, cash flow considerations were dominating creditors’ decisions regarding the fate of distressed companies. Similar points emerged from the work of Cuthbertson and Hudson (1996), where compulsory liquidations amongst UK companies over the period 1972-89 were analysed. In their paper income gearing was used as a joint proxy for the nominal interest rate and capital gearing. The observation that income gearing specified in differences was significant has been interpreted

3 A company that has borrowed at a floating rate of interest may find that interest rate rises will place real strains on cash flows and profitability. Conversely, a company that has a fixed rate of interest will find that when interest rates are falling it will not enjoy benefits of lower interest charges. To reduce or eliminate the expected component of the interest rate risk, a company may enter into a hedging arrangement, such as forward rate agreements, interest rate options and swaps. However, unanticipated movements in interest rates can present a significant issue for companies that have high levels of borrowing.
as evidence that gearing is a short-run factor, implying creditors’ myopia as to the firm future prospects. The result seemed also indicative of the firm’s ability to adapt, after time, to high nominal interest rates by reducing borrowing and, in the long run, by cutting input costs.

The role of movements in the exchange rate on failure risk of UK companies has been studied in Goudie and Meeks (1991), in Vlieghe (2001) and in Bhattacharjee, Higson, Holly and Kattuman (2002). The exchange rate had an additional explanatory power in Goudie and Meeks’s model. Their analysis linked failure risk to the degree of transaction exposure suggesting that failure can be a penalty for producing exports at a time of a soaring exchange rate, especially if the rise is combined with relative price increases leading to a disastrous loss of competitiveness. Notably, previous studies have observed very different effects of the exchange rate on bankruptcy risk. For instance, Bhattacharjee, Higson, Holly, Kattuman (2002) found the adverse impact of a sharp depreciation of the pound-dollar exchange rate on UK quoted firms for 1965-98, noting that this result can reflect the possibility that a fall in the exchange rate disadvantaged domestic business. Freshly listed companies in their sample were more likely to go bankrupt in years, characterized by unfavourable movements in the exchange rates. In contrast, a recent model of liquidation rates, based on variables reflecting the corporate sector financial position and macroeconomic conditions, which was presented in Vlieghe (2001) did not appear to confirm the explanatory role of a trade-weighted real exchange index 4.

The conclusions of studies into aggregate rates of bankruptcy underscore the importance for the corporate sector of a smooth and predictable macroeconomic environment. In addition, these stylised facts seem to bring to the fore the management role in the failure process as they seem to agree with managerial theories of corporate failure highlighting possible inadequacies in risk management in UK companies. Thus it is important to account for these factors in a model of failure risk.

3 Examination of a Sample of UK Quoted Firms in 1989-92

In this study, we have augmented a financial ratio-based model of failure risk with two macroeconomic variables so as to explore the explanatory power of macroeconomic factors and to get a better understanding of the failure process. We use firm-level data on UK large quoted companies, representative of insolvency over the 1990-92 recession. The determinants of failure are evaluated from the estimated results of two sets of logit functions and their associated predictive performance. The prediction functions of the first set rely on traditional, financial ratio-based inputs alone. The second set of models uses both financial ratio-based predictors and two macroeconomic variables, measuring unanticipated changes in the real effective exchange rate and in the nominal interest rate. A single set of models is a series of individual logit functions estimated with data specific to four risk horizons, ranging from one year to four years prior to failure. Multiple observations on financial variables permit to evaluate the extent to which determinants of failure tend to change over time while the pooled cross-sectional structure allows an incorporation of time-series observations on the two macroeconomic indicators.

3.1 Failure Definition and Data Composition

By adopting a purely legalistic criterion, we equate company failure with the event of entering a formal insolvency regime, that is administrative receivership, administration, or winding-up (liquidation). Using information on quoted company insolvency status from the London Stock Exchange Official Yearbook and financial statement data from DATASTREAM, we compile a list of firms 5 going into insolvency over the early 1990s and then create estimation and holdout cross-sections. Since availability of data on insolvent firms is always a limiting factor in developing statistical models of corporate failure, data points comprising a single, year-to-failure-specific cross-section come from several consecutive calendar years. An advantage of the pooled cross-section design is that it provides a temporal dimension to the data, which is of great importance for isolating the influence of macroeconomic factors on failure risk. Annualised

4 Vlieghe (2001) uses a rich specification which contains explanatory variables measuring company indebtedness, profitability, availability of external and internal finance, property prices, corporate bond spreads, factor prices, nominal and real interest rates, the company formation rate, and the real effective exchange rate.

5 See Table A-1 in the Appendix.
financial records were collected for a four-year period prior to insolvency so as to reveal the determinants of failure occurring in one, two, three and four years, allowing for temporal precedence. Therefore the sample companies are subject to at least four consecutive years of complete accounting records. The subset of 53 failing firms defines the estimation period, which in terms of calendar year of insolvency announcement covers 1989-93, corresponding to the period of high default rates in the early 1990s. Records concerning firms’ financial conditions concentrate in 1988-91 because of the lag between last accounts and insolvency announcement. Although we use non-random sampling for the failed firm category, 368 company-years based on 316 non-failing firms were drawn randomly, without replacement, from data on industrial firms with complete and consistent DATASTREAM records over the period 1985-95. Non-failed firms in our sample had been continuing in independent existence and were free of insolvency up to 1995. No matching of failed and non-failed companies by criteria such as industry sector or size was used, but to counter-effect modification associated with time, we matched the observations on failing and non-failed firms by the timing of financial records. The sampling scheme has yielded unbalanced cross-sections with the failing firm category accounting for 12.6 per cent of company-years, which seem representative of the quoted company population proportions for failed and non-failed categories. A sample with the prevailing proportion of non-failed firms permits a relatively large number of observations and provides a sounder basis for evaluating models’ performance. In this way, we can better approximate the population’s insolvency rate to deal with the well known methodological problem of biased estimates where state-based samples are employed in conjunction with estimators and inference procedures that assume random sampling (see e.g. Palepu, 1986).

To perform an ‘out-of-sample’ validation of the obtained determinants, we create year-to-failure specific holdout samples containing observations on firms entering the insolvency state in 1992-95, and in 2001-04. These were compiled according to the filters and procedures employed in designing the primary estimation sample. In terms of timing of financial records, the observations that make up the first holdout sample are distributed over the period 1992-94. Data points in the second holdout sample cover different companies and are taken from accounts for 1997-2005. The first holdout sample is unbalanced, with a 10.4 per cent share of failing firms, while the second holdout is an equal-share sample.

The composition of sample firms by insolvency status and sector are provided in Table A-3 of the Appendix. Companies in transportation and petroleum industries were not included as their capital structure tend to be quite unique and these industries have different taxation regimes, accounting conventions, and the insolvency environment.

3.2 Explanatory Variables

Financial Variables

Information from audited annual accounts is seen in the literature as a critical input to empirical models of company failure, however there exists no dominant or unique set of accounting variables with respect to corporate performance and financial position. Empirical results from Hamer (1983) on comparative power

6 A primary listing of non-failed firms was tabulated from the DATASTREAM list of UK “live” quoted industrials that consisted of 1,330 equities as of 13 February 1997.

7 It is impossible to access how accurately the sample mix approximates the proportions of failed and non-failed firms in the underlying population of large quoted industrials, as the necessary data have been hard to acquire. To our knowledge, comprehensive time series on the number of UK quoted companies suffering financial distress or being placed into formal insolvency regimes have not been reported systematically, and only rough and even arbitrary estimates have been used in previous research. Estimates of population proportions for failed and continuing firms vary. Letza (1994) refers to Dun and Bradstreet’s estimate of the long run average failure rate of companies in England and Wales at 0.85 per cent. Taffler (1982) drew on subjective estimates of the investment analysts and used an odds ratio (based on the prior probabilities for a failed and non-failed firm) of 1:10. Focusing on the period of 1968-73, his study was concerned with industrial enterprises quoted on the London Stock Exchange, and failure was defined as formal insolvency. Dunne and Hughes (1994) examined death rates over the period of 1980-85 in the sample of 2,149 UK firms that included all quoted and large unquoted companies, and found that, on average, liquidations or receiverships accounted for 3.7 per cent of sample firms.

8 See Table A-2 in the Appendix.
of failure prediction models show no significant variation in models’ performance that can be attributed to alternative definitions of ratios or combinations of ratio-based variables as long as a set of accounting ratios is comprehensive and represents major dimensions of financial analysis. Hamer recommends considering a single set of accounting covariates that minimises the cost of data collection. Therefore we employ a fairly standard range of 25 accounting ratios and market measures based on items provided for quoted industrial companies by DATASTREAM. These include: rates of return, profit margins, cumulative profitability, turnover ratios, measures of gearing, liquidity and tax position, total net sales proxying firm’s size, the net tangible assets index, which reflects long-term solvency, and the dividend payout ratio. To alleviate the problem of non-stationarity of financial ratios arising in a pooled cross-section data (see e.g. Sudarsanam and Taffler, 1995), values of ratio-based covariates have been standardised using mean and standard deviations from their respective accounting years. Tables A-4 and A-5 in the Appendix show some descriptive statistics of financial ratio-based explanatory variables for each of the four years prior to failure.

Macroeconomic Variables

In modelling the influence of macroeconomic factors we follow the approach used by Young (1995) for representing uncertainty in the macroeconomic environment, in that it is assumed that only unanticipated changes - ‘surprises’ - in the interest rate and in the exchange rate matter for company viability. Anticipated changes in interest and exchange rates, damaging firms’ cash flows and equity values, should be possible to incorporate in strategies for hedging and other business decisions. As pointed out by Wadhwani (1986), the nominal interest rate seems to be an especially relevant explanatory factor in the failure process. The empirical results in Goudie and Meeks (1991) and Bhattacharjee, Higson, Holly, Kattuman (2002) suggest the importance of shifts in the exchange rate on company performance and survival. A real appreciation in the effective exchange rate increases failure risk by adversely affecting profitability and competitiveness of both the exporters, sensitive to external competition, and those firms that compete internally and are therefore sensitive to the level of import penetration. A real depreciation in the effective exchange rate can also adversely affect firms with foreign currency debt. Hunter and Simpson (1995) discuss in greater detail the impact of the conservative government policy on the exchange rate and competitiveness of UK companies over the early 1990s.

Further, we assume a delay in the effect of changes in the two macroeconomic indicators on firm performance and financial position. Due to the certain extent of inertia, it is the last year’s mistakes and miss-predictions, which may be critical as a financial distress trigger. The failure process might well be driven by a sequence of such mistakes. Accordingly, in modelling, we utilize lagged unanticipated changes in the annualised values of macroeconomic variables corresponding with the timings of financial records on the sample firms.

As unanticipated changes in macroeconomic variables are not directly observable, they must be proxied. The simplest path to follow is to make a major assumption that the macroeconomic series of interest evolve as a random walk. To measure the underlying economic risks affecting the likelihood of failure, we then assume that the process for a series of observations of the macroeconomic variable \(u_t \) is generated by a naive (driftless) random walk:

\[u_t = \epsilon_t \]

9 The financial ratios in the more general specifications were: the logarithm of Total Sales (Net of Trade Discounts), Return on Shareholders’ Capital, Return on Capital Employed, Return on Net Fixed Assets, Cumulative Profitability, Operating Profit Margin, Pre-tax Profit Margin, Net Profit Margin, Turnover / Fixed Assets, Turnover / Net Current Assets, Stock Turnover, Debtors Turnover, Creditors Turnover, Capital Gearing, Income Gearing, Borrowing Ratio, Gross Cash-flow / Total Liabilities, Working Capital Ratio, Quick Assets Ratio, Net Current Assets / Total Assets Employed, Market Value/Book Value, Payout Ratio, Asset Index (based on the book value of tangible shareholders’ funds or net tangible assets in the balance sheet) and Tax Ratio.

10 As for the nominal interest rate process this assumption is a gross simplification. However, stylised facts concerning time series for the major exchange rates (under floating exchange rate regimes) are that exchange rates are hard to distinguish empirically from a simple random walk (Mussa, 1984; Taylor, 1995). Meese and Rogoff (1988) report that their regression forecasts of log real exchange rates are never significantly better than the driftless random walk. Evidence on real exchange rates stationarity has been presented by Hunter and Simpson (2001).
\[u_t = u_{t-1} + \varepsilon_t; \quad \varepsilon_t \sim \text{IID}(0, \sigma^2); \quad t = 1, \ldots, n, \quad (1) \]

Where \(u_t \) is a value of the macroeconomic variable at time \(t \), and \(\varepsilon_t \) is a random disturbance, not predictable from the history of the process.

Then the conditional mean and variance of the variable at date \(t \), conditional on the initial value \(u_0 \) at date 0, is:

\[E(u_t \mid u_0) = u_0 + 0 \quad (2) \]
\[\text{Var}(u_t \mid u_0) = \sigma^2 \quad (3) \]

That implies that the unanticipated change in the macroeconomic variable equals \((u_t - E(u_t))\), that is the entire change is unanticipated. It is obvious from (1) - (3), that one can approximate the ‘surprise’ by the one-year lagged change in the macroeconomic variable.

Accordingly, we construct the one-year lagged logarithmic change in the real effective exchange rate, which influences competitiveness in the traded goods sector, and the one-year lagged logarithmic change in the nominal interest rate, which directly impacts on the burden of debt and capacity to raise finance. If financial statement-based independent variables describing an individual firm in the pooled cross-section pertain to year \(t \), then the two macroeconomic variables are measured as follows:

\[\text{One-year Lagged Change in the Real Effective Exchange Rate} = \ln RER(t) - \ln RER(t-2), \quad (4) \]

where the real effective exchange rate, \(RER(t) \), is given as an index,\(^{11}\)

\[\text{One-year Lagged Change in the Nominal Interest Rate} = \ln IR_n(t) - \ln IR_n(t-2), \quad (5) \]

where the nominal interest rate, \(IR_n \), is given by the 3-month sterling inter-bank rate measured as the annualised percentage rate.\(^{12}\)

An additional advantage of specifying macroeconomic measures in differences is that the resulting macroeconomic covariates are stationary, complementing the correction made for financial statement-based variables. As noted earlier, the potential for the joint use of cross-sectional financial data and macroeconomic time-series is provided here by the structure of repeated pooled cross-sections allowing the variation of financial covariates over time.

It is important to observe that the expected value of the two macroeconomic variables is zero, implying on average zero response to either the interest rate change or the exchange rate change. One can argue that unanticipated rises both in the exchange rate and in the interest rate had the adverse impact on those companies that would consequently fail, thus to capture the influence of changes in the business climate, a macroeconomic dummy variable is constructed that is equal to ‘one’ for failed companies. This dummy is then used in interactions with each macroeconomic variable. It follows that the predictions from the model will be conditional on the mistakes in macroeconomic forecasts, the effect of which is measured from their impact on failed firms. Hence, we are looking at the risk of failure conditional on a poor response to changes in macroeconomic conditions\(^{13}\).

\(^{11}\) The index is the DATASTREAM item “UKOCREXC”. This measure is similar to a trade-weighted exchange rate index employed in Vlieghe (2001).

\(^{12}\) Young (1995) employed this proxy for the nominal interest rate.

\(^{13}\) We should also comment on a potential methodological problem of measuring the impact of aggregate macro variables on micro units, when a strategy of merging aggregate data with cross-sectional data is employed (Moulton, 1990). Using an example of the linear model, Moulton cautions that ignoring the correlation of errors within groups,
3.3 Statistical Model

In the case of conventional, failed/non-failed dichotomy, the dependent variable is a binary response. An outcome is a reflection of the underlying regression, which links the dependent variable y to the explanatory and control variables gathered in the vector x.

If the logistic density is used to specify the link for the unknown probability that the binary outcome is equal to 'one' than the probability for a company to fail is given by the following expression:

$$\text{Prob}(Y = 1(\text{Failure})) = \frac{e^{\beta'x_i}}{1 + e^{\beta'x_i}}. \tag{6}$$

Here y_i independently equals 1 or 0 with probabilities π_i or $1 - \pi_i$. The $\hat{\pi}_i$ is considered as predicting whether an observation with the covariate vector x_i will be a failed firm or a non-failed firm, by using the realised prediction rule $\hat{\eta}$:

$$\begin{cases}
\hat{\eta}_i = 1 & \text{if } \hat{\pi}_i > C_0, \\
\hat{\eta}_i = 0 & \text{if } \hat{\pi}_i \leq C_0,
\end{cases} \tag{7}$$

for some cut-off point C_0.

The primary test of a constructed model adequacy and its ability to reveal the determinants of failure is whether the model accurately returns response values for future observations, taken outside the estimation sample range and time period.

The classificatory power of the model, fitted to the estimation sample, is commonly defined as the apparent error rate, yielding an estimate of the true error rate of the model (Efron, 1986):

$$\tilde{\text{err}} = \# \{y_i \neq \hat{\eta}_i\} / n. \tag{8}$$

Because y is used for both constructing and assessing the prediction rule $\hat{\eta}$, $\tilde{\text{err}}$ will usually be biased downwards and as a result the new binary outcome might not be predicted nearly as accurately by the old $\hat{\eta}$.

The bias (or the optimism) is the difference between the true error rate and the apparent error rate. Hence, the purpose of estimating the bias is to a superior estimate of the true error rate than that calculated by the apparent error rate. In assessing the ex ante predictive power of the realised prediction rule based on logit, we generate holdout predictions and compute analytic estimates of the optimism in the apparent error rate, using the method proposed by Efron (1986). Efron’s solution allows adjusting the overall apparent error rate generated on estimation samples for the optimism. The analytic estimate of the expected downward bias in the apparent error rate is added to the apparent error rate so as to obtain an improved estimate of prediction error (see appendix), and to infer how well a model predicts the response value of a future observation. A model with better explanatory power will generate lower error rates. It should be noted that it would be inappropriate to compare classificatory accuracy rates for alternative models derived from and assessed on different data sets.
3.4 Results

We interpret the estimated models as describing the conditional expectation of the failure outcome given the selected explanatory variables. The model building approach utilised here is the standard general-to-specific modelling method\(^{14}\). To produce a parsimonious model an initial general specification is tested down by eliminating covariates using a sequence of \(t\)-tests and independent Likelihood Ratio tests. The resulting model should essentially contain a satisfactory proportion of information conveyed by the original general specification, while also being much more parsimonious.

We present two groups of logit estimates: from models explaining failure with financial covariates alone (Tables 1 and 2) and from models incorporating macroeconomic effects (Tables 3 and 4). Estimates are shown separately for the four specified risk horizons, covering one to four years before failure. Tables A-5, A-6, A-7, and A-8 in the Appendix, present the goodness of fit, which is judged by the within-the-estimation-sample classificatory accuracy adjusted for the optimism, and by the models’ power to predict fresh, holdout observations. The choice of the relevant cut-off probability value, which influences classification results, has been discussed elsewhere (see e.g. Ohlson, 1980; Palepu, 1986; Maddala, 1992; Greene, 1997; Bayldon and Zafiris, 1999; Cramer, 1999). As pointed out in Cramer (1999), in assessing the within-sample performance of a model derived from the unbalanced sample, the cut-off probability taken from sample frequencies is the appropriate one to use. However, here we follow Ohlson (1980), and evaluate classificatory and predictive accuracy for a wide range of cut-off probability values ranging 0.1 to 0.875.

Basic Models Based on Financial Variables

The overall significance of the four parsimonious models based on financial variables alone (Tables 1 and 2) is acceptable as the \(\chi^2\) statistics for the joint significance of model parameters exceed respective critical values at the 0.1\% level. The model for the one-year risk horizon shows the best fit in terms of the Likelihood Ratio Index\(^{15}\) (Table 1). The results for one year prior to failure reflect the information contained in the last accounts released by a failing company, and therefore record the state of severe distress. The estimates indicate that the company with low creditors turnover, high gearing, low liquidity, and a smaller proportion of earnings paid out as dividends, is more likely to fail. The predicted signs for profitability ratios indicate that, in the short run, the failing firm has negative operating profits, which might be interpreted as a sign of economic distress. Failing firms have lower returns on capital employed relative to non-failed firms, but may record higher returns on shareholders’ capital. The counterintuitive positive relation of the return on shareholders’ capital to failure risk can simply be due to the DATASTREAM specification of the ratio used, with the combination of negative numbers for after-tax profits and negative values for shareholders’ funds yielding the positive sign for the ratio.

Using longer time horizons, failure determinants are revealed from models estimated using covariates two, three, and four years prior to failure. Reinforcing the stylised fact that smaller firms exit first (see e.g. Dunne, Roberts, Samuelson, 1989), size appears indicative of insolvency in years two through to four prior to failure. The model predicting failure in two-year time (Table 1) suggests that failing firms generate lower cash flows, have inadequate current assets and reduce dividends as compared with non-failing firms. The results for the three-year risk horizon (Table 2) imply that, in the long run, high gearing, measured by capital and income gearing, distinguishes the likely to fail firms from survivors. A positive relationship is also observed between current assets turnover and the probability of failure, which may be consistent with the view that highly geared and fast growing companies fared least well during the 1990-92 recession. The model specific to the four-year risk horizon (Table 2) seems to confirm chronic liquidity shortages of failing companies. When compared with the healthy company’s profile, failing firms appear to have

\(^{14}\) See Hendry, Muellbauer and Murphy, 1990.
\(^{15}\) See McFadden, 1974.
comparatively less long-term debt, but borrow heavily from short-term sources to compensate for insufficient current assets and for low levels of their gross cash flow relative to total liabilities. This is implied in the positively signed borrowing ratio and in the negatively signed ratio of loan capital to equity and reserves. The failing companies’ reliance on borrowings with less that one year maturity, is also

Table 1: Financial Ratio-Based Models:
One and Two Years Prior to Failure; 1988-91 Estimation Period,
53 Failed Companies and 368 Non-failed Company-years (n=421)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>One Year Prior to Failure</th>
<th>Two Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (two-tailed p-value of asymptotic t-statistic)</td>
<td>Coefficient (two-tailed p-value of asymptotic t-statistic)</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.249 (0.000)</td>
<td>-2.517 (0.000)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Total Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>1.370 (0.006)</td>
<td></td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td>-1.244 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td>-0.813 (0.017)</td>
<td></td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover/Net Current Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td>-0.450 (0.048)</td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.667 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Income Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td></td>
<td>-0.705 (0.000)</td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td>-1.789 (0.000)</td>
<td>-1.124 (0.000)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>-1.312 (0.020)</td>
<td>-0.800 (0.056)</td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2 statistic of LR Test (p-value)</td>
<td>111.61 (0.000)</td>
<td>67.00 (0.000)</td>
</tr>
<tr>
<td>Likelihood Ratio Index</td>
<td>0.325</td>
<td>0.179</td>
</tr>
</tbody>
</table>

n = 421
Per cent Failed = 12.6
Table 2: Financial Ratio-Based Models:
Three and Four Years Prior to Failure; 1988-91 Estimation Period,
53 Failed Companies and 368 Non-failed Company-years ($n=421$)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Three Years Prior to Failure</th>
<th>Four Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>Coefficient</td>
</tr>
<tr>
<td></td>
<td>(two-tailed p-value of asymptotic t-statistic)</td>
<td>(two-tailed p-value of asymptotic t-statistic)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.263 (0.000)</td>
<td>-2.458 (0.000)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Total Sales</td>
<td>-0.804 (0.000)</td>
<td>-1.020 (0.000)</td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover/Net Current Assets</td>
<td>0.225 (0.017)</td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.828 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Income Gearing</td>
<td>0.865 (0.023)</td>
<td></td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td>0.937 (0.007)</td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td>-0.439 (0.005)</td>
<td></td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td>-1.312 (0.002)</td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td></td>
<td>-0.701 (0.001)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td>0.368 (0.007)</td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td>-0.796 (0.050)</td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td>-134.65</td>
<td>-125.02</td>
</tr>
<tr>
<td>χ^2 statistic of LR Test (p-value)</td>
<td>49.39 (0.000)</td>
<td>68.64 (0.000)</td>
</tr>
<tr>
<td>Likelihood Ratio Index</td>
<td>0.122</td>
<td>0.185</td>
</tr>
</tbody>
</table>

$n = 421$
Per cent Failed = 12.6

consistent with the negative coefficients on the ratio of gross cash flow to total liabilities and on the working capital ratio. The four years prior to failure model suggests the importance of changes in the value of net tangible assets indicating that failing firms had a period of asset growth, which might have facilitated their access to credit, providing that borrowing restrictions were based on book value of equity. In the model for the four-year risk horizon, the tax ratio has a negative sign, indicating that the proportion of tax payments in pre-tax profits is lower for failing firms. However, tax charges are subject to factors unconnected with the current year performance. Notably, no patterns with respect to company profitability are evident in the financial ratio-based models for two, three and four years prior to failure.

As far as the classification and predictive ability of obtained accounting ratio-based models is concerned, the question of interest is to find to what extent the results are coherent. Models predicting short-term risk - within one and two years before failure (Table A-6) - generate relatively robust, with respect to a wide
range of cut-off probability values, estimates of the overall error rate adjusted for the optimism. Prediction error estimates vary from 14 percent to 26.1 percent for year one prior (Panel A in Table A-6), and for two years prior to failure they lie between 16.7 percent and 32 percent (Panel B in Table A-6). Roughly similar accuracy is demonstrated in validation. The performance of the four years prior to failure model, in terms of overall prediction error magnitudes and the robustness on both estimation and holdout observations, is remarkably similar to the accuracy levels observed for the one year prior to failure model and two years prior model. If accuracy is judged by the adjusted apparent error rate, the model for the three-year risk horizon is likely to forecast no worse than models for other risk horizons. The estimates of prediction error lie between 17.7 and 36.5 percent (Panel A in Table A-7), although the approximation of holdout observations is rather weak.

Models Incorporating Macroeconomic Variables

Results from modelling the impact of macroeconomic instability are displayed in Tables 3 and 4. A series of risk-horizon-specific models incorporates financial variables alongside one-year lagged, unanticipated changes in the real effective exchange rate and in the nominal interest rate. The initial specification used to test down to more parsimonious models, is more complete than that used for the series of basic models. We allow for a lagged relation between the changes in a macroeconomic variable and the full economic impact of the changes on the firm’s performance as reflected in its financial accounts. As noted earlier in Section 3.2, effects of macroeconomic instability on failure risk are modelled by using an interactive dummy, which is set to unity for observations on failing firms. That is we argue that non-failed firms had forecast more accurately the future conditions and were able to better and at lower costs react to ‘surprises’ in the macroeconomic environment. Hence, in modelling we assume that a failing company’s performance is sensitive to one-year lagged unanticipated changes because of miss-predictions by the failing firm or its inability to assess the impact of changes in the future business conditions and take correcting actions. We infer the models’ stability and relevance of aggregate economy risks by examining the significance of estimates of the individual coefficients for the interaction terms along with the accuracy of conditional predictions on primary and holdout data points. In holdout tests, outside the estimation period, we assume that all firms are at risk of failure and set the macroeconomic dummy to unity for both failing and non-failed firms.

Results presented in Tables 3 and 4 indicate that the impact of macroeconomic instability is substantial. The overall fit improves markedly. All models, across the four risk horizons, show acceptable overall performance with the Likelihood Ratio χ^2 statistics being significant at the 0.1% level. When judged by the Likelihood Ratio Index, the models augmented with the macroeconomic variables explain the failure outcome better than the basic, financial ratio-based models. Clearly, for the sample firms, failure risk is linked to unanticipated shifts in the real effective exchange rate. The coefficient for the unanticipated change in the real exchange rate is significant at the 1% level and better, across all four years preceding failure, being positively signed in the models for years one, two, and three prior to failure, but being negative in the model for four years prior. Overall, this indicates that increases in the real effective exchange rate precipitated company failure during the 1990s recession. These increases might have generated additional risks for exporters as compared with the generality of firms. Unexpected increases in
Table 3: Logit Models Incorporating Macroeconomic Variables: One and Two Years Prior to Failure; 1988-91 Estimation Period, 53 Failed Companies and 368 Non-failed Company-years (n=421)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>One Year Prior to Failure</th>
<th>Two Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Coefficient</td>
<td>Coefficient</td>
</tr>
<tr>
<td></td>
<td>(two-tailed p-value of</td>
<td>(two-tailed p-value of</td>
</tr>
<tr>
<td></td>
<td>asymptotic t-statistic)</td>
<td>asymptotic t-statistic)</td>
</tr>
<tr>
<td>Constant</td>
<td>-5.481 (0.000)</td>
<td>-2.682 (0.000)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td>-0.540 (0.010)</td>
</tr>
<tr>
<td>Log Total Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>3.895 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td>-3.778 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover/Net Current Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>1.641 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Income Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td>0.548 (0.030)</td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td>-0.727 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td></td>
<td>-0.980 (0.002)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td>-1.222 (0.018)</td>
<td></td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Real Effective Exchange Rate</td>
<td>190.452 (0.002)</td>
<td>35.066 (0.000)</td>
</tr>
<tr>
<td>Change in Nominal Interest Rate</td>
<td>31.230 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td>-25.90</td>
<td>-115.69</td>
</tr>
<tr>
<td>χ^2 statistic of LR Test (p-value)</td>
<td>266.90 (0.000)</td>
<td>87.31 (0.000)</td>
</tr>
<tr>
<td>Likelihood Ratio Index</td>
<td>0.831</td>
<td>0.246</td>
</tr>
<tr>
<td>n</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Per cent Failed</td>
<td>12.6</td>
<td></td>
</tr>
</tbody>
</table>

16 Macroeconomic variables enter the model specification as interaction terms, where the binary indicator takes on ‘one’ for observations on failing firms.
Table 4: Logit Models Incorporating Macroeconomic Variables: \(^{17}\)
Three and Four Years Prior to Failure; 1988-91 Estimation Period,
53 Failed Companies and 368 Non-failed Company-years (\(n=421\))

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Three Years Prior to Failure</th>
<th>Four Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>(two-tailed (p)-value of asymptotic (t)-statistic)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.519</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Size</td>
<td>-0.651</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>1.441</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover/Net Current Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.867</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Income Gearing</td>
<td>0.751</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td>-1.374</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td>-1.374</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td>-0.699</td>
<td>(0.036)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Real Effective Exchange Rate</td>
<td>32.773</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Change in Nominal Interest Rate</td>
<td>-26.655</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td>-118.31</td>
<td></td>
</tr>
<tr>
<td>(\chi^2) statistic of LR Test ((p)-value)</td>
<td>82.08 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio Index</td>
<td>0.228</td>
<td></td>
</tr>
</tbody>
</table>

\(n=421\)
Per cent Failed 12.6

\(^{17}\) Macroeconomic variables enter the model specification as interaction terms, where the binary indicator takes on ‘one’ for observations on failing firms.
Table 5: Probit Models Incorporating Macroeconomic Variables: One and two Years Prior to Failure; 1988-91 Estimation Period, 53 Failed Companies and 368 Non-failed Company-years (n=421)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>One Year Prior to Failure</th>
<th>Two Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Coefficient (two-tailed p-value of asymptotic t-statistic)</td>
<td>Coefficient (two-tailed p-value of asymptotic t-statistic)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.798 (0.000)</td>
<td>-1.510 (0.000)</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Total Sales</td>
<td>-0.295 (0.003)</td>
<td>-0.295 (0.003)</td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>1.941 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td>-1.944 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover/Net Current Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.856 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Income Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td>0.301 (0.050)</td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td>-0.413 (0.001)</td>
<td></td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td></td>
<td>-0.569 (0.000)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td>-0.621 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Real Effective Exchange Rate</td>
<td>97.275 (0.000)</td>
<td>15.823 (0.005)</td>
</tr>
<tr>
<td>Change in Nominal Interest Rate</td>
<td>15.172 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td>-26.705</td>
<td>-116.45</td>
</tr>
<tr>
<td>χ^2 statistic of LR Test (p-value)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

n = 421
Per cent Failed = 12.6

18 Macroeconomic variables enter the model specification as interaction terms, where the binary indicator takes on ‘one’ for observations on failing firms.
Table 6: Cox Proportional Hazards Models Incorporating Macroeconomic Variables:
One and Two Years Prior to Failure; 1988-91 Estimation Period,
53 Failed Companies and 368 Non-failed Company-years (\textit{n}=421)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>One Year Prior to Failure</th>
<th>Two Years Prior to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Coefficient (two-tailed (p)-value of asymptotic (t)-statistic)</td>
<td>Coefficient (two-tailed (p)-value of asymptotic (t)-statistic)</td>
</tr>
<tr>
<td>Size</td>
<td>Log Total Sales</td>
<td>-0.409 (0.004)</td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>-0.037 (0.297)</td>
<td></td>
</tr>
<tr>
<td>Return on Capital employed</td>
<td>-0.0142 (0.132)</td>
<td></td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td></td>
<td>-0.409 (0.004)</td>
</tr>
<tr>
<td>Turnover</td>
<td>Turnover/Net Current Assets</td>
<td></td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td>Capital Gearing 0.258 (0.000)</td>
<td>0.230 (0.000)</td>
</tr>
<tr>
<td>Income Gearing</td>
<td></td>
<td>-0.455 (0.002)</td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Cash Flow/ Total Liabilities</td>
<td>-0.0325 (0.122)</td>
<td>-0.714 (0.000)</td>
</tr>
<tr>
<td>Loan Capital/Equity and Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity</td>
<td>Working Capital Ratio</td>
<td>-0.0325 (0.122)</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td></td>
<td>-0.714 (0.000)</td>
</tr>
<tr>
<td>Other Financial Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assets Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Real Effective Exchange Rate</td>
<td>67.892 (0.122)</td>
<td>22.547 (0.001)</td>
</tr>
<tr>
<td>Change in Nominal Interest Rate</td>
<td>15.842 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood at Convergence</td>
<td>-214.865 (0.000)</td>
<td>-281.988 (0.000)</td>
</tr>
<tr>
<td>(\chi^2) statistic of LR Test ((p)-value)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

\(n\) 421
Per cent Failed 12.6

The exchange rate can cause a decline in liquidity due to falling revenues and, over a longer period of time, may inflict a loss of competitiveness. In addition, increases in the exchange rate can have possible detrimental effects on performance measures, especially on the earnings per share, in relation to reported overseas profits. Firms with located overseas and denominated in foreign currency assets may experience deteriorating solvency and face financing constraints when the pound appreciates. However, our findings on the relation between the exchange rate changes and failure risk, contrast somewhat with the conclusions drawn by Bhattacharjee, Higson, Holly, Kattuman (2002) and by Vlieghe (2001).

Further, our results show that unexpected movements in the nominal interest rate are an important determinant of failure for the firms in our sample. In the model for three years prior to failure (Table 4), the

\footnote{Macroeconomic variables enter the model specification as interaction terms, where the binary indicator takes on ‘one’ for observations on failing firms.}
coefficient for the nominal interest rate effects is negative. However, results from the models for one-year and four-year risk horizons (Tables 3 and 4) lend support to the stylised fact that unexpected increases in the nominal interest rate exacerbate financial constraints on highly geared firms. Such unexpected increases may apply with particular force to the companies in our sample, which pertain to the early 1990s. A report by The Bank of England suggested that in the early 1990s, subdued equity issues and a fall in short-term interest rates following the stock market crash of October 1987, encouraged companies to issue long-term debt and increase short-term borrowing. The capital gearing of UK industrial and commercial companies rose significantly over the early 1990s being about three times higher than in 1980s (Bank of England Quarterly Bulletin, August 1993). A sharp rise in interest rates from 1988 increased companies’ debt service costs while the subsequent recession lowered companies’ ability to service debt.

The inclusion of the two macroeconomic indicators illustrates the robustness of the estimates of the effects of liquidity and gearing. Similarly to the results from financial ratio-based models, size is a significant explanatory factor at risk horizons of two to four years. Profitability measures are now important both in the short run and in the long run, with rates of return and profit margins explaining failure at one and four years prior to failure. The rate of return on shareholders’ capital retains its positive sign and the rate of return on capital employed is negatively signed. In the four years prior to failure model (Table 4), coefficients on profitability measures indicate that despite failing firms achieving relatively higher operating profit margins, their pre-tax profit margins are smaller than those of non-failed firms, suggesting perhaps the absence of signs of economic distress. At all risk horizons, models augmented with macroeconomic indicators seem to reiterate the stylised fact that high gearing increases failure risk. Precipitating failure, relatively lower liquidity ratios are important in years one, two and four before failure.

To illustrate robustness of the results to the choice of the underlying distribution in modelling a binary outcome of company failure we have obtained a set of probit estimates for the final specifications that account for the effects of the real exchange rate and the nominal interest rate (Table 5). We use the same sets of predictors as in the parsimonious logit specifications of Table 4 and find that isolated determinants retain their signs and significance with strong positive effects of the two macroeconomic variables of interest. We notice that the change of the underlying distribution makes no difference to any conclusions about the influential predictors.

We then consider the issue of potential distortion caused by the failure of logit and probit to utilise information about the timing of changes of state and associated duration in the event such as company insolvency/failure. To investigate the robustness of our results to the additional influence of duration times we estimate with the same set of covariates Cox proportional hazards models where the shape of the hazard function is essentially left unspecified (Table 6). The survival duration is defined by age at entry into the state of insolvency. However, at this juncture we have to mention a major measurement problem that occurs in defining and ascertaining the ‘unique’ timings of company ‘birth’. Information on dates of formation of businesses, required to proxy the timing of birth, was unavailable, therefore, we made a strong assumption that observation commences at the time DATASTREAM begins records on a particular company. In considering the findings from the Cox hazards model we bear in mind this drawback. On the whole, it appears that the survival model estimates, too, lend support to the strong significance of the two macroeconomic factors in the company failure process. In the Cox model for year two prior to failure, the signs and significance of all the covariates are similar to the original logit analysis. On balance, one might say that the Cox results provide tentative evidence that the model of company failure for the two-year horizon is more robust.

An additional explanatory power of the added macroeconomic indicators is inferred by assessing models performance in predicting failure.

Classificatory accuracy, evaluated by applying the one year prior to failure model to the data points used in fitting the model (Panel A in Table A-8), indicates that the conditioning on the effects of the macroeconomic variables improves correct classification rates both for failed and for non-failed firms as compared to the basic financial ratio-based model constructed for the same risk horizon (Panel A in Table A-6). This improvement observed across all cut-off probability values is consistent with a decrease in the overall prediction error adjusted for the downward bias. Predictions of the holdout data points, at this risk
horizon, are also characterized by lower overall error rates, ranging from 9.4 per cent to 10.4 per cent (Panel A in Table A-8).

Predictive power of the model explaining the risk of failure at the risk horizon of two years (Panel B in Table A-8) is somewhat weaker than that of the one year prior to failure model. First, we should point out the deterioration in the holdout approximation at the cut-off values of 0.1 and 0.125, as compared to the financial ratio-based model performance (Panel B in Table A-6). When the cut-off probability values of 0.1 and 0.125 are used for evaluation, the overall accuracy declines to the levels of 36.5 to 42.7 per cent, being lower than a correct prediction rate of 61.5 per cent and better, which is achieved by the basic financial ratio-based model constructed for this risk horizon.

Using fresh holdout data drawn from 1997-2005 we provide a further validation of our argument about the key role of the two macroeconomic factors in the process of company failure. Table A-8 gives the results from a check of forecasts’ accuracy at a longer horizon, for the one and two years prior to failure logit specifications described in Tables 3 and 4. Judged by the accuracy of classifying fresh data points of an equal-share holdout the overall predictive performance is still around 40% for the model one year prior to failure. This improves to 70% for a cut-off of 0.5 when the predictions are based on the model two years prior to failure. The latter result is particularly surprising given the extent to which the two periods differ in terms of financial reporting standards and economic and financial circumstances.

The importance of the macroeconomic factors for explaining failure risk in the long run, is supported by definite improvements in classificatory and predictive ability of models developed for three and four years prior to failure (Table A-9). In comparison to basic models with financial ratios alone, the three years prior and four years prior to failure models, augmented with the macroeconomic indicators, demonstrate improved accuracy in categorizing observations from both the estimation sample and the holdout sample across all cut-off probability values. Notably, accuracy gains provided by the four years prior model are consistent with the adjusted for the downward bias alternative estimates of prediction error of 15.2 per cent and better. The predictive quality is supported by the accuracy assessed on holdout observations where the overall error rate of 21.9 per cent and better is observed.

4 Conclusions

The objective of this paper was to re-examine the determinants of company failure by looking directly at the contribution of the environmental, macroeconomic factors to the likelihood of failure measured at the firm level in a sample of UK large quoted industrials taken from the early 1990s. Macroeconomic indicators were incorporated into conventional cross-sectional models of failure risk. Lagged yearly, unanticipated changes in the nominal interest rate and in the real effective exchange rate are significant variables in explaining failure. We assessed both short-term and long-term effects of the shifts in the two macroeconomic indicators on the probability of insolvency by fitting logit models pooled across several years’ cross-section data, at risk horizons ranging from one to four years before failure. We assessed model adequacy and inferred the importance of the macroeconomic factors from the significance of coefficient estimates and classificatory and predictive accuracy of the models.

The pattern of significance of financial statement-based determinants assessed for the four-year period prior to failure, provided evidence on the key role of gearing, liquidity and profitability, corroborating earlier results on UK company failure (Taffler, 1982; Keasey and McGuinness, 1990; Alici, 1995), and was robust to the model augmentation with macroeconomic indicators.

Models incorporating the macroeconomic indicators exhibited lower prediction errors assessed on an out-of-sample basis. The best predicting models, augmented with the two macroeconomic variables, demonstrated stability and the adequate fit on the out-of-sample data points. In holdout tests, the overall accuracy of 90.6 per cent and better was achieved at the one-year risk horizon and of 71.9 per cent and better at the risk horizons of three and four years. The achieved accuracy compares favourably with a weaker approximation of the holdout observations by the basic models based on financial ratios alone.
The empirical relation between the probability of failure and unanticipated changes in the real exchange rate and nominal interest rate appeared stable over the four-year period before failure. Obtained empirical predictors suggested that during the 1990s recession, unanticipated increases in the real exchange rate and rises in the nominal interest rate were associated with a higher propensity of UK quoted industrial company to fail, thus indicating the links to declining liquidity, to a loss in competitiveness, and to the detriment of inflation for highly geared firms.

APPENDIX: EFRON’S FORMULA

The estimate of the true error rate is calculated by adding a bias correction to the apparent error rate. The expected excess error rate is obtained using the analytic result from Efron (1986):

$$\omega(\hat{\pi}) = \frac{2}{n} \sum_{i=1}^{n} \hat{\pi}_i (1 - \hat{\pi}_i) \phi \left(\frac{\hat{c}_i}{\sqrt{\hat{d}_i}} \right),$$

$$\phi(z) = (2\pi)^{-1/2} \exp \left(-\frac{1}{2} z^2 \right), \quad \hat{c}_i = \ln \left(\frac{C_0}{1 - C_0} \right) - \hat{\beta}' \hat{x}_i - \hat{d}_i = \hat{x}_i' \hat{\Sigma}^{-1} \hat{x}_i,$$

$$\hat{\Sigma}^{-1}$$ is usual estimator of the variance-covariance matrix of $$\hat{\beta}.$$

Appendix: Data Set Description and Model Performance Results

Table A-1: Names and Years of Entering Insolvency Regime, of UK Failed Quoted Industrials Used in the Estimation Sample

<table>
<thead>
<tr>
<th>Company</th>
<th>Year</th>
<th>Company</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allied Partnership Group</td>
<td>1992</td>
<td>Ketson</td>
<td>1990</td>
</tr>
<tr>
<td>Arley Holdings</td>
<td>1990</td>
<td>Lawtex</td>
<td>1991</td>
</tr>
<tr>
<td>Arncliffe Holdings</td>
<td>1991</td>
<td>Lilley</td>
<td>1993</td>
</tr>
<tr>
<td>Astra Holdings</td>
<td>1992</td>
<td>Lyon & Lyon</td>
<td>1990</td>
</tr>
<tr>
<td>ATP Communications Group</td>
<td>1992</td>
<td>Miller (Stanley) Holdings</td>
<td>1990</td>
</tr>
<tr>
<td>Audit & General</td>
<td>1991</td>
<td>Oakwood Group</td>
<td>1990</td>
</tr>
<tr>
<td>Bestwood</td>
<td>1990</td>
<td>Parkfield Group</td>
<td>1990</td>
</tr>
<tr>
<td>Chelsea Man</td>
<td>1991</td>
<td>Pavion International</td>
<td>1989</td>
</tr>
<tr>
<td>Clearmark Group</td>
<td>1991</td>
<td>Polly Peck International</td>
<td>1990</td>
</tr>
<tr>
<td>Colographic</td>
<td>1992</td>
<td>Reliant Group</td>
<td>1990</td>
</tr>
<tr>
<td>Coloroll</td>
<td>1990</td>
<td>Rockwood Holdings</td>
<td>1990</td>
</tr>
<tr>
<td>Conder Group</td>
<td>1992</td>
<td>Rush & Tomkins Group</td>
<td>1990</td>
</tr>
<tr>
<td>Crown Communications Group</td>
<td>1993</td>
<td>Sale Tilney</td>
<td>1992</td>
</tr>
<tr>
<td>Ferrari Holdings</td>
<td>1991</td>
<td>Trilion</td>
<td>1992</td>
</tr>
<tr>
<td>Fobel International</td>
<td>1991</td>
<td>Turriff Corporation</td>
<td>1991</td>
</tr>
<tr>
<td>Futura Holdings</td>
<td>1993</td>
<td>Video Store Group</td>
<td>1991</td>
</tr>
<tr>
<td>Goldberg (A.) & Sons</td>
<td>1990</td>
<td>West Industries</td>
<td>1992</td>
</tr>
<tr>
<td>Halls Homes & Gardens</td>
<td>1992</td>
<td>Willaire Group</td>
<td>1992</td>
</tr>
<tr>
<td>Hey & Croft Group</td>
<td>1992</td>
<td>Williams (John) Industries</td>
<td>1990</td>
</tr>
<tr>
<td>Huges Food Group</td>
<td>1991</td>
<td>Yellowhammer</td>
<td>1990</td>
</tr>
<tr>
<td>International Resort Holdings</td>
<td>1992</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-2: Names and Years of Entering Insolvency Regime of UK Failed Quoted Industrials Used in the Holdout Samples

<table>
<thead>
<tr>
<th>1st Holdout Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automagic Holdings</td>
</tr>
<tr>
<td>Beckenham Group</td>
</tr>
<tr>
<td>Bimec Industries</td>
</tr>
<tr>
<td>Bullers</td>
</tr>
<tr>
<td>Dunkeld</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Holdout Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayflower Corporation</td>
</tr>
<tr>
<td>Airflow Streamlines</td>
</tr>
<tr>
<td>ASW Holdings</td>
</tr>
<tr>
<td>Photobition</td>
</tr>
<tr>
<td>Cammell Laird Holdings</td>
</tr>
</tbody>
</table>
Table A-3: Composition of the UK Company Cross-sections for the Reporting Years 1988-94, Breakdown of Observational Units by Insolvency Status and Economic Groups (Percentages in parentheses)

<table>
<thead>
<tr>
<th>FT-SE Economic Groups</th>
<th>Mineral Extraction</th>
<th>General Industrials</th>
<th>Consumer Goods</th>
<th>Services</th>
<th>Utilities</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel A: Estimation Sample, 1988-91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Failed</td>
<td>1 (0.3)</td>
<td>173 (54.7)</td>
<td>35 (11.1)</td>
<td>106 (33.5)</td>
<td>1 (0.3)</td>
<td>316^20 (100)</td>
</tr>
<tr>
<td>Failed</td>
<td>-</td>
<td>24 (45.3)</td>
<td>5 (9.4)</td>
<td>24 (45.3)</td>
<td>-</td>
<td>53 (100)</td>
</tr>
<tr>
<td>Panel B: Holdout Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holdout sample from 1992-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Failed</td>
<td>2 (2.3)</td>
<td>40 (46.5)</td>
<td>15 (17.4)</td>
<td>29 (33.7)</td>
<td>-</td>
<td>86 (100)</td>
</tr>
<tr>
<td>Failed</td>
<td>-</td>
<td>7 (70.0)</td>
<td>1 (10.0)</td>
<td>2 (20.0)</td>
<td>-</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Holdout sample from 1997-2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Failed</td>
<td>-</td>
<td>4 (40.0)</td>
<td>1 (10.0)</td>
<td>5 (50.0)</td>
<td>-</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Failed</td>
<td>-</td>
<td>4 (40.0)</td>
<td>2 (20.0)</td>
<td>4 (40.0)</td>
<td>-</td>
<td>10 (100)</td>
</tr>
</tbody>
</table>

^20 The figure excludes double-counting as the group of non-failed firms consists of data on 368 company-years represented by 316 live companies, on which the accounts data on four consecutive years were available.
Table A-4: Means and t-statistics – Financial Ratio-based Variables and Cases Used in the Estimation Samples for One and Two Years Prior to Failure
Sample Period 1988-91, 53 Failed Companies and 368 Non-failed Company-Years

<table>
<thead>
<tr>
<th>Financial Dimension</th>
<th>One Year Prior</th>
<th>Two Years Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (n=421)</td>
<td>Mean (n=421)</td>
</tr>
<tr>
<td></td>
<td>(Normalised Values)</td>
<td>(Normalised Values)</td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>Non-failed</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of Total Sales (Net of Trade Discounts)</td>
<td>-0.330</td>
<td>0.094</td>
</tr>
<tr>
<td>Profitability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Shareholders’ Capital</td>
<td>0.200</td>
<td>-0.002</td>
</tr>
<tr>
<td>Return on Capital Employed</td>
<td>-0.526</td>
<td>0.069</td>
</tr>
<tr>
<td>Return on Net Fixed Assets</td>
<td>-0.442</td>
<td>0.046</td>
</tr>
<tr>
<td>Cumulative Profitability(^{22})</td>
<td>0.227</td>
<td>-0.005</td>
</tr>
<tr>
<td>Operating Profit Margin</td>
<td>-0.334</td>
<td>0.063</td>
</tr>
<tr>
<td>Pre-tax Profit Margin</td>
<td>-0.443</td>
<td>0.078</td>
</tr>
<tr>
<td>Net Profit Margin</td>
<td>-0.407</td>
<td>0.099</td>
</tr>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnover / Fixed Assets</td>
<td>-0.090</td>
<td>-0.016</td>
</tr>
<tr>
<td>Turnover / Net Current Assets</td>
<td>-0.258</td>
<td>-0.050</td>
</tr>
<tr>
<td>Stock Turnover</td>
<td>-0.036</td>
<td>-0.041</td>
</tr>
<tr>
<td>Debtors Turnover</td>
<td>-0.148</td>
<td>0.017</td>
</tr>
<tr>
<td>Creditors Turnover</td>
<td>-0.362</td>
<td>0.090</td>
</tr>
</tbody>
</table>

** *** Significant at 0.01.
** ** Significant at 0.05.
* * * Significant at 0.10.

\(^{22}\) The cumulative profitability ratio is a variant of the measure employed in Altman, Haldeman and Narayanan (1977) and is has been calculated by dividing revenue reserves by total assets employed.
<table>
<thead>
<tr>
<th>Financial Dimension</th>
<th>One Year Prior Mean (n=421) (Normalised Values)</th>
<th>Two Years Prior Mean (n=421) (Normalised Values)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Failed</td>
<td>Non-failed</td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.662</td>
<td>-0.035</td>
</tr>
<tr>
<td>Income Gearing</td>
<td>0.459</td>
<td>-0.046</td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td>-0.125</td>
<td>-0.009</td>
</tr>
<tr>
<td>Gross Cash-flow / Total Liabilities</td>
<td>-0.734</td>
<td>0.089</td>
</tr>
<tr>
<td>Loan Capital / Equity and Reserves</td>
<td>0.267</td>
<td>0.008</td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td>-0.640</td>
<td>0.069</td>
</tr>
<tr>
<td>Quick Assets Ratio</td>
<td>-0.552</td>
<td>0.048</td>
</tr>
<tr>
<td>Working Capital / Assets Employed(^{23})</td>
<td>-0.180</td>
<td>0.021</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Value/Book Value</td>
<td>-0.385</td>
<td>-0.028</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>-0.300</td>
<td>0.023</td>
</tr>
<tr>
<td>Assets Index</td>
<td>0.125</td>
<td>0.031</td>
</tr>
<tr>
<td>Tax Ratio</td>
<td>-0.200</td>
<td>0.100</td>
</tr>
</tbody>
</table>

*** Significant at 0.01.
** Significant at 0.05.
* Significant at 0.10.

\(^{23}\) A similar ratio was used in Altman (1968).
Table A-5: Means and t-statistics – Financial Ratio-based Variables and Cases Used in the Estimation Samples for Three and Four Years Prior to Failure
Sample Period 1988-91, 53 Failed Companies and 368 Non-failed Company-Years

<table>
<thead>
<tr>
<th>Financial Dimension</th>
<th>Accounting Variable</th>
<th>Three Years Prior</th>
<th>Four Years Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (n=421)</td>
<td>Mean (n=421)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Normalised Values)</td>
<td>(Normalised Values)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failed</td>
<td>Non-failed</td>
</tr>
<tr>
<td>Size</td>
<td>Log of Total Sales (Net of Trade Discounts)</td>
<td>-0.490</td>
<td>0.062</td>
</tr>
<tr>
<td>Profitability</td>
<td>Return on Shareholders’ Capital</td>
<td>-0.231</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>Return on Capital Employed</td>
<td>-0.179</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>Return on Net Fixed Assets</td>
<td>-0.133</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>Cumulative Profitability</td>
<td>-0.058</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>Operating Profit Margin</td>
<td>-0.305</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>Pre-Tax Profit Margin</td>
<td>-0.401</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>Net Profit Margin</td>
<td>-0.345</td>
<td>0.077</td>
</tr>
<tr>
<td>Turnover</td>
<td>Turnover / Fixed Assets</td>
<td>0.089</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>Turnover / Net Current Assets</td>
<td>0.346</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Stock Turnover</td>
<td>0.333</td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td>Debtors Turnover</td>
<td>0.018</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>Creditors Turnover</td>
<td>-0.103</td>
<td>0.022</td>
</tr>
</tbody>
</table>

*** Significant at 0.01.
** Significant at 0.05.
* Significant at 0.10.
Table A-5: - Continued

<table>
<thead>
<tr>
<th>Financial Dimension</th>
<th>Three Years Prior</th>
<th>Four Years Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (n=421)</td>
<td>Mean (n=421)</td>
</tr>
<tr>
<td></td>
<td>(Normalised Values)</td>
<td>(Normalised Values)</td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>Non-failed</td>
</tr>
<tr>
<td>Accounting Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Gearing</td>
<td>0.483</td>
<td>-0.089</td>
</tr>
<tr>
<td>Income Gearing</td>
<td>0.195</td>
<td>-0.038</td>
</tr>
<tr>
<td>Borrowing Ratio</td>
<td>-0.031</td>
<td>-0.043</td>
</tr>
<tr>
<td>Gross Cash-Flow / Total Liabilities</td>
<td>-0.429</td>
<td>0.069</td>
</tr>
<tr>
<td>Loan Capital / Equity and Reserves</td>
<td>-0.170</td>
<td>-0.055</td>
</tr>
<tr>
<td>Liquidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital Ratio</td>
<td>-0.279</td>
<td>0.060</td>
</tr>
<tr>
<td>Quick Assets Ratio</td>
<td>-0.197</td>
<td>0.036</td>
</tr>
<tr>
<td>Working Capital / Assets Employed</td>
<td>-0.221</td>
<td>0.013</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Value/Book Value</td>
<td>0.297</td>
<td>0.003</td>
</tr>
<tr>
<td>Payout Ratio</td>
<td>-0.064</td>
<td>0.012</td>
</tr>
<tr>
<td>Assets Index</td>
<td>0.148</td>
<td>-0.027</td>
</tr>
<tr>
<td>Tax Ratio</td>
<td>-0.231</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

*** Significant at 0.01.
** Significant at 0.05.
* Significant at 0.10.
Table A-6: Classification and Predictive Ability of Financial Ratio-Based Models, One and Two Years Prior to Failure:

1988-91 Estimation Period
(53 Failed Companies and 368 Non-failed Company-years);
1992-94 Holdout Period\(^{24}\)
(10 Failed and 86 Non-failed Companies).

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: One Year Prior to Failure: Correct Classification, Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>73.6</td>
<td>79.1</td>
<td>92.7</td>
<td>97.8</td>
<td>99.2</td>
<td>99.5</td>
</tr>
<tr>
<td>Failed</td>
<td>90.6</td>
<td>79.2</td>
<td>54.7</td>
<td>45.3</td>
<td>18.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Overall</td>
<td>75.8</td>
<td>79.1</td>
<td>87.9</td>
<td>91.2</td>
<td>89.1</td>
<td>88.1</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>1.9</td>
<td>2.4</td>
<td>3.9</td>
<td>5.2</td>
<td>6.2</td>
<td>6.5</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>26.1</td>
<td>23.3</td>
<td>16.0</td>
<td>14.0</td>
<td>17.1</td>
<td>18.4</td>
</tr>
<tr>
<td>1st Holdout Sample from 1992-94:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>73.3</td>
<td>77.9</td>
<td>90.7</td>
<td>96.5</td>
<td>96.5</td>
<td>96.5</td>
</tr>
<tr>
<td>Failed</td>
<td>100.0</td>
<td>100.0</td>
<td>60.0</td>
<td>40.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Overall</td>
<td>76.1</td>
<td>80.2</td>
<td>87.5</td>
<td>90.6</td>
<td>89.6</td>
<td>89.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B: Two Years Prior to Failure: Correct Classification, Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimation Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>67.7</td>
<td>75.8</td>
<td>93.2</td>
<td>98.4</td>
<td>99.2</td>
<td>99.7</td>
</tr>
<tr>
<td>Failed</td>
<td>86.8</td>
<td>77.4</td>
<td>45.3</td>
<td>18.9</td>
<td>7.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Overall</td>
<td>70.1</td>
<td>76.4</td>
<td>87.2</td>
<td>88.4</td>
<td>87.6</td>
<td>87.6</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>2.1</td>
<td>2.6</td>
<td>4.1</td>
<td>5.1</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>32.0</td>
<td>26.6</td>
<td>16.9</td>
<td>16.7</td>
<td>17.9</td>
<td>18.1</td>
</tr>
</tbody>
</table>

| **1st Holdout Sample from 1992-94:** |
Non-failed	59.3	65.1	88.4	96.5	98.8	100
Failed	80.0	70.0	50.0	20.0	10.0	0.0
Overall	61.5	65.6	84.4	88.5	89.6	89.6

\(^{24}\) The holdout period is defined in terms of year of last accounts.
Table A-7: Classification and Predictive Ability of Financial Ratio-Based Models, Three and Four Years Prior to Failure:

1988-91 Estimation Period
(53 Failed Companies and 368 Non-failed Company-years);
1992-94 Holdout Period
(10 Failed and 86 Non-failed Companies).

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>62.8</td>
<td>75.5</td>
<td>92.4</td>
<td>98.4</td>
<td>99.7</td>
<td>99.7</td>
</tr>
<tr>
<td>Failed</td>
<td>83.0</td>
<td>73.6</td>
<td>34</td>
<td>9.4</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Overall</td>
<td>65.3</td>
<td>75.3</td>
<td>85</td>
<td>87.2</td>
<td>87.6</td>
<td>87.6</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>1.8</td>
<td>2.3</td>
<td>3.8</td>
<td>5</td>
<td>5.3</td>
<td>5.4</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>36.5</td>
<td>27.0</td>
<td>18.8</td>
<td>17.8</td>
<td>17.7</td>
<td>17.8</td>
</tr>
</tbody>
</table>

1st Holdout Sample from 1992-94:
<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-failed</td>
<td>27.9</td>
<td>29.1</td>
<td>34.9</td>
<td>38.4</td>
<td>40.7</td>
<td>40.7</td>
</tr>
<tr>
<td>Failed</td>
<td>50.0</td>
<td>40.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Overall</td>
<td>30.2</td>
<td>30.2</td>
<td>34.4</td>
<td>37.5</td>
<td>39.6</td>
<td>39.6</td>
</tr>
</tbody>
</table>

Panel B: Four Years Prior to Failure: Correct Classification, Percentage

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>67.9</td>
<td>75.3</td>
<td>90.2</td>
<td>98.6</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Failed</td>
<td>77.4</td>
<td>69.8</td>
<td>39.6</td>
<td>24.5</td>
<td>9.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Overall</td>
<td>69.1</td>
<td>74.6</td>
<td>83.8</td>
<td>89.3</td>
<td>88.6</td>
<td>87.6</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>2.1</td>
<td>2.6</td>
<td>4.2</td>
<td>5.6</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>33.0</td>
<td>28.0</td>
<td>20.4</td>
<td>16.3</td>
<td>17.7</td>
<td>18.9</td>
</tr>
</tbody>
</table>

1st Holdout Sample from 1992-94:
<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-failed</td>
<td>60.5</td>
<td>65.1</td>
<td>83.7</td>
<td>94.2</td>
<td>95.3</td>
<td>95.3</td>
</tr>
<tr>
<td>Failed</td>
<td>80.0</td>
<td>80.0</td>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Overall</td>
<td>62.5</td>
<td>66.7</td>
<td>80.2</td>
<td>84.4</td>
<td>85.4</td>
<td>85.4</td>
</tr>
</tbody>
</table>
Table A-8 Classification and Predictive Ability of Models Incorporating Macroeconomic Variables:

One and Two Years Prior to Failure, Classifications and Predictions Conditioned on Interactive Effects between Macroeconomic Variables and Failure.
1988-91 Estimation Period (53 Failed Companies and 368 Non-failed Company-years);
1992-94 Holdout Period\(^\text{25}\) (10 Failed and 86 Non-failed Companies);
1997-2005 Holdout Period (10 Failed and 10 No-failed Companies).

Panel A: One Year Prior to Failure: Correct Classification, Percentage

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation Sample:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>97.6</td>
<td>98.6</td>
<td>99.2</td>
<td>99.5</td>
<td>99.5</td>
<td>100</td>
</tr>
<tr>
<td>Failed</td>
<td>94.3</td>
<td>94.3</td>
<td>92.5</td>
<td>90.6</td>
<td>84.9</td>
<td>83</td>
</tr>
<tr>
<td>Overall</td>
<td>97.1</td>
<td>98.1</td>
<td>98.3</td>
<td>98.3</td>
<td>97.6</td>
<td>97.9</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>1.1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>4.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.4</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>1st Holdout Sample from 1992-94:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>98.8</td>
<td>98.8</td>
<td>98.8</td>
<td>98.8</td>
<td>98.8</td>
<td>96.8</td>
</tr>
<tr>
<td>Failed</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Overall</td>
<td>90.6</td>
<td>90.6</td>
<td>90.6</td>
<td>89.6</td>
<td>89.6</td>
<td>89.6</td>
</tr>
<tr>
<td>2nd Holdout Sample from 1997-2005:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Failed</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Overall</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Panel B: Two Years Prior to Failure: Correct Classification, Percentage

<table>
<thead>
<tr>
<th>Cut-off Value</th>
<th>0.1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.875</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation Sample:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>73.1</td>
<td>79.9</td>
<td>95.4</td>
<td>98.6</td>
<td>99.2</td>
<td>99.7</td>
</tr>
<tr>
<td>Failed</td>
<td>75.5</td>
<td>73.6</td>
<td>56.6</td>
<td>39.6</td>
<td>17.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Overall</td>
<td>73.4</td>
<td>79.1</td>
<td>90.5</td>
<td>91.2</td>
<td>88.8</td>
<td>88.4</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by Efron’s Formula</td>
<td>2.1</td>
<td>2.5</td>
<td>3.7</td>
<td>4.7</td>
<td>5.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
<td>28.7</td>
<td>23.4</td>
<td>13.2</td>
<td>13.5</td>
<td>16.5</td>
<td>17.2</td>
</tr>
<tr>
<td>1st Holdout Sample from 1992-94:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>29.1</td>
<td>38.4</td>
<td>68.6</td>
<td>93.0</td>
<td>97.7</td>
<td>98.8</td>
</tr>
<tr>
<td>Failed</td>
<td>100.0</td>
<td>80.0</td>
<td>50.0</td>
<td>50.0</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Overall</td>
<td>36.5</td>
<td>42.7</td>
<td>66.7</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>2nd Holdout Sample from 1997-2005:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-failed</td>
<td>50.0</td>
<td>70.0</td>
<td>80.0</td>
<td>80.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Failed</td>
<td>70.0</td>
<td>70.0</td>
<td>70.0</td>
<td>60.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Overall</td>
<td>60.0</td>
<td>70.0</td>
<td>75.0</td>
<td>70.0</td>
<td>55.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>

\(^{25}\) Holdout periods are defined in terms of year of last accounts.
Table A-9 Classification and Predictive Ability of Models
Incorporating Macroeconomic Variables:

Three and Four Years Prior to Failure,
Classifications and Predictions Conditioned on Interactive Effects
between Macroeconomic Variables and Failure.

1988-91 Estimation Period;
(53 Failed Companies and 368 Non-failed Company-years),
1992-94 Holdout Period
(10 Failed and 86 Non-failed Companies)

<table>
<thead>
<tr>
<th>Panel A: Three Years Prior to Failure: Correct Classification, Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off Value</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Estimation Sample:</td>
</tr>
<tr>
<td>Non-failed</td>
</tr>
<tr>
<td>Failed</td>
</tr>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by</td>
</tr>
<tr>
<td>Efron’s Formula</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
</tr>
<tr>
<td>1st Holdout Sample from 1992-94:</td>
</tr>
<tr>
<td>Non-failed</td>
</tr>
<tr>
<td>Failed</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Four Years Prior to Failure: Correct Classification, Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off Value</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Estimation Sample:</td>
</tr>
<tr>
<td>Non-failed</td>
</tr>
<tr>
<td>Failed</td>
</tr>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Overall Error Rate Bias Estimated by</td>
</tr>
<tr>
<td>Efron’s Formula</td>
</tr>
<tr>
<td>Estimate of Prediction Error</td>
</tr>
<tr>
<td>1st Holdout Sample from 1992-94:</td>
</tr>
<tr>
<td>Non-failed</td>
</tr>
<tr>
<td>Failed</td>
</tr>
<tr>
<td>Overall</td>
</tr>
</tbody>
</table>
References

