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Abstract 

I 

Abstract 

Power quality problems come in numerous forms (commonly spikes, surges, sags, 

outages and harmonics) and their resolution can cost from a few hundred to millions 

of pounds, depending on the size and type of problem experienced by the power 

network. They are commonly experienced as burnt-out motors, corrupt data on hard 

drives, unnecessary downtime and increased maintenance costs. In order to minimise 

such events, the network can be monitored and controlled with a specific control 

regime to deal with particular faults. This study developed a control and 

Optimisation system and applied it to the stability of electrical power networks using 

artificial intelligence techniques. 

An intelligent controller was designed to control and optimise simulated models for 

electrical system power stability. Fuzzy logic controller controlled the power 

generation, while particle swarm Optimisation (PSO) techniques optimised the 

system’s power quality in normal operation conditions and after faults. Different 

types of PSO were tested, then a multi-swarm (M-PSO) system was developed to 

give better Optimisation results in terms of accuracy and convergence speed.. The 

developed Optimisation algorithm was tested on seven benchmarks and compared to 

the other types of single PSOs.  

The developed controller and Optimisation algorithm was applied to power system 

stability control. Two power electrical network models were used (with two and four 

generators), controlled by fuzzy logic controllers tuned using the Optimisation 

algorithm. The system selected the optimal controller parameters automatically for 

normal and fault conditions during the operation of the power network. Multi 

objective cost function was used based on minimising the recovery time, overshoot, 

and steady state error. A supervisory control layer was introduced to detect and 

diagnose faults then apply the correct controller parameters. Different fault scenarios 

were used to test the system performance. The results indicate the great potential of 

the proposed power system stabiliser as a superior tool compared to conventional 

control systems. 
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Chapter 1: Introduction 

1.1 Introduction 

Power system stabilisers (PSSs) have been utilized for decades to deliver damping to 

system oscillations. Local, conservatively distributed local PSSs (LPSSs) are 

deliberated to have fixed parameters gathered from a stabilised model around a 

certain operating point. Final configurations are prepared by field tests at one or two 

operating points. A major source of model fluctuation and disturbance can be caused 

by the inherent nonlinearity in the system. Power systems operate in a changing and 

highly non-linear environment as a result of change in loads, key operating 

parameters and generator output. When the system is exposed to a disturbance, the 

stability of the system will be a subject of the nature of the disturbance as well as the 

initial operation condition (Kundur et al., 2004). 

In this thesis, the term uncertainty concerns the lack of precision in modelling of all 

elements in electrical power grid containing the transformers, the transmission lines, 

and the loads, in addition to the fluctuation of clear linearized power plant control 

factors as the operating point fluctuates. LPSS parameters based on any single model 

are probably not optimal and may limit the linearizing impact. Nonetheless, in the 

developed system negligible errors can be minimised, particularly if the damping 

controller is designed on the basis of the robustness standards and the closed-loop 

system preserves an acceptable performance level. Some modifications should be 

applied to the system of power system controllers, particularly PSSs utilising 

Optimisation techniques in the case of disturbances and failures (Snyder et al., 1999) 

(Klein et al., 1995) . The likelihood of strong coupling among the local modes and 

the interarea modes would render the tuning of LPSSs for damping all modes nearly 

unachievable when there is no supervisory level controller. The intelligent system 

has been utilised to organise multiple local controllers in electrical power system 

(Guo, Hill, & Wang, 2001). 

Intelligent systems are tools and methodologies inspired by nature to solve 

computationally intensive problems in mathematics that are very important for the 

progress of current trends in survey and information technology. Artificially 

intelligent systems these days utilize computers to be easily emulate various 
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biological metaphors and faculties of human intelligence. They use techniques which 

combine the symbolic and sub-symbolic systems capable of developing human 

knowledge abilities and intelligence, not merely to do things that humans can do 

well. Intelligent systems are ideally suited for tasks s9uch as optimisation and search, 

pattern recognition and adaptation, planning, vagueness management, control and 

adjustment. In this thesis, the technologies of intelligent systems and their 

implementation are highlighted by a series of examples. 

In the domain of artificial intelligence, neuro fuzzy logic (NF) denotes combinations 

of fuzzy logic and artificial neural networks. NF systems use a self-learning 

algorithm derived and inspired by the concept of neural networks to achieve the use 

of processed data samples (their fuzzy sets and fuzzy rules) (J. Jang, 1993a). 

However, in this research using this methodology to develop stability control system 

is integrated with an Optimisation methodology such as particle swarm Optimisation 

(PSO) (Kennedy & Eberhart, 1995b) to determine the optimum supervisory control 

parameters. Furthermore, an accurate electrical stability control system element 

model adapted for fast response, overshooting, fluctuation and to eliminate the steady 

state error was developed using standard data for Optimisation purposes. 

This research explores different types of Particle Swarm Optimisation (PSO) as 

intelligent Optimisation methodologies for the purpose of emphasis on the 

application to tune the power stability control elements and hierarchical control 

systems. Different types of PSOs give different Optimisation results in terms of 

accuracy and convergence speed. The advantage of the ones characterises in quick 

convergence and low accuracy can be combined with those that have slow 

convergence but accurate results. The new algorithm will be a combination of fast 

and accurate optimisers such that the benefit of both system are utilised. The 

developed optimiser can be tested on different benchmark.  

1.2 Motivations 

The motivation for this thesis is two-fold: 

First, the need for evolutionary algorithms to optimise nonlinear or change state 

frequently problems. Scaling the possibility of Optimisation algorithm programs to 

find the best solutions for that type of complex problems via using computing 
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systems and high-tech solutions whereby evolutionary algorithms are applied to 

solve static problems; however, many real-world systems are often continuous or 

change state frequently. The system state changes necessitate recurrent (sometimes 

frequent or continuous) re-Optimisation. It has been shown that the Optimisation of 

the particle swarm can be applied successfully for dynamic control and optimisation 

systems (Eberhart & Shi, 2001a). Therefore, there is great need for an efficient 

algorithm that is able to solve real, complex, multi-dimension problems. In fact to 

develop such an algorithm, several models have to be developed, such as different 

types of PSO optimisers, and appropriate benchmark functions should be selected to 

test new algorithm and power system stability control with supervisory control in 

electrical network. 

This thesis presents intelligence algorithms capable of dealing with the intricacy of 

electrical power system problems using PSOs algorithm methodologies, which are 

considered to be robust adaptive Optimisation techniques. Furthermore, an effective 

algorithm based on algorithms portfolio procedure can be developed using different 

types of PSOs algorithms techniques whereby the communication between these 

algorithms in the early stages can be considered (the fast and less accurate algorithm 

can pass its results to the slow and more accurate algorithm, which will consequently 

benefit from the good results at an early stage). 

Second, the electrical power energy market is evolving with the progressive growth 

of networks and a continuous improvement in performance, rapidly increasing the 

number of consumers and the critical need for sophisticated control equipment 

governing generation plants to produce high quality energy in terms of continuity, 

stability, reliability, flexibility and quick response. Furthermore, the rapid 

development in the use of the solar panels, wind turbines and other sustainable 

energy sources, which are mostly turbulent and unpredictable sources, requires 

advanced control devices.  

Steady state stability or power transient is defined as the ability of a power system to 

control stably without loss of synchronisation between power plant generations after 

a small or large disturbance. Moreover, voltage stability is the system ability to 

maintain load voltage magnitudes under steady state conditions within specified 

operating limits. Since it has become increasingly difficult to obtain power plant sites 
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in the vicinity of power consumers (due to the lack of space for large power facilities 

in urban areas and public opposition to power infrastructure), electrical power is now 

often transported over long distances using large capacity lines. Under these 

circumstances, voltage stability can be a major problem, as well as transient and 

steady state stabilities (Abe, Fukunaga, Isono, & Kondo, 1982). 

1.3 Aim and Objectives 

The overall aim of the thesis is to introduce and design a new controller device 

working on the principle of neurons fuzzy logic and artificial intelligence, using a 

new Optimisation algorithm as a novel paradigm in the stability and supervision of 

electrical network. 

The research aim is addressed through the following objectives: 

1. To review the area of searching techniques and intelligent Optimisation 

algorithms. 

2. To review different types of PSOs algorithms as stochastic swarm intelligence 

technique. 

3. To review different types of linear and non-linear functions to be used as 

benchmark. 

4. To introduce new combination of multi particle swarm Optimisation paradigm. 

5. To review power system stability and the most important devices currently used 

for this purpose.  

6. To apply the new intelligent Optimisation algorithm in power system stability. 

7. To scale-up the control system and development a new supervisory stability 

control system.  

1.4 Challenges 

There are many technical challenges in developing the control device and 

supervision of the electrical power system by the use of artificial intelligence 

technique. These challenges are inherited from the original components of stability 

control with the following considerations:
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 In real-world applications, optimising problems is much more complex 

because of various constraints, objectives and the size of the search space 

involved, in relation to different types of controlling. 

 There is a need to develop a system that is able to control electrical power 

system stability in networks with high-quality continuity, stability, reliability, 

flexibility and quick response. 

 Stability control system should handle any phenomenon causing instability in 

the electrical network using artificial intelligent techniques. 

 An efficient electrical network containing fuzzy logic controller model 

administrating stability can be used for Optimisation purposes. 

 There is a need for an efficient algorithm that can solve and optimise the 

parameters problems of multi controller network. 

 A suitable technique should measure the quality of multiple objectives. 

 A new PSOs technique that can guarantee feasible solutions is needed. 

 A hierarchical control system should detect the system frailer and find 

immediate solutions using new Optimisation algorithm and artificial intelligent 

paradigm.  

1.5 Contributions to Knowledge 

This research developed a multi PSO intelligent Optimisation program. This 

algorithm includes a combination of different types of PSOs, such as Local Version 

of Particle Swarm Optimisation (LPSO), Global Version of Particle Swarm 

Optimisation (GPSO), Dynamic Multi-Swarm Particle Swarm Optimisation DMS-

PSO with Sub-regional Harmony Search (DMS-PSO-SHS), Adaptive Particle Swarm 

Optimisation (APSO) and others. Moreover, an effective paradigm was developed 

using all previous algorithms based on portfolio methodology in two patterns, 

parallel and serial. In this manner of communication between different algorithms is 

considered in the early stages, whereby the fast convergence and less accurate 

algorithm can pass its results to the slow and more accurate algorithm, which will 

benefit from the good results at an early stage. 

Moreover, a number of different types of benchmark functions evaluate each 

algorithm individually, and the results can be compared together in addition to the 
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new optimal algorithm. This analytical technique enables identification of the best 

paradigm to discover the different crossover effects and a practical manner to avoid 

the generation of useless solutions in extensive systems. 

A fuzzy logic controller model was developed and auto tuned for Optimisation 

purposes. This model provides anew stability controller type, using NF and PSO 

procedures as expression of artificial intelligence to optimise the controller scale of 

factors. Subsequently, an altogether successful model of an advanced control system 

was developed. 

The intelligent supervisory system that is able to control stability in electrical 

network when facing any disturbances and during normal operation with high 

efficiency in power quality causes the least trouble for consumers. This system deals 

with multiple objectives and measures the fitness of each solution that is generated 

by the system. The system used Weighted Sum Method (WSM) techniques and the 

hierarchy technique to address the problem of the stability control in hierarchy 

promised stages. 

1.6 Thesis Outline 

The work presented in this thesis is organised into seven chapters. Figure  1.1 

illustrates the structure of the thesis and relationship to the thesis objectives 

presented in section 1.3. 
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Chapter 1

Introduction 

Chapter 2

Intelligent Optimisation Systems 

( Objective 1 & 2)

Chapter 7
Conclusions and Future work

Chapter 4
Power System Stabilisation 

( Objective 5)

Chapter 5
Intelligent Control on Power 

System Stabilisation

( Objective 6)

Chapter 6
Supervisory Control

( Objective 7)

Chapter 3
Multi Particle Swarm Optimisation 

( Objective 3 & 4)

Background

Design

 

Figure 1.1: Thesis structure. 

Following this introductory chapter, the next six chapters contain more detailed 

information about the theoretical background and technical development of artificial 

intelligent and power stability devices. 

Chapter 2 presents a detailed background about intelligent Optimisation systems and 

their evolution. It explores how Optimisation tools have become an important part 

of life to solve constrained and unconstrained continuous and discrete problems, by 

providing generic algorithms as part of stochastic techniques. The chapter reviews 

and compares related paradigms intelligent research methods. The chapter concludes 

with a brief summary and discussion. 
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Chapter 3 introduces the combination of MPSO and outlines a group of complex 

functions to be used in benchmark testing. A new method is proposed using different 

Optimisation schemes which are combinations of different types of PSO and 

methods used simultaneously, to make use of the characteristics of each individual 

method to tackle the same problem. The proposed schemes can utilize and share 

information about the local and global best as well as the swarm population, in 

specific predefined iteration of all types simultaneously. 

Chapter 4 lays the background for power system stabilisation by presenting the 

resource scheduling problem and the latest conventional device in this area. This 

chapter presents power system stability by discussing the most important four 

dynamic phenomena affecting it, namely wave, electromagnetic, electromechanical 

and thermodynamic phenomena. Furthermore, the relationship between reactive 

power voltage and stability is explored; this variable is one of the most important 

targets in the search, as an actual variable that indicates the state of the electrical 

power grid in terms of stability. Additionally, this chapter, through mathematical 

analysis, discusses the most important types of power system stability devices to 

learn the working methods, as well as tuning methods. The most important faults 

types which affect the power system stability of the electrical grid are then described, 

allowing with how these problems can be emulated by software programs for the 

purpose of analysis. Finally, the latest types of conventional power system stabiliser 

(PSS4B) devices are explained and tested using different conditions and compared to 

other devices from prior generations. 

Chapter 5 applies the intelligent control and Optimisation on the power system 

stabilisation. Furthermore to describes the current state of the intelligent Control and 

Optimisation of Power System Stabilisation (COPSS). Furthermore, it explains the 

fuzzy logic controller and the design and tune stable control system using fuzzy logic 

controller before the specific approach in neuro fuzzy logic systems. The 

implementation of ANFIS-PSS controller and training them in different stages is 

described, involving single- and three-phase training. The new ANFIS-PSS 

controller response to ground fault in tie line in machines A and B is then explained 

and the power quality in the network is outlined before the auto tuning of scaling 

factors using intelligent Optimisation, and the simulation results of rotor speed 
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deviation on both machines A and B, in addition to comparing the power quality in 

the network.  

Chapter 6 introduces in detail a new supervisory control describing the design and 

implementation of advanced Supervisory Power System Stability Controller 

(SPSSC) using neuro-fuzzy system and Matlab S-function tool, whereby the 

controller is taught from data generated by simulating the system for the optimal 

control regime. The controller is compared to a multi-band control system which is 

utilized to stabilize the system for different operating conditions. Simulation results 

show that the supervisory power system stability controller produced better control 

action in stabilizing the system for conditions such as: normal, after disturbance in 

the electrical grid as a result of changing of the plant capacity like switching 

renewable energy units, high load reduction or in the worst case of fault in operating 

the system, e.g. phase short circuit to ground. The new controller decreased the 

settling time and overshoot after disturbances, which means that the system can reach 

stability in the shortest time with minimum disruption. Such behaviour improves the 

quality of the provided power to the power grid. 

Chapter 7 summarises the thesis aims, major contributions and significant findings. 

It highlights areas and directions for further research. 

1.7 Author’sPublications 

A number of journal and conference papers related to this thesis have been published 

at international conferences and in journals, and some recent additional papers are 

pending acceptance for international conferences and journals, as presented below. 

A. Conference papers (Published) 

[1] A. Sallama and M. Abbod, “Neuro-Fuzzy System for Power Generation 

Quality” published on ISGT 2011, December 2011. 

[2] A. Sallama, M. Abbod, P. Turner, “Neuro-Fuzzy System for Power 

Generation Quality Improvements” published on UPEC 2012, Brunel 

University, September 2012. 
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[3] A. Sallama, M. Abbod, P. Turner, “Intelligent Control System for Power 

System Stability” published on ResCon 2012, Control Engineering , Power 

System Second year of PhD. 

[4] A. Sallama, M. Abbod, G Taylor, “ Development Intelligent Control System 

for Power System Stability” published on ResCon 2013, Control 

Engineering , Power System third year of PhD. 

[5] A. Sallama, M. Abbod, P. Turner, “Supervisory Power System Stability 

Control Using Neuro-Fuzzy System and Particle Swarm Optimisation 

Algorithm” published on UPEC 2014, Technical University of Cluj-Napoca, 

Romania, September 2014. 

B. Conference papers (Accepted) 

[6] B. Alamri, A. Sallama, M. Darwish, “Optimum SHE for cascaded H-Bridge 

multilevel inverter using: NR-GA-PSO, comparative study” ACDC 2015, 

The 11th International Conference on AC and DC Power Transmission, 10 - 

12 February 2015, Birmingham, UK. 

C. Journal papers (Published) 

[7] Sallama and M. Abbod, "Applying Sequential Particle Swarm Optimisation 

Algorithm to Improve Power Generation Quality", International Journal of 

Engineering and Technology Innovation, 2014. 

D. Journal papers (Accepted) 

[8] Shariq Mahmood Khan, R.Nilavalan, Abdulhafid Sallama, “A Novel 

Approach for Reliable Route Discovery in Mobile Ad-Hoc Network” 

Wireless Personal Communications, October 2014.  
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Chapter 2: Intelligent Optimisation Systems 

2.1 Introduction  

Optimisation tools are becoming increasingly important in everyday life to solve 

constrained and unconstrained, continuous and discrete problems, by providing 

widely algorithms as part of stochastic technique algorithms (STAs), which are very 

effective in solving standard and large-scale Optimisation problems (Mahfoud, 

1995), provided that the problem does not require multiple solutions (e.g. 

classification problems in machine learning where, in single run, multiple optima and 

peaks need to be found) (Koper, Wysession, & Wiens, 1999). 

2.2 Optimisation Techniques 

Optimisation has been an active area of research for several decades. As many real-

world Optimisation problems become increasingly complex, better Optimisation 

algorithms are always needed. Unconstrained Optimisation problems can be 

formulated as n dimensional minimization, thus: 

𝑀𝑖𝑛 𝑓(𝑥), 𝑥 = [𝑥1, 𝑥2, … . . , 𝑥𝑛]                                                                      (2.1) 

where n is the number of the parameters to be optimized. 

In case of searching for optimum solutions, using Optimisation techniques there are 

three main broad classes used to find the solution mentioned by Goldberg (Goldberg, 

1990), as shown in Figure  2.1. The following subsections list the different types of 

Optimisation technique with a short description of each. 
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Figure 2.1: Search techniques. 

2.2.1 Arithmetic Techniques 

Arithmetic techniques can be divided into two types: direct and indirect. Direct ways, 

such as those of Newton and Fibonacci (Bóna, 2011), seek the greatest "jump" on the 

search space and evaluate the gradient of a new point approaching the solution. 

Indirect ways are conducted by solving a set of non-linear equations to search for 

local extreme values, typically caused by a gradient of the objective function equal to 

zero, and by restricting itself to points to search for possible solutions (function 

peaks) with zero slope in all directions.  

2.2.2 Enumerative Techniques  

This technique is very simple to implement, requiring high significance computation 

applied on applications with too large a domain space, because every point search to 

an objective function's at domain space (Ribeiro Filho, Treleaven, & Alippi, 1994). 

A good example for that technique is a dynamic programming. 
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2.2.3 Stochastic Search Technique  

In this case, search techniques are based on enumerative techniques in addition to 

using more essential information to guide the random search processing. This is done 

by three major methods: evolutionary algorithms, intelligent swarm and simulated 

annealing. Intelligent algorithms use natural selection principles or simulate the 

natural particle swarm as in bird flocking or fish school phenomena (Kennedy, 

Kennedy, & Eberhart, 2001). Here, the solutions are improved features of possible 

solutions throughout generations by biological processes inspired in such techniques. 

Particle swarm Optimisation (PSO) and genetic algorithms (GA) are good examples 

for this technique. Simulated annealing used a thermodynamic evolution process to 

search for possible solutions (Schwefel, 1981). 

2.3 Particle Swarm Optimisation (PSO) 

Most creatures in nature behave as swarms. The study of artificial life is highly 

influenced by studies of natural swarm behaviour, which has been mapped and 

reconfigured in mathematical models which can be processed by computers (Liu & 

Passino, 2000). PSO mathematically requires only primitive mathematical operators 

that can be implemented by computer models and code in a few lines. This feature 

makes it inexpensive in terms of both memory and speed requirements. Furthermore, 

the PSO has been known as evolutionary computation technique (Kurian, George, 

Bhat, & Aithal, 2006a) , and have all the features of Evolution Strategies (ES), 

Genetic Algorithms (GA) and Other evolutionary computation (EC) techniques, such 

as utilizing some searching points in the solution space, similar to genetic algorithms 

(Eberhart & Shi, 1998) (Panduro, Brizuela, Balderas, & Acosta, 2009). 

A GA system is initialized with a population of random solutions. While GA can 

handle combinatorial Optimisation problems, PSO has continuous Optimisation 

problems. In contrast to GA, each single population is also assigned a random speed 

in PSO, in effect to flying them through the solution hyperspace. Moreover, PSO has 

been enhanced in the combinatorial Optimisation problems, thus it is possible to 

simultaneously search the optimal solution in several dimensions, unlike other 

evolutionary computation techniques (Tandon, El-Mounayri, & Kishawy, 2002). 
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Several scientists (e.g. Heppner and Grenander, 1990; Reynolds, 1987) studied a 

particularity of synchronized movement without collision for the members of bird 

flocks and fish schools. Eberhart and Kennedy (1995) developed new evolutionary 

computation technique dubbed PSO, and Shi and Eberhart (1996) introduced the 

concept of inertia weight to the original version of PSO, in order to improve the 

search during the Optimisation process (Shi & Eberhart, 2001)(Eberhart & Shi, 

2001b). Several types of developed PSO subsequently emerged, as explained in this 

section, in addition to the updated types such as those devised during this research.  

2.3.1 Classical PSO Algorithm 

PSO developed as a simulation of the bird flocking flow, in two space dimensions (x, 

y), where (vx) represents the agent velocity in the direction of x-axis, (vy) represents 

the agent velocity in the direction of y-axis, (x, y) represents the agent’s current 

position and (vx, vy) represents the current velocities in two dimensions. From the 

velocity and position information, the agent can be modified for the new position. 

The school of fish and birds flock optimizes a given objective function based on the 

experiences and every time solution. The particle recognizes this information and an 

analogy is stored each time in under the name of the local best solution (pbest). At 

the same time in every cycle all particles recognize the best solution for all groups 

stored each time under the name of the global best solution (gbest). Depending on 

this information, each particle recognizes its performance, and performs in tandem 

with all other particles in the group. Therefore, each particle tries to adjust its 

position as shown in Figure  2.2, using the following information: 

 Current positions (x, y), 

 Current velocities (vx, vy), 

 Distance between the current position (x, y) and pbest 

 Distance between the current position (x, y) and gbest 



Chapter Two: Intelligent Optimization Systems 

29 

 

Figure 2.2: Concept of modification of a searching point by PSO. 
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From the concept of velocity the new position is represented and modified (i.e. the 

modified value for the current positions). The following equation 2.2 by (Eberhart & 

Shi, 1998) expresses the modified velocity of each particle: 
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: velocity of particle i at iteration k+1. 
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: velocity of particle i at iteration k. 

W: inertia function.  
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pbesti: best position of particle i. 

gbest: the global best position of the group. 

While the inertia weighting function is usually utilized as follows: 

𝑊 = 𝑊𝑚𝑎𝑥 −
𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟𝑖                                                         (2.3) 

where 

Wmax: initial weight,  

Wmin: final weight,  

itermax: maximum iteration number. 

iteri: current iteration number.  

Equation 2.2 can be explained as follows. The RHS of consists of three terms, the 

first of which is the previous velocity of the particle. The second and third terms are 

utilized to change the velocity of the particle. Without the second and third terms, the 

agent will keep on “flying” in the same direction until it hits the boundary (i.e. it tries 

to explore new areas). Therefore, the first term corresponds to the diversification in 

the search procedure. On the other hand, without the first term, the velocity of the 

“flying” particle is only determined by using its current position and its best positions 

pbest in history. The particles will try to converge in the pbests and/or gbest, 

therefore the terms are corresponding to intensification in the search procedure 

(Eberhart & Shi, 2001b).  

Figure  2.2 illustrates a concept of modification with particles in the solution space. 

Each particle finds the new position using the integration of velocity vectors. The 

current position can be modified by the following equation: 

𝑆𝑖
𝑘+1 = 𝑆𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                                                              (2.4) 

where 

S
k+1

: modified searching point. 

S
k
: current searching point. 

V
k+1

: modified velocity. 
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2.3.2 PSO Algorithm 

PSO algorithm comprises a very simple concept, and paradigms are implemented in 

a few lines of computer code. The general flow chart of PSO is shown in Figure  2.3 

and described below:  

Start

Generation of initial population

Modification of particles speed 

and position 

Evaluation of searching point of 

each Particle

Max. iteration

reached

End

              Yes 

No

Step 1

Step 4

Step 3

Step 2

 

Figure 2.3: General PSO algorithm flowchart. 

Step 1: Generate initial condition for each agent. Initial position searching points of 

particle i at iteration k = 0, (Si
k
) and velocities (Vi

k
) of each agent are usually 

generated randomly within the allowable range. The current searching point is set to 

pbest for each agent. The best-evaluated value of pbest is set to gbest and the agent 

number with the best value is stored. 

Step 2: Evaluation of searching point of each particle. The objective function value 

is calculated for each particle. If the obtained value is better than the current local 

best value pbest of the particle, the new pbest value is replaced by the current value. 

If the local best value of pbest is better than the current global best value gbest, then 
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the new gbest is replaced by the best value and the particle number with the best 

value is stored. 

Step 3: Modification of each searching point S
k+1

. The current searching point S
k
 of 

each particle updated using previous equations 2.2 and 2.4.  

Step 4: Checking the exit condition. The current iteration number reaches the 

predetermined maximum iteration number, then exit. Otherwise, go to step 2.  

The detailed features of the searching procedure of PSO are: 

(I). As shown in equations 2.2 and 2.4, PSO can essentially handle continuous 

Optimisation problem.  

(II). Similar to GA, the PSO utilizes several searching points and the searching 

points gradually get close to the optimal point using their local best pbests 

and the global best gbest. 

(III). The first term of right-hand side at equation 2.2 corresponds to diversification 

in the search procedure. The second and third terms at RHS of the equation 

correspond to intensification in the search procedure. This method has a well-

balanced mechanism to utilize diversification and intensification in the search 

procedure efficiently. 

(IV). The above concept of PSO can use more than two dimensions in the space. 

However, the method can be easily applied to n-dimension problem. In other 

words, PSO can handle continuous Optimisation problems with continuous 

state variables in an n-dimension solution space. 

2.4 PSO Derivatives 

As mentioned earlier in this chapter, PSO is one of the most important groupings 

under swarm intelligence, but it in turn is divided into several types, the most 

important of which are explained below. 

2.4.1 Linear Version of Particle Swarm Optimisation (LPSO) 

In the linear version of PSO, the particles are not influenced by random strangers; 

they are only affected by their topological neighbours. The topological geometry of 
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the particle swarm remains constant throughout the run. It is sometimes called local 

PSO (LPSO). LPSO is much like classical PSO, except that rather than use a 

different random number for each element of the velocity and position vectors, a 

single scalar is multiplied by each vector, thus: 

𝑉𝑡+1 = 𝑤𝑣𝑡 + ∅1𝑈1𝑡(𝑝𝑖 − 𝑥𝑡) + ∅2𝑈2𝑡(𝑔𝑖 − 𝑥𝑡)                                        (2.5) 

where w is the inertia weight, each Ø1,2 ≈ 2, and U1,2 is a vector of numbers drawn 

from a standard uniform distribution. 

This means that the resultant velocity (and therefore position) is a strictly linear 

combination of other particle positions. If the particles are all initialized within 

𝑓 =  {𝑥|𝐴𝑥 = 𝑏}, then they will always be within f  (Mendes, Kennedy, & Neves, 
2004). 

2.4.2 Global Version of Particle Swarm Optimisation (GPSO) 

GPSO first introduced a new parameter called inertia weight into the original particle 

swam optimiser in order to increase the performance of the PSO. Initial GPSO found 

that inertia weight in the range (0.9, 1.2) on average will have a better performance; 

that is, it has a bigger chance to find the global optimum within a reasonable number 

of iterations (Yuhui Shi & Eberhart, 1998). Furthermore, a time decreasing inertia 

weight is introduced which brings in a significant improvement on the PSO 

performance as in (Zhan & Zhang, 2008); this research approved that the best value 

of inertia weighting during the Optimisation should be change from minimum value 

0.4 to maximum value 0.9 (Shi & Eberhart, 1998), (Eberhart & Shi, 2001c) linked to 

this equation:  

𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐺
) × 𝑔                                                             (2.6) 

where 

Wmax: maximum value of inertia weight,  

Wmin: minimum value of inertia weight,  

G: maximum iteration number,  

g: current iteration number.  
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In GPSO, each particle’s velocity is adjusted according to its personal best and the 

performance achieved so far within learning from the personal best and the best 

position achieved so far by the whole population; instead of the local version each 

particle’s velocity is adjusted according to its personal best and the performance 

achieved so far within its neighbourhood.  

2.4.3 Comprehensive Learning Particle Swarm Optimisation (CLPSO) 

CLPSO utilizes a novel learning strategy pattern whereby all other particles’ 

historical best information, is used to update a particle’s velocity. This strategy 

enables the diversity of the swarm to be preserved to discourage premature 

convergence. 

In this strategy, the following equation is used to update the velocity: 

𝑉𝑖
𝑑   ← 𝑤 ∗ 𝑉𝑖

𝑑  + 𝑐∗ 𝑟𝑎𝑛𝑑𝑖
𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)

𝑑 − 𝑋𝑖
𝑑)                                     (2.7) 

where d the dimension and i the particle  

𝑐∗: are the acceleration constants,  

𝑉𝑖
𝑑  :  the velocity,  

𝑋𝑖
𝑑: the position, 

W: inertia function. 

𝑓𝑖 = [ 𝑓𝑖(1), 𝑓𝑖(2), . . . . 𝑓𝑖(𝐷)]: defines of pbest’s which particle i should be 
followed. 

𝑝𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)
𝑑 : can be the corresponding dimension of any particles. 

2.4.4 Dynamic Multi-Swarm PSO with Local Search (DMS-PSO) 

The dynamic multi-swarm particle swarm optimiser, where is constructed based on 

the basic version of PSO and a new neighbourhood topology, is used in this case (J. 

Liang & Suganthan, 2005):  

𝑀𝑖𝑛𝑥 𝑓(𝑥) = [𝑥1, 𝑥2, …… . , 𝑥𝐷]                                                            (2.8) 

where x ∈ [xmin, xmax ] and D the dimension number to be optimised. 

This new neighbourhood structure has two important characteristics: 
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A. Small Sized Swarms 

PSO needs a comparatively smaller population size, particularly to solve the simple 

problems, as a population with four to six particles can achieve best results. 

Conversely, the other evolutionary algorithms prefer larger populations, while 

smaller neighbourhoods yield good results and perform better for complex problems. 

Hence, in the new version, small neighbourhoods are used. In order to slow down the 

population’s convergence velocity and increase diversity, the DMS-PSO, divides the 

population into small sized swarms, each of which uses its own members to search 

for better areas in the search space.  

B. Randomly Regrouping Schedule 

Swarms of small sizes are looking for the best use of their own historical data, which 

is easy to converge to a local optimum, as are the property of convergence of the 

PSOs. In this case, it can keep the same neighbourhood structures, there will be no 

exchange of information between the swarms, and PSO will co-evolve these swarms 

in parallel investigation. In order to prevent this, a program is imported into the 

random rearrangement. Each R generations the population is grouped randomly and 

searching beings with a new configuration of small swarms. This period is called the 

group R. Thus, good information will be obtained to be exchanged between each 

swarm, although the diversity of the population increases. The new neighbourhood 

structure has more freedom compared to the conventional neighbourhood structure, 

resulting in better performance for complex multimodal problems. 
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Regroup

 

Figure 2.4: DMS-PSOs search (J. Liang & Suganthan, 2005). 

Figure  2.4 shows how to regrouping schedule whereby the swarm is divided into 

three new random swarms with three particles in each one. Subsequently, the three 

flocks of particles are searching for better solutions individually. During this period, 

they may converge to the closed a local optimum. Subsequent regrouping leads to 

redistribution of the population in new swarms, which start searching. This process 

continues until a stopping criterion is met. The program is scheduling all particles 

swarms to regroup in new configurations so that each small swarm’s search space is 

enlarged, increasing the chance of finding better solutions using new small swarms 

(S. Zhao, Liang, Suganthan, & Tasgetiren, 2008) . At the end of the search, in order 

to perform a better local search, all the simple particles from the each swarm become 

a GPSO version. The pseudo code of DMS-PSO is given in Figure  2.5. 
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Figure 2.5: DMS-PSO sequence. 

2.4.5 DMS-PSO with Sub-regional Harmony Search (DMS –PSO- SHS) 

The dynamic multi-swarm particle swarm optimiser (DMS-PSO) with sub-regional 

harmony search (SHS) cross-breeds to obtain DMS-PSO-SHS. A modified algorithm 

called multi-trajectory search (MTS) is widely applied in various selected solutions. 

Effectively, variety maintaining population diversity puts more dynamic properties 

of swarms in DMS-PSO. Without crossing operation in high operational 

characteristics, HS intersection operation converts multiple parents of overall search 

behaviour for the proposed DMS-PSO-SHS. The entire population of PSO is divided 

into several sub-swarms, as population individuals into a large number of sub-

swarms are often grouped into individual HS population. These sub-swarms are 

regrouped regularly by various programs and information is exchanged between the 

particles in the whole swarm. Therefore, diverse existing multi-swarm PSOs or local-

version PSOs emerge, and the sub-swarms are small but dynamic, which is useful for 

a population and is appropriate for harmony research. Moreover, the last selected 

solutions from external memory are used to improve the diversity swarm. 

The equation of the original HS algorithm are specified as the harmony memory and 

stored on feasible vectors (Lee & Geem, 2005), (Omran & Mahdavi, 2008) as shown 

in equation 2.9.  

m: Each swarm’s population size 

n: Swarms’ number 

R: Regrouping period 

Max_gen: Max generations, stop criterion 

Initialize m×n particles (position and velocity) 

Divide the population into n swarms randomly, 

with m particles in each swarm. 

For i=1:0.9×Max_gen 

Update each swarm using local version PSO 

If mod(i, R)==0, 

Regroup the swarms randomly, 

End 

For i=0.9*Max_gen:Max_gen 
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𝐻𝑀 =

[
 
 
 
𝑥1

1           𝑥2
1 …

𝑥1
2           𝑥2

2 …
⋮           ⋮ …

𝑥1
𝐻𝑀𝑆  𝑥2

𝐻𝑀𝑆 …

𝑥𝐷
1

𝑥𝐷
2

⋮
𝑥𝐷

𝐻𝑀𝑆

||

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥1)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥2)
⋮

    𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝐻𝑀𝑆)]
 
 
 
                           (2.9) 

where HMS is harmony memory size, and the candidate set [ x1, x2, …, xHMS] are the 

rules number with D is the number of parameters (Geem, 2009). 

As explained previously, the DMS-PSO-SHS is the hybridization of DMS-PSO and 

the regional harmony search (HS), which is based on the current pbests in each sub-

swarm after PSO positions are updated. Nearest pbest is replaced by better fitness 

from with new harmony. MTS modified algorithm implements new line search along 

the dimension one by one. In addition, a method for improving diversity is used to 

improve the diversity of the swarm with a relatively low frequency and for timely 

discourage convergence in the right steps during the early search stage. The DMS-

PSO-SHS modification with MTS attempts to take advantage of the PSO, HS and 

MTS to sidestep all particles are found in the lower regions local optimum. DMS 

PSO-SHS makes the particles several examples teach after swarms are often grouped 

and have greater harmony research among different sub-populations potential space. 

The DMS-PSO-SHS rejects the parameters of original HS, which usually need to be 

adjusted based on the property of the test problems, such as the bandwidth. 

2.4.6 Adaptive Particle Swarm Optimisation (APSO) 

Adaptive particle swarm optimiser (APSO) provides a better search performance and 

more efficiency than basic PSO. More importantly, it enables the performance of a 

global search space at a speed of convergence. The APSO consists of two phases: 

first, by examining population distribution and particle fitness, a method for the 

estimation of the evolution status in real-time is carried out on the four stages of 

identity evolution defined below, including the exploration, exploitation, 

convergence and jumping out in each generation. Also, its enables the automatic 

control of inertia weight, acceleration coefficients and other performance parameters 

to improve search algorithms, efficiency and speed of convergence. Then, it makes a 

statement of changes elite learning strategy when the state is classified as 

convergence. The strategy will focus on globally best particle to jump out of the 

likely local optima (Zhan, Zhang, Li, & Chung, 2009). 
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A. Population Distribution Information 

The most prominent step that has been focused by APSO is based on complex 

analysis procedures on the population itself. In this section, PSO process and studied 

the characteristics of the population distribution for the first time to make an 

evolutionary state estimation approach. The distribution of information can be 

formulated as shown in Figure  2.6. 
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Figure 2.6: APSO population distribution information quantified by evolutionary factor f. 

(Zhan et al., 2009). 

By calculation of the average particle distance of each of the other particles, it is 

reasonable to expect that the average distance between the global best particles with 

other particles in the state of convergence would be minimal as shown in the 

Figure  2.6 (a) the distance dg ≈ dpi during exploration, Figure  2.6 (b) the distance dg 

 dpi during exploiting and Figure  2.6 (c) the distance dg  dpi during the jumping 

out whereby the gbest is inclined to be surrounded by the swarm. In contrast, the 

average distance would be the maximum distance when jumping out of the state, 

because the global best is likely to be crowded away from the swarm. Therefore, 

evolutionary state estimation focuses on the dissemination of information to the 

population in each generation, as in the following steps: 

Step 1: calculate the average distance of each particle i for all the other particles. 

This can be measured using the Euclidian metric equation: 

𝑑𝑖 = 
1

𝑁 − 1
∑ √∑(𝑥𝑖

𝑘 − 𝑥𝑗
𝑘)

2
𝐷

𝑘=1

𝑁

𝑗=1,𝑗≠𝑖

                                                         (2.10)   

where N is the population size and D is the number of dimensions. 
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Step 2: indicate the distance di of the globally best particle as dg, and compare all 

other di’s, for the particles to determine the maximum distance dmax and minimum 

distances dmin to calculate the evolutionary factor f as defined by this equations. 

𝑓 =
𝑑𝑔 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
                                                                                         (2.11)  

Step 3: classify the f value into four sets (S1, S2, S3 and S4) representing the states 

of exploration, exploitation, convergence and jumping out Figure  2.7. 
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Figure 2.7: Fuzzy membership functions for the four evolutionary states (J. Liang & Suganthan, 

2005) 

B. Adaptive Control of PSO Parameters 

In this phase is to be controlled in PSO parameters (Eberhart & Shi, 2001b) 

(Ratnaweera, Halgamuge, & Watson, 2004), including the adaptation of the inertia 

weight, control of the acceleration coefficients and bounds of the acceleration 

coefficients during the search process, whereby the adaptation of the inertia weight is 

controlled by the following formula: 

𝑤(𝑓) =
1

1 + 1.5𝑒−2.6𝑓
 ∈ [0.4,0.9]                                                            (2.12) 

where the acceleration coefficients and bounds of the acceleration coefficients are 

controlled by the following equations (Zhan, Xiao, Zhang, & Chen, 2007)  

|𝑐𝑖(𝑔 + 1) − 𝑐𝑖(𝑔)| ≤  𝛿                                                                            (2.13) 
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where δ is the acceleration rate and the value is dependent on the experiments 

revealing that a uniformly generated random value in some research takes the 

interval (0.05, 0.1). 

𝑐𝑖 = 
𝑐𝑖 

𝑐1 + 𝑐2 
× 4.0                                                                                   (2.14) 

where C1 and C2 are the parameter speed coefficients where take the value [1.5 to 

2.5] as interval chosen (Carlisle & Dozier, 2001): 

2.4.7 Unified Particle Swarm Optimisation (UPSO) 

UPSO associates both the LPSO and GPSO variants and its structure has been 

proposed as an alternative that combines the properties of exploration and 

exploitation associated with local and global PSO (K. Parsopoulos & Vrahatis, 

2004). Let Li (t +1) and Gi (t +1) denote update the velocity of the particle xi in local 

and global PSO variation respectively (K. E. Parsopoulos & Vrahatis, 2005): 

𝐺𝑖(𝑡 + 1) = 𝑥[𝑉𝑖(𝑡) + 𝑐1𝑟𝑎𝑛𝑑1(𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟𝑎𝑛𝑑2(𝑃𝑏(𝑡) − 𝑋𝑖(𝑡))]   (2.15)  

𝐿𝑖(𝑡 + 1) = 𝑥 [𝑉𝑖(𝑡) + 𝑐1𝑟𝑎𝑛𝑑1(𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟𝑎𝑛𝑑2 (𝑃𝑏𝑖
(𝑡) − 𝑋𝑖(𝑡))] (2.16)  

where 

t: denotes the iteration number, 

b: is the index of the best particle of the whole swarm,  

bi: is the index of the best particle in the neighbourhood of Xi (local variant). 

The main UPSO scheme is defined by: 

𝑈𝑖(𝑡 + 1) = (1 − 𝑢)𝐿𝑖(𝑡 + 1) + 𝑢𝐺𝑖(𝑡 + 1)                                         (2.17) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑈𝑖(𝑡 + 1) + 𝑢𝐺𝑖(𝑡 + 1)                                        (2.18) 

The parameter u ∈ (0, 1) balances the influence of the local and global search 

direction in the unified layout, which called the unification factor.  
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In addition to the previous paradigm, a stochastic parameter to mimic the mutation 

can also be included in this evolutionary algorithm in equation 2.17 in order to 

improve UPSO exploration ability (K. E. Parsopoulos & Vrahatis, 2005). Thus, the 

variant of USPS is based primarily on equation 2.17 and can be written as equation 

2.18: 

𝑈𝑖(𝑡 + 1) = (1 − 𝑢)𝐿𝑖(𝑡 + 1) + 𝑟3𝑢𝐺𝑖(𝑡 + 1)                                                       (2.19)  

where r3 ~ N (M,  ) is a normally distributed parameter with mean vector M and 

variance matrix (Matyas, 1965)  or 

𝑈𝑖(𝑡 + 1) = 𝑟3(1 − 𝑢)𝐿𝑖(𝑡 + 1) + 𝑢𝐺𝑖(𝑡 + 1)                                                       (2.20)  

2.5 PSO Application in Power Systems 

The applications of particle swarm Optimisation in electric power systems and other 

optimisers such as GA and ant colony Optimisation has been successfully applied to 

solve electrical power system problems through Optimisation problems such as 

optimal power flow, economic dispatch, reactive power dispatch, unit commitment, 

generation and transmission planning, maintenance scheduling, state estimation, 

model identification, load forecasting, control, power system reliability and security, 

generation expansion problem, neural network training and others. 

2.5.1 Optimal Power and Load Flow  

The optimal power and load flow (OPLF) problem can be solved by implementing 

PSO as introduced by Abido (Abido, 2002). The aim of using optimal power flow 

(OPF) is to explore the best state or optimal combination of independent variables 

power generation cost function by finding the lowest cost. The generator actual 

power productions are treated like predictor variables with the other predictors 

measured earlier in the reactive power Optimisation problem. Sophisticated 

Optimisation problems can be handled with PSO effectively, which has several 

equality and inequality limitations and both continuous and discrete variables. Zhao 

et al. answered the very complicated OPF Optimisation issue by minimizing a non-

stationary multiagent assignment penalty function in another methodology for 

Optimisation (B. Zhao, Guo, & Cao, 2004). It was found that the PSO solved the 
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Optimisation of extremely constrained problems in OPF. All penalty values change 

dynamically according to the system constraints.  

In (He et al., 2004) , the concept of passive congregation was incorporated into PSO 

to solve the OPF problem. This improved convergence characteristics of the 

traditional hybrid PSO technique to solve the same OPF problem. The load flow 

study is the most fundamental tool for the analysis and design of electrical power 

system installations and it is used for the operation of the electricity system 

scheduling, economic planning, transient stability, voltage stability and emergency 

studies. The load flow equations contain energy balance equations for both the active 

and reactive power for each bus. The problem of the flow of feed can be formulated 

as an Optimisation problem where the goal is to minimize and make the voltage 

amplitudes and angles difference between the input power and output on any bus (El-

Dib, Youssef, El-Metwally, & Osman, 2006) . The cost function can be expressed as 

follows: 

𝑓(𝑉, 𝛿) = ∑(𝐹𝑝𝑖
2 +

𝑖

𝐹𝑞𝑖
2 ) + 𝜔𝑃𝑙                                                                     (2.21) 

and the particle x is defined as:  

𝑥 = [𝑉1, … , 𝑉𝑛, 𝛿1, … , 𝛿𝑛]                                                                                (2.22) 

where (Vi, δi) depends on the magnitude and phase of the bus i voltage, Fpi and Fqi 

are determined according to the nonlinear power flow equation, 𝜔 is weighting 

factors and Pl is the real loss.  

2.5.2 Economic Dispatch 

PSO is utilised for Dispatch Economic (DE), which is realized as the generation unit 

in the combined process of allocating generation levels, to make the system load 

fully powered and economical (Victoire & Jeyakumar, 2004). Mathematically, the 

problem of economic dispatch is to minimize find limitations, respecting the 

constraints of equality and inequality, as a result of selecting the optimal 

combination. Economic transmission can be thought of as a static Optimisation 

problem in which the costs associated with the operation of the change of the 

generators outputs are not taken into account, and a Dynamic Economic Dispatch 
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(DED) Optimisation problem considers the costs associated with the change. The ED 

or DED issues can be expressed with or without smooth cost function. Where ED in 

a smooth function with costs, operating costs of each generator are represented by a 

quadratic function as follows: 

𝐶𝑜𝑠𝑡 = 𝐶 =  ∑𝐹𝑖(𝑃𝑖)                                                                           (2.23)

𝑖∈𝐼

 

where 

C is the total cost. 

Fi is the generation cost function. 

Pi is the generation electrical output. 

I is the all generation group. 

2.5.3 Reactive Power and Voltage Control 

Overall, a grid is activated responsively to sudden changes in the composition, such 

as lines and suddenly changes in loads. In this case the dynamic system tries to keep 

the voltage within an allowable range for consumers, which is one of the main tasks 

of the generation electrical power units. To achieve this objective, power plant 

operators use advanced control of the synchronous generators, transformers tap 

setting, and flexible alternating current transmission system devices, as well as 

adapting the power plants to keep the required amount of reactive power to maintain 

the bus voltages at the required level. This strategy is used online in order to achieve 

the suggested reactive power and voltage control power or volt/VAR control (VVC) 

in short-lived. Essentially, all VVC strategy must ensure that voltage safety limit is to 

be respected, so that system conditions do not escalate to voltage collapse. There are 

many conventional techniques for the analysis of emergency assessment (Cutsem & 

Vournas, 2008). The voltage and VAR control can be optimised as in the following 

formula (Coath, Al-Dabbagh, & Halgamuge, 2004): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒: ∑𝑄𝑙𝑜𝑠𝑠𝑖

𝑛

𝑖=1

                                                                                      (2.24) 

where n is the number of network branch, and 𝑄𝑙𝑜𝑠𝑠𝑖
 is the reactive power at the 

branch i. 
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2.5.4 Unit Commitment  

For the problem of scheduling unit, Miranda and Win (Miranda & Win-Oo, 2006) 

described the use of the difference in evolutionary particle swarm Optimisation on 

the generator unit commitment problem of the power generator system programming. 

In this case, the study was applied to a number of generators with production curves, 

to determine which generator’s producers should work and where, and the level of 

production, in order to minimize costs, including start-up and operating costs for a 

particular set of system conditions. The algorithm with improved version called 

evolutionary particle swarm Optimisation PSO performs better in the movement rule 

by the memory element. Also, a better result was achieved by PSO-based algorithm 

compared with other types of GA (Miranda & Win-Oo, 2006; Victoire & Jeyakumar, 

2005). The cost function was expressed as: 

𝑃𝐶𝑚𝑎𝑥 = ∑𝑃𝑖𝑚𝑎𝑥

𝑁

𝑖=1

 ;    𝑃𝐶𝑚𝑖𝑛 = ∑𝑃𝑖𝑚𝑖𝑛                                                 (2.25)

𝑁

𝑖=1

 

where N is the number of units and i ≠ NRU (not run unit), Pcmax ≥ Dmax, and Pcmin ≤ 

Dmin where Dmax and Dmin are the maximum and minimum power demands in the 

whole scheduling prospect. 

2.5.5 Generation and Transmission Planning  

Electrical production planning determines what, when, where and how to install 

generating units to supplying electricity to the electrical grid. Mathematically, the 

planning of generation can be formulated non-linearly with a large-scale 

Optimisation mixed stochastic problem to minimise the risk and maximise profits, 

subject to a range of complex constraints of load demand without sacrificing 

reliability (Wu, Yen, Hou, & Ni, 2004) . In other methods based on PSO as an AI 

and metaheuristic technique it has been applied to solve problems of electrical 

production (Kannan, Slochanal, & Padhy, 2005; Wu et al., 2004)  . Other research 

applied the particle swarm Optimisation to the problem of electrical production 

planning in a competitive milieu concluded that the PSO technique is a genuine and 

efficient means for generating competitive scheduling problems, especially when the 
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number of companies that generate or generate strategies increases (Slochanal, 

Kannan, & Rengaraj, 2004). The cost function is expressed as: 

𝑀𝑎𝑥𝑃𝑟𝑜𝑓𝑒𝑡 = 𝑞𝑖[𝑃 − 𝐶𝑖]                                                                                (2.26) 

𝑃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑎 (∑𝑞𝑖

𝑁

𝑖=1

)                                                                         (2.27) 

where a is demand coefficient, qi is the power in (MW) produced by i-th generation 

expansion companies (GENCOs), N is the total number of GENCOs, Ci is the cost of 

i-th GENCOs.  

2.5.6 Maintenance Scheduling 

Maintenance program is a prevention outage program for electrical production units 

in power systems during a given period of time, which is a complex problem when 

the power system includes a number of units with different generation specifications. 

While it has a number of limitations, these must be considered against its practical 

benefits and function as a possible solution (Koay & Srinivasan, 2003). It also 

presents a spawning and selection mechanism with PSO algorithm for solving 

problems by scheduling the maintenance of multi-generator with many limitations, 

concluding with the optimisation based on particle swarm obtaining efficient 

schedules in a reasonable time. The following function is necessary to minimize all 

parameters if crew and resource constants or the schedule cannot meet the power 

demand the penalty cost is added to evaluation function (Srinivasan & Malik, 2002). 

𝐹 = ∑∑ 168(𝑎𝑥𝑃𝑥
2 + 𝑏𝑥𝑃𝑥 + 𝐶𝑥) + ∑ 𝑉𝑦𝐷 + ∑𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡

𝑇

𝑡=1

𝑌

𝑦=1

𝑋

𝑥=1

𝑇

𝑡=1

           (2.28) 

where 

X = unit in operation in that week, 

Y = unit in maintenance, 

T= length of the maintenance planning schedule (week), 

P, = generator output (MW) of operation unit, 

ax, bx, cx. = fuel cost coefficient, 

Vy = maintenance cost per week (£/week), 

D = downtime (weeks). 
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2.5.7 State Estimation 

State estimation is generally formulated as a weighted least mean squares problem, 

and must take into account the asynchrony measurement and error (Naka, Genji, 

Yura, & Fukuyama, 2003). A hybrid PSO can also be proposed for the distribution of 

the state estimation taking into account the non-linear characteristics of practical 

machinery and limited of actual distribution measurements, concluding that 

estimation method is proposed for practical distribution systems using PSO of the 

application state (Naka, Genji, Yura, Fukuyama, & Hayashi, 2000). Online 

estimation of the state is a crucial factor in the electrical distribution control centres, 

particularly with the introduction of distributed generators (DGs) for the electricity 

power system. Energy companies must have accurate estimation of the system load 

and outputs of DGs, while usually limited measures are obtainable by the network. 

Estimation of the state can be formulated as a weighted average least squares 

problem (Naka et al., 2003): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒    𝐽(𝑥) =  ∑𝑤𝑖(𝑧𝑖 − ℎ𝑖(𝑥))2

𝑚

𝑖=1

                                         (2.29) 

where m is the number of measurement variable, x state variable (active-power loads 

and active-power output of DGs), wi weighting factor of measurement variable, zi 

measurement value of measurement variable (voltages and currents) i, hi is the power 

flow equation of measurement variable. 

2.5.8 Model Identification 

PSO has been used in order to highlight the disadvantages of common model 

identification methods for thermal processes, and to present novel identification 

solutions based on PSO (Liu & He, 2005). Identification solutions based on PSO can 

overcome the drawbacks of the common model identification method of heat 

treatment process, and PSO approaches provide the characteristics of ease of 

realisation and identifying with high accuracy compared to identification by the 

improvement of the GA. The suggested of optimal fitness function is:  
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑100[𝑦(𝑡) − �̃�(𝑡)]2
𝑀

𝑡=1

                                                              (2.30) 

where �̃� is the output actual process, y is the output of identification result, and M is 

the number of sample data. 

2.5.9 Load Forecasting 

PSO has recently been applied in load forecasting to identify average autoregressive 

exogenous with exogenous variables of load model. The research (Huang, Huang, & 

Wang, 2005) presents an alternative technique for determining and estimating model 

parameters for a global minimum prediction error in an efficient computation time. 

Accuracy of fit is also improved. The proposed technique is tested on four different 

power load datasets for practice one day and one week in advance. Load forecasting 

based on PSO has better prediction capability, with a shorter execution time than 

evolutionary programing (EP) and conventional stochastic time series (STS) 

convergence (Huang et al., 2005) (B. Wang et al., 2008). Auto-regressive and 

moving average with exogenous variables (ARMAX) model can be expressed as: 

𝐴(𝑞)𝐿(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡)                                                             (2.31) 

where L(t) is the load demand at time t, u(t) is the exogenous temperature, e(t) is the 

noise, A(q) is the equation of the autoregressive, B(q) is the equation of the 

exogenous input and part C(q) is equation of the moving average part. 

2.5.10 Neural Network Training  

Neural networks are a valuable tool for AI in many areas of electrical systems. PSO 

is used to train a neural network for transformer safety protection (El-Gallas, El-

Hawary, Sallam, & Kalas, 2001), with the goal of developing an intelligent model 

that is able to distinguish between the internal fault current and magnetisation current 

flow in transformers. PSO is used to improve the accuracy and the performance of 

the identification processing time. PSO identifies the optimal weight of a neural 

network model and controls the stability of the power supply system (Hirata, 

Ishigame, & Nishigaito, 2002). Where the problem is to find the connecting weight 

matric W, V of neural network (NN), the maximum value function is given by: 
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𝐽(𝑊, 𝑉) = 𝑚𝑎𝑥 𝐹(𝑥,𝑊, 𝑉)                                                                     (2.32) 

To be minimized as J(w,v) = 0, which is non-deferral function, as it only can be 

solved by PSO, and F(x) is the training function problem.  

To determine improvement, the Optimisation problem was formulated as a min-max 

problem with the objective that the function be of the discontinuous nature and not a 

differential problem. PSO is integrated with a neural network to identify the safe 

limits dynamic energy in a surrounding area of power system (Kassabalidis, El-

Sharkawi, Marks, Moulin, & Alves da Silva, Alexander P, 2002). The minimized 

objective function is expressed as: 

𝑓1(𝑥)⃗⃗⃗⃗ = |𝑁𝑁(𝑥)⃗⃗⃗⃗ − 𝐶|                                                                                (2.33) 

where (𝑥)⃗⃗⃗⃗  is the operating point of the power system as the security index of the 

border were set by the user, NN is the security index produced by the neural network. 

2.5.11 Other Applications 

The PSO was used to solve nonlinear Optimisation problems on many other 

applications at electrical power system, including the following. 

Electric machinery; PSO application in the field of electrical machines has not been 

extensively studied. However, Emara et al. (Emara, Ammar, Bahgat, & Dorrah, 

2003)  applied PSO to estimate stator induction motor failure. 

1. Power system reliability and security; reliability distribution is defined as 

adequate supply, which is linked to the presence of adequate system to the load 

requirements within the limits of the safety system and constraints, which is the 

capability of the system to overcome disturbances occurring and interference 

occurring on it (Robinson, 2005). 

2. Generation expansion problem; generation expansion problem (GEP) is 

becoming increasingly important in economic decisions. The application of PSO 

to solve GEP was reported in (Slochanal et al., 2004), (Sensarma, Rahmani, & 

Carvalho, 2002), and the application of equation metaheuristic techniques for 

solving the GEP in (Sensarma et al., 2002), wherein PSO was compared to eight 

other metaheuristic techniques in terms of success rate and execution time. 
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2.6 Summary  

Many areas in power systems require the solution of one or more non-linear 

Optimisation problems. Although the analysis may suffer from slow convergence 

and the curse of dimensionality, heuristics-based swarm intelligence can be a very 

effective alternative. PSO, which is part of the family of swarm intelligence, is 

known widely to be effective to solve nonlinear Optimisation problems. As 

explained in this chapter, the basic principles of PSO and its variants provide a 

detailed study and applications on the power system that have benefited from the 

powerful of PSO as an Optimisation technique. For each application, the technical 

specifications for the implementation of the PSO, such as different types, the 

formulation of particles (representation of the solution), and effective fitness 

functions are also discussed. 
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Chapter 3: Combination of Multi Particle Swarm 

Optimisation 

3.1 Introduction 

In this chapter, a new method is proposed using different Optimisation schemes 

which are combinations of different types of PSO and methods used simultaneously. 

The idea is to make use of the characteristics of each individual method to tackle the 

same problem. The proposed schemes can utilize and share information about the 

local and global best as well as the swarm population, in specific predefined iteration 

of all types simultaneously. The method uses the good properties of the global search 

and efficient local search capability. Moreover, the schemes themselves are very 

simple and easy to implement, as explained in detail below. 

As mentioned in Chapter Two, this research concerns a collection of different 

algorithms running together. The main objective behind this approach is the large 

variations in the performance of meta-heuristics for the same problem of varying 

complexity or using different random seeds on the same problem instance (Gomes & 

Selman, 2001). 

This chapter describes the design and implementation of new Optimisation methods 

called parallel and sequential particle swarm Optimisation (PPSO and SPSO) using 

different types of PSO, whereby the new algorithm is tested by a collection of 

empirical benchmark functions that represent uni-model and multi-model as 

extremely complex systems, which will be explained and recognised by their shapes 

into two dimensions, with detailed discussion of their complexity. The new 

algorithms are compared to the most well-known types of PSO algorithms.  

The chapter is organized into seven sections. Following this introductory section, a 

brief summary is given of the combination of empirical benchmark functions, then an 

explanation of the design and development of parallel and sequential particle swarm 

Optimisation algorithms is presented. The different types of PSOs and their 

behaviour with regard to different benchmarks are then compared, followed by the 

conclusion of the chapter. 
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3.2 Combination 

In this work, the seven types of PSOs (LPSO, GPSO, CLPSO, DMS–PSO, DMS–

PSO-SHS, APSO and UPSO) are used to design the multi-particle swarm 

Optimisation algorithm. In this design, communication between different algorithms 

are considered at early stages, whereby the fast and less accurate algorithm can pass 

its results to the slow and more accurate algorithm, which will benefit from the good 

results at an early stage. An outline of the proposed algorithms used in this paradigm 

is listed as follows: 

 Generate the first swarm randomly 

 Measure the fitness of each individual 

 Evaluate the swarm  

 Ranking operation  

 Selection operation 

 Go to all optimisers to produce a new generation 

 Evaluate and scale the swarm 

 Measure the fitness again 

 Send the most fit individuals to all optimisers 

In this technique, each type of PSO optimiser takes the generation after encoding and 

modifying the swarm based on its principles. After that, the optimisers work 

individually, in parallel or in series, depending on the paradigm, to find a good 

solution during the iterations. The number of iterations is chosen experimentally after 

several trails. The iterations number that best improves the performance of algorithm 

is selected. When the optimisers finish the internal iterations, the best individuals are 

provided to the optimisers by the system while the worse individuals are removed. In 

the next generation, the optimisers will benefit from this advantage whereby good 

individuals have been harvested from other optimisers during their search for the 

optimal result. Figure  3.1 illustrates the general mechanism of the communication 

between all optimisers.  
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Figure 3.1: Communication between the optimisers. 

In this research, after several simulations experiments, the number of iterations 

internally is adjusted to be five, which renders the best performance for the algorithm 

by experiment. Hence, after each these iterations, the best generation for each 

optimiser is sent by the system parallel or serial to the meeting hall, where the orders 

of individual particles are rearranged based on their fitness. After that the best 

individuals are chosen to send to the optimisers while the less fit individuals are 

removed. The number of individuals that are chosen must be equal to the size of the 

original swarm. Additional details about the two proposed paradigms are given later 

in this chapter.  

3.3 Empirical Benchmark Functions  

Further experimental tests with benchmark functions are carried out in this section to 

validate the evolutionary algorithms techniques and to compare them with others. 

There are a popular range of benchmark test functions which are commonly used to 

test the performance of Optimisation algorithms, which are chosen with regard to 

their particularities, hence the benchmark sets are defined here to include several 

conventional scenarios, from a simple function with a single minimum to others 

having a considerable number of local minima of very similar values (RW.ERROR - 
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Unable to find reference:116; Esquivel & Coello Coello, 2003; Pohlheim, 2007). The 

seven benchmark functions listed in Table 3.1, presenting four uni-modal functions 

and three multimodal benchmark functions. All functions are tested on 10 trails and 

30 dimensions, according to their bounds.  

Table 3.1: Benchmark functions, uni-modal and multi-modal. 

Mathematical Equation 
Function 

Name 
Search 
Band G

lo
b

al
 

M
in

im
a 

A
cc

ep
te

d
 

D 

Uni-modal 

𝑓1 ∑ 𝐴((𝑖−1) (𝐷−1)⁄ ) × 𝑥𝑖
2𝐷

𝑖=1   Elliptic  [-100 100]
D 

0 0.01 30 

𝑓2 ∑ 𝑥𝑖
2𝐷

𝑖=1   Sphere  [-100 100]
D
 0 0.01 30 

𝑓3 ∑ |𝑥𝑖|
𝐷
𝑖=1 + ∏ |𝑥𝑖|

𝐷
𝑖=1   Schwefel  [-10 10]

D
 0 0.01 30 

𝑓4 ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 +

𝐷−1

𝑖=1

(1 − 𝑥𝑖)
2] Rosenbrock  [-10 10]

D
 1 100 30 

Multimodal 

𝑓5 ∑[𝑥𝑖
2 −  10 𝑐𝑜𝑠(2𝜋𝑥𝑖) +

𝐷

𝑖=1

10] Rastrigin 
[-5.12 
5.12]

D
 

0 50 30 

𝑓6 
−20𝑒𝑥 𝑝(−0.2√1 𝐷⁄ ∑ 𝑥𝑖

2𝐷
𝑖=1  ) −  

𝑒𝑥𝑝 (1 𝐷⁄ ∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝐷
𝑖=1 )+20 + 𝑒  

Ackley [-32 32]
D
 0 0.01 30 

𝑓7 
1 4000⁄ ∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (𝑥𝑖 √𝑖⁄ )
𝐷

𝑖=1
 

𝐷

𝑖=1

+ 1 

Griewank [-600 600]
D
 0 0.01 30 

3.3.1 Elliptic Function  

An elliptic function is holomorphic function except at poles and has singularities in a 

finite part of the plane. A periodic function of a real variable is defined by its values 

on an interval, and satisfies equation 3.1, and the shape of this function for two-

dimensional case is shown in Figure  3.2.  

 𝑓1(𝑥) = ∑𝐴((𝑖−1) (𝐷−1)⁄ ) × 𝑥𝑖
2

𝐷

𝑖=1

                                                                     (3.1) 

where A is constant and D the number of dimensions. 
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Figure 3.2: Elliptic function. 

3.3.2 Sphere Function  

The sphere function is commonly used as a test function for Optimisation algorithms, 

because any smooth function is locally quadratic near its optimum, and thus 

convergence on the sphere function is a necessary condition for convergence on any 

smooth function, also known as De Jong’s function. The shape of this function for 

two-dimensional case is shown in Figure  3.3. 

𝑓2(𝑥) = ∑𝑥𝑖
2                                                                                                  (3.2)

𝐷

𝑖=1

 

where D the number of dimensions. 

 

Figure 3.3: Sphere function. 

3.3.3 Rastrigin’s Function 

Rastrigin’s function is based on the Sphere function with the addition of cosine 

modulation in order to produce frequent local minima. Thus, the test function is 

highly multimodal. However, the location of the minima is regularly distributed. The 
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function is presented by equation 3.3, and the shape of this function for two-

dimension case is shown in Figure  3.4. 

𝑓5(𝑥) = ∑[𝑥𝑖
2 −  10 𝑐𝑜𝑠(2𝜋𝑥𝑖) +

𝐷

𝑖=1

10]                                                      (3.3) 

  

Figure 3.4: Rastrigin’s function. 

3.3.4 Schwefel’s P2.22 Function 

Schwefel’s function is somewhat easier than Rastrigin’s function, and is 

characterized by a second-best minimum, which is far from the global optimum. The 

shape of this function for two-dimensional case is shown in Figure  3.5. 

𝑓3(𝑥) = ∑|𝑥𝑖|

𝐷

𝑖=1

+ ∏ |𝑥𝑖|
𝐷

𝑖=1
                                                                        (3.4) 

 

Figure 3.5:Schwefel’sP2.22function. 
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3.3.5 Rosenbrock’s Function  

Rosenbrock’s function is a classic Optimisation problem, also known as Banana 

function. The global optimum is inside a long, narrow, parabolic shaped flat valley. 

To find the valley is simple, however convergence to the global optimum is difficult, 

hence this problem has been repeatedly used to assess the performance of 

Optimisation algorithms. The can be presented as in equation 3.5, and the shape of 

this function for two-dimensional case is shown in Figure  3.6. 

𝑓4(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2  +

𝐷−1

𝑖=1

(1 − 𝑥𝑖)
2]                                          (3.5) 

  

Figure 3.6:Rosenbrock’sfunction. 

3.3.6 Ackley’s Function 

The Ackley’s function is an n-dimensional highly multimodal function that has a 

large number of local minima but only one global minimum. This is a widely used as 

multimodal test function. Its shape for two-dimensional case is shown in Figure  3.7. 

The function definition is as follows: 

𝑓6(𝑥) = −20𝑒𝑥 𝑝

(

 −0.2√1 𝐷⁄ ∑𝑥𝑖
2

𝐷

𝑖=1

 

)

 − 𝑒𝑥𝑝(1 𝐷⁄ ∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝐷

𝑖=1

)+20 + 𝑒   (3.6) 
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Figure 3.7:Ackley’sfunction. 

3.3.7 Griewank’s Function  

Griewank’s function is similar to Rastrigin’s function. Although it has many 

widespread local minima, their locations are regularly distributed. The shape of this 

function for two-dimensional case is shown in Figure  3.8 and the function definition 

is as follows: 

𝑓7
(𝑥) = 1 4000⁄ ∑𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (𝑥𝑖 √𝑖⁄ )
𝐷

𝑖=1
 +

𝐷

𝑖=1

1                                     (3.7) 

  

Figure 3.8:Griewank’sfunction. 
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additional insights into how each paradigm works, and to suggest ways in which 

performance might be improved by incorporating features from one paradigm into 

the others. 

3.4.1 Comparison of Algorithms on all Functions  

For the purpose of comparison, the mentioned benchmarks were tested under similar 

scenarios based on the initial conditions: 10,000 iteration (generation), 20 particles, 

30 dimensions and mean fitness of 10 trials. The results are presented in the 

following Figures 3.9-3.15. 

 

Figure 3.9: Convergence performance of seven test functions on LPSO. 
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Figure 3.10: Convergence performance of seven test functions on GPSO. 

 

Figure 3.11: Convergence performance of seven test functions on CLPSO. 
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Figure 3.12: Convergence performance of seven test functions on DMS-PSO. 

 

Figure 3.13: Convergence performance of seven test functions on DMS-PSO-SHS. 
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Figure 3.14: Convergence performance of seven test functions on APSO. 

 

Figure 3.15: Convergence performance of seven test functions on UPSO. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of generation

M
e
a
n
 f

it
n
e
s
s

 

 

Elliptic

Sphere

Schwefel

Rosenbrock

Rastrigin

Ackley

Griewank

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-180

10
-160

10
-140

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

Number of generation

M
e
a
n
 f

it
n
e
s
s

 

 

Elliptic

Sphere

Schwefel

Rosenbrock

Rastrigin

Ackley

Griewank



Chapter Three: Combination of Multi-Particle Swarm Optimization 

63 

3.4.2 Comparisons of Each Function on all algorithms  

The algorithms were tested under the same conditions for the purposes of 

comparison. The seven algorithms were compared for one function as a benchmark 

with 10,000 iterations (generation), 20 particles, 30 dimensions and mean fitness of 

10 trials, as shown in Table  3.2 and Figures 3.16-3.22. 

Table 3.2: Comparison performance of seven PSOs algorithms on seven benchmark functions. 

  Algorithms 

Function 

LPSO GPSO CLPSO DMS –PSO 
DMS –PSO- 

SHS 
APSO UPSO 

f(1) Mean 

Std. Dev. 
1.5698E-012 
1.7135E-012 

5.0916E-029 
4.5713E-029 

1.2930E-033 
8.6152E-034 

4.1610E-123 
8.8028E-123 

5.5257E-169 

0 

2.9669E-106 
6.3742E-106 

3.2869E-158 
9.6779E-158 

f(2) Mean 

Std. Dev. 
4.2524E-015 

6.5964E-015 

7.6205E-030 

2.0462E-029 

9.8864E-037 
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Figure 3.16: Convergence performance of seven PSOs on Elliptic function. 

 

Figure 3.17: Convergence performance of seven PSOs on Sphere function. 
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Figure 3.18: Convergence performance of seven PSOs on Schwefel’sP2.22function. 

 

Figure 3.19: Convergence performance of seven PSOs on Rosenbrock’s function. 
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Figure 3.20: Convergence performance of seven PSOs on Rastrigin’s function. 

 

Figure 3.21: Convergence performance of seven PSOs on Ackley’s function. 
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Figure 3.22: Convergence performance of seven PSOs on Griewank’s function. 
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A scale of 1 to 7 was used to measure the accuracy and convergence where 1 is the 

lowest and 7 is the highest, as shown in Table  3.3 and  

Table  3.4, respectively. 

Table 3.3: Accuracy comparison by rank (1-7: lowest-highest). 

 Function 

 

 

Algorithms 

f(1) f(2) f(3) f(4) f(5) f(6) f(7) Av. 

DMS-HS-PSO 7 7 7 7 6 7 5 6.6 

UPSO 6 6 6 6 1 2 5 4.6 

APSO 4 4 5 4 5 5 4 4.4 

DMS-PSO 5 5 4 5 3 3 6 4.4 

CLPSO 3 3 1 3 7 6 7 4.3 

GPSO 2 2 3 2 4 5 2 2.9 

LPSO 1 1 2 1 2 1 1 1.3 

 

Table 3.4: Convergence speed comparison by rank (1-7: lowest-highest). 

Function 

 

 

Algorithms 

f(1) f(2) f(3) f(4) f(5) f(6) f(7) Av. 

MS-HS-PSO 7 5 7 7 7 7 6 6.6 

DMS-PSO 6 7 6 6 6 5 7 6.1 

UPSO 6 6 4 5 4 4 5 4.9 

APSO 5 4 5 4 5 6 4 4.7 

CLPSO 3 3 3 3 3 3 3 3 

GPSO 2 2 2 2 2 2 2 2 

LPSO 1 1 1 1 1 1 1 1 

 

3.5 New Combination of PSOs 

After the tests and comparisons were conducted for all types of PSO algorithms by 

testing each one separately against a different set of benchmarks, and observing the 

response of each algorithm on all the benchmark functions’ tests in terms of 

convergence and accuracy, a new method containing all previous algorithms was 

established. Each PSO is involved in processing the same population at each 

iteration, in two structures parallel and serial.  
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3.5.1 Parallel Structure (PSOs) 

In this stage, the structure is built for all algorithms in parallel, so that all algorithms 

contend with the same population at the same time, being processed through a 

specific number of internal iterations. The experiment revealed that the internal 

iteration number must be between three to seven iterations. In this research the 

number of iterations was selected as five, which gives the best experimental results 

in terms of convergence for all problems tested, as shown in Figure  3.23.  

 

Figure 3.23: Comparison of the number of internal iteration. 
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Figure 3.24: Parallel PSO flowchart. 

3.5.2 Sequential Structure (PSOs) 

For this technique the structure is built for all algorithms in series, as explained in the 

literature review each type of PSO algorithm has specific characteristic. In this case 

the algorithm starts with the simple and fast solution first and then the most complex 

and more accurate in solution subsequent, so all the algorithms are tackling the same 
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population individually one after another, which is processed with a specific number 

of internal iterations. From experience it was found that the internal iteration 

numbers must be among three to seven, as shown in Figure  3.24. Therefore, in this 

research the number of internal iterations was set to five as a result of the 

experiments that identified this number as the most efficient in terms of convergence. 

Each algorithm received the latest updated information such as pbest, gbest and the 

last velocity and position (v,x) for each particle from the previous algorithm, and the 

best results obtained were set as initial values for the current algorithm, to be 

processed as described previously. After that the population delivered to the next 

algorithm. This was repeated until the seventh algorithm, which then hands over its 

findings to the first algorithm to complete the cycle until the last iteration. In this 

case the population is the same size during the whole process, including the best of 

all best particles in each step. This process is illustrated in the flowchart shown in 

Figure  3.25. 
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Figure 3.25: Serial PSO flowchart. 
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3.6 Experiments 

All experiments were executed to evaluate the performance of the proposed PSOs 

algorithms on the same benchmark functions described previously. The performance 

of PSO algorithms was evaluated in comparison with seven other variations 

described before. Two PSO versions were used, PPSO and sequential (SPSO). The 

main objective is to improve PSOs algorithm on wide range of uni-modal and multi-

modal functions.  

3.6.1 Experimental Setting 

Experiments revealed that SPSO achieved better results than PPSO. The test run 

comparisons are performed for all candidate types of PSOs by the enforcement of 

each algorithm separately on a different set of benchmarks, as well as the new 

method of SPSO, and observing the response of each algorithm on all selected 

benchmark functions in terms of convergence and accuracy. The results shown in 

Figures 3.26-2.29 illustrate the difference between the SPSO and PPSO in 

comparison to all other algorithms. In order to cover the two different types of 

systems modal, four benchmarks were selected: sphere together with Rosenbrock as 

uni-modal and Rastrigin with Griewank as multimodal function system.  
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Figure 3.26: Comparison of SPSO and PPSO performances using Sphere algorithm. 

 

Figure 3.27: Comparison of SPSO and PPSO performances using Rosenbrock’s algorithm. 
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Figure 3.28: Comparison of SPSO and PPSO performances using Rastrigin’s algorithm. 

 

Figure 3.29: Comparison of SPSO and PPSO performances using Griewank’s algorithm. 
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3.6.2 Comparison of New Method Algorithm on all Functions 

The test of the new methods was conducted on all benchmarks. The seven algorithms 

were compared with the new method on one function as a benchmark each time, with 

10,000 iterations (generation), 20 particles, 30 dimensions and mean fitness of 10 

trials, as shown in Table  3.6 and in Figures 3.30-3.36. 

3.6.3 Investigations of the Solution Accuracy 

The performance of the result exactness of each PSO recorded in. 

Table  3.2 is compared with the SPSO. The results illustrated in Table  3.5 are 

obtained for 10 independent runs for every algorithm. The boldface text in the table 

shows the best performance among those acquired by each of the eight contenders. 

Figures 3.30-3.36 display the graphs of all PSOs indicating the speed of 

convergence. The results displayed in both Figures 3.30-3.36 and Table  3.6 

demonstrate that SPSO offers the best performance on most test functions when 

solving uni-modal system; it is particularly accurate on functions f1, and f2. SPSO 

also achieves good results when testing the complex multi-modal functions f3, f4, f5 

and f6. Although CLPSO outperforms SPSO and others on f7 (Griewank’s function), 

the solutions of other functions are worse than those of the SPSO. Furthermore, 

SPSO successfully jumps out of the local optima on most of the multimodal 

functions and exceeds all the other algorithms on functions f1,…,f6, where the global 

optimum of f3 (Schwefel’s function) is far away from any of the local optima (Yao, 

Liu, & Lin, 1999), and the globally best solutions of f5 (continuous/non-continuous 

Rastrigin’s functions) are surrounded by a large number of local optimas (J. J. Liang, 

Qin, Suganthan, & Baskar, 2006; Yang & Li, 2010). The capability of abstaining 

from being trapped into the local optima and achieving global optimal solutions on 

multimodal functions suggests that the SPSO can indeed benefit from the elitist 

learning strategy with respect to its much improved performance, which was superior 

to all other algorithms which utilized a similar technique. 

3.6.4 Comparisons on the Convergence Speed 

The speed in obtaining the global optimum is also a noticeable measuring criterion 

for measuring the algorithm performance. Results reveal that the SPSO generally 
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offer a much higher speed, which is measured by either the mean number of function 

evaluations or by the mean CPU time needed to reach an acceptable solution. The 

CPU time is important to measure the computational load, as many existing PSO 

variants have added extra operations that require more computational time. Although 

the SPSO need to calculate the mean distance between every pair of particles in the 

swarm, the calculation costs are negligible. Figures 3.30-3.34 illustrate that SPSO 

offers the highest convergence speed for the right solution in about 6000 iterations on 

functions f1, and f2 (elliptic and sphere) as uni-model system, and achieves very 

accurate solutions 5.2454×10
-52

 and 1.0349×10
-10

 of complex multimodal functions 

f3, f4 and f5 (Schwefel’s, Rosenbrock and Rastrigin). Although DMS-HS-PSO 

outperforms the SPSO on the convergences speed with right solution on function f6 

(Ackley) as an error of 0.1×10
-14

 in iteration 2500, the SPSO reaches the same value 

in 500 iterations, as shown in Figure 3.35. Similarly, despite the fact that CLPSO 

achieves the nearest results on function f7 (Griewank), SPSO reaches very good 

results of a fitness of 1×10
-3

 in a short time, about 200 iteration compared to the 

same results, where CLPSO achieves this in 4000 iterations, as shown in Figure 3.36. 

Table 3.6: Mean and standard deviation results for the 7 benchmark functions using different 

PSO types. 

     Algorithms 

Function 

LPSO GPSO CLPSO 
DMS –

PSO 

DMS –

PSO- 

SHS 

APSO UPSO SPSO 

f(1) 
Mean 
Std. 

Dev. 

1.5698E-012 

1.7135E-012 

5.0916E-029 

4.5713E-029 

1.2930E-033 

8.6152E-034 

4.1610E-123 

8.8028E-123 

5.5257E-169 

0 

2.9669E-106 

6.3742E-106 

3.2869E-158 

9.6779E-158 

0≤E-325 

0≤E-325 

f(2) 
Mean 
Std. 

Dev. 

4.2524E-015 

6.5964E-015 

7.6205E-030 

2.0462E-029 

9.8864E-037 

7.9316E-037 

5.7091E-139 

1.7489E-138 

1.0317E-013 

1.5867E-013 

1.2063E-113 

5.6938E-114 

9.6143E-163 

3.1435E-162 

0≤E-325 

0≤E-325 

f(3) 
Mean 
Std. 

Dev. 

1.0966 

0.9239 

0.2615 

0.1311 

1.6034 

0.4150 

4.5419E-007 

2.9708E-007 

4.0322E-015 

3.2000E-015 

3.6768E-011 

3.1343E-011 

8.4294E-012 

7.8499E-012 

5.2454E-052 

6.9377E-052 

f(4) 
Mean 

Std. 
Dev. 

58.9279 

36.8700 

39.8112 

32.7277 

18.8381 

25.5289 

12.7978 

7.2983 

4.618E-001 

5.716E-001 

9.9841 

7.0320 

2.4545 

3.2557 

1.0349E-010 

1.513E-010 

f(5) 
Mean 

Std. 
Dev. 

25.7694 

4.7008 

31.1422 

10.1796 

0≤E-325 

0≤E-325 

4.975E-001 

9.669E-001 

4.975E-001 

9.669E-001 

7.3627 

2.6882 

71.1395 

12.8298 

0≤E-325 

0≤E-325 

f(6) 
Mean 

Std. 

Dev. 

1.8281E-008 

1.9793E-008 

4.0146E-014 

1.4017E-014 

1.2079E-014 

2.4841E-015 

3.018E-001 

4.897E-001 

3.9080E-015 

1.1235E-015 

1.4069E-013 

1.6497E-013 

1.1224 

1.2553 

2.2E-015 

5.0E-015 

f(7) 
Mean 

Std. 

Dev. 

0.0098 

0.0136 

0.0194 

0.0309 

0≤E-325 

0≤E-325 

2.0E-003 

4.2E-003 

3.9E-003 

7.0E-003 

2.45E-002 

3.06E-002 

1.06E-002 

1.04E-002 

3.553E-015 

0 ≤ E-325 
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Figure 3.30: Comparison of new method with other algorithms responses on Elliptic function. 

 
Figure 3.31: Comparison of new method with other algorithms responses on Sphere function. 
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Figure 3.32: Comparison of new method with other algorithms responses on Schwefel’sP2.22 

function. 

 
Figure 3.33: Comparison of new method with other algorithms responses on Rosenbrock’s

function. 
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Figure 3.34: Comparison of new method with other algorithms responses on Rastrigin’s

function. 

 
Figure 3.35: Comparison of new method with other algorithms responses on Ackley’sfunction. 
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Figure 3.36: Comparison of new method with other algorithms responses on Griewnak’s

function. 

3.7 Summary  

The experimental results confirm that SPSO form of the proposed PSO achieves the 

best results compared to PPSO. All candidate types of PSO were compared 

separately with a different set of benchmarks with new method of SPSO, and PPSOs 

were compared by observing the response of each algorithm on all selected 

benchmark functions in terms of convergence speed and performance to reach the 

closest correct solution. SPSO and PPSO showed very good results in terms of 

accuracy and convergence in minimal iteration. However the SPSO exceeded all 

other PSOs, as is evident from all figures, and the results shown in Table  3.6. 
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Chapter 4: Power System Stabilisation 

4.1 Introduction 

Electrical energy is the fundamental form of energy that modern life is based upon, 

for domestic and industrial applications. There is a constant and increasing need for 

the generation and transmission of electricity, and it should be more economical, 

stable and reliable, to face the growing demand for energy upon an increasingly 

strained infrastructure. Furthermore, the power system generation equipment and 

customer equipment are usually designed to operate within a range of ±5% of the 

nominal voltage, therefore many types of equipment perform poorly at low voltage, 

ultimately expressed in the end forms of less illumination and overheating in 

electrical bulbs and induction motors (Kirby & Hirst, 1997). 

This chapter presents power system stability by discussing the most important four 

dynamic phenomena affecting power system stability, namely wave, 

electromagnetic, electromechanical and thermodynamic phenomena. Furthermore the 

relationship between reactive power voltage and stability will be explored; this 

variable is one of the most important targets in the search, as actual variable that 

indicates the state of the electrical power grid in terms of stability. Additionally, this 

chapter, through mathematical analysis, discusses the most important types of power 

system stability devices to learn the working methods, as well as tuning methods. 

The most important faults types which affect the power system stability of the 

electrical grid are then described, allowing with how these problems can be emulated 

by software programs for the purpose of analysis. Finally, the latest types of 

conventional power system stabiliser (PSS4B) devices are explained and tested using 

different conditions and compared to other devices from prior generations. 

4.2 Control System Stability  

Power system stability is an important element in the event of any disturbance, such 

as the loss of part of the generation system, a fault on the transmission line or a 

change in the demand by losing or changing the load characterises, as shown in 

Figure 4.1. The power system dynamics can be divided into four different groups 

(Machowski, Bialek, & Bumby, 2011), based on their physical characteristics, which 
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are defined as wave, electromagnetic, electromechanical and thermodynamic. 

However, these broad classifications are affected by multiple dynamics groups.  

As shown in Figure 4.1, wave effect is the fastest dynamic phenomenon, by which a 

surge in high voltage transmission lines occurs with a corresponding spreading of 

electromagnetic waves initiated during the switching operation or when lightning 

strikes, which takes a certain time (between microseconds to a millisecond). This 

disturbance triggers changes in the electromagnetic dynamics in the machine 

windings, as a result of the interaction between the electrical machines and the 

network or operation the protection system. This takes between milliseconds to a 

second. The electromechanical dynamics have slower effect than the following 

disturbances, namely changing in voltage, main control units of motors and operation 

of the protection system, which occur due to the oscillation in rotating masses in 

motors and generators.  

The time frame of these dynamics is between a second to several seconds. The last 

dynamics are the thermodynamic changes, which take between seconds to hours. 

Such dynamics occur due to changes in temperature when a change in the boiler 

controls action in steam power plants during the connection of new load. To maintain 

the electrical system at stationary state in partnership with the generation, 

transmission and distribution and similar to the stability of any dynamic system in 

practical life depends on the disturbance type and the initial loading of the system.  

microseconds milliseconds seconds minutes

Wave phenomena

Electromechanical 
phenomena

Thermodynamic

phenomena

10-7      10-6       10-5         10-4        10-3      10-2        10-1           1            10           102         103          104           105

hours

Electromagnetic
phenomena

 

Figure 4.1: Time frame of the basic power system dynamic phenomena (Machowski et al., 2011). 
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4.3 Relation between Reactive Power Voltage Stability   

The concept of the power system stability is defined as the systems' ability to get 

back to equilibrium state after being subjected to disturbance due to any physical 

fault. As shown in Figure 4.2, there are three very important quantities for power 

system stability: 

 Voltage angles δ, or load angle.  

 Network frequency f. 

 Voltage magnitudes V.  

E V δ
 

ᵠ
 

ᵠ
 

° 

°

E

V

B

C

D

0

Vδ
 

P Q

X P,Q
(a)

(b)

A
I

 

Figure 4.2: A simplified model of a network element. (a) equivalent diagram and phasor 

diagram; (b) real power and reactive power characteristics (Machowski et al., 2011). 

From Figure 4.2, Q and P are for single-phase power while the voltages E and V are 

the phase voltages. Analysing the triangles OBC and BAC and the similarity of 

triangles BAC and OAD gives:  

𝐼 𝑆𝑖𝑛 (𝜑) =
𝐸

𝑋
𝐶𝑜𝑠(𝛿) −

𝑉

𝑋 
                                                                             (4.1) 

𝐼 𝐶𝑜𝑠 (𝜑) =
𝐸

𝑋
𝑆𝑖𝑛(𝛿)                                                                                      (4.2) 

The real power leaving element X is usually expressed as: 
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𝑃 = 𝑉𝐼 𝐶𝑜𝑠 (𝜑)                                                                                                 (4.3) 

Substituting the value of I Cos (φ) of equation 4.3 in equation 4.2 gives: 

𝑃 =
𝐸𝑉

𝑋
𝑆𝑖𝑛(𝛿)                                                                                                  (4.4) 

Also the reactive power leaving X element can be expressed as: 

𝑄 = 𝑉𝐼 𝑆𝑖𝑛(𝛿)                                                                                                   (4.5) 

Substituting the value of I Sin (δ) of question (4.5) into question (4.1) gives: 

𝑄 =
𝐸𝑉

𝑋
 𝐶𝑜𝑠(𝛿) − 

𝑉2

𝑋
                                                                                    (4.6) 

As the relationship between cosine and sine is  𝐶𝑜𝑠 (𝛿) =  √1 − 𝑆𝑖𝑛(𝛿)2, equation 

4.6 becomes:  

𝑄 = √(
𝐸𝑉

𝑋
)
2

− 𝑃2 − 
𝑉2

𝑋
                                                                               (4.7) 

From the above equations it can be seen that there are strong connections between 

the power system stability operations and the two pair of Real Power P, with 

Frequency F and Reactive Power Q with Voltage V, which are always being 

monitored in this thesis as an indicator of the final results of the power system 

stability (Machowski et al., 2011). 

4.4 Power System Stability  

From the point view of the definition and classifying power system stability, the 

voltage angles δ, or load angle, network frequency f and voltage magnitudes V are 

very important. Hence, the power system stability can be divided into (Figure 4.3):  

 Voltage stability. 

 Frequency stability. 

 Rotor angle stability. 
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 Short Term
 

 Short Term
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Figure 4.3: Classification of power system stability (Machowski et al., 2011). 

The voltage stability is closely linked with other aspects of dynamic performances 

and power system steady state, for instance the voltage control, rotor angle stability, 

reactive power compensation and management, control centre and protective 

relaying all effect on the voltage stability. Therefore stability in power system is 

commonly referenced as the ability of generating units to maintain synchronous 

operation (Kundur, Balu, & Lauby, 1994; Saadat, 2002). 

4.5 Conventional Control System  

There are different forms of control systems, mainly divided into modern and 

conventional, which can solve the problems associated with signal disturbances in 

power systems such as oscillations and voltage variation. 

Figure 4.4 shows a block diagram of the PSS controller which was used for the 

compensation. It is usually tuned via pole-placement method. Such controllers are 

designed to have fixed gain constant. In this situation it can be designed and tested 

using root locus technique. Then the gains separately designed to select dominant 

modes only. In a more efficient manner the pole-placement design was proposed in 

which participation factor were used to determine the size and number of stabilizers 

in a multi machine system to design of Power System Stabiliser (PSS) (Klein, 

Rogers, & Kundur, 1991; Pivonka, Veleba, Seda, Osmera, & Matousek, 2009) . All 
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of that is to enhance the damping of the local noises and inter-area modes of the 

system under consideration. 

𝐺𝑃𝑆𝑆(𝑆) =   [𝐾] [
𝑠 + 𝑍

𝑠 + 𝑃
]                                                                                   (4.8) 

 

Figure 4.4: CPSS diagram. 

As in the close loop system, the poles can be placed in anywhere in the complex 

plane, using the pole placement technique, therefore the system will always become 

stable even when the original system was unstable (Li, Zhao, & Yu, 1989). Shifting 

the system complex eigenvalue () to new location 0 in the s-plane to a chosen 

location must satisfy the characteristic equation of the closed-loop system. It should 

also meet the specified damping ratio: 

𝐻(𝜆0) =
−1

𝐺(𝜆0)
                                                                                    (4.9) 

In terms of phase and magnitude, the equation can be written as follows: 

|𝐻(𝜆0)| =
−1

|𝐺(𝜆0)|
                                                                              (4.10) 

𝑎𝑟𝑔(𝐻(𝜆0)) = 1800 − 𝑎𝑟𝑔(𝐺(𝜆0))                                            (4.11) 

where arg ))(( 0G denotes phase angle of the residue 0 . 

The phase and magnitude of the compensator at the new pole 0 can be calculated 

using equations 4.9 and 4.10. Whereas G0) is the complex frequency response of 

the system after the new pole location 0. The compensator generally includes a 

𝐺PSS(S) =  [𝐾] [
𝑠 + 𝑍

𝑠 + 𝑃
]  

- Min 

+ Max 

Δω 
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washout, lead/lag transfer function and constant gain, which can be written as in 

equation 4.12.  

𝐺𝑐(𝑠) = 𝐾
𝑠𝑇𝑤

1 + 𝑠𝑇𝑤

1 + 𝑠𝑇1

1 + 𝑠𝑇2
…

1 + 𝑠𝑇2𝑛−1

1 + 𝑠𝑇2𝑛
 ,                                             (4.12) 

The main objective of series compensator is to improve the damping ratio of the 

selected oscillation mode. Therefore, ∆0 must be a real negative value to move the 

real part of the eigenvalue. Also the phase of each compensation block must be 

limited to a maximum of 60° for practical reasons. After the selection of the feedback 

signal, in order to control the direction of the eigenvalue displacement, the lead-lag 

stabiliser parameters and the maximum angle m, and the ith block can be provided 

and determined using the following equations: 

𝜃𝑚 = 𝑆𝑖𝑛−1 (
1 − 𝛼𝑖

1 + 𝛼𝑖
)                                                                                     (4.13) 

where 

𝛼𝑖 =
𝑇2𝑖

𝑇2𝑖−1
                                                                                                        (4.14) 

This maximum angle occurs at a frequency, which is given by [4.8]: 

𝜔𝑚 =
1

𝑇2𝑖−1√𝛼𝑖

                                                                                            (4.15) 

As a result, the conventional control theories depend on the basis of root locus (i.e. 

phase and gain margins), which advised a control devices such as PID and lead/lag, 

which were used in turn at the few past decades and which still have the leading hand 

in most control devices for power system stability control (i.e. multi-band stabilizer).  

The gain margin and phase (Demello & Concordia, 1969) are used to design 

controllers which safeguard the stability in a certain mode with a pre-definite gain 

margins and phases. They use the frequency response of the open loop system to 

assist in the relative stability of the closed loop system. Therefore, the compensator 

function provides phase margins and sufficient gain to a particular mode, which will 
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provide the required specifications, but it should not have unacceptable opposing 

effects in other ways.  

Characteristics lead/lag is generally used to form the required margin. It should be 

noted that after the first version of design, the effect of gain and phase margin on 

other modes should be monitored, and any problems can be solved (e.g. by trial and 

error). Furthermore, the lead/lag is more suitable when two or more modes are to be 

governed with same compensator. As explained in (Demello & Concordia, 1969), 

small disturbance of a synchronous machine connected to an infinite bus can be 

eliminated by a control system, but this entails a compromise between the damping 

torque and the synchronization torque. For thyristor-type, a high gain regulator 

through an excitation control system has a very important effect, depending on the 

type of thyristor, related to the significant elimination effect on the negative 

component of synchronizing torque; at the same time it will have an adverse effect 

on the damping torque.  

A long investigation by (Larsen & Swann, 1981) on frequency response to analyse a 

conformation using a special stabilizing signal was derived from rotor speed and it 

has a significant amount of damping on the rotor angle. Using a different input 

signal, such as a combination of accelerating electrical power frequency signal and 

AC bus frequency signal as the system feedback signal, provides better results. 

Another approach is to use the power as feedback signal which it requires a lag/lead 

characteristic integrator as a compensating device which can cause adverse effects in 

case of mechanical power variations. After comparing the types of feedback signal, it 

is apparent that a combination of the two signals is more effective that using either 

the shaft speed of the AC bus frequency. This is more evidence for the efficacy of 

individual machines but with low sensitivity to oscillations. 

In most conventional stability controller system designs, frequency response methods 

are used such as root locus and Ruth stability, whereas modern control techniques are 

based on improving the electromechanical oscillation damping using the eigenvalues 

Evaluation, which leads to the difficulty of quantitative determination of damping 

from the swing curves supplied by simulation when examining the system response. 

The contribution of eigenvalue technique is clearly defined on all modes, which can 

be easily identified in light modes and which is important with various oscillation 
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modes. Many algorithms were developed to find the critical eigenvalues explicitly 

for the small signal stability analysis (Oliveira, Ramos, & Bretas, 2008). 

Large-scale systems require special treatment solution to save time. Reducing the 

model order of synchronous single machine connected to an infinite bus has been 

developed by (Altalib & Krause, 1976) through creating a model that shows the 

eigenvalues, which predicts the natural vibrations and introduces the rotor 

oscillations, which were accurately conserved. This is complemented by techniques 

of modal analysis scale systems to reduce the model size by dividing it into many 

areas the entire system (Price, Hargrave, Hurysz, Chow, & Hirsch, 1998), whereby 

each zone is represented by a generator. The results are the same as the complete 

system. All previous offers of employment with fixed gain PI or lead stabilizers 

phase shift gave an adequate response to the required nominal operating conditions, 

but when these points change, a very reasonable response is achieved, which is 

eliminating the need of modern control. 

4.6 Power Generators and Power Grid 

Electric power systems are mainly AC, in most cases with uniform frequency over 

the whole electrical power grid, as a result of using synchronous AC generators. The 

system voltages are held by generator excitation system control, and speed governors 

are used to control the generator main movers, to hold the system frequency within 

miniature acceptable limits in the electrical grids. The torque resulting from the 

interconnected AC generators depends on the relative angular displacement of each 

rotor, which acts to maintain the generators in synchronism, which is called 

synchronizing torques (Bakshi & Bakshi, 2009). Thus, if the angular displacement 

difference between generators increases, an electrical torque is produced that tries to 

reduce the angular displacement. The angular displacements should settle to values 

that sustain the required power flows through the transmission network and supply 

the system load. If the disturbance is large on the transmission system, the nonlinear 

nature of the synchronizing torque may not be able to return the generator angles to a 

steady state. Some or all generators then will lose synchronism and the system 

exhibits transient instability. On the other hand, if the disturbance is small, the 

synchronizing torques keeps the generators nominally in synchronism, but the 

generators’ relative angles oscillate. In a correctly designed and operated system, 
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these oscillations should decay. In an overstressed system, small disturbances may 

result in oscillations that increase in amplitude exponentially. 

Instability and oscillations in the electrical power system have occurred regularly 

around the world in the past of half century (Rogers, 1996). These appear after the 

power system is pressed to provide additional power. When the load is rapidly 

increased on the transmission lines by the consumer, the generators will rely more on 

their excitation systems to maintain synchronism, as shown in Figure 4.5. 

 

Figure 4.5: Block diagram of excitation control system. 

Finally at some point the synchronization of oscillations becomes unstable. As a 

result, to minimise operation costs, many electric systems become interconnected, so 

the power can be exchanged between power systems. However, the interrelationships 

between neighbouring electrical power systems, even though they may not be over 

loaded, are often weak compared to the connection to other systems. The 

synchronizing torque is lower, coupled with aggregate inertia of each system being 

interconnected through these weak ties, which leads to inter-area oscillations at lower 

frequency regions. Many cases of oscillatory instability occurred at low frequencies, 

during which interconnections are made (Rogers, 1996).  

A critical oscillation mode is called a local mode if it is strongly controllable in only 

one area and also strongly observable at this same area. Otherwise, it is called an 

inter-area mode. It should be noted that an inter-area mode can be strongly 

controllable and weakly observable in one area, but strongly observable and weakly 

controllable in another area; or strongly controllable in different areas (Feliachi & 

Yang, 1994). 
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A common problem of oscillatory instability is that the power flow can be large over 

the tie to supply remote load without any noticeable problems until the stability limit 

is achieved. A slight increase in the flow of energy outside the boundary of the 

results of the oscillation causes the amplitude to increase rapidly without any glitch 

in the system. The best case is when the system reduces the amplitudes of oscillation; 

in the worst case, the amplitude of the oscillation reaches the limit, whereby the lines 

trip and generation secured by the protective relays which causes total or partial 

system collapse (Feliachi & Yang, 1994). 

4.7 Simulations and Implementation 

Manual calculation for analysis of the stability of electrical power network is 

laborious and time-consuming, thus computing software programmes have been 

developed for this purpose, including but not limited to Matlab, SimPow, ETAP, 

ASPEN, BCP and IPSA. Matlab is the most widely used software due to its 

versatility and its strength for simulation. This is main reason behind using this 

software in this research to analyse and simulate different types of electrical network 

using the Simulink Power System Toolbox, which provides simulation of a simple 

electrical power grid, which includes two turbine-driven generators, one with 5000 

MW capacity and the other with 1000 MW capacity. These two generators are 

mutually connected to the grid via high voltage transformers, bas bar and transmission 

line with a length of 700 km, together with a load of 5000 MW as well as fault circuit 

breaker, as shown in Figure  4.6. Multi-band (MB) controller stabiliser is 

simultaneously used as an advanced conventional PSS controller for damping any 

oscillation in the network (Inamdar & Hasabe, 2009). Subsequently, in this thesis a 

fuzzy-logic PSS controller (FPSS) is used to replace the conventional PSS (MB) 

stabiliser to perform the same task. Furthermore comparison for its activity will be 

made with a PSS MB stabiliser.  
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Figure 4.6: Block diagram of the simulated Matlab power system toolbox (Larsen & Swann, 

1981). 

The system contains two separate controllers working together to govern two 

synchronized generators driven by two turbines linked at the same electrical network. 

In order to observe the final outcome effect of both stabilizers controller devices, a 

single observation point is set after the Static Var Compensator (SVC) on the grid, 

which will eliminate the need to observe the output of each controller separately. 

4.8 Static VAR Compensator   

The Static Var Compensator (SVC) is a shunt device of the Flexible AC 

Transmission Systems (FACTS) family using power electronics to control power 

flow and improve transient stability on power grids (Song & Johns, 1999) and 

(Zhang, Rehtanz, & Pal, 2006). The SVC regulates voltage at its terminals by 

controlling the amount of reactive power injected into or absorbed from the power 

system. When the system voltage is low, the SVC generates reactive power (SVC 

capacitive). When the system voltage is high, it absorbs reactive power (SVC 

inductive). The variation of reactive power is performed by switching three-phase 

capacitor banks and inductor banks connected on the secondary side of a coupling 

transformer. Each capacitor bank is switched on and off by three thyristor switches 

(Thyristor Switched Capacitor, TSC). Reactors are either switched on-off (Thyristor 

Switched Reactor, TSR) or phase-controlled (Thyristor Controlled Reactor, TCR). 

Figure  4.7 shows a single-line diagram of a static VAR compensator. 
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Figure 4.7: Single-line diagram of an SVC. 

4.9 Multi Band Stabiliser 

In 2005, the Institute of Electrical and Electronic Engineers (IEEE) introduced the 

newest type of conventional power system stabiliser model called multiband power 

system stabilizers (M.B.) PSS4B (Kamwa, Grondin, & Trudel, 2005). This gives a 

better performance than the regular power system stabilizers (PSSs). For this new 

type there are three levels of parallel control block, each of which aims to reduce the 

damping in different modes of oscillation and different ranges of frequency bands at 

the low frequency oscillation in the power system. It requires two input parameters, 

the high frequency and low with intermediate frequency (∆H, (∆L-I), similar to 

the IEEE PSS2B, which was integral to accelerating the power of PSS during the 

early 1990s as the first practical implementation of a digital PSS (Kamwa et al., 

2005). The underlying principle of the new IEEE PSS4B makes it sharply different 

by choosing tuning method for three different bands, to cover a wider frequency 

range, designed to handle the high frequency oscillations in the lower band, while the 

low and intermediate frequency oscillations are handled by the two upper bands, as 

shown in Figure  4.8. 
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Figure 4.8: Conceptual block diagram of the multiband PSS (IEEE PSS4B). 

4.10 Simulation Results 

To study and assess the robustness of any new device, it has to be tested under 

different scenarios covering a wide range of normal work situations, including any 

disturbance that may occur during the smooth work. This mainly causes actual 

disturbances to the system, while it simultaneously needs to evaluate and compare 

the response of the device with different types of similar equipment doing the same 

thing. In this case, implementing the different PSSs in the test by simulating 

Matlab/Simulink software showed that the performance of the PSS4B is obviously 

respectable, resulting in increased damping and reduced oscillation in the electrical 

network, but this can be improved by the new design presented in this research. 

The scenario which was chosen for this test, via closing the fault circuit breaker in 

three different ways after 0.8 sec of the start of the simulation, for a transition time of 

0.1 sec. (i) Via short circuit one phase to the ground. (ii) Via short circuit of two 

phases to the ground. (iii) Via short circuit of three phases to the ground. Two types 

of stabilisers (generic stabiliser (PSS2B) and multi-band stabiliser (PSS4B)) were 

used to control each turbine as advanced conventional MB stabiliser to improve the 

performance (Feliachi & Yang, 1994), (Inamdar & Hasabe, 2009) and (Ali, Tayeb, & 

Adam, ), as shown in Figures 4.9, 4.10 and 4.11. 
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Figure 4.9: Multi-band stabiliser response comparing with PSS2B and without PSSs during 

fault in one phase. 

 

Figure 4.10: Multi-band stabiliser response comparing with PSS2B and without PSSs during 

fault in two phases. 
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Figure 4.11: Multi-band stabiliser response comparing with PSS2B and without PSSs during 

fault in three phases. 

4.11 Summary 

Figures 4.9, 4.10 and 4.11 show the positive impact of the PSS devices on the 

electrical network systems, whereby the effect of the generic power system stabiliser 

PSS2B and multiband power system stabiliser PSS4B are convergent in terms of the 

first overshoot, but the PSS4B still works on damping the electrical network system 

more effectively than PSS2B, as well as doing its function with higher efficiency 

compared to the system stability if working without power system stabiliser PSSs at 

the three case scenarios, after malfunction in the system (i.e. making short circuits 

between one phase and ground, then between two phases and the ground, then 

between three phases and the ground, sequentially). As seen in the three figures, 

PSS4B works with high efficiency on over-shooting and damping of the system 

oscillation compared with PSS2B, which was working efficiently but slightly less 

than the PSS4B, and the system becomes completely unstable and oscillation grows 

after any type of faults when it works without power system stability devices. 
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Chapter 5: Intelligent Control and Optimisation of Power 

System Stabilisation 

5.1 Introduction 

The basis of life and nature in living organisms is to improve their situation; this is 

known as iterative Optimisation, and is as old as life itself. Many strategies can be 

conceivable, but only those that are effective are manifest in nature, propagating the 

continuation of species and offering a wide range of solutions. Mathematics itself 

arose as a framework with which to understand the world, to 'apprehend the 

Pythagorean power by which number holds sway above the flux', and many 

mathematical models to improve decisions explicitly or implicitly use biological 

behaviours as a starting point, drawing on models originating in genetics, ethics and 

even ethnology or psychology (Russell, 2009)and (Clerc, 2010).  

Particle swarm Optimisation (PSO) adopts the iterative method approach, with an 

emphasis on cooperation; partly it is random and without selection. This chapter 

details how this technique is used to design and solve the problem in power system 

stability. Its steps can be summarized in terms of designing a control device that can 

be tuned by SPSO, in several different stages, to control the system in any operating 

conditions (including unstable) and in different scenarios, to coordinate responses to 

extreme failures in the operating system, where one phase fault can cause the failure 

of three phase faults simultaneously. 

This chapter describes the current state of the intelligent Control and Optimisation of 

Power System Stabilisation (COPSS). It is organized into nine sections, including 

this introductory section, which is followed by a brief summary of the fuzzy logic 

controller then an explanation of the design and tune stable control system using 

fuzzy logic controller before the specific approach in neuro-fuzzy logic systems. The 

implementation of ANFIS-PSS controller and training them in different stages is then 

explained, involving (i) the single phase training, and (ii) the three phase training. 

The new ANFIS-PSS controller responses to ground fault in tie line in machines A 

and B is then explained and the power quality in the network is outlined. Section 

seven explains the auto tuning of scaling factors using intelligent Optimisation, and 
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section eight presents the simulation results of rotor speed deviation on both 

machines A and B, in addition to compare the power quality in the network. Section 

nine presents a summary of the chapter. 

5.2 Fuzzy Logic Control 

The fuzzy logic controller recently has become a favourable solution receiving a 

great deal of attention in various applications, most notably in the field of electronic 

energy (Mohammadpour, Mirhoseini, & Shoulaie, 2009), (Ajami, Taheri, & 

Younesi, 2009). The trait of control devices that operate on the principle of fuzzy 

logic are more competitive in terms of the low price, ease of control and tuning and 

robustness; additionally, the mathematical scheme model of fuzzy logic controller 

does not need to explain the system under study. However, in fuzzy control, to select 

the parameters related with the membership functions and the rules depends 

extensively on the intuition of the engineer, which is the main problem with this 

solution. Moreover, fuzzy systems are essentially approximate systems to produce a 

general solution to the adjusting problem. In the case of a control problem including 

dynamic nonlinear systems, the fuzzy logic control and artificial neural network 

work together as two methodologies called neuro-fuzzy systems. Both 

methodologies are powerful design methods with their own strengths and 

weaknesses, but together they can help to decrease the design time and manage the 

complexity (Ansarian, Sadeghzadeh, Nasrabadi, & Shakouri, 2005) , (Rojas, Bernier, 

Rodriguez-Alvarez, & Prieto, 2000) . Therefore, the adaptive neuro fuzzy inference 

system (ANFIS) controllers are utilized due to the power system stabilizer, which 

acts as a damping controller to control and improve the power system stability of the 

electrical power networks.  

In this chapter a new power system stabiliser (PSS) is implemented to alleviate the 

oscillation and improve the power system stability by designing fuzzy logic 

controller (FLC) strategy, which replaces the conventional power system stabilizer. 

To reach this design goal necessitates several stages, as described below with the 

obtained results. 
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5.3 FPSS Controllers  

Fuzzy logic controller (FLC) devices vary in terms of choice of different parameters 

in the rule base and membership functions. In this research the design was executed 

via Matlab/Simulink program (J. Jang & Sun, 1995). 

5.3.1 Design 

Usually, the design and tuning of a stable control system for small and known 

process transfer functions is done by knowledge of basic characteristics of the 

transient response of a closed-loop system, which is closely related to the location of 

the closed-loop poles. A simple graphical method for finding the roots of the 

characteristic equation was developed by (Evans, 1950), and used extensively in 

control engineering. This method, called the root-locus method, plots the roots of the 

characteristic equation for all values of system parameters then locating them on the 

graph. If the system has a variable loop gain, then the location of the closed-loop 

poles depends on the value of the loop gain chosen. Selecting the right gain is the 

main task in this part of search, enabling the designer to know how the closed-loop 

poles move in the S-plane as the loop gain is varied. From the design viewpoint, in 

some systems simple gain adjustment may move the closed-loop poles to desired 

locations, then the design problem may become the selection of an appropriate gain 

value. If the gain adjustment alone does not yield a desired result, the addition of a 

compensator to the system becomes necessary. Also in our case the problems are 

more complicated and laborious in terms of selecting the appropriate gain value, as 

shown in Figure  5.1 and Figure  5.2, for FLC1 Ke1, Kc1, Ko1 and Ke2, Kc2, Ko2 for 

FLC2 respectively as use one PSS controller on each generator. 

M2 

5000 MVA 
 13.8 KV/500 KV

Yg/D Line 1

350 Km

Line 2

350 Km

SVC

200 Mvar

B1 B2 B3

5000 MW

500 KV/13.8 KV

D/Yg

M1 

1000 MVA 

 

Figure 5.1: Two generators connected together in a small network. 
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In the design of fuzzy logic controller, the first stage is to choose the correct input 

signal. In this research the generator speed deviation (Δω), and its derivative (Δώ) 

are two signals considered as two inputs for the controller, which work as (FPSS) 

controller, as shown in shown in Figure  5.2.  

 

Figure 5.2: Generalized FLC auxiliary fuzzy controller and Structure of FLC. 

These two signals are used as rule-antecedent (IF-part) in the formation of rule base, 

and the output of controller is used to represent the contents of the rule consequent 

(THEN-part) in performing of rule base (Bevrani & Daneshmand, 2012), which is 

injected into the input of the excitation circuit controller.  

In this part, the inputs and the output singles are normalized for the base values 

defined for the system. The fuzzy value of controller can be explained by the frame 

and number of the membership functions (for the inputs and output) described off-

line. The S-shaped membership function (Smf) and Z-shaped membership function 

(Zmf) are employed for the inputs and output fuzzy sets of the FLC. The designed 

membership functions for: ∆, ∆ώ as inputs and ∆u as output are shown in 

Figure  5.3. Heuristically selected fuzzy rules obtain the control rules of the fuzzy 

controller as described below: 

The rules base with two suggested input for the fuzzy set membership are determined 

as: N: Negative, Z: Zero, P: Positive, respectively. 

1. If (∆ is N) and (∆ώ is N) then (∆u is N) 

2. If (∆ is N) and (∆ώ is P) then (∆u is Z) 

3. If (∆ is P) and (∆ώ is N) then (∆u is Z) 

4. If (∆ is P) and (∆ώ is P) then (∆u is P)  
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Figure 5.3: Membership functions for inputs and output fuzzy sets of the FLC. 

The construction of the FLC control surface is displayed in Figure  5.4. The basic 

steps followed for designing the FLC controller in Matlab / Simulink are outlined in 
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Figure 5.4: Control surface of ANFIS-based FPSS controller. 

5.3.2 Determining the Scaling Factors 

In the proposed fuzzy power system stabilizer, FPSS, has two inputs and a single 

output, as shown in Figure  5.5; the two inputs gain Ke, Kc and one output Ko, for the 

error (e), change of error (ce) and output respectively, for each controller. 
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Figure 5.5: Block diagram for FLC controller. 
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into its physical domain (output de-normalization). For this controller, normalization 

is obtained by dividing each crisp input on the upper boundary value for the 

associated universe (Subbaraj & Manickavasagam, 2008). 

5.3.3 Membership Function Definition 

The vagueness of the decision maker in selecting an adequate plan in fuzzy logic 

programming is reflected as the degree of satisfaction through the shapes of 

membership functions. Depending on the strictness of objective attainment, it is 

assumed that the three kinds of membership functions are as shown in Figure  5.6. 

(Baer et al., 2000). Hence, to convert the measured input variables of the FPSS into 

suitable linguistic variables, the triangle shapes with three fuzzy subset functions is 

one of various types of membership functions are given below: 

 Triangular Membership Function 

 Gaussian Membership Function. 

 Trapezoidal Membership Function. 

 Sigmoidal Membership Function. 

 Generalized bell Membership Function. 

The choice of membership functions for each linguistic variable must be performed. 

This is can be done by classification of control inputs and output into classed fuzzy 

sets. 



Chapter Five: Intelligent Control and Optimization of Power System Stabilisation 

105 

 

 

Figure 5.6: Gaussian membership functions. 
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table represents a rule which are as follows: positive (P); big positive (BP); zero (Z); 

negative (N); big negative (BN). 

 

Figure 5.7: The linguistic of speed deviation. 

Table 5.1: Rule table for FPSS. 

Speed 

Deviation (e) 

Speed Deviation Change  

(ce) 

dw_n dw_z dw_ p 

w_n BP P Z 

w_z P Z N 

w_p Z N BN 

5.3.4 Manual Tuning of the Scaling Factors  

In this stage, to improve the FLCs response, the FLCs scaling factors are tuned 

manually, which is dubbed for the first generator controller as Ke1 for the error gain, 

Kc1 gain for the change of error and Ko1 is the output gain. For the second generator 

controller, Ke2 is the error gain, Kc2 is the gain for change of error and Ko2 is the 

output gain. The best value established for Ke1 = 2, Kc1 = 3.75, Ko1 = 2.25 and Ke2 

= 5, Kc2 = 3.75, Ko2 = 10, as shown in Table  5.2. 

Table 5.2: Manual tuning of the FLC scaling factors. 

 FLC1 FLC2 

 Ke1 Kc1 Ko1 Ke2 Kc2 Ko2 

Manual 

Tuning 
2 3.75 2.25 5 3.75 10 

e 
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P 
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N 

+(c-

-(c-- (ce) 
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5.3.5 Simulation Results 

This section presents some results as a sample of tuning FLC controller, and 

compares them with M B stabilizer.  Figure  5.8 to Figure  5.10 illustrate the grid 

power (Vm) in pu as a response of the whole system after Static Var Compensator 

(SVC) during fault in one, two and three phase correspondingly without PSS 

stabilizer, with conventional power system stabiliser (CPSS) called multi band (MB) 

stabiliser and with FLC stabiliser tuned manually. The response of FLC controllers is 

to dampen the output of all systems after a few repetitions, thus it is better to run 

without PSS stabiliser case, but still lower than conventional stabiliser MB PSS, 

because low range of membership can be selected for three kinds of membership 

functions, as shown in Figure  5.6. This means a small range of membership functions 

is available for highly complex systems, resulting in low sensitive action on the final 

response from this controller. However, the reason for execution this stage to become 

more familiar with FLC designs. The main target is to focus on the next stage which 

is dealing with training of FLC using Adaptive Neuro-Fuzzy Inference System 

(ANFIS), and auto tuning of the scaling factors using Particle Swarm Optimisation 

(PSO), for both controllers (FLC1 & FLC2) in the process at the same time.  

 

Figure 5.8: System behaviours during one phase fault Simulation results. 
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Figure 5.9: System behaviours during two phase fault simulation results. 

 

Figure 5.10: System behaviours during three phase fault simulation results. 
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5.4 Adaptive Neuro Fuzzy Inference System  

ANFIS gives significant results in nonlinear function modelling type (J. R. Jang, 

Sun, & Mizutani, 1997). The ANFIS is new technique for determining the behaviour 

of imprecisely defined complex dynamical systems, based on improved tool and a 

data driven modelling approach. On the other hand, it has human-like expertise, to 

adapt itself and learn from others, to do its functions with high efficiency in different 

environments (Kurian, George, Bhat, & Aithal, 2006b). From a given input/output 

data set ANFIS can generate unknown fuzzy rules. A typical ANFIS architecture is 

shown in Figure  5.11.  
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Figure 5.11: A typical ANFIS architecture (Schwefel, 1981). 

Figure  5.11, shows two inputs x and y while z is the final output. The linguistic 

labelling of the system, represented by A1, A2, B1 and B2, are associated with node 

function. (Wi) is the normalized firing strength to signify the ratio of the i
th

 rule’s 

firing strength (Wi) to the sum of the first and second rules’ firing strengths (𝑊1̅̅ ̅̅̅ and 

𝑊2̅̅ ̅̅̅). The given concept of ANFIS construction can be described using a simple 

pattern whose rule base is given below: 

Rule 1: If x is A1 and y is B1 then 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1                                                                     (5.1) 

Rule 2: If x is A2 and y is B2 then 
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𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2                                                                     (5.2) 

Each node of the layer 1 is a node with a function adaptation node, which may be a 

Gaussian membership function or any other membership functions. 

𝑄𝑖
1 = µ𝐴𝑖(𝑥),                 𝑓𝑜𝑟 𝑖 = 1,2                                                                 (5.3)  

𝑄𝑖
2 = µ𝐵𝑖(𝑦),               𝑓𝑜𝑟 𝑖 = 1,2                                                                   (5.4)  

where x and y are the input to node i, and Ai and Bi are the linguistic labels (small, 

large, etc.) associated with this node function. In other words, Qi
1
 is the membership 

function of Ai or Bi and it specifies the degree to which the given x and y satisfies the 

quantifier Ai and Bi. Usually we choose µAi and µBi to be bell-shaped with maximum 

equal to 1 and minimum equal to 0, such as the generalized bell function (J. Jang, 

1993b), (Takagi & Sugeno, 1983). 

µ𝐴𝑖(𝑥) =
1

1 + [(
𝑥 − 𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

                                                                          (5.5) 

or Gaussian 

µ𝐴𝑖(𝑥) = 𝑒𝑥𝑝 [− (
𝑥 − 𝑐𝑖

𝑎𝑖
)

2

]                                                                          (5.6) 

where premise parameters (ai, ci, bi) are the parameter set.  

Each node of layer 2 is fixed and labelled as Π, which demonstrates the firing 

strength of each rule: 

𝑄𝑖
3 = 𝑊𝑖 = µ𝐴𝑖(𝑥) × µ𝐵𝑖(𝑦), 𝑓𝑜𝑟 𝑖 = 1,2                                                  (5.7)  

Also the nodes of layer 3 are the i-th node, which compute the ratio of each rule's 

firing strength to the sum of all rules' firing strengths, representing the normalized 

firing strength of each rule and labelled with N.  

�̅�𝑖 = 
𝑊𝑖

𝑊1 + 𝑊2
 , 𝑖 = 1,2                                                                                  (5.8) 

Each node of layer 4 is an adaptive node, with the individual nodes. 
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𝑄𝑖
4 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                                                (5.9) 

In layer 5 is labelled Σ, where the total output (f) is the sum of all incoming signals 

as shown in equation 5.10. 

𝑄𝑖
5 = ∑ �̅�𝑖𝑓𝑖 = 

𝑖

∑ 𝑊𝑖𝑓𝑖𝑖

∑ 𝑊𝑖𝑖
                                                                           (5.10) 

5.5 Implementation of ANFIS-PSS Controller 

As explained in the previous paragraph, the stability of a linear closed-loop system 

can be determined from the location of the closed-loop poles by illustrating graph of 

root-locus in the left-half of S plane. If any of these poles lie on the right-half of the 

S plane, then with increasing time they give rise to the dominant mode, and the 

transient response increases monotonically or oscillate with increasing amplitude, 

representing an unstable system. In such a power system, as soon as the power is 

turned on, the output may increase with time. If no saturation takes place in the 

system and no mechanical stop is provided, then the system may eventually be 

subjected to damage and fail, since the response of a real physical system cannot 

increase indefinitely. Therefore, closed-loop poles lie to the left of the jω axis; any 

transient response eventually reaches equilibrium.  

As mentioned earlier manual tuning is one method of tuning enabling the comparison 

of different stabiliser responses by observing the behaviour of whole system 

characteristics after disturbance from artificial faults (by short circuit phases with the 

ground for a short time period).  

5.5.1 Training (Single to Three Phases) 

In order to increase the controller response quality, the FLC was trained using a 

learning signal form M B stabiliser using the ANFIS architecture (J. Jang, 1993b). 

The training is done in two steps: simulation with disruption in the national grid 

network by the occurrence of short circuit between one phase and the ground; and a 

short circuit occurrence between three phase and the ground for a period of time of 

0.1 milliseconds. For this purpose the outcome of the training is kept in files called 

ANFIS1D and ANFIS2D for each controller (FLC1 and FLC2 respectively). In terms 
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of expertise and experience, the training on the three phase fault is significantly 

better than single phase fault training, as shown in Figure  5.12. 

Two types of ANFIS setting are used to produce a new controller, consisting of a 

combination of two types of fault used in this model, as explained below. 

5.5.2 Single Phase Fault Training  

In the first case, the system was trained on data generated using MB-PSS with 

simplified settings: IEEE type PSS4B, during single-phase fault which is dubbed as 

S-training. The single phase short circuit to the ground starts at time 0.8 sec and 

terminate at time 0.9 sec. Two controllers were trained, one for each generator, as 

they differ in their power ratings, as shown in Figure  5.13. ANFIS editor was used 

with the following parameters: 

Error Tolerance: 0.001 (maximum error may be obtained) 

Epochs: 50 (number of iterations) 

Number of MF: 9 (number of membership functions) 

Input MF Type: gauss2mf (input membership function type) 

Output MF Type: linear (output membership function type) 

ANFIS info:  

 Number of nodes: 35 

 Number of linear parameters: 27 

 Number of nonlinear parameters: 24 

 Total number of parameters: 51 

 Number of training data pairs: 20001 

 Number of checking data pairs: 0 

 Number of fuzzy rules: 9 
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Figure 5.12: FLC training in ANFIS editor. 

 

Figure 5.13: ANFIS editor parameters. 
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The scaling factors were manually tuned. After this training, the controller simulation 

results show that the system generated acceptable results in the case of a single-phase 

fault. Figure  5.14 shows the response of the system using the MB and the FLC 

controllers. It is clearly shown that the FLC achieved faster settling time. However, 

using the same controller, the system was tested with two and three faults. 

Figure  5.15 and Figure  5.16 show the system’s response for both controllers. 

Furthermore these two figures show that both controllers have achieved the same 

settling time but the FLC has higher overshoot because it was trained on one phase 

fault. 

 

Figure 5.14:System’sresponsetoonephasefaultwithsinglephasetraining. 
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Figure 5.15:System’sresponsetotwophasefaults with single phase training. 

 

Figure 5.16:System’sresponsetothreephasefaultswithsinglephasetraining. 
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8% overshoot. Figure  5.16 shows the ANFIS response to the three phase fault, which 

reduced the settling time from 3 sec to 2.7 sec. With fluctuation of two peaks 

according to the MB controller with four peaks, 11.4% overshoot occurs, lower than 

the ANFIS controller. The results are tabulated in Table  5.3. 

Table 5.3: Simulation results for three phase fault with single phase training. 

 Multi Band Controller ANFIS Controller (manual tuning) 

Settling 

time (sec) 

Overshoot 

(%) 
Fluctuation 

Settling 

time (sec) 

Overshoot 

(%) 
Fluctuation 

1 phase fault 2.50 5.24 4 peaks 1.85 5.0 2 peaks 

2 phase fault 2.85 8.00 4 peaks 2.00 6.5 2 peaks 

3 phase fault 3.00 11.40 4 peaks 2.70 14.2 2 peaks 

5.5.3 Three Phase-Training  

In this case, the FLC1 and FLC2 were trained on data generated using MB-PSS with 

simplified settings: IEEE type PSS4B, during three phase fault conditions (dubbed 

three phase training). The three phase on tie-line short circuit to the ground starts at 

time 1.8 sec and terminates at time 1.9 sec, as shown in Figure  5.17. ANFIS editor is 

used with the following parameters: 

Error Tolerance: 0.001 (maximum error may be obtained) 

Epochs: 30 (number of iterations) 

Number of MF: 9 (number of membership function) 

Input MF Type: gauss2mf (input membership function type) 

Output MF Type: linear (output membership function type) 
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Figure 5.17: FLC training in ANFIS editor. 

The two FLCs controllers were trained for each generator and the system was 

simulated to different fault conditions (single and multi-phase conditions). 

Simulation results show that the controller performed well for single, two and three 

phase fault, as shown in Figure  5.18 to Figure  5.20 (respectively). 
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Figure 5.19:System’sresponsetotwophase faults with three phase training. 

 

Figure 5.20:System’sresponsetothreephasefaultswiththreephasetraining. 
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phase, the FLC reacted with high efficiency, reducing the overshoot from 11.4% to 

1.5% and the stability period from 3 sec to 2.5 sec. However, a small delay in final 

response was noted, as shown in Figure  5.20. The numerical results are shown in 

Table  5.4 

Table 5.4: Simulation results for three phase fault with three phase training. 

 

Multi Band Controller ANFIS Controller (manual tuning) 

Settling 

time (sec) 

Overshoot 

(%) 
Fluctuation 

Settling 

time (sec) 

Overshoot 

(%) 
Fluctuation 

1 phase fault 2.5 5.2 4 peaks 1.75 4 2 peaks 

2 phase fault 2.9 8 4 peaks 1.9 1.8 2 peaks 

3 phase fault 3 11.4 4 peaks 2.5 1.5 1 peak 

5.6 ANFIS PSS Response to Ground Fault in Tie Line 

The complete power system model with FLC is simulated using Matlab/Simulink 

toolbox, which provides a simulation sample of the electrical power grid, including 

in this case two generators, one with 5000 MW capacity and the other with 1000 

MW capacity, both turbine-driven. These two generators are mutually connected to 

the grid via high voltage transformers and bas bar line with length of 700 km together 

with a load of 5000 MW as well as fault breaker, as explained in chapter four. In this 

case we will test the FLC controller when manually tuned, and compare it with Multi 

Band (MB) controller, one of the newest and most advanced conventional 

controllers, to drive the power stability control for both machines, and to compare the 

response of different controllers used to tune this model when three phase to ground 

fault in tie-line occurs.  

5.6.1 Rotor Speed Deviation on Machine A with (Manual Tuning) 

Figure  5.21 to Figure  5.23 show the generator speed deviation responses on Machine 

A during scenarios, with manually tuning of scale of factor. The rotor speed 

deviation after fault for Machine A, as a reflection of FLC1 reactions for three types 

of faults single, double and three phase fault, displays good efficiency (almost 

identical to the multi band power stability controller). 
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Figure 5.21: Rotor speed deviation at Machine A for one phase fault. 

 

Figure 5.22: Rotor speed deviation at Machine A for two phase fault. 
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Figure 5.23: Rotor speed deviation at Machine A for three phase fault. 
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time (sec) 
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(%)x10
-3 Fluctuation 
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(%) x10
-3

 
Fluctuation 

1 phase fault 4.2 0.4 3 peaks 2.4 0.08 1 peaks 

2 phase fault 3.6 0.8 4 peaks 2.2 0.15 2 peaks 

3 phase fault 3.5 1.2 4 peaks 2 0.2 1 peak 
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Figure 5.24: Rotor speed deviation at Machine B for one phase fault. 

 

Figure 5.25: Rotor speed deviation at Machine B for two phase fault. 
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Figure 5.26: Rotor speed deviation at Machine B for three phase fault. 
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Figure 5.27: System behaviours during one phase fault. 

 

Figure 5.28: System behaviours during two phase fault. 
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Figure 5.29: System behaviours during three phase fault. 

The system stability is within ±1.2% of output, as shown in Figure  5.27; the response 

of the FLC controller with one fault reduced the stability time from 2.5 sec to 1.75 

sec with fluctuation of two peaks compared to the MB controller. In Figure  5.28, the 

FLC reduced the stability time from 2.9 sec to 1.9 sec, with less fluctuation 

compared to the MB controller, and smaller overshoot for FLC (1.8% compared to 

8% of the MB). In three phase fault the FLC reacted with high efficiency, reducing 

the overshoot from 11.4% to 1.5% and the stability period from 3 sec to 2.5 sec, with 

a minor delay in final response, as shown in Figure  5.29. The numerical results are 

shown in Table  5.6, which compares the behaviour of MB stabiliser with fuzzy logic 

controller auto-trained and manually tuned FLCMT. 

Table 5.6: Simulation results for three phase fault with three phase training. 
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(%) 
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1 phase fault 2.5 5.2 4 peaks 1.75 4 2 peaks 

2 phase fault 2.9 8 4 peaks 1.9 1.8 2 peaks 

3 phase fault 3 11.4 4 peaks 2.5 1.5 1 peak 
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5.7 Auto Tuning of Scaling Factors 

Particle swarm Optimisation was selected as the Optimisation search method, as 

explained in chapters two and three. This section presents the results of using the 

algorithm to find the best values of scale of factor for both power system stability 

controllers; as explained below, the results were very satisfactory. 

5.7.1 Intelligent Optimisation and Cost Function 

In this stage the scaling factors of fuzzy logic controllers will be selected 

automatically using particle swarm Optimisation to improve the response of both 

controllers. By tuning the power system stability control in the electric grid, the 

actual rate of speed deviation and speed error can be monitored and analysed for 

each unit of electric power generation in the network. The different ratios of main 

objectives must be observed, which can be controlled depending on the type and 

requirements of the system to be controlled. In this case each of the following four 

variables affecting the final output (Vm) after Static Var Compensator (SVC) of 

whole system was monitored: 

 Minimising the settling time. 

 Minimising steady state error. 

 Minimising the overshoot.  

 Minimising the first negative off peak.  

The SPSO programme was used to tune all controllers in the system with objective 

function to minimise the weight average for the following objectives: settling time, 

steady state error, overshoot and first negative peak. 

𝐽 = ∫ [𝑤1|𝑒(𝑡)|]𝑑𝑡 + 𝑤2𝑃𝑣 + 𝑤3𝑂𝑆 + 𝑤4𝑡𝑙𝑎𝑔                              (5.11)
𝑚𝑎𝑥

0

 

where e(t) is system error, Pv is the peak value, OS is the overshoot, tlag is the lag time 

and w1,w2, w3, w4 are coefficient parameters which reset to the following values 0.45, 

0.2, 0.2 and 0.15 respectively.  
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5.7.2 Particle Swarm Optimisation  

Particle swarm Optimisation is a global minimization technique for dealing with 

problems in which a best solution can be represented as a point and/or a velocity. 

Each particle assigns a value to its position, based on certain metrics, and remembers 

the best position seen, which it communicates to the other members of the swarm. 

The particles adjust their own positions and velocity based on this information. The 

communication can be common to the whole swarm, or be divided into local 

neighbourhoods of particles (Kennedy & Eberhart, 1995a). 

5.7.3 FLCPSS Auto Tuning 

In this stage of the controller design the particle swarm Optimisation theory was used 

to optimize the selection of the scaling factors. The optimiser’s objective function is 

based on four objectives: steady state error, settling time, overshoot, and the negative 

peak. The first and second objective has the highest priority, while the third has the 

next priority, and the fourth objective has the least priority (Jiang, Zheng, & Chen, 

2007). The aim is to reduce the settling time first, then reduce the overshoot, and the 

last objective is to reduce the first negative peak of oscillation. The optimized values 

and comparison of the scaling factors between the fuzzy logic controller auto-trained 

and manually tuned FLCMT, and fuzzy logic controller auto-trained and auto-tuned 

FLCAT were as follows: for FLC1 Ke1 = 0.862, Kc1 = 2.088 and Ko1 = 2.080, while 

for FLC2 Ke2 = 3.820, Kc2 = 4.811 and Ko2 = 6.620 as shown in Table  5.7.  

Table 5.7: Final value for auto-tuning scaling factor. 

 
FLC1 FLC2 

Ke1 Kc1 Ko1 Ke2 Kc2 Ko2 

Manual Tuning 

( 𝐹𝐿𝐶𝑀𝑇) 
2 3.75 2.25 5 3.75 10 

Auto. Tuning 

( 𝐹𝐿𝐶𝐴𝑇) 
0.862 2.088 2.080 3.820 4.811 6.620 
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5.8 Simulation Results  

5.8.1 Rotor Speed Deviation on Machine A with Auto Tuning 

Figure  5.30 to Figure  5.32 show generator speed deviation responses on the Machine 

A during scenarios, with auto tuning for the scale of factor. The rotor speed deviation 

after fault for Machine A, as a reflection of FLC1 reactions for three types of faults 

single, double and three phase fault, was highly efficient in terms of overshoot at the 

second and third harmonic, slightly more stable compared with the multi band power 

stability controller and fuzzy logic manually tuned controller (FLCMT). Table  5.8 

shows the comparison between three power system stabiliser (M.B, FLCMT and 

FLCAT). 

Table 5.8: Speed deviation response for three phase fault with three phase training and auto 

tuning (Machine A). 
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Figure 5.30: System behaviours during one phase fault. 

 

Figure 5.31: System behaviours during two phase fault. 
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Figure 5.32: System behaviours during three phase fault. 
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Table 5.9: Speed deviation response for three phase fault with three phase training. and auto 

tuning (Machine B). 
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Figure 5.33: System behaviours during one phase fault. 
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Figure 5.34: System behaviours during two phase fault. 

 

Figure 5.35: System behaviours during three phase fault. 
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5.8.3 Power Quality Control with Auto Tuning 

In order to test the network as a whole package, as well as to monitoring the quality 

control, the voltages were observed in the network during all test conditions. 

Figure  5.36 to Figure  5.38 show the response of the system to the faults and illustrate 

the comparison between MB stabilizer, controller auto-trained and manually tuned 

FLCMT and auto-trained and auto-tuned FLCAT. As mentioned previously, the best 

values established automatically by the optimiser are: for Ke1 = 0.862, Kc1 = 2.088, 

Ko1 = 2.080 and Ke2 = 3.820, Kc2 = 4.811, Ko2 = 6.620.  

The simulation results are shown in Figure  5.36 to Figure  5.38 for single, double, and 

triple phase faults respectively for three type of stabiliser (M.B) PSS, (FLCMT) PSS 

and (FLCAT) PSS. 

 

Figure 5.36: System behaviours during one phase fault. 
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Figure 5.37: System behaviours during two phase fault. 

 

Figure 5.38: System behaviours during three phase fault. 
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5.9 Summary  

From the simulations it is clear that using SPSO as an Optimisation technique gives 

good results. FLC based on SPSO obtains the advantages of FLC (as fuzzy logic 

technique) and the advantages of SPSO as an Optimisation technique, selecting the 

best values to obtain the best results with minimum error in a fast way. Thus the new 

controller (FLC based on SPSO) is capable of damping oscillations, increasing 

system stability with minimum energy consumed in fast way, and it has maximum 

sensitivity to changes in operating conditions. FLC based on SPSO controller has a 

better response than conventional PSS controller in tuning lead compensator with 

lagging power factor load (commonly use), and nearly the same response in tuning 

the lead compensator with leading power factor load. 
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Chapter 6: Supervisory Control 

6.1 Introduction 

The general understanding of the supervisory control is one or more human operators 

continually programming and receiving information from a computer interconnected 

through artificial effectors and sensors to the controlled process or task environment 

(Sheridan, 1992). Supervisory expert control concentrates on general information 

about the process and the controller. The decision-making in the supervisory control 

system is related to situations involving major disturbances, technical faults, 

inappropriate human actions, and a combination of such events (Rasmussen, 1985). 

In such events the established control algorithm does not apply, and the planning for 

proper actions by the controller depends on knowledge about the functional 

properties of the system. Planning for a new control strategy will depend on 

information about the process characteristics in a specific situation. Such a system 

should be capable of performing the following tasks: monitoring the performance of 

the controller and the process, detecting possible system component failure or 

malfunctioning and replacing the control algorithm to maintain stability and selecting 

the appropriate control algorithm best suited for a particular situation. Such a system 

can be formed in a closed loop to provide a conceptualized hierarchical system which 

consists of a supervision level as the highest hierarchical level, and the basic control 

level as the lowest. In general, more tasks can be handled by the supervisory control 

algorithm (De Silva & MacFarlane, 2007) (e.g. start up and shut down procedures, 

process Optimisation, fault diagnosis, response to malfunctioning behaviour, pattern 

recognition start and stop parameters estimation, and alarm handling procedure). 

This chapter describes the design and implementation of advanced Supervisory 

Power System Stability Controller (SPSSC) using Neuro-fuzzy system, and Matlab 

S-function tool, whereby the controller is taught from data generated by simulating 

the system for the optimal control regime. The controller is compared to a multi-band 

control system which is utilized to stabilize the system for different operating 

conditions. Simulation results show that the supervisory power system stability 

controller produced better control action in stabilizing the system for conditions such 

as: normal, after disturbance in the electrical grid as a result of changing of the plant 
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capacity like switching renewable energy units, high load reduction or in the worst 

case of fault in operating the system, e.g. phase short circuit to ground. The new 

controller decreased the settling time and overshoot after disturbances, which means 

that the system can reach stability in the shortest time with minimum disruption. 

Such behaviour improves the quality of the provided power to the power grid. 

The chapter is organized into five sections, including this introductory section, which 

is followed by a brief summary of supervisory control system then an explanation of 

the design and development of hierarchical supervisory control system using fuzzy 

logic controller. The Optimisation of the controller and fault detection with diagnosis 

in different stages is then explained, involving scaled-up the system and auto tuning 

the controller, and the new supervisory controller response to single, multi-phase 

fault and scenario of consecutive serious fault. Section five presents a summary of 

the chapter. 

6.2 Supervisory Control 

To analyse and study any system, modal is a very important step since it is related to 

process characterization and design studies. Previously, it was thought that a 

complicated mathematical approach could model a system more accurately, but this 

still has problems when non-linear, complicated and undefined systems are 

encountered. Conversely, the human mind can easily reach a very good result when 

dealing with very complicated system, such as food preparation, playing football, 

dealing with machines such as driving a car off-road and so on; all of these tasks can 

be executed with no consideration of mathematical models that describe the 

processes. However, there are great potential applications of such models developed 

during the past few decades, with the emergence of models that can function similar 

to human thinking, using fuzzy set theory proposed by Zadeh (Zadeh, 1996). Later, 

several authors conducted research into fuzzy modal, which divided into six different 

methods (Abbod, von Keyserlingk, Linkens, & Mahfouf, 2001)  : 

1. Verbalization or linguistics through interaction with the human operator 

or domain expert (Kickert, 1979), (Kiszka, Kochanska, & Sliwinska, 

1985) and (Matsushima & Sugiyama, 1985). 
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2. Logic analysis of the input and output data, (R. M. Tong, 1978) and (R. 

Tong, 1980). 

3. Fuzzy implication and reasoning algorithms to identify fuzzy models 

(Sugeno & Tanaka, 1991). 

4. Identification and self-learning algorithms fuzzy modelling of (multi-

input / single-output) MISO systems (Xu & Lu, 1987). 

5. Learning signals to create a rule-base (Van Der Rhee, van Nauta Lemke, 

Hans R, & Dijkman, 1990). 

6. Self-organizing fuzzy modal algorithm to model the system via on-line 

input and output data (Moore & Harris, 1992). 

In order to increase the efficiency of the fuzzy controllers, and cover some of their 

associated problems such as non-minimum phase processes, knowledge-based fuzzy 

modelling approach is used to model non-linear systems in general, with particular 

applications in the electric power network, which faces several problems in 

connection and loss of large loads from the grid at peak times. A supervisory self-

monitors and decision fuzzy logic control (SSMDFLC) structure was developed by 

(Sallama, Abbod, & Turner, 2012). The system consists of a first level for network 

monitoring to note any irregular change during normal operation. In the second level, 

after noting the change, logical analyses and comparison are performed through 

which a fault can be identified. In the third level, which was trained to perform the 

supervisory control, the appropriate decision is mode depending on the fault type.  

6.2.1 Hierarchical Supervisory Control 

Supervisory control involves tracking and focusing on specific information about the 

process and controller, monitoring the system and detecting the controller 

performance when disturbances or change occur in the controlled system in order to 

maintain the basic requirements such as stability and select the appropriate tuning of 

the controller, as suited to the specific situation. The system consists of a hierarchy 

construction of three levels, as shown in Figure  6.1. The highest level of supervisory 

control performs all the decision-making, observing any failures in the system and 

diagnosing the fault type, then making an appropriate decision. The observer level is 

an interface between the different levels of the control system and the high level. The 

lower level works to adjust for level control. For a simple closed circuit using any 
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control device parameters in any system, certain behaviours are acceptable while 

others are not. 

FLC Controllers
Power system 

(process)

Observer 

Rule BaseDecision- Making

+

_

 

Figure 6.1: Supervisory block diagram. 

Acceptable performance in normal operating conditions may include distorted 

signals due to noise. Unwanted behaviours are caused by changes in the physical 

structure of the system. Certain types of undesired behaviours can be simple changes 

in process parameters, which can arise from the interference of actuators, sensors, or 

the internal structure of the system. It is also possible that behavioural patterns 

resulting from large load change in the power system network lead to change in the 

system parameters where are not explicitly identified or observed. Another problem 

associated with the defective instruments can be detected by comparing the output 

signal of the system itself with the reference system. It is now possible to define two 

types of unacceptable behaviours, dysfunction and erratic behaviour. Dysfunction 

operation is caused by changes in process parameters and is corrected by the 

controller, which processes change in the control parameter in order to overcome the 

fault. However, the erratic behaviour must be diagnosed to find the defective part 

then corrected by the primary or adaptive control, in order to get acceptable 

behaviour of the system as a result of those actions. The supervisory level must also 

have an alarm-handing facility, so that when a fault occurs and is detected firstly an 

alarm issued. 
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6.2.2 Optimisation of the Controller 

There are two main problems to be tackled in the optimiser parameters Optimisation 

program: one is data coding, namely population expression, the other is how to 

choose the fitness function. Since the most original Optimisation algorithm is 

designed for real-value problems, so the controller parameters optimize problem is 

easily solved. As for choosing the fitness function, in the case of PID controller 

parameter several fitness functions have been widely used, chosen according to the 

project demand. The Optimisation criterion for PID controller is often obtained by 

the following equation 6.1: 

𝐽 = ∫ [𝑤1|𝑒(𝑡)|]𝑑𝑡 + 𝑤2𝑡𝑠                                                                          (6.1)
∞

0

 

where e(t) is system error, ts is the settling time and w1,w2 are coefficient parameters, 

which are very important for the optimiser performance (Y. Wang, Peng, & Wei, 

2008).  

6.2.3 Fault Detection and Diagnosis 

The main problem in process engineering is the abnormal event management (AEM). 

Fault detection and diagnosis (FDD) is the key element to predict the abnormal 

event, thus it has attracted a lot of research attention. FDD deals with timely fault 

detection and correction of abnormal conditions of faults during the running process 

after diagnosis. The early detection and diagnosis of faults during the process, while 

the plant is still running in controllable region, can help to prevent the aggravation of 

abnormal events and significantly reduce losses in productivity. There is 

considerable interest in this field now from industrial practitioners as well as 

academic researchers; the petrochemical industries lose an estimated $20 billion 

every year due to mismanagement of abnormal events, therefore they have rated 

AEM as their a number one problem that needs to be solved (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, 2003) . 
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6.3 System Developments 

For the purpose of testing the efficiency of the new designed system, it was upgraded 

to a larger electrical network grid using Matla/Simulink Power System Toolbox. 

6.3.1 Scaled-up Network Power System (Four Generators) 

Figure  6.2 shows single line diagram of the scaled-up power system, which includes 

four generators (M1, M2, M3 and M4); machines 1 and 3 with a capacity of 1000 

MW, and machines 2 and 4 with a capacity of 5000 MW. All of the generators are 

turbine driven. The four generators are mutually connected to the network via high 

voltage the transformer, bas bar and transposed line with a length of 1,500 km 

together, to serve peak demand load with capacity 11,000 MW. 

M2 

5000 MVA 
M1 

1000 MVA 
 13.8 KV/500 KV

D/Yg Line 1

350 Km

Line 2

350 Km

SVC

200 Mvar

B1 B2 B3

5000 MW

500 KV/13.8 KV

Yg/D

 13.8 KV/500 KV

D/Yg Line 1

350 Km

Line 2

350 Km
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5000 MW

500 KV/13.8 KV

Yg/D

100 MW

100 MW

400 MW

400 MW

Line 1
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M3
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M4

5000 MVA

Load 1 Load 2

Load 5

Load 6

Load 3
Load 4

B4 B5
B6

B7

B8
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B10

 

Figure 6.2: Single line diagram of the scaled-up power system. 

6.3.2 Controller Auto-Tuning 

Details of FLC tuning using the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

were discussed in the previous chapter. The main target of this phase is to use the 

SPSO optimiser to tune the scaling factors of all controllers (FLC1, FLC2, FLC3 and 

FLC4) which are working in the process at the same time. The aim is to improve the 
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response of all controllers, keeping in mind the main objectives, which are dependent 

on the type and requirements of the system to be controlled. For the power system, 

the objective was to minimize the following four variables on the final output (Vm) 

after the Static Var Compensator (SVC) of whole system: 

• Minimize the settling time.  

• Minimize the steady state error. 

• Minimize the overshoot  

• Minimize the first negative peak 

The proposed FPSS has two inputs and a single output, which means three scaling 

factors are considered: the error (Ke), change of error (Kc) and output (Ko) for each 

controller, where (Ke) is the error gain, (Kc) is the gain for the change of error and 

(Ko) is the output gain. To improve the system response and for the purposes of 

comparison, the FLCs scaling factors were tuned in two way: manually and auto. The 

best values established for the scaling factors are shown in Table  6.1. 

Table 6.1: Final auto-tuning scaling factor values. 

FLC1 FLC2 

 Ke1 Kc1 Ko1 Ke2 Kc2 Ko2 

Manual Tuning 2 3.75 2.25 5 3.75 10 

Auto-Tuning 1.100 1.948 6.559 2.096 27.57 5.666 

FLC3 FLC4 

Manual Tuning 2 3.75 2.25 5 3.75 10 

Auto-Tuning 1.139 0.941 9.215 1.556 6.006 5.543 

6.3.3 Fault Detection System 

As explained earlier, the FDD deals with the timely fault detection and correction of 

abnormal conditions of faults during the running process. The flowchart shown in 

Figure  6.3 illustrates the process of fault diagnosis for the power system network.  
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Start

Collect data on the voltages 
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the electrical network

svc1=u(1);svc2=u(2);svc3=u(3)
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.

.
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Figure 6.3: Flowchart of fault diagnosis for power system network. 

There are four main stages in the fault diagnosis of power system network in the 

flowchart. The first step is collecting the data about the voltage in different locations 

in the electrical network in very short time while the process is running. After 

checking for any previous faults or not in start-up condition, all necessary 

measurement and comparisons are conducted in the second stage to identify any 

abrupt changes in the network. If sudden changes are recognised at any part of the 

electrical network, the programme will trigger the alarm with fault flag and wait for 
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1.5 ms. Subsequently the diagnosis programme will send all the information to the 

third stage, which contains the fault diagnosis rules through which the fault type is 

detected. The last stage is to send the fault type to the first step and all the data from 

diagnosis programme to the supervisory control. 

6.3.4 Fault Diagnosis 

As pointed out in section 6.2.3 in the beginning of this chapter, AEM is one of the 

main problems facing processes engineering. The first FDD step to address this 

problem in this project was that by monitoring network voltage in several different 

places. The output voltage (SVC1, SVC2, …, SVC6) as points in different places on 

the electrical network were monitored throughout. Any very low change fx > 0.001 at 

any point triggered where fx at each point is detected using the following equation: 

𝑓𝑥 = |𝑆𝑉𝐶𝑥𝑛 − 
𝑆𝑉𝐶𝑥𝑛 + 𝑆𝑉𝐶𝑥𝑛−1

2
|                                                           (6.2) 

where n is the number of iteration and the x = (1, 2, 3….., 6) 

After a certain time (a few milliseconds) the value of the change at every point from 

the moment the fault occurred is calculated by: 

𝑆𝑉𝐶𝑥𝐷𝑒𝑓 = 𝑆𝑉𝐶𝑥𝑛 − 𝑆𝑉𝐶𝑥𝑓𝑎𝑢𝑙𝑡                                                                    (6.3) 

where n is the number of iteration and the x = (1, 2, 3….., 6) and the 𝑆𝑉𝐶𝑥𝑓𝑎𝑢𝑙𝑡 is 

voltage value at the moment of fault occurring in each point.  

The rules listed in Table  6.2 are developed experimentally based on the behaviour of 

system response to individual failure, such that the type of fault can be diagnosed 

based on the activated rules. 
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Table 6.2: Fault diagnosis rule basis values. 

If condition SVC1Def SVC2Def SVC3Def SVC4Def SVC5Def SVC6Def 

Fault type 1 ≤ - 0.004 ≥ 0.003 ≤ - 0.003 ≥ 0.0015 ≥ 0.004 ≤ - 0.0015 

Fault type 2 ≥ 0.0004 ≤ 0.002 ≤ 0.002 ≤ - 0.0007 ≥ 0.001 ≤ 0.00075 

Fault type 3 ≥ 0.0005 ≥ 0.0025 ≤ - 0.001 ≤ - 0.002 ≥ 0.004 ≤ - 0.002 

Fault type 4 ≥ 0.019 ≥ 0.04 ≤ 0.015 ≥ 0.025 ≥ 0.04 ≥ 0.01 

Fault type 5 ≤ 0.024 ≤ 0.03 ≥ 0.010 ≥ 0.012 ≥ 0.012 ≥ 0.012 

Fault type 6 ≤ 0.002 ≥ 0.00049 ≥ 0.001 ≤ 0.0003 ≤ 0.0055 ≥ 0.0015 

Fault type 7 ≤ 0.0135 ≤ 0.022 ≥ 0.0145 ≥ 0.017 ≥ 0.022 ≥ 0.0175 

6.4 Simulation Results 

The system was simulated and tested for different fault conditions, namely single and 

multi-phase conditions, and the FLCs were trained on data generated using three-

phase fault conditions, dubbed 3-phase training. Four FLCs controllers were trained 

for the generator. The scaling factors were tuned automatically for each controller 

using the SPSO optimiser. 

6.4.1 Scaled-up Model 

To test the efficiency of the newly designed system, it is upgraded to a higher 

electrical network grid using Matlab/Simulink Power System Toolbox, as shown in 

Figure  6.4. The model details are given in section 6.3.1. 
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Figure  6.4: Matlab/Simulink Block diagram of the scaled-up power system. 
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6.4.2 Normal Case Simulation 

As noted in the previous chapters, the controller was tuned using SPSO to optimise 

the selection of the scaling factors for several cases of faults that are expected to 

occur during normal operation. The supervisory controller can apprehend the largest 

possible number of faults chosen, tune all control devices for each individual case 

and keep all obtained results in the database. The optimiser objective function is 

based on four objectives: steady state error, settling time, overshoot and the negative 

peak. The first and second objectives have the highest priority, the third has medium 

priority, whereas the fourth objective has the least priority. The optimised values of 

the scaling factors for both the auto-tuned fuzzy logic controller and the manually 

tuned were listed in Table  6.1, and used to compare the response of all electrical 

network stability driven by supervisory controller, MB stabiliser and without power 

system stabiliser respectively, during normal operation as shown in Figure  6.5. 

 
Figure 6.5: System response to normal operation with 3-phase training and auto-tuning. 
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6.4.3 Multi-Phase Fault 

To test the response to major interruptions, such as one, two and three-phase fault, 

with two fault circuit breakers were connected in the network. One of the circuit 

breaker closes after 4.8 sec of the start of the simulation for a transition time period 

of 0.1 sec. Four neuro fuzzy logic controllers were used to stabilise each turbine. The 

ANFIS replace the conventional MB stabiliser to improve stability, and the system 

was tested and simulated for different fault conditions, namely single and multi-

phase conditions. Simulation results show that supervisory controllers performed 

well for single-phase fault, two and three-phase fault in comparison to the 

performance when the system was driven with MB and without PSS. Figure  6.6 

shows the response of the system to the faults when was without PSS, driven by MB 

stabiliser and auto-tuned FLCs respectively, where the response of the FLCs 

controller under supervisory with 3-phase training and auto-tuning scaling factors to 

four controllers at the same time. The first test was conducted for one phase fault, 

and assumes that the settling time of the system at ±1.2 %.  

 
Figure 6.6:System’sresponseto1-phase fault with 3-phase training and auto-tuning. 
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compared to the MB controllers with six peaks and larger overshoot (with FLCs of 

3.2% and 3.7% respectively). Figure  6.7 shows that the FLCs reduced the settling 

time from 4.03 sec to 2.43 sec, and the oscillation around the set point from six to 

two compared to MB controllers. More importantly, when a three-phase fault is 

simulated, as shown in Figure  6.8, the FLCs controllers under supervisory reacted 

with high efficiency compared to the MB and reduced the overshoot from 4.9% to 

4.2% and settling time period from 3.41 sec to 2.5 sec with respect to the MB 

controller, and over a longer period increasing steady state error appeared. The 

numerical results are shown in Table  6.3.  

Table 6.3: Simulation results for multi fault with auto-tune and M-training. 

Multi Band Controller (MB) Fuzzy Logic Controller (FLCAT) 

 
Settling 

time (sec) 

Overshoot 

(%) 
Fluctuation 

Settling time 

(sec) 

Overshoot 

(%) 
Fluctuation 

1 phase fault 3.77 3.7 6 2.5 3.2 2 

2 phase fault 4.03 3.7 6 2.43 4.4 2 

3 phase fault 3.41 4.9 6 2.5 4.2 2 

 

 
Figure 6.7:System’sresponseto2-phase fault with 3-phase training and auto-tuning. 
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Figure 6.8:System’sresponseto3-phase fault with 3-phase training and auto-tuning. 

6.4.4 Fault Scenarios Simulation 

In order to test the supervisory control system more accurately, a scenario was 

applied on the system process, including connecting and losing a large load at seven 

different places from the electrical network in sequence. The behaviours of all the 

systems are compared to its behaviours when governed by the other advanced 

conventional control systems.  

A. Normal Operation Scenario 

In this case the system was scaled-up and working with full capacity in normal 

condition with four machines (M1, M2, M3 and M4), with a generation capacity of 

12,000 MW to supply load with demand 11,000 MW, as shown in Figure  6.9.  
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Figure 6.9:System’sresponsetonormaloperationwithcomparisonsupervisorycontrol,MB

and Generic PSS. 

B. Fault Scenario1 

In this scenario, lost Load 1 at B1 is as shown in Figure  6.2 above with capacity of 

load demand 100 MW at second 4, and the same load back at second 8. The system 

response is illustrated in Figure  6.10.  

 
Figure 6.10:System’sresponsetofault1withcomparisonsupervisory control, MB and Generic 

PSS. 
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C. Fault Scenario 2 

In this scenario, lost part of Load 2 at B3 is as shown in Figure  6.2 above with 

capacity of load demand 75 MW at second 4 and the same load back at second 8. 

The system response is illustrated in Figure  6.11.  

 
Figure 6.11:System’sresponsetofault2withcomparisonsupervisorycontrol,MBandGeneric

PSS. 

D. Fault Scenario 3 

In this scenario, lost Load 3 at B4 is shown in Figure  6.2 above with capacity of load 
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response is illustrated in Figure  6.12.  
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Figure 6.12:System’sresponsetofault3withcomparisonsupervisorycontrol,MBandGeneric

PSS. 

E. Fault Scenario 4 

In this scenario, the system lost part of load 4 at B6 as shown in Figure  6.2 above 

with capacity of load demand 75 MW at second 4 and the same load back at second 

8. The system response is illustrated in Figure  6.13.  

 
Figure 6.13:System’sresponsetofault4withcomparisonsupervisorycontrol,MBandGeneric

PSS. 
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F. Fault Scenario 5 

In this scenario, lost load 5 at B2 as shown previously in Figure  6.2 above with 

capacity of very high load demand 400 MW at second 4 and the same load back at 

second 8. The system response is illustrated in Figure  6.14. 

 
Figure 6.14:System’sresponsetofault5withcomparisonsupervisorycontrol,MB and Generic 

PSS. 

G. Fault Scenario 6 

In this scenario, lost load 6 at B5 as shown in Figure  6.2 above with capacity of very 

high load demand 400 MW at second 4 and the same load back at second 8. The 

system response is illustrated in Figure  6.15. 
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Figure 6.15:System’sresponseto fault 6 with comparison supervisory control, MB and Generic 

PSS. 

H. Fault Scenario 7 

In this scenario, lost load 6 and load 5 at B5 and B6 as shown previously in 

Figure  6.2 above with capacity of very high load demand 800 MW. At second 4 a 

cross connection link was disconnected, and then went back to normal at second 8. 

The system response is illustrated in Figure  6.16.  
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Figure 6.16:System’sresponsetofault7withcomparisonsupervisorycontrol,MBandGeneric

PSS. 

6.4.5 Simulation of Consecutive Serious Fault 

Figure  6.17 illustrates the comparison between the latest conventional stabiliser 

controller and the supervisory power stability control system for different faults. 

From the seven different types of faults during 30 second duration, it can be seen that 

directly after the start-up notes the highest speed of response was observable, with 

less overshoot, and very clear stability in the whole system. The second fault accrued 

after start up in the scenario simulated a loss of 75 MW load at second 5 then the 

load returned back to normal at second 8; at second 10, a cross connection link was 

disconnected, and then went back to normal at second 15; at the 20
th

 second a high 

load loss occurred with 400 MW capacity then returned to normal at second 25. The 

figure shows that the supervisory controller reaction is much smoother, stable, faster 

in response and less steady-state error-prone than other competitive controllers. 

Table  6.4 shows the auto-tuned value of scale of factors for all low level controllers, 

which are reset it by the supervisory controller automatically concerning to the fault 

type.  
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Figure 6.17: Different fault types. 

6.5 Summary 

To conclude, it was shown that the SPSSC achieved better performance during the 

occurrence of sudden faults, and the possibilities to return to the stability status of the 

network safely and with smooth running within the allowable time limits, whereby 

the osculation did not exceed the high limit of ±0.6 % range. This is clearly shown in 

Figure  6.17 when simulating consecutive serious faults scenarios; the system 

responded with high efficiency, compared to the other two types of conventional 

power stabiliser controllers, in particular when the SPSSC was tuned with the aid of 

SPSO to select the scaling factors for multi controller automatically and 

simultaneously for each fault individually. In addition, the SPSSC system 

demonstrated superior performance compared to the other two controller devices, 

even in the case of normal operation, as it eliminated steady state error almost 

completely, which means that the SPSSC system has better functionality than other 

standard stabilisers during normal and fault conditions. 
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Table 6.4: Final auto-tuning scaling factor values for all controller in deferent scenario. 

FLC1 FLC2 

 Ke1 Kc1 Ko1 Ke2 Kc2 Ko2 

Normal 

Operation 
1.100 1.950 7.100 1.990 27.200 5.360 

Load 1 with 100 

MW 
1.150 1.948 4.959 2.096 23.577 5.666 

Load 2 with 75 

MW 
1.782 1.946 7.808 1.899 5.514 6.552 

Load 5 with 400 

MW 
1.095 1.940 7.911 2.052 32.137 5.630 

Network 

separation 
1.346 2.274 11.00 8.722 5.857 5.797 

Load 3 with 100 

MW 
1.139 0.941 9.215 1.556 2.006 5.543 

Load 4 with 75 

MW 
1.7805 1.9948 7.8161 1.8986 5.5144 6.5832 

Load 6 with 400 

MW 
1.0906 0.8479 8.5644 1.5054 11.9482 5.5334 

FLC3 FLC4 

 Ke3 Kc3 Ko3 Ke4 Kc4 Ko4 

Normal 

Operation 
1.150 1.100 8.810 1.700 5.500 5.550 

Load 1 with 100 

MW 
1.139 0.941 9.215 1.556 2.006 5.543 

Load 2 with 75 

MW 
1.780 1.994 7.816 1.898 5.514 6.583 

Load 5 with 400 

MW 
1.090 0.847 8.564 1.505 11.948 5.534 

Network 

separation 
1.104 1.317 18.156 15.682 6.596 21.442 

Load 3 with 100 

MW 
1.150 1.948 4.959 2.096 23.577 5.666 

Load 4 with 75 

MW 
1.782 1.946 7.808 1.899 5.514 6.552 

Load 6 with 400 

MW 
1.095 1.940 7.911 2.052 32.137 5.630 
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Chapter 7: Conclusions and Future Work  

7.1 Conclusions 

This chapter presents the main conclusions of the thesis and identifies areas for 

future work. The research mechanism that has been presented in the earlier chapters 

is summed up and concluded along with the overall accomplishment to achieve the 

aims and objectives of the research. After that, all the probable modifications which 

could give suitable or knowledgeable benefit to the performance of the presented 

methodologies that are used for this work are discussed in detail in terms of future 

work.  

This research focused on the integration problem of the intelligent search technique 

for optimum and the stability control in power system using artificial intelligence 

techniques. The literature review suggested that electrical power network system 

model is classified mostly as non-linear Optimisation problems that have at least one 

optimum solution. Though the analysis may be influenced by slow convergence and 

the curse of multi dimension level, heuristics-based swarm intelligence can be a very 

effective substitute PSO, which is part of the family of swarm intelligence is known 

widely to be effective to solve nonlinear Optimisation problems as an artificial 

intelligence search technique. The principles of PSO and its variants are very useful 

for analysis, and the application of PSO as an Optimisation technique on the power 

system has been powerfully effective. The majority of studies found that major 

improvement is achieved using artificial intelligence techniques. Furthermore, the 

Optimisation methodology leading the electrical network stability problems has 

played a main role in improving the performance of power quality by using multi 

particle swarm Optimisation as artificial intelligent to solve this problem. 

Several types of PSOs algorithms are developed, such as LPSO, GPSO, DMS-PSO-

SHS, APSO and others. Moreover, an effective paradigm has been developed using 

all previews algorithms based on multi swarm methodology in two patterns, parallel 

and serial to solve stability problems that are classified as complex problems. In fact, 

this complexity is basically caused by the extent growth of electrical grid with 

diversity components and some other phenomena such as wave, electromagnetic, 

electromechanical and thermodynamic phenomena. 
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Different types of benchmark function are presented in detail in terms of 

implementing and evaluating Optimisation using existing algorithms and comparing 

their performance with that of the new algorithm. According to the results (chapter 

three), the proposed SPSO achieved superior performance to PPSO. The 

comparisons were made by observing the response of each algorithm on all used 

benchmark functions in terms of convergence speed and performance to reach the 

closest correct solution. 

Electricity network stability has been explained, with detailed data about the latest 

conventional PSS control devices currently used to improve the stability of the 

electrical network as well as the relationship between reactive power and voltage 

stability, thereby providing a model with full components to simulate electrical 

power grid using Matlab/Simulink. Tests were conducted and comparisons were 

made between the currently used PSS devices in terms of efficiency and the ability to 

bring back the network in equilibrium state after disturbance as a result of fault 

occurrence or sudden change in operating conditions. Figures 4.9-4.11 in chapter 

four illustrate the positive impact of the PSS devices on the electrical network 

systems, whereby the effect of the generic power system stabiliser PSS2B and 

multiband power system stabiliser PSS4B are convergent in terms of the first 

overshoot, but the PSS4B still works on damping the electrical network system more 

effectively than PSS2B, as well as performing its function with higher efficiency 

than system stability working without power system stabiliser PSSs in the three case 

scenarios, after a malfunction in the system (i.e. making short circuits between one 

phase and ground, then between two phases and the ground, then between three 

phases and the ground, sequentially). As seen in the three figures, PSS4B works with 

high efficiency on over-shooting and damping of the system oscillation compared 

with PSS2B, which was working efficiently but slightly less than the PSS4B and the 

system becomes completely unstable and oscillation grows after any type of faults 

when it works without power system stability devices. 

The proposed fuzzy logic control system FLC is used to control the power system 

stability (FPSS), thus the control scale of factor was selected and different 

parameters in the rule base and membership functions. Where the generator speed 

deviation is classified into [positive (w_p); zero (w_z); negative (w_n)], the 

generator speed deviation change is classified into: {positive (dw_p); zero (dw_z); 
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negative (dw_n)}. Also the output of fuzzy controller is classified into: {positive 

(u_p); zero (u_z); negative (u_n)}.  

To improve the FLCs response, ANFIS methodology for membership function is 

used to train them on the behaviour of conventional MB-PSS when facing the three 

phase fault as worst case of failure. The FLCs scaling factors are tuned manually, 

than automatically using the SPSO as new optimiser algorithm. Several comparisons 

in power quality voltages control and rotor speed deviation were conducted on the 

electrical network, including two generators governed by the new stabiliser, and the 

results in chapter five indicated the superiority of new proposed PSS, particularly on 

high capacity generator M2, and it is clear that using SPSO as an Optimisation 

technique gives good results. FLC based on SPSO obtains the advantages of FLC (as 

fuzzy logic technique) and the advantages of SPSO as an Optimisation technique, 

selecting the best values to obtain the best results with minimum error in a fast way. 

Thus the new controller (FLC based on SPSO) is capable of damping oscillations, 

increasing system stability with minimum energy consumed in fast way, and it has 

maximum sensitivity to changes in operating situations. 

The new optimiser, as an important tool, is designed to use an advanced supervisory 

control system in electrical network stability, and for this purpose was scaled up to 

the electric grid to simulate the natural operating conditions and to increase the 

complexity of the simulation. The new control system involves tracking and focusing 

on specific information about the process and controller, monitoring the system and 

detecting the controller performance when disturbances or change occur in the 

controlled system in order to maintain the basic requirements (such as stability), and 

selecting the appropriate tuning of the controller, as suited to the specific situation. 

In order to test the capacity and efficiency of the innovative system it is tested on a 

complex scenario of sequence failures and compared to other PSS systems. The 

results in chapter six illustrate the efficiency of supervisory controller, which 

achieved better performance during the occurrence of sudden faults, and the 

possibilities to return to the stability status of the network safely and with smooth 

running within the allowable time limits, whereby the osculation did not exceed the 

high limit  
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It can be concluded, based on the experimental results and predicted performance 

models, that using FLC for PSS in electrical grids considerably reduced the effect of 

variations failures in the electrical grid. This was clearly shown when simulating 

consecutive different faults scenarios; the proposed system responded with high 

efficiency compared to the other types of conventional power stabiliser controllers, 

in particular when the FLC was tuned with the aid of SPSO to select the scaling 

factors for multi controller automatically and simultaneously for each fault 

individually. 

In part of Optimisation research methodology, multi PSO algorithms and the testing 

results of this paradigm were applied with all algorithms on the proposed benchmark. 

The performance of each algorithm was measured individually. This work introduced 

a new algorithm called SPSO with advantages of fast convergence speed and good 

Optimisation to find the global optimum solution for the most complex benchmark 

functions; it clearly performed better than the other proposed algorithm (PPSO). 

Therefore, from these results it is recommended that Optimisation methodology and 

power system stability control be deployed in real-life scenarios and that supervisory 

control be utilized in high throughput computing systems and other manufacturing 

processes. Much work remains to be done, but the potential benefits are considerable.  

7.2 Future Work 

The simulations conducted in these experiments identified a number of areas for 

future research, including improving and expanding some parts of this work, such as 

scaling up works on the electrical network model and improving the Optimisation 

algorithm function, neuro fuzzy logic controller model and the supervisory control 

system model. 

7.2.1 Optimisers 

Improved Optimisation can be attained by increasing the performance of the 

optimiser itself. Several techniques can be used in order to develop the optimiser 

performance, such as using more different and effective Optimisation methodology 

algorithm. In this thesis, the optimiser introduced rules suggested to tackle twelve 

parameters at the same time for the purpose of tuning controller scaling factors. It 
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was also explored whether it is possible to optimise the membership rule functions 

simultaneously. Some optimising experiments produced some promising results, but 

this line of enquiry was stopped due to the inability of available computers to fulfil 

this purpose.  

Furthermore, although the each algorithm could find the optimal solutions for most 

cases, in some cases some algorithms were not successful enough to find the optimal 

solution, as shown in chapter three. Future work could improve the performance of 

these algorithms by changing some parameters or including them in other 

complicated optimisers. Algorithms should be tested individually to identify their 

particular impacts. 

7.2.2 Neuro Fuzzy Logic System Model 

This project focused on the design of FLC instead of PSS, measuring the error in 

speed deviation and change of error signal as input signals. To develop the controller 

function another variable could be processed from the electrical network as an input 

to the fuzzy controller, such as voltages, frequency and power factor, by adding them 

as new membership function rules, to improve the functioning and controlling. 

7.2.3 Benchmarks 

In this thesis seven benchmarks were selected, described and clearly defined before 

being used to test the efficiency of the newly developed algorithm and to compare it 

with others. However, additional algorithms could be used for comparison to broaden 

the test. Although selecting the 30 dimensions for each benchmark function 

illustrates the differences in the results between algorithms, this could be increased to 

60 to make the system more complex and to increase the difficulty of finding 

solutions, so the differences in the results would be more obvious.  
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