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1 A B S T R A C T 

This paper examines the application of CFD modelling to simulate the two-phase heat 

transfer mechanisms in a wickless heat pipe, also called a thermosyphon. Two 

refrigerants, R134a and R404a, were selected as the working fluids of the 

investigated thermosyphon. A CFD model was built to simulate the details of the 

two-phase flow and heat transfer phenomena during the start-up and steady-state 

operation of the thermosyphon. The CFD simulation results were compared with 

experimental measurements, with good agreement obtained between predicted 

temperature profiles and experimental temperature data, thus confirming that the CFD 

model was successful in reproducing the heat and mass transfer processes in the 

R134a and R404a charged thermosyphon, including the pool boiling in the evaporator 

section and the liquid film in the condenser section. 
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2 INTRODUCTION 

A wickless heat pipe is a two-phase heat transfer device with a highly effective 

thermal conductivity, containing a small amount of working fluid that circulates in a 

sealed tube utilising the gravity forces to return the condensate back to the evaporator 

[1]. When the evaporator section is heated by an external source, the heat will be 

transferred to the working fluid through the evaporator wall. The working fluid 

absorbs an amount of heat proportional to the latent heat of evaporation, which is 

sufficient to change the fluid from liquid to vapour. The vapour then moves to the 

condenser section where it changes phase again, back to liquid, along the condenser's 

wall, giving up its latent heat that it absorbed in the evaporator section. The 

condensed liquid is then returned to the evaporator due to gravitational or capillary 

forces, according to the type of heat pipe [1-5]. Heat pipes have been successfully 

used for waste heat energy recovery in a vast range of engineering applications, such 

as heating, ventilation, and air conditioning (HVAC) systems [2], ground source heat 

pumps [6], water heating systems [7] and electronics thermal management [8].  

The most important characteristics to consider in identifying suitable working fluids 

are compatibility and wettability with the heat pipe materials, good thermal stability 

and conductivity, high latent heat of evaporation, high surface tension and low 

viscosity for both liquid and vapour [9]. In typical thermosyphons, the selection of the 

working fluid and the shell materials is subject to the working environment and 

temperature under which the thermosyphon-based system will function. For low 

temperature applications, ammonia and various refrigerants such as R134a, R22 and 

R410a have been used as working fluids with copper, steel, aluminium and other 

compatible metals as shell materials. Water has been proven to be a suitable working 

fluid for temperatures between 30°C and 300°C, with good compatibility with various 

metals including copper and stainless steel. Liquid metals and various organic fluids 

have been selected for thermosyphons when the working temperature is above 300°C 

[6, 10-14]. 

Two-phase closed thermosyphons have been extensively used in many applications 

[15]; however, only a limited number of CFD numerical simulation studies have been 

published. Kafeel and Turan [16] studied the effect of different pulsed increases in 
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heat input at the evaporator zone on the behaviour of thermosyphons. They used 

similar thermosyphon configurations to that of Amatachaya et al [17] to validate the 

simulation model, and an Eulerian model to simulate film condensation at the 

condenser zone with a filling ratio of 30% of the evaporator zone. Alizadehdakhel et 

al. [18] reported on a two-dimensional model and experimental studies in which they 

investigated the effect of input heat flow and filling ratio of the working fluid on the 

performance of a two-phase closed thermosyphon, using water as the working fluid.  

Zhang et al. [19] developed a two-dimensional model for a disk-shaped flat two-

phase thermosyphon used in electronics cooling. The authors simulated the flow 

inside the disk flat two-phase thermosyphon as a single-phase flow with water as the 

working fluid. They compared the distribution of vapour velocity and temperature 

with experimental results to determine the factors that affected the axial thermal 

resistance of a flat thermosyphon.  

Annamalai and Ramalingam [20] carried out an experimental investigation and CFD 

analysis of a wicked heat pipe using ANSYS CFX. The authors considered the region 

inside the heat pipe as a single phase of vapour and the wick region as the liquid 

phase, and used distilled water as the working fluid. They compared the predicted 

surface temperature along the evaporator and condenser walls and the vapour 

temperature inside the heat pipe with the experimental data. Lin et al. [21] built a 

CFD model to predict the heat transfer capability of miniature oscillating heat pipes 

(MOHPs) using VOF and Mixture models, and water as the working fluid. The 

effects of different heat transfer lengths and inner diameters at different heat inputs 

were used to analyse the heat transfer capability of MOHPs.  

There is an obvious gap in the published literature on CFD simulations of the two-

phase heat transfer/flow within a wickless heat pipe. Therefore, the purpose of this 

paper is to build a CFD model to cover all details of two-phase flow and heat transfer 

phenomena during the operation of a wickless heat pipe charged with two working 

fluids, namely R134a and R404a. The reported work focuses on their thermal 

performance during start-up and operation. The developed CFD model has been 

validated experimentally and theoretically with good agreement. A user-defined 
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function (UDF), together with a VOF model, has been used in order to simulate the 

phase change during the pool boiling and the liquid film condensation. 

3 CFD SIMULATION OF MASS AND HEAT TRANSFER DURING THE 
EVAPORATION AND CONDENSATION PROCESSES 

In this study, the commercial code ANSYS FLUENT 14.0 and the Volume of Fluid 

(VOF) method have been applied for the modelling of a closed two-phase 

thermosyphon. The details of the VOF model and the Navier-Stokes equations for the 

VOF model, relevant to this study, have been discussed by Fadhl et al. [1]. 

During the thermosyphon operation, phase change occurs from liquid to vapour phase 

during the nucleate pool boiling in the evaporator section and from vapour to liquid 

phase during the liquid film condensation in the condenser section. In this study, user-

defined functions (UDFs) are employed to specify customised source terms reported 

by Fadhl et al. [1] and De Schepper et al. [22] for the existing governing equations in 

the FLUENT package, in order to determine mass and energy sources for the phases 

involved in the mass and heat transfer processes. 

Mass sources, SM in the volume fraction equation, can be given by the following 

expressions: 

For mass transfer during the evaporation process: 

 
sat

satmix
LLM T

TTS −
−= aρ1.0

1
 (1) 

 ( )
12 MM SS −=  (2) 

For mass transfer during the condensation process: 

 
sat

mixsat
VVM T

TTS −
= aρ1.0

3
 (3) 

 ( )
34 MM SS −=  (4) 

where Tmix and Tsat are the mixture and saturation temperatures, respectively, and 𝛼𝛼𝐿𝐿 

and 𝛼𝛼𝑉𝑉 are the volume fraction of the liquid and vapour phases, respectively.  
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In the VOF model, the temperature is introduced as a mixture temperature rather than 

liquid or vapour temperatures, as the VOF model associates some variables such as 

temperature and velocity with the mixture phase, not with a specific phase. The 

volume fraction for each phase in the cell has been defined by the VOF model. 

Therefore, the evaporation process required two mass sources for the calculation of 

the mass transfer, Eq. (1) describing the amount of mass taken from the liquid phase 

and Eq. (2) describing the amount of mass added to the vapour phase. The same 

procedure takes place for the condensation process, Eq. (3) and Eq. (4) describing the 

amount of mass transfer from vapour to liquid phase. 

Energy sources SE in the energy equation used in the present study are determined by 

multiplying the calculated mass sources in Eq. (1) and Eq. (3) by the latent heat of 

evaporation for the working fluid, and can be expressed as follows; 

 ( )LHSS ME .
11

=  (5) 

 ( )LHSS ME .
32

=  (6) 

where LH is latent heat of evaporation. A single source term for both phases is 

required in the evaporation, Eq. (5) or condensation, Eq. (6) during the heat transfer 

process.  

4 MODEL GEOMETRY AND COMPUTATIONAL MESH 

A two-dimensional model was developed to simulate the two-phase flow and heat 

transfer phenomena in a thermosyphon. According to the experimental conditions 

described in [1], a closed thermosyphon tube wall made of copper with a thickness of 

0.9mm and a total length of 500mm was used as the thermosyphon geometry, as can 

be seen in Figure 1. The evaporator and condenser sections of the thermosyphon 

model are taken to be 200mm in length, making the adiabatic section 100mm long. 

The outer and inner diameters are 22mm and 20.2mm, respectively. 

The temperature distribution along the thermosyphon wall was monitored using eight 

thermocouples, according to the experimental setup [1]. As shown in Figure 1, Ta 

gave the temperature of the adiabatic section, Te1 and Te2 were used to obtain the 
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average temperature of the evaporator section, while Tc1 to Tc5 were used to for the 

average temperature of the condenser section.  

The geometry was constructed and meshed using the GAMBIT grid generation 

software. The solid and fluid regions contain 24,944 and 105,000 Quad cells, 

respectively. Near the left and right walls, fifteen layers of cells are used in order to 

capture the thin liquid film that develops in that region. The first grid size is 0.01mm 

and the growth ratio is 1.2. Three layers of 180 cells have been used for the upper and 

bottom walls. Boundary conditions on the upper and lower caps of the thermosyphon 

are set to adiabatic, as shown in Figure 2. 

Different mesh sizes were used to test grid independence as shown in Figure 3. The 

average temperature of the evaporator (Tevaporator), adiabatic (Tadiabatic) and condenser 

(Tcondenser) sections for different mesh sizes for the R134a working fluid were 

monitored and are shown in Table 1. For the R134a-charged thermosyphon and 

heating power of 30 W, it was found that almost the same average temperatures for 

the evaporator, adiabatic and condenser sections were obtained for different mesh 

sizes. As a result, the mesh size of 129,944 Quad cells, Map cells is selected for the 

simulation analysis.  

5 BOUNDARY AND OPERATING CONDITIONS 

A non-slip boundary condition was imposed at the inner walls of the thermosyphon. 

In order to simulate the heating and evaporation, a constant heat flux was defined at 

the wall boundaries of the evaporator section, depending on the power input. A zero 

heat flux is defined as boundary condition on the adiabatic section. The condenser 

section was cooled as a result of heat released when vapour condenses. It has been 

assumed that the condenser is cooled by water, according to the experimental 

apparatus. Thus, a convection heat transfer coefficient was defined as boundary 

condition on the condenser’s wall. The corresponding heat transfer coefficients have 

been calculated using the formula: 

 ( )∞−
=

TTrL
Qh

avcc

c
c

,2π
 (7) 



 

Page

7 

where hc is the condenser heat transfer coefficient, Qc is the rate of heat transfer from 

the condenser, Lc is the condenser height, r is the pipe radius, Tc,av is the condenser 

average temperature and T∞ is the average temperature of the condenser cooling 

water. Figure 4 illustrates the boundary conditions implemented to the computational 

model. 

In order to verify the sensitivity of the results to the value of the heat transfer 

coefficients, an empirical correlation proposed by Zukauskas [23] is used to 

determine the average Nusselt number for external forced convection over a circular 

pipe, defined as: 

 𝑁𝑁𝑁𝑁𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 =  ℎ𝑐𝑐 𝑥𝑥 𝐷𝐷𝑐𝑐
𝑘𝑘𝑙𝑙

= 0.683 𝑅𝑅𝑅𝑅0.466 𝑃𝑃𝑃𝑃𝑙𝑙
1
3    (for 40 ≤ Re ≥ 4000) (8) 

 𝑅𝑅𝑅𝑅 =
𝑈𝑈 𝑥𝑥 𝐷𝐷𝑐𝑐
𝑣𝑣𝑙𝑙

 (9) 

where 𝑘𝑘𝑙𝑙, 𝑣𝑣𝑙𝑙 and 𝑃𝑃𝑃𝑃𝑙𝑙 are the thermal conductivity, kinematic viscosity and Prandtl 

number of the condenser cooling water, U is the inlet cooling water velocity and Dc is 

the condenser outer diameter. 

Churchill and Bernstein [24] reported an additional correlation to determine the 

average Nusselt number, defined as:   

 𝑁𝑁𝑁𝑁𝐶𝐶ℎ𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = ℎ𝑐𝑐 𝑥𝑥 𝐷𝐷𝑐𝑐
𝑘𝑘𝑙𝑙

= 0.3 +  𝑅𝑅𝑅𝑅0.5 𝑃𝑃𝑃𝑃
1
3

[1+(0.4/𝑃𝑃𝑟𝑟)
2
3]
1
4
�1 + � 𝑅𝑅𝑅𝑅

282,000
�
5
8�

4
5

(0.62)        (10) 

In order to test the simulation results independence on the condenser heat transfer 

coefficients, correlations (7), (8) and (10) were checked for the heating power 

throughput of 30 W for the working fluid R134a. Thus, the average temperature of 

the evaporator, adiabatic and condenser sections are shown in Table 2. From this 

observation, it is apparent that the average temperature for the evaporator, adiabatic 

and condenser are very close for different tested correlations. Consequently, 

correlation (7) is selected to determine the heat transfer coefficients of the condenser's 

wall based on the experimental data (see Table 3).  



 

Page

8 

The model considered R134a or R404 as working fluids with a 100% filling ratio of 

the evaporator section (i.e. FR=100%). Apart from the density of the liquid phase and 

surface tension, the physical properties of the working fluids are assumed to be 

temperature-independent to limit the calculation time. These properties are taken at 

298.15 K using the NIST REFPROP program [25], and can be found in Table 4.  

The density of the liquid phase (𝜌𝜌𝑙𝑙) of the working fluid is considered as temperature-

dependent and fitted into functions of temperature in the form of a high-order 

polynomial, defined as: 

 𝜌𝜌𝑙𝑙(𝑇𝑇)  = �𝐶𝐶𝑖𝑖  .  𝑇𝑇𝑖𝑖
𝑛𝑛=4

𝑖𝑖=0

 (11) 

where 𝐶𝐶𝑖𝑖  are the density coefficients listed in Table 5. 

The effect of surface tension (𝜎𝜎𝑙𝑙𝑙𝑙) along the interface between the two phases is also 

considered as temperature-dependent and included in the model by using the 

following correlation.  

 𝜎𝜎𝑙𝑙𝑙𝑙(𝑇𝑇) = �𝐵𝐵𝑖𝑖 .  𝑇𝑇𝑖𝑖
𝑛𝑛=3

𝑖𝑖=0

 (12) 

where 𝐵𝐵𝑖𝑖 are the surface tension coefficients listed in Table 5. 

The thermophysical properties listed in tables 4 & 5 have been obtained from the 

NIST REFPROP program [25]. 

6 CFD SOLUTION PROCEDURE  

A transient simulation with a time step of 0.001s is carried out to model the dynamic 

behaviour of the two-phase flow. The time step has been selected based on the 

Courant number, which is the ratio of the time step to the time a fluid takes to move 

across a cell. For VOF models, the maximum Courant number allowed near the 

interface is 250 [21]. For a time step of 0.001, the Courant number is less than 1. The 

simulation reaches a steady state within 120s. 
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FLUENT provides different segregated algorithms for pressure-velocity coupling. For 

reduced CPU time and to avoid convergence difficulties, a combination of the 

SIMPLE algorithm for pressure-velocity coupling and a first-order upwind scheme 

for the determination of momentum and energy is included in the model. Geo-

Reconstruct and PRESTO discretization for the volume fraction and pressure 

interpolation scheme, respectively, are also performed in the simulation. In the 

current work, the numerical computation is considered to have converged when the 

scaled residual was 10-5 for the mass and velocity components and about 10-6 for the 

energy component. 

The vapour phase of the working fluid is defined as the primary phase and the liquid 

phase is defined as the secondary phase. For the calculation of the mass and heat 

transfer during the evaporation and condensation processes, the boiling temperatures 

and the latent heat of evaporation of the working fluids have been defined in the UDF 

code.  When the simulation was started, the liquid pool in the evaporator is heated 

first. Once the saturation temperature defined in the UDF is reached, evaporation 

starts and phase change occurs due to boiling at the inner evaporator wall. The 

saturated vapour then flows upward, where it condenses along the inner cold walls of 

the condenser forming a thin liquid film. 

7 FLOW VISUALISATION OF CFD SIMULATION 

In the following sub-sections, the CFD simulation findings from the tests will be 

visualised and an analysis of the nature of the heat transfer, pool boiling and liquid 

film condensation processes within the R134a and R404a charged thermosyphons 

will be discussed. 

7.1 Heat transfer process 

In order to understand the heat transfer process during the thermosyphon operation, 

the temperature contours at different times have been observed during the start-up 

(heating) and steady-state operation. In this visual observation, the temperature 

distribution in the fluid region inside the evaporator, adiabatic and condenser sections 

has been recorded for both R134a and R404a. The results for R134a are shown in 
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Figure 5. A heating power of 30 W was selected to compare the heat transfer process 

for both working fluids.  

At the beginning of the heating procedure, the operating pressure and temperature of 

the working fluid were set to the saturation values at the initial temperature of the 

heat pipe (around 25°C for both cases), as shown in Figure 5. Between 2.0 s and 8.0 

s, the temperature in the evaporator increases as a constant heat is applied to the outer 

wall of the evaporator section, which allows heat to transfer through the evaporator 

wall into the liquid pool, as shown in Figure 5. Boiling heat transfer continues on the 

walls of the evaporator section due to the temperature difference between the wall 

and the saturated working fluid within the thermosyphon. The generated vapour then 

moves upward, as shown at 20 s, and this vapour flows through the adiabatic section 

to the condenser section, as can be seen at 30 s, 40 s and 50 s in Figure 5. Then, a 

high temperature region appears in the condenser section between 60 s and 90 s due 

to the vapour reaching this section. The region near the inner wall of the condenser 

section has a lower temperature than the middle region as a result of vapour 

condensing along the inner surface of the condenser wall. Eventually, between 100 s 

and 120 s, the temperature distribution inside the thermosyphon becomes uniform as 

shown in Figure 5. The above described procedure shows the heat transfer process 

during the operation of the thermosyphon charged with R134a. The same can be 

observed for the case when the thermosyphon was charged with R404a. 

Consequently, the temperature distribution in the fluid region inside the 

thermosyphon for R404a has not been shown. 

7.2 Evaporation process 

The pool boiling phenomena taking place inside the evaporator section has also been 

visualised during the evaporation process. Figure 6 shows the volume fraction 

contours of the liquid pool in the evaporator section for R134a, for a power 

throughput of 30 W. The liquid pool of the tested working fluid is represented by a 

blue colour, which takes the value of 0 for the vapour volume fraction, and the vapour 

is represented by a red colour, which takes the value of 1 for the vapour volume 

fraction. 
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The working fluids have initially filled the total volume of the evaporator section, as 

shown in Figure 6 at 0.0 s. By applying a constant heat flux onto the wall of the 

evaporator section, heat is then conducted through the evaporator wall to the inner 

wall to be transferred into the saturated liquid by boiling. Due to the weight of the 

working fluid column, localised natural convection currents at the lower half of the 

evaporator section can be seen due to the slight increase in the saturation 

pressure/temperature of the working fluid. The liquid starts to boil at a position where 

the liquid temperature at the wall exceeds the saturation temperature (at the adjacent 

liquid film that is stuck on the inner wall of the evaporator), hence local nucleation 

sites critical radiuses are exceeded so continuous nucleation takes place. Vapour 

bubbles then start to form at those positions, as shown in Figure 6 between 2.0 s and 

10 s. By continuous nucleation, isolated vapour bubbles form and rise all the way up 

to the top region of the liquid pool before breaking up and releasing their vapour 

content. This is illustrated in Figure 6 at time 20 s and above. During the evaporation 

process described above, the liquid volume fraction decreases and the vapour volume 

fraction increases. The same procedure has been obtained for R404a. Consequently, 

the volume fraction contours of the liquid pool in the evaporator section for R404a 

have not been shown. 

It is clear from Figure 6 that the pool boiling behaviour of R134a is significantly 

different to that of water, as very small bubbles grow during the pool boiling. The 

reason behind this is related to the value of the critical nucleation site radiuses. Fadhl 

et al [1] reported CFD simulations of the pool boiling behaviour of water with the 

filling ratio of 50%, a snapshot of which can be seen in Figure 7. The results for both 

water and the refrigerants have been validated visually using transparent glass 

wickless heat pipes. This provides evidence that the CFD model has the ability to 

reproduce the difference in pool boiling behaviour between different working fluids. 

7.3 Condensation process 

Following the boiling process, the converse process takes place in the condenser 

section. The CFD model predicts the condensate film configuration as illustrated in 
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Figure 8 for the R404a charged thermosyphon that was undergoing a power 

throughput of 30 W.  

It is illustrated that the liquid film will then fall down under gravity through the 

adiabatic section, which is clearly shown in Figure 8 at the adiabatic zone. 

Eventually, the liquid pool in the evaporator section will be charged by a continuous 

thin liquid film as illustrated in Figure 8 at the evaporator zone.  

8 TEMPERATURE DISTRIBUTION OF CFD SIMULATION OF 
THERMOSYPHON 

The temperature profiles along the modelled thermosyphon have been observed under 

different power throughputs using 8 positions in the model, which allowed the 

monitoring of the average wall temperatures of the evaporator, adiabatic and 

condenser sections. Two positions placed 40mm and 160mm from the bottom are 

used to monitor the evaporator section and one position is used at the centre of the 

adiabatic section. Five evenly spaced positions are used to monitor the condenser 

section. These five positions are used to confirm the absence of non-condensable 

gases which, if present, would be swept by the vapour towards the top area of the 

condenser section where they would accumulate and reduce the thermal performance. 

Thus, non-condensable gases are neglected in the current CFD model. 

Figures 9 and 10 illustrate the experimental and CFD simulation temperature 

distributions along the R134a and R404a charged thermosyphons, respectively, for 

varying applied heat loads. The distance between 0 and 200mm indicates the 

evaporator section, while the distance between 300 and 500mm indicates the 

condenser section. The middle section is the adiabatic region. The CFD simulation 

results of temperature distribution profiles have been compared with the experimental 

data by determining the average relative error (ARE), which is the absolute 

percentage difference between CFD simulation and experimental average wall 

temperature. As depicted in Figures 9 and 10, the CFD simulation results showed the 

same trend as the experimental results. 
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Referring to Figures 9 and 10, the CFD simulation results of the selected 

thermosyphon showed very good agreement with the temperature profiles from 

experimental data for the lower power throughputs. The average wall temperatures of 

the evaporator, adiabatic and condenser are close to those obtained in the 

experiments. As a result, the ARE of evaporator, adiabatic and condenser average 

wall temperatures are 1.25%, 0.78% and 1.03%, respectively for R134a, and 2.66%, 

0.78% and 0.49%, respectively for R404a. For heat loads above approximately 60 W, 

the predicted CFD evaporator average temperature has deviated from the 

experimental results due to the consideration of a continuous heat power input along 

the length of the evaporator section where, in the experiment, a wire heater is evenly 

wrapped around the evaporator section to ensure it was not directly above a 

thermocouple. 

9 CONCLUSIONS  

A two-phase closed thermosyphon is considered in this paper when charged with two 

working fluids, R134a and R404a, in CFD simulations of the evaporation and 

condensation phenomena inside the thermosyphon. The findings of the CFD 

simulations demonstrate that the proposed CFD model can successfully reproduce the 

complex phenomena inside the thermosyphon, including the pool boiling in the 

evaporator section and the liquid film in the condenser section. The proposed CFD 

model was validated solely with the limited experimental data available and further 

validation is still necessary over greater operating ranges/configurations.  

The CFD results show that the pool boiling behaviour of both refrigerants is 

significantly different to that of water, as very small bubbles grow during the pool 

boiling. The results for both water and the refrigerants have been validated by 

visualisation experiments carried out with a transparent glass heat pipe. This provides 

evidence that the CFD model has the ability to simulate thermosyphons charged with 

different working fluids. 
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The average wall temperature along the thermosyphon has been compared with the 

experimental results at the same condition for both working fluids, and demonstrates 

that the predicted CFD simulation results agreed with the experimental results.  
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TABLES 
 
 

Table 1: Grid-independence results for thermosyphon charged with R134a 

Mesh size (cells) 19,500 69,276 129,944 
Tevaporator K 303.66 302.31 302.47 
Tadiabatic K 299.18 299.01 299.64 
Tcondenser  K 294.63 294.80 295.62 

 
 

Table 2: Average temperatures for the thermosyphon charged with R134a for 
different heat transfer coefficient correlations  

Correlation of condenser 
heat transfer coefficient Eq. (7) Eq. (8) Eq. (10) 

hc  W/m2.K 394.4 592.3 654.6 
Tevaporator K 302.47 302.29 302.22 
Tadiabatic  K 299.64 299.80 299.74 
Tcondenser  K 295.62 295.14 294.99 

 

Table 3: Condenser heat transfer coefficients for different heat inputs 
R134a 

Evaporator 
section 

Condenser cooling 
water Jacket 

Condenser section 

Qin T∞  Qc Tc av hc 
W K W K W/m2.K 

19.74 293.4 19.74 296.1 531.6 
29.58 292.2 29.58 297.6 394.4 
39.53 291.4 39.53 301.5 284.6 
50.16 292.1 50.16 300.8 414.6 
100.44 296.7 100.44 306.7 728.4 

R404a 
19.88 298.3 19.88 300.3 730.3 
29.04 296.3 29.04 298.7 848.7 
40.66 296.1 40.66 299.4 894.7 
49.61 296.9 49.61 301 885.5 
100.65 297.3 100.65 304.5 1008.7 

 
 
 
 



 

Page

18 

Table 4: Physical properties of the working fluids [25] 

Physical property Units 
Working fluid 

R134a  R404a 
Latent heat of evaporation kJ/kg 177.79 140.25 
Density of vapour phase kg/m3 32.35 65.247 
Specific heat of liquid phase kJ/kg.K 1.4246 1.5423 
Specific heat of vapour phase kJ/kg.K 1.0316 1.2214 
Thermal conductivity of liquid 
phase 

W/m.K 0.081134 0.063625 

Thermal conductivity of vapour 
phase 

W/m.K 0.013825 0.015905 

Viscosity of liquid phase kg/m.s 1.9489x10-04 1.2827x10-04 
Viscosity of vapour phase kg/m.s 1.1693x10-05 1.2152x10-05 
Molecular weight kg/kmol 102.03 97.604 
Critical temperature K 374.21 345.27 
Critical pressure kPa 40593 3734.9 

 

Table 5: Density and surface tension coefficients of the working fluids 

Working 
fluid 

Density 𝜌𝜌𝑙𝑙 
C0 C1 C2 C3 C4 

R134a 3952.801 -25.9914 0.09482 -1.290x10-04 0 
R404a - 23723.15 380.3528 - 2.14135  0.005318 -4.965x10-06 

 Surface tension 𝜎𝜎𝑙𝑙𝑙𝑙 
 B0 B1 B2 B3 - 

R134a 0.04929 – 8.34x10-05 – 3.95x10-07 7.071x10-10 - 
R404a 0.03121 7.1086x10-05 – 9.82x10-07 1.485x10-09 - 
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FIGURES 
 
 
 
 
 
 

 

 

Figure 1: Model geometry and dimension [1] 
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Figure 2: Mesh distribution 

 
 

 
Figure 3: A section of the computational mesh 
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Figure 4: Boundary conditions of the CFD model 
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Figure 5: Heat transfer process for R134a-filled thermosyphon at different times 
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Figure 6: Pool boiling process in the evaporator section for R134a-filled 
thermosyphon 

 
 
 

 
Figure 7: Pool boiling in the evaporator section for water-filled thermosyphon with 

filling ratio of 50% reported by Fadhl et al. [1] 
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Figure 8: Liquid film 
condensation process for R404a-

filled thermosyphon 
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Figure 9: Temperature distribution profiles for experiments and CFD simulations 

along R134a-filled thermosyphon for different heat loads 
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Figure 10: Temperature distribution profiles for experiments and CFD simulations 

along R404a-filled thermosyphon for different heat loads 
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