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1 Introduction

In recent years, there have been various deregulations occurring in the electricity, oil and

natural gas markets. Apparently, prices of these commodities reflect financial risks that are

borne out by the market participants (sellers and buyers). Such risks are important consid-

erations when proposing a model for the price evolution of these commodities especially in

designing energy derivative contracts.

The modelling of commodity futures prices and their underlying variables was studied by

various authors in the light of various financial modelling considerations and objectives. Cor-

tazar, et al. [8] proposed a multicommodity model for futures prices that allows the use of

long-maturity futures prices available for one commodity to estimate futures prices of an-

other commodity; Kalman filtering was used in the model estimation. Nakajima and Ohashi

[26] put forward a commodity pricing model that incorporates the effect of linear relations

among commodity spot prices, and provided a condition under which such linear relations

represent cointegration; using crude oil and heating oil market data, Kalman filtering was

also utilised to estimate the model parameters. In Antonio et al. [1], the inclusion of jump

components is carried out to explain the behaviour of oil prices; this, however, creates dif-

ficulties in the estimation of state variables, and so particle filters were applied instead of

Kalman filters. Mirantes, et al. [25] formulated a generalised multi-factor model (n non-

seasonal factors and m seasonal factors) for the stochastic behaviour of commodity prices,

which nests the deterministic seasonal models; the seasonal factors are trigonometric com-

ponents driven by random processes. A one-factor regime-switching model was developed

in Chen and Forsyth [7] but the objective was to capture the risk-adjusted natural gas spot

price dynamics; regression was used in model calibration using both market data on futures

and options on futures. Back, et al. [2] conducted an extensive analysis covering samples of

soybean, corn, heating oil and natural gas options, and provided evidence that seasonality in

volatility is an important aspect to consider when valuing futures contracts; an appropriate

seasonality adjustment significantly reduces pricing errors in these markets and yields more

improvement in valuation accuracy than increasing the number of stochastic factors.

The contributions of this paper differ from the previous works mentioned above. We aim to

address (i) the development of a model for the evolution of arbitrage-free futures prices

suitable for valuation of commodity derivatives and (ii) provision of a regime-switching

framework with HMM-based dynamic estimation for the modelling of multivariate com-

modity price time series along with the investigation of its various implementation issues.
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Specifically, we propose an approach for the estimation of latent state variables in a model

employed in futures pricing. The model is adapted from Manoliu and Tompaidis [24] under

a framework that is consistent with no-arbitrage pricing. The methodology in [24] leads to

a state-space formulation of the futures price model suited for Kalman filtering and maxi-

mum likelihood method. More specifically, the state variable for the spot and futures model

is an Ornstein-Uhlenbeck process designed to capture mean-reversion and observed term

structure of volatilities and correlation. Under this model, the futures prices are lognor-

mally distributed. We start from a lognormal spot price process and derive a multivariate

equation for futures prices. Instead of using a constant parameter (possibly multi-factor)

mean-reverting process, we allow the model parameters to be modulated by a finite-state hid-

den Markov chain in discrete time. The parameters could then switch dynamically amongst

economic regimes representing the interactions of various factors including mean-reversion

and cyclical patterns (seasonality) in commodity prices.

The usual method of finding the maximum likelihood parameter estimates (MLEs) in con-

junction with Kalman filtering is to numerically maximise the likelihood function. In Elliott

and Hyndman [13], a filter-based implementation of the expectation maximisation (EM) al-

gorithm that can be used to find the MLEs is presented. Such an approach makes use of

the change of measure technique to evaluate filters under an ideal measure and relate the

calculations back to the real-world through the Bayes’ theorem. In recent years, linear and

non-linear filtering have found a large number of applications in finance. A recent survey

of developments in this area along with various implementation details in the context of

financial modelling is featured in Date and Ponomareva [9].

Considering the multivariate nature of datasets for correlated futures prices, we utilise the

filtering and estimation method for vector observations put forward in Erlwein, et al. [18].

The novelty of this work stems from the utilisation of all possible price information from

the futures market to obtain model parameters. Our estimation procedures are designed

to suitably calculate the h−step ahead forecasts of various related financial variables. We

formulate a model that is compatible with the framework of Erlwein, et al. [18].

This paper is structured as follows. Section 2 presents the formulation of the model for

the evolution of arbitrage-free futures prices. In section 3, the filtering algorithms for pa-

rameter estimation are outlined. We provide in section 4 a numerical implementation by

applying the algorithms to a dataset of futures prices. We investigate the forecasting perfor-

mance of our approach in predicting log returns and future prices. Finally, some concluding
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remarks are given in section 5.

2 Arbitrage-free evolution of futures prices

In this section, we provide a brief outline of the development of an arbitrage-free model of

futures price dynamics. Modelling the arbitrage-free price evolution is essential to appropri-

ately price securities in the commodity markets such as spread options. Specification of an

arbitrage-free model is necessary to be consistent with the risk-neutral approach in pricing.

The development is based on reference [24] and the omitted proofs follow using a univariate

version of Itô’s lemma in a straightforward fashion.

We assume that the log-spot price ζt follows a single-factor mean-reverting process under

the risk neutral measure (or Q measure, in conventional notation), i.e.,

dζt = (α− κζt)dt+ θdWt. (1)

Here, α, κ and θ > 0 are assumed constants and Wt is a Q-Wiener process. The spot price

is considered to be a latent state, i.e., unobservable. We assume further that at each time

prices of m futures are available with maturities T1, T2, · · · , Tm. The price of the futures

contract with maturity Ti , at time t < mini(Ti), is denoted by F i(t) and can be written as

F i(t) = EQ(eζ
i|Ft) = exp

(
EQ(ζ i|Ft) +

1

2
VarQ(ζ i|Ft)

)
,

where we denote ζTi by ζ i for notational brevity and use the fact that eζ
i

is log-normal. Here,

{Ft} is the filtration generated by Wt. This leads to a closed-form expression for F i(t) given

by

F i(t) = exp

(
e−κ(Ti−t)ζt +

α

κ
(1− e−κ(Ti−t)) +

θ2

4κ

(
1− e−2κ(Ti−t)

))
. (2)

Our modelling formulation is consistent with the log-spot price modelling assumptions in

Manoliu and Tompaidis’s paper [24]. Under the assumption of no-arbitrage valuation, the

benefits from holding the physical asset, called convenience yield, are reflected in the futures

price (cf. Hull [22]). Convenience yield in a commodity is analogous to a dividend in an

asset that provides a known income; and dividends would naturally lead to a corresponding

adjustment in the price of the underlying asset of a futures contract. Whilst we did not

explicitly model the dynamics of the convenience yield as it is not the intent of this paper

to quantify it, we see that it is implicitly taken into account through the log-spot price ζ in
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the closed-form expression for the futures price in equation (2).

Furthermore, at a fixed time t, F i(t) can be an increasing or a decreasing function of ma-

turity Ti, depending on the choice of parameters, which can easily be seen from equation

(2). Futures prices decreasing (respectively, increasing) with maturity reflects backwardation

(respectively, contango). Typically, being able to model both these situations adequately is

a reason for modelling net convenience yield explicitly (possibly as a stochastic process). We

can achieve a switch between the two situations in our framework through updating model

parameters via self calibration as well as through regime switching, as will be made clear in

the subsequent sections.

Next, we assume that the log-spot price follows a mean-reverting process under the objective

measure (or P measure) given by

dζt = (α̃− κζt)dt+ θdW̃t, (3)

where W̃t is a P-Wiener process. Note that the arbitrage-free-market assumption is equivalent

to the existence of a Q measure which is equivalent to the P measure, such that the futures

price processes are martingales under Q measure. Further, this assumption is also equivalent

to the existence of a price of risk process λt such that α̃−α = λtθ holds. See Elliot, et al. [15]

for the construction of a price of risk process λt for a regime-switching linear Gaussian model,

using double Esscher transform, for both continuous-time and discrete-time cases. In the

present situation, we will use a discretised version of the above process with a discrete-time,

finite-state Markov chain governing the regime switching; thus, the discussion in [15] remains

applicable in our context. For the time being, we assume λt =: λ to be a constant. We apply

Itô’s lemma to F i(t), using equations (2) and (3), which leads to the following arbitrage-free

dynamics for log-futures price:

d
(
logF i(t)

)
= e−κ(Ti−t)

(
λθ − θ2

2
e−κ(Ti−t)

)
dt+ θe−κ(Ti−t)dW̃t. (4)

In the subsequent discussion, we shall assume that the parameters λ and θ are dependent on

the current regime and regime-switching is allowed via a finite state hidden Markov chain.

However, the discussion on regime switching is postponed to section 3 and we will assume

the parameters to be constant for the purpose of this section.

For calibration and forecasting purposes of a multivariate time series of futures prices, we

use a moment-matching procedure to implement equation (4) in discrete time. We suppose
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that observation times t1 ≤ t2 ≤ . . . ≤ tn are equally spaced and tk+1 − tk =: ∆. To write

the dynamics of a vector of futures prices in a compact form, let vec{ai} denote a vector

with ai at its ith element. Then, at time k, the arbitrage-free evolution of the futures price

vector of log-returns is given by

vec
{
yik
}

= vec
{
f ik
}

+ vec{qik}zk, (5)

where

f ik :=
λθ

κ
e−κ(Ti−tk)

(
1− e−κ∆

)
− θ2

4κ
e−2κ(Ti−tk)

(
1− e−2κ∆

)
, (6)

yik := log
F i(tk)

F i(tk−1)
, (7)

qik = θe−κ(Ti−tk)

√
1− e−2κ∆

2κ
(8)

and {zk} is a sequence of independent Gaussian random variables with zero mean and

unit variance. The above discrete-time implementation preserves the exact distribution of

logF i(tk+1), conditional on Fk (i.e., information up to time tk). Hence, it is preferred over

more conventional Euler discretisation.

Although our formulation assumptions are similar to those in Manoliu and Tompaidis in

[24], our approach differs significantly. The work in [24] relies on modelling the latent spot

price evolution explicitly and then using Kalman filtering methodology to extract this latent

price. Single as well as multi-factor models are used in [24] and a non-parametric seasonality

adjustment is suggested for forecasting. In our case, the spot price does not feature in the

futures equation and is modelled only implicitly. We incorporate regime switching to allow

for factors such as seasonality and use a self-calibrating filter which is adapted from Erlwein

et al. [18] for our particular model structure. It will be demonstrated that a single-factor,

two-regime model gives satisfactory results for a chosen dataset.

Our aim is to obtain estimates for the parameters λ, κ and θ along with the transition

probabilities if any of these parameters are governed by a discrete-time finite-state Markov

chain. We solve this problem in two steps:

1. Initial parameter estimation: In this step, we assume that the transition probability

matrix is identity over the observed time series and identify the initial parameter

estimates for λ, κ and θ by maximising the likelihood of the observed time series. Let

these initial estimates be denoted by λ0, κ0 and θ0, respectively. The details of this

step are given in section 3.1.
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2. Update of parameters and transition probabilities using a self-calibrating filter: To

make the implementation tractable, we assign an appropriate fixed value for κ and

hence, κ is assumed to be independent of the Markov chain. The estimates of λ and θ

are updated using a self-calibrating filter. The implementation steps for this filter are

derived in section 3.2.

3 Filtering and model parameter estimation

3.1 Initial estimates of parameters

To find the initial estimates of parameters, we assume that the system is operating in a single

regime, i.e., the transition probability matrix for the Markov chain is identity. Suppose that

data on futures prices is available for times k = 1, 2, . . . , n, from which a vector-valued time

series of log returns, vec(yi1), vec(yi2), . . . vec(yin) can be constructed for i = 1, 2, . . . ,m.

In equation (5) the components f ik and qik are parametrised by θ, κ and λ. Since we are

assuming that zk are IID standard normal random variables, the likelihood function of yik is

given by

L
(
yik;λ, κ, θ

)
=

n∏
k=1

1√
2πqik

exp

(
− (hik)

2

2(qik)
2

)
,

where

hik := yik − f ik. (9)

For each futures maturity Ti, we can therefore find estimates of the parameters λ, κ and θ

by maximising the likelihood of observations, i.e., by solving the non-convex optimisation

problem

min
λ,κ,θ>0

n∑
k=1

(
log qik +

(hik)
2

2(qik)
2

)
. (10)

To find a common set of parameters λ, κ and θ which maximise the likelihood of observations

for all futures with all available maturities (T1, T2, · · · , Tm) simultaneously, one may follow

multi-objective optimisation approach and seek a set of parameters such that likelihood for

any Ti cannot be improved upon without decreasing the likelihood of observations for a

different Ti. As we are going to update the parameters using a self-calibrating filter later, we

reject this numerically involved approach. Instead, a simpler approach is sought to obtain a

set of parameters which minimise the sum of negative log likelihood of observations for all
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futures, i.e. we solve the following optimisation problem:

min
λ,κ,θ>0

m∑
i=1

n∑
k=1

(
log qik +

(hik)
2

2(qik)
2

)
. (11)

To obtain initial values, let {λ0, κ0, θ0} be any set of locally minimising arguments. In the

succeeding dynamic estimation, i.e., updating, we shall keep κ fixed and assume that the

remaining two parameters λ and θ depend on a finite-state Markov chain. The estimation

and update of the transition probabilities of this Markov chain and values of other parameters

corresponding to different states are discussed in the next section.

3.2 Derivation of self-calibrating filter

We reformulate the problem in the standard form used in the literature on regime-switching

models; see, for example, Buffington and Elliott [3], Elliott, et al. ([11], [12] and [16]),

Erlwein, et al. ([17] and [18]), amongst others. Recall that the ith component of the vector

in equation (5) can be written as

yik+1 = f ik + qikzk+1. (12)

Let xk be a finite-state homogeneous Markov chain in discrete time, i.e., k = 0, 1, 2, . . . . The

semi-martingale representation of xk is given by

xk+1 = Πxk + εk+1, (13)

where Π is the transition probability matrix and εk+1 is martingale increment. Our observa-

tion process is m−dimensional (one price observation for each maturity) and the component

i follows the dynamics given in (12). As mentioned earlier, zk are IID random variables which

are also independent from the Markov chain xk driving the regime-switching dynamics of

the mean and volatility parameters for each observation component.

To simplify considerably the algebra involved in the filtering equations, we associate the

state space of xk with the canonical basis of IRN , which is the set of unit vectors er, r =

1, 2, . . . , N and er is a vector having 1 in its rth entry and 0 elsewhere. So in equation (12),

f i(xk) = 〈f ik,xk〉 and qi(xk) = 〈qik,xk〉, where f ik = (f ik(1), f ik(2), . . . , f ik(N))
> ∈ IRN and

qik = (qik(1), qik(2), . . . , qik(N))
> ∈ IRN . The notation 〈·, ·〉 is the usual scalar product and >

denotes the transpose of a vector.

To obtain the optimal estimates of xk using the observation process, we employ the change
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of reference probability technique. In this technique, we perform the calculations under P̃

measure under which the observations yk’s are N(0, 1) IID sequence of random variables,

and yk is independent from xk. Under the reference probability the Markov chain dynamics

are unchanged. All components of the m−dimensional observation process have the same

underlying Markov chain.

The change of reference probability in our framework utilises a discrete-time version of

Girsanov’s theorem. The real-world measure P , under which we observe our measurements,

can be recovered from P̃ through the construction of the Radon-Nikodym derivative

Λk :=
dP

dP̃

∣∣∣∣
Fy

k

=
m∏
i=1

k∏
l=1

λil, k ≥ 1,

where

Λ0 = 1 and λil =
φ[qi(xl−1)−1(yil − f i(xl−1))]

qi(xl−1)φ(yil)

with φ being the N(0, 1) density. All parameters are dependent on the same Markov chain

and react to the same underlying price information. In some sense, the components are cor-

related through the Markov chain. Whilst the noise terms for the individual components are

uncorrelated, the correlation structure of the futures prices are encapsulated in each noise.

This simplification is made to make the model tractable.

We present the filter equations under a multivariate setting. Our goal is to provide adaptive

filters for the estimates of the states and other auxiliary processes related to the Markov

chain. Let Fk be the filtration generated by the log-returns process yk. To find the condi-

tional distribution of xk given Fk under P , we write

p̂k(r) := P (xk = er|Fyk ) = E[〈xk, er〉 |Fyk ]

and p̂k = (p̂k(1), p̂k(2), . . . , p̂k(N))> ∈ IRN . Now,

p̂k = E[xk|Fyk ] =
Ẽ[Λkxk|Fyk ]

Ẽ[Λk|Fyk ]

by Bayes’ theorem for conditional expectation. Let ck = Ẽ[Λkxk|Fyk ] and note that
N∑
r=1

〈xk, er〉 =

1. Thus,

N∑
r=1

〈ck, er〉 =
N∑
r=1

〈
Ẽ[Λkxk|Fyk ], er

〉
= Ẽ

[
Λk

N∑
r=1

〈xk, er〉

∣∣∣∣∣Fyk
]

= Ẽ[Λk|Fyk ]. (14)
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The construction of ck along with equation (14) yields

p̂k =
ck∑N

r=1 〈ck, er〉
.

We denote the conditional expectation under P̃ of ΛkGk by γk(Gk) := Ẽ[ΛkGk|Fyk ]. The

adaptive filters will enable the model parameters to adjust to current market conditions. We

give the recursive filters for: (i) (Jsrx)k, the process related to the Markov chain’s jumps

up to time k; (ii) (Orx)k, the process related to Markov chain’s occupation time; and (iii)

(T r(g)x)k, an auxiliary process related to x and for some function g.

The results for the recursive filters, which are modifications of those given in Erlwein, et

al. [18] when there is only one uniform source of noise for each component of the observation

vector, are presented in the Appendix. The Expectation-Maximisation (EM) algorithm is

applied to calculate the optimal estimates of the model parameters. Such calculations result

in expressions that involve the use of adaptive filters related to the Markov chain process

provided in Proposition 1. Given the recursive filters in equations (16), (17), (18) and (19),

the model parameters are updated every time new information arrives. Proposition 2 in

the Appendix, whose proof is described in Erlwein, et al. [18], gives the optimal parameter

estimates computed using the EM algorithm in terms of the filters.

Given the estimates for qik(xk) via a self-calibrating filter, θ is found approximately us-

ing equation (8) for a particular regime. Then by substituting the given estimates of f ik(xk),

θ and a fixed κ into equation (6), one can obtain an estimate of λ for a particular regime.

This procedure ensures that the parameter constraints are satisfied, at least approximately,

across all maturities.

4 Numerical implementation

We illustrate our method by applying it to the dataset of daily log-returns series of heat-

ing oil future contracts compiled by Data Stream. The data were recorded from 19 June

2009 to 28 October 2010 with ten maturity dates. These maturity dates, denoted by Ti,

i = 1, . . . , 10, are the last trading days in the months of October 2010, November 2010, ...,

and July 2011. In the last part of this section, we perform a one-step ahead prediction using

the data collected after 28 October 2010 until the expiry of the longest maturity contract

on 29 July 2011, keeping κ fixed and allowing the other parameters to be updated using
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum -0.0369 -0.0372 -0.0374 -0.0372 -0.0369

Maximum 0.0474 0.0478 0.0481 0.04812 0.0480

Median 0.0001 0.0001 0.0001 0.0000 0.0000

Mode 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0003 0.0003 0.0003 0.0003 0.0003

Std Dev 0.0146 0.0147 0.0149 0.0150 0.0150

Skewness -0.0360 -0.0342 -0.0312 -0.0252 -0.0219

Kurtosis 0.0054 -0.0023 -0.0116 -0.0190 -0.0329

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum -0.0366 -0.0369 -0.0372 -0.0379 -0.0384

Maximum 0.0477 0.0479 0.0481 0.0486 0.0490

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mode 0.000 0.000 0.0000 0.0000 0.0000

Mean 0.0003 0.0003 0.0002 0.0002 0.0003

Std Dev 0.0151 0.0152 0.0154 0.0157 0.0160

Skewness -0.0238 -0.0254 -0.0242 -0.0240 -0.0240

Kurtosis -0.0479 -0.0579 -0.0745 -0.0899 -0.1089

Table 1: Descriptive statistics for the log-returns of futures price for the entire dataset

the adaptive filters. Note that this allows us to test as well the performance of our filters

for contracts with very short-term maturity. This means that for this specific experiment,

the observation vector contains 9 entries till the last trading day of November 2010, then 8

entries till the last trading day of December 2010, and so on until only one entry in July 2011.

Table 1 show the descriptive statistics of the entire futures prices data given their matu-

rities. In Tables 2 and 3, the descriptive statistics for the log-returns of futures price for the

respective periods of 29/06/2009–14/07/2009 and 15/07/2009–24/07/2009 are shown. The

suitability of the regime-switching model is clearly demonstrated by Tables 2 and 3, where

the sample moments are statistically different for the two non-overlapping periods.

Indeed, the log-returns of our multivariate data undergo regime changes in mean and volatil-

ity levels. To model such regime-switching behaviour, we assume that for every maturity
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum -0.0268 -0.0273 -0.0278 -0.0283 -0.02870

Maximum 0.0070 0.0071 0.0072 0.0072 0.0069

Median -0.0086 -0.0087 -0.0088 -0.0088 -0.0092

Mean -0.0104 -0.0106 -0.0107 -0.0108 -0.0110

Std Dev 0.0106 0.0108 0.0109 0.0110 0.0111

Skewness -0.0353 -0.0481 -0.0518 -0.0694 -0.0960

Kurtosis -0.8898 -0.8852 -0.8639 -0.8379 -0.8404

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum -0.0292 -0.0297 -0.0304 -0.0314 -0.0324

Maximum 0.0066 0.0064 0.0062 0.0057 0.0055

Median -0.0096 -0.0101 -0.0104 -0.0108 -0.0109

Mean -0.0112 -0.0114 -0.0116 -0.0119 -0.0122

Std Dev 0.0111 0.0113 0.0114 0.0116 0.0119

Skewness -0.1342 -0.1574 -0.1832 -0.2347 -0.2802

Kurtosis -0.8255 -0.8300 -0.8142 -0.7892 -0.7674

Table 2: Descriptive statistics for the log-returns of futures price for the period 29/06/2009–

14/07/2009
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T=29/07/11 T=30/06/11 T= 31/05/11 T=29/04/11 T=31/03/11

Minimum 0.0009 0.0009 0.0009 0.0009 0.0009

Maximum 0.0265 0.0268 0.0270 0.0271 0.0271

Median 0.0114 0.0115 0.0116 0.0117 0.0117

Mean 0.0128 0.0130 0.0132 0.0132 0.0132

Std Dev 0.0091 0.0091 0.0093 0.0094 0.0093

Skewness 0.0293 0.0352 0.0396 0.0390 0.0389

Kurtosis -1.3725 -1.3875 -1.4187 -1.4349 -1.4351

T=28/02/11 T=31/01/11 T=31/12/10 T=30/11/10 T=29/10/10

Minimum 0.0009 0.0009 0.0009 0.0009 0.0009

Maximum 0.0270 0.0270 0.0272 0.0275 0.0276

Median 0.0116 0.0116 0.0117 0.0118 0.0120

Mean 0.0132 0.0132 0.0133 0.0135 0.0136

Std Dev 0.0093 0.0093 0.0094 0.0095 0.0096

Skewness 0.0385 0.0387 0.0291 0.0289 0.0226

Kurtosis -1.4360 -1.4355 -1.4264 -1.4420 -1.4953

Table 3: Descriptive statistics for the log-returns of futures price for the period 15/07/2009–

24/07/2009
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date, log-return’s mean f and volatility q, the daily price process F i(tk) is of the form

yik+1 = ln
F i(tk)

F i(tk−1)
= f i(xk) + qi(xk)zk+1

corresponding to each maturity date Ti.

4.1 Computing initial parameter estimates

As mentioned in subsection 3.1, we first assume that the system operates under a one-regime

setting. This allows us to find starting values λ0, κ0 and θ0. To simplify the implementation,

we assume that κ is constant. Thus, using κ(t) = κ0 for all time t > 0, the evolution of the

process λt is derived under the multi-regime modelling set-up. This would in turn update θt

given an estimate of f i as shown in equation (6).

Whilst we made the assumption that κ is constant to achieve simplicity in the implementa-

tion, such assumption is actually justified empirically. That is, κ appears not to depend on

a Markov chain and remains constant through time for any quantity of regimes. We found

that if the size of the data used to estimate the initial parameters is varied, both λ0 and θ0

change but κ appears stable. As it is computationally intensive to calculate starting values

of λ, κ, θ for various combinations of window sizes for our dataset, we randomly select a few

sub-dataset samples from the original data and then use these samples to estimate initial

values. The processing of data via a moving lag window is discussed in subsection 4.2. Our

numerical results show that there is not much perturbation in the estimated κ values. This

indeed supports the assumption that κ can be taken as constant; see Table 4.

Following the calculation of the initial parameters of the model outlined in section 3.1,

we first solve the minimisation problem in (11) using a standard function fminsearch in

MATLAB. The built-in algorithm in fminsearch is quite fast, but it provides arguments

which minimise the function in (11) only locally. Since this function exhibits fluctuating

behaviour, we have to deal with many local extreme points. This implies that one has to

search for a global minimum at least within a reasonably big subset of IR3. We observed

that the function fminsearch always finds an extreme point which is closest to the initial

value supplied. A subset of IR3 for the space of the initial values is therefore considered

and a minimum point in that space is determined. The results of our estimations for five

sub-dataset samples are displayed in Table 4 and again, it is clear that the assumption of a

constant κ is reasonable. In our HMM filtering implementation, we set κ = 0.00057, being

the average of the calculated initial values for κ0. It has to be noted that the parameter
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λ0 κ0 θ0

0.0618 5.832× 10−4 0.0140

0.0166 5.458× 10−4 0.0161

0.0528 5.411× 10−4 0.0153

0.0248 5.594× 10−4 0.0149

0.0343 5.693× 10−4 0.0165

Table 4: Estimation of initial values of κ, λ and θ for five sub-dataset samples

θ does not vary a lot either. This fact provides additional support for the validity of the

model and accuracy of the filtering algorithms. As one will see in section 4.2, the values of

qik do not change significantly after only several iterations. This is consistent with equation

(8) since an estimate of qik gives an update of θ.

4.2 Implementation of self-calibrating filters

The HMM filtering algorithms were implemented with a moving lag window of various time

steps to obtain estimated values for f i and qi. That is, we experimented to process data

points in batches of 1-5 data points per batch for each algorithm step. In particular, we apply

the recursive filtering equations in Proposition 1 in processing a batch of data points. Conse-

quently, this gives estimates of the filters for various quantities related to the Markov chain

that are used to provide EM estimates for model parameters in accordance with Proposition

2. The two-step process of calculating the filters and computing EM estimates constitutes

the completion of one algorithm step. The two-step process is then repeated for the next

moving lag window of data points. The final filtered values in the previous algorithm step

are employed as initial values for the filtering equations in the succeeding algorithm step.

Each moving lag window for our filtering is assessed on the basis of goodness-of-fit metric,

which is the root mean square error (RMSE). The model corresponding to a given number

of regimes and moving lag window with the lowest RMSE is deemed as the most appropriate

for the dataset. The results of our RMSE computations are summarised in Tables 5 and 6 for

the one-regime and two-regime settings, respectively. The starting values of q are uniform

for all regimes as these do not affect the convergence of the filtering algorithms.

Given any number of regimes, a pattern emerges from Tables 5-6 in that the best RMSE

value is for a window of size four. For any starting value of f i and qi, we observe erratic
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Window size Number of regimes Starting value of f Starting value of q RMSE

1 1 0.0000 0.02 0.312131

2 1 0.0000 0.02 0.250943

3 1 0.0000 0.02 0.342138

4 1 0.0000 0.02 0.341751

5 1 0.0000 0.02 0.350081

1 1 -0.0001 0.04 0.156124

2 1 -0.0001 0.04 0.143903

3 1 -0.0001 0.04 0.120332

4 1 -0.0001 0.04 0.110002

5 1 -0.0001 0.04 0.123421

Table 5: RMSE results given number of regimes, size of filtering window and starting values

model parameters under a one-state setting

Window size Number of regimes Starting value of fi Starting value of σi RMSE

1 2 [-0.01 +0.01] 0.02 0.155199

2 2 [-0.01 +0.01] 0.02 0.105657

3 2 [-0.01 +0.01] 0.02 0.115599

4 2 [-0.01 +0.01] 0.02 0.091993

5 2 [-0.01 +0.01] 0.02 0.127700

4 2 [-0.01 +0.01] 0.03 0.090471

4 2 [-0.02 +0.02] 0.04 0.084289

4 2 [-0.05 +0.05] 0.08 0.121808

4 2 [-0.03 +0.03] 0.04 0.101739

4 3 [-0.02 0 +0.02] 0.02 0.089001

4 3 [-0.03 0 +0.03] 0.04 0.132655

Table 6: RMSE results given number of regimes, size of filtering window and starting values

model parameters under a two-state and three-state settings
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No. of regimes N Likelihood value L No. of parameters d BIC

1 9278.33 2 9270.15

2 9691.38 6 9666.86

3 9700.23 8 9663.45

Table 7: Likelihood-based model selection analysis

trends of the transition probability matrix. In some instances, it has constant zeros and ones

especially for models with low number of states. But starting values for parameters f and q

can be chosen randomly. The only restriction for the initial values is to obtain convergence

in the first iteration of the filtering algorithm. These starting values for f i and qi cannot

be either too small or too large. Working with simulated data, we also found that that

algorithm converges faster to the “true” values provided the number of regimes is chosen

correctly. In our case, the numerical implementation of filters under the two-regime model

yields the most stable parameter estimates.

4.3 Discussion of numerical results

The initial parameters were estimated using random subsets of the whole data focusing on the

first 6 months. The HMM filtering algorithms were implemented to the remaining datasets

with a moving window of four time steps to obtain estimated values of f i and qi for one-,

two- and three-regime models. The evolution of transition probabilities is depicted in Figure

1. For the contract with longest maturity (expiry of 29 July 2011), the plots of f and q are

exhibited in Figure 2, and they behave as expected. Considering that the data corresponds

to the period when the economy was slowly recovering from the subprime financial crisis,

we observed as anticipated, slowly decaying values of mean levels and constant behaviour

after that period. A similar pattern for volatilities is obtained and there is a relatively big

uncertainty at earlier periods but they leveled off not too long after a certain point. From the

graph of f (Figure 2a) under one-regime framework, it is noticeable that the “true” values

of f is are always underestimated.

To evaluate the statistical significance of the RMSE values, we perform an F test. The es-

timated value of the F statistic for the comparison of RMSEs between one- and two-regime

models is higher than the quantile value of the F distribution based on a 95% confidence

level where the p-value is 3.91×10−7. For the comparison of RMSEs between two- and three-

regime models, the p-value is 3.57× 10−11. Hence, there is merit in using a regime-switching
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framework. Considering that a two-state setting produces the best RMSE in Table 6, we

conclude that the two-state Markov switching model is the most appropriate for our data.

This is further backed up by a likelihood-based selection criterion. The popular criterion for

model selection is the Akaike information criterion (AIC). However, it is argued in Schwartz

[27] that AIC may underestimate the optimal number of parameters, and thus, the Bayesian

information criterion (BIC) is proposed as a robust alternative. The BIC metric is given

BIC = lnL− 1

2
d ln b,

where L is the likelihood function, d is the number of parameters in a model and b is the

number of datapoints, respectively. The main idea is to choose the model with the highest

BIC value. From Table 7, the BIC analysis, which combines goodness-of-fit criterion and

penalty for model complexity, indicates that the two-regime model is the best given the

dataset examined in this paper.

Figure 1: Evolution of transition probabilities

The proposed model in this paper is estimated by the maximum likelihood method. Hence,

it appears that a likelihood ratio test (LRT) would be more appropriate in the comparison

of embedded models, i.e., a lower dimensional model (say 2 regimes) is a restricted version

of the higher dimensional model (say 3 regimes). However, it is noted in Hardy [21] that
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(a) Dynamics of f(r) levels

(b) Dynamics of q(r) levels

Figure 2: Parameter estimates using data prices of futures contracts with expiry 29/07/2011

the LRT is not a valid test for the number of regimes in a regime-switching model. The

critical issue about the LRT concerns the asymptotics of the estimator for its test statis-

tic. The legitimacy of such asymptotics under regime-switching models is questionable. On
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(a) Dynamics of f

(b) Dynamics of q

Figure 3: Parameter estimates using data prices of futures contracts with expiry 29/07/2011

under a one-regime Markov chain

the other hand, the the BIC, although based on likelihood functions, does not involve any

20



test statistics and thus, there is no convergence/asymptotics to worry about. BIC is just a

fitting-penalty-based criterion pretty much similar to RMSEs and other similar model-fitting

metrics.

In particular, there are theoretical problems concerning the consistency of the estimator

(i.e., asymptotic level of the test) since the regularity conditions are not satisfied under the

null hypothesis; thus, the chi-square theory underpinning the LRT does not apply, see Gas-

siat and Keribin [19]. This is further substantiated in Chen, et al. [4] and Chen, et al. [5],

where it is explicitly stated that the required LRT’s regularity conditions are not fulfilled

under mixture problems. In fact, it is also asserted in Chen and Kalbfleish [6] that the

asymptotic properties of likelihood ratio statistics for testing the number of subpopulations

are complicated and difficult to establish. So, whilst there are modified LRTs (with elab-

orate implementation requirements) tailored to regime-switching models, we opted to keep

the model selection assessment simple by adhering to the BIC-based evaluation.

Finally, as can be seen from equation (6), the evolution of the market price of risk λ through

time and maturity can be inferred and constructed once the estimates of other parameters

are fully determined. Our numerical implementation with the use of the HMM filtering tech-

niques and estimation of initial parameter values produce the λ dynamics given in Figure 4.

4.4 Prediction performance

The futures prices are treated as a 10-dimensional observation process, which includes con-

tracts that mature from October 2010 onwards. The data up to 19th June 2009 (i.e., first 6

months as stated in subsection 4.3) is used for initial parameter estimation and is excluded

from the one step ahead prediction. The prediction can be viewed as an ‘out-of-sample’

prediction (since κ is fixed after the initial parameter estimation). From equation (12), we

have the dynamics of the vector process of price returns yik = ln F i(tk)
F i(tk−1)

i = 1, 2, . . . , 10.

Therefore, the one-step ahead forecasts for F i
tk+1

is obtained through the forecast equation

E[F i
tk+1
|F itk ] = F i

tk

N∑
r=1

〈x̂k, er〉exp

(
f itk(r) +

qitk(r)2

2

)
, (15)

where x̂k is the estimate for the unconditional distribution of the Markov chain. We utilise

the estimates of f itk(r) and qitk(r) to get one-step ahead forecasts for F i
tk+1

. The results are

shown in Figure 5a. To complement the RMSE metrics in Tables 5 and 6, the criteria in
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(a)

(b)

Figure 4: Dynamics of λt process under a 2-state setting corresponding to regime 1 in (a)

and regime 2 in (b)

Hyndman and Koehler [23] in assessing the goodness of fit of the one-step ahead forecasts

are adopted. The mean absolute percentage error (MAPE), median absolute percentage

error (MdAPE) and median relative absolute error (MdRAE), for the 1-, 2- and 3-state

HMM-based models are evaluated. The models are compared using these three criteria. The

results of this error analysis are presented in Table 8. The two-state model outperforms both
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Model setting RMSE MAPE MdAPE MdRAE

One-state model 0.11000 0.02769 0.02090 1.18122

Two-state model 0.08429 0.02395 0.01964 0.88347

Three-state model 0.13266 0.02590 0.01921 0.94448

Table 8: Further error analysis

the one-state and three-state models under the MAPE and MdRAE. The three-state model

outperforms the two-state model under the MdAPE albeit the improvement is minimal.

Figure 5a displays the plots of the actual and one-step ahead predictions. A Q-Q plot de-

picted in Figure 5b strongly supports the initial assumption of using Brownian motion as a

source of uncertainty in the model. From the plot of residuals against time shown in Figure

6a as well as Figure 6b, it is apparent that the assumption of constant variance is very

reasonable. Whilst we would not generally expect this behaviour, one can see that from our

dataset the variance does not change much for all regimes; see Figure 2b.

4.5 Further out-of-sample forecasting

As indicated in the beginning of this section, a one-step ahead prediction exercise using the

data collected after 28 October 2010 was conducted. The new results are reported in Table

9 and show that they do not differ qualitatively from those given in Table 8. This particular

experiment includes the examination of the prediction performance for very liquid futures

contracts with short times to maturity since the dataset covers contracts with one month

maturity (e.g., Nov 2010 expiration and Dec 2010 expiration). The dataset also contains con-

tracts with medium-term maturities between 3 and 5 months (i.e., January 2011 to March

2011), and finally contracts with long-term maturities between 6 and 9 months (i.e., April

2011 to July 2011)

Since we are dealing with a multivariate dataset, it is worth emphasising that the values

for the RMSE, MAPE, MdAPE and MdRAE in Table 8 are the average RMSEs, MAPEs,

MdAPEs and MdRAEs, respectively, for 10 error vectors. In a similar manner, the error

measures in Table 9 were obtained by considering 9 error vectors.
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(a) One-step predictions

(b) Q-Q plot

Figure 5: One-step ahead forecasts and normal analysis of residuals
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(a) Residuals

(b) Squared residuals

Figure 6: Residual analysis supporting the one-step ahead forecasting
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Model setting RMSE MAPE MdAPE MdRAE

One-state model 0.08731 0.02491 0.01901 1.01019

Two-state model 0.08502 0.02045 0.01723 0.89197

Three-state model 0.09957 0.02902 0.01934 0.99129

Table 9: Further error analysis for observations after 28 October 2010 until 28 July 2011

5 Conclusion

In this paper, we performed an integration of various modelling ideas to model the evolu-

tion of arbitrage-free futures prices. In particular, the initialised one-state model gives poor

prediction, whilst the use of a multi-state regime switching model will necessitate finding

the rate of mean reversion κ using a mechanism other than direct self calibration. A cal-

ibration of a multiple regime model with a good prediction performance is possible only

through a combination of the two calibration methodologies as elaborated in sections 3.1

and 3.2. We provided an approach and algorithms capable of providing parameter estimates

for an arbitrage-free commodity futures price model. Given a dataset of futures prices, the

recovery of parameter estimates is carried out under the assumption that parameters shift

dynamically according to the state of the economy modulated by a hidden Markov chain.

To illustrate the numerical feasibility of our approach, we focused on two- and three- regime

switching modelling frameworks. We detailed the solution of determining appropriate initial

parameter values by considering an approximation to a non-convex optimisation problem.

Assumptions on the model parameters are verified empirically. Self-calibrating HMM filter-

ing algorithms are then able to produce dynamic parameter estimates reflecting the switching

of economic regimes. The performance of the model is deemed adequate based on the analysis

of one-step ahead forecasts and the accompanying post-model diagnostics. We benchmarked

our results with those from the one-state setting and both the goodness-of-fit and informa-

tion criterion metrics validate the merits of using a model with regime-switching feature.

Although the focus of our application is on daily data, we experimented as well on weekly

data (say, Wednesday’s prices). The parameter estimates as expected would change but the

trends of the volatilities and drifts as depicted by their graphs remain the same. The plots

of the transition probabilities have similar decaying behaviour as in Figure 1. Nevertheless,

their evolution through algorithm steps is different. We observed that the near terminal

probability values would still approach the 0.6 and 0.4 limits.
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Paper Regime-switching? Mean-reversion? Spot prices observed? Futures prices observed?

[13] No No∗ No Yes

[17] Yes Yes Yes No

[24] No Yes No Yes

This paper Yes Yes No Yes

Table 10: Comparison of this research with recent existing works
∗–uses geometric Brownian motion for spot price

The relationship of this research with the existing recent works on modelling commodity

futures price under some model characteristics is summarised in Table 10. Note that our

method may also be employed for modelling the futures price evolution of other commodi-

ties such metals, agricultural products and raw materials. The proposed model is shown

to be very parsimonious, with a two-regime one-factor model, which provides adequate per-

formance in one step ahead out-of-sample forecasting on 10 measurement variables, having

only 6 free parameters and no non-parametric seasonality adjustments. The algorithms pro-

posed in this paper provides a very useful alternative to the existing methods of futures price

modelling and forecasting. Accurate forecasting of commodity futures prices has important

implications in various financial modelling applications such as the pricing of commodity

spread options and calculation of quantile risk measures of commodity futures portfolios.
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Appendix
Recursive filters and EM updates

Proposition 1: Define the diagonal matrix B whose Bij entry is given by

Bij =


m∏
i=1

φ
(
yhk+1−f

h
i

qhi

)
qhi φ(yhk+1)

for i = j

0 otherwise

.

Then

ck+1 = ΠBck, (16)

γ
(
J (sr)x

)
l
= ΠB(yl)γ

(
J (sr)x

)
l−1

+ 〈cl−1, er〉

φ
(
yil−f

i
r

σi
r

)
qirφ(yil)

m

πsres, (17)

γ
(
O(r)x

)
l
= ΠB(yl)γ

(
O(r)x

)
l−1

+ 〈cl−1, er〉

φ
(
yil−f

i
r

qir

)
σirφ(yil)

m

Πer, (18)

and

γ
(
T (r) (g(y)) x

)
l
= ΠB(yl)γ

(
T (r)(g)x

)
l−1

+ 〈cl−1, er〉

φ
(
yil−f

i
r

σi
r

)
qirφ(yil)

m

g(yil)Πer, (19)

where g(yil) = yil or (yil)
2
.

Proposition 2: Consider a multivariate dataset yi1, y
i
2, . . . , y

i
k, 1 ≤ i ≤ m observed up

to time k. If the set of parameters
{
π̂sr, f̂

i
r, q̂

i
r

}
characterises the model then the EM esti-

mates are given by

π̂sr =
γ
(
J (sr)

)
k

γ (O(r))k
(20)

f̂ ir =
γ
(
T (r) (yi)

)
k

γ (O(r))k
(21)

q̂ir =

√
γ
(
T (r) (yi)2)

k
− 2f irγ (T (r)(yi))k + (f ir)

2γ (O(r))k
γ (O(r))k

. (22)
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