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Abstract: Analysis of vibrations of continuous beams with discrete viscoelastic 

supports has been established through theoretical modeling and a finite element 

analysis. The theoretical model is based on the Euler-Bernoulli theory, and the Ritz 

approach was employed to obtain numerical results from which the attenuation of the 

beam’s vibration was obtained. In parallel, a finite element analysis was carried out in 

ABAQUS using 3D beam elements. It is shown that the results of theoretical 

calculation agree well with those of the finite element analysis.  

Both models were applied to explore geometric and design variations, and then to 

a full model of a bridge expansion unit as an application example. The vibration of the 

beams in the design, the influence of the stiffness and the viscous damping coefficient 

of the supports were discussed, demonstrating the models’ usefulness in helping with 

design optimization.   
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1. Introduction  

Expansion units and joints are commonly used in bridges or viaducts to 

accommodate temperature-induced movements between bridge decks and abutments. 

The functions of the units are twofold: they need to limit the internal stresses due to 

thermal expansion under high temperatures which may cause buckling failure of the 

long-span beam decks; and to minimize gaps caused by shrinkage under low 

temperatures for smooth traffic flows over the bridge [1-3]. With the development of 

motorways, city road viaducts and elevated high speed railway lines, more stringent 

requirements have been placed on the development of bridge expansion units to allow 

for large gaps/displacements. Such expansion units are used in hostile environmental 

conditions and loaded heavily by high volume traffics. The maximum gap between 

contiguous beams can now reach to 80mm [4-6]. Fatigue failure under repeated 

impact is the main cause of damage to bridge/viaduct structures. Apart from the 

required strength, the expansion units also need to be of low costs, can be installed 

easily, and require minimum maintenance with long durability. 

Fig. 1 shows an example of a module design of a bridge expansion unit. 

Crossbeams are laid in parallel in the direction of the axis of the bridge underneath the 

bridge deck and are allowed to expand/shrink freely through the use of sliding 

bearings. They support a number of beams (here named I-beams, as being used in the 

design and to differentiate with the crossbeams) crossly laid on top of cross-beams 

and leveled to the surface of the deck with predetermined equal distance/gaps 

amongst the I-beams. The number and the size of the I-beams required are determined 



by the overall deck gap the expansion unit needs to accommodate. And the number of 

the crossbeams needed depends on the width of the bridge. 

With the temperature effect on the crossbeams, the supported I-beams move with 

the crossbeams to mitigate the gaps amongst them. When designed properly, this 

mitigation movement will enable the gaps between the I-beams to remain within the 

required range under all weather conditions to reduce the impact loading caused by 

the traffic over the gaps.  

The dynamic response of the beams (both the I-beams and the crossbeams) needs to 

be analyzed for potential structural damages [7]. Wang [8] did fatigue tests on several 

modular expansion units, showing that the residual stress in the beams increases with 

the number of load cycles. Dexter et al [9] did study on the structural design, 

installation and maintenance of expansion joints, suggesting that elastomeric parts and 

fasteners are best addressed through performance tests on the modular joint unit as a 

system. Coelho et al did the dynamic tests of modular expansion joints [10-11]. They 

showed that the traffic speed has influence on the strain distribution along the centre 

beam, and the design of the modular joint systems must pass both static and dynamic 

performance tests. Michael [12] established the load form and a theoretical model of 

the lamella beam-grid expansion joint, and concluded that the dynamic amplification 

is important for design, and in some cases, its value is higher than those prescribed in 

the current design codes. Roeder [13] studied the fatigue of modular expansion joints, 

and showed the importance of the load spectrum on the fatigue life of expansion units. 

Chaallal O analyzed the results of fatigue tests and provided detailed stress 



distributions. Crocetti R [15] proposed a design load approach through fatigue tests. 

Ghimire JP [16] studied the noise generation and radiation from a modular expansion 

joint. These studies were focused on the performance of whole joint units, where 

understanding on the responding mechanism of the individual beams and the 

influence on the viscous supports is weak.  

For the purpose of strength and fatigue analysis, the design of the expansion unit 

can be approximately modeled as continuous elastic beams with discrete viscoelastic 

supports. This is applicable to both the I-beams on top, and the crossbeams beneath. 

Most of the studies on beam with elastic foundations are for continuous, 

non-interrupted supports, such as those in [17-20] where different material models 

and loading conditions are considered. Yu and his colleagues did dynamic analysis of 

impact loading on beam-on-foundation based on a simplified rigid-plastic model [17]. 

Chen and others studied the elastoplastic beam-on-foundation model, mainly on the 

quasi-static behavior [18-19]. Zhou et all studied the elastic behavior of 

ring-on-foundation [20]. However, analyses on beams under discrete viscoelastic 

supports are rare.  

In this paper, we present an analytical solution for the response of beams on 

discrete viscoelastic supports under dynamic loading. Numerical simulations using 

finite element code ABAQUS were also obtained and compared with the theoretical 

model results, through which, the mechanical properties of the system are analyzed 

for design purpose.  

 



 

 

 

 

 

 

 

(a) bridge side view  

 

 

 

 

 

 

 

(b) traffic direction view 
 

Fig.1. A modular design of an expansion joint composing of 5 I-beams perpendicular to 

the traffic supported by a number of crossbeams aligned to the axis of the bridge 

 

2. Dynamic equations 

  For continuous beams, transverse vibrational equations can be obtained by the 

Euler-Bernoulli theory. In Fig. 1, z represents the axial direction of the bridge, ie. the 

traffic direction, y the vertical downwards direction and x the direction of the bridge 

width. Let yIj(x,t) denote the vertical displacement of the jth I-beam, where the 

subscript I indicates the I-beam. The vibration equation of the I-beam is given by [21]  
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where EI1 is the flexural rigidity of the I-beam. The superscript (4) represents the 4th 

order derivative with respect to time, m1 the mass per unit length, Fcz the supporting 

force by the crossbeams underneath. NI is the total number of supports to the I-beam 

or the number of the crossbeams in the expansion unit, and xi the position of the ith 

support. P is the impact force from the traffic with subscripts r and l representing the 
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right and left wheels of the vehicle.  is the Kirchhoff function.  
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  In modern bridge design [1, 16], the standard axle load is considered 140kN up to a 

velocity of 100 km/h. The contact area of a wheel and the road surface is assumed to 

be 0.2m by 0.4m, and the axial distance between the two wheels is taken as 1.8m, as 

shown in Fig.2. For the most unfavorable condition, the wheels are assumed loading 

at the mid span between neighboring supports as shown in Fig. 1(b). The dynamic 

load pulse of a wheel can be described by a sine wave as shown in Fig. 3(a) [12]. The 

time period of the half wave depends on the traffic speed.  

Let P(x, t) be the pulse loading of one wheel, we assume 
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where Pn is the weight loading of a vehicle and remains constant. The velocity 

dependent impact effect will be considered later by an impact coefficient (in Section 

4.3). 

 

Fig.2. Geometrical description of wheel contact       



   

(a)           (b)  

Fig.3. Dynamic loading (a) Load pulse to an I-Beam, (b) Time sequence of dynamic loading 

over a 5-I-beam system 

 

For the supporting forces received by the I-beam, we can obtain. 
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where k1 and c1 are the spring stiffness and viscosity coefficient of the contact 

between the I-beam and the crossbeam.  

Substituting both Eqs. (3) and (4) into Eq. (1) leads to 

)]()()][2/sin(1[
2

),(),([

)],(),([),(),(

1
1

1
11

)4(
1

lr
n

iIjjci

NI

i

iIjjci

NI

i
IjIj

xxxxt
P

txytxyc

txytxyktxymtxyEI















   (5) 

This is the governing vibration equation for the I-beam. Similarly, we can develop 

the vibration equation for the crossbeams, and obtain  
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where EI2 is the flexural rigidity of the crossbeam, yci(z,t) the displacement of the ith 

crossbeam, m2 the mass per unit length. Subscript  indicates the sliding bearing 



support at each end of the crossbeam (assuming they are identical), and k2 and c2 are 

the spring stiffness and viscous damping coefficient of the contact between the 

crossbeam and the sliding bearing. Z0 is the coordinate of the two sliding bearings 

under the thi crossbeam, Zj the coordinate of the contact between the thj  I-beam and 

the thi crossbeam in the direction of Z. NJ is the total number of I-beams in the 

system.  

Eqs. (5) and (6) can be transformed into a set of second order ordinary differential 

equations using the Ritz method [22]. The solution of Eq. (5) can be obtained of the 

form 
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where )(xYIjk is the kth normal mode or characteristic function of the I-beam, and 

)(tqIjk  the regular modal coordinates. NL is the number of vibration modes to be 

included to ensure numerical convergence of the solution. 

 Note that Eq. (7) satisfies simple-supported boundary conditions, which differs 

from the continuous beam model with discrete supports. However, the simple format 

of eq. (7) can significantly simplify the derivation for the solution. As a first 

approximation, it is adopted here. And the error introduced by this approximation will 

be discussed on the difference in the calculated results and the FEA outcome in 

section 4.1. 

Substituting Eq. (7) into (5), and after multiplying both sides by )(xYIjh  (h=1, 2, 

3, , NL), then taking integration of x from 0 to L1, the length of the I-beam, we 

obtain 
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Eq. (5) can then be changed to  
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Similarly, Eq. (6) can be derived into  
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where )(xYcjb is the bth normal mode of the crossbeam, and )(tqcin  the regular modal 

coordinates of the crossbeam. NC is the number of vibration modes of the crossbeam 

to be included for numerical convergence. 

For numerical solutions, the values of the material constants and beam geometric 



values are given in Table.1 where B represents the width of the deck gap. 

Table 1. Structural parameters of the expansion unit used in analysis 

Parameters B mr1 I1 L1 k1 c1 mr2 I2 L2 k2 c2 E 

Unit mm kg m4 m N/mm N·s/mm kg m4 m N/mm N·s/mm MPa 

Value 0~80 76 1.2e-5 14.75 3e4~1e5 3~15 80 1.6e-5 1.05 2e5 5 2.05e5 

 

A commercial code SIMULINK in MATLAB [22] is used to solve Eqs. (11) and 

(13). A single I-beam model was first modeled to understand the basic dynamics of 

the system. Then assuming a unit design using five I-beams, the dynamic response of 

the whole unit is calculated with the mode superposition method [23]. Results are 

discussed in Section 4. 

 

3. Finite element analysis  

Finite element models were built for a single beam system and multi-beam 

systems using ABAQUS [24]. The most complicated model includes five I-beams and 

ten crossbeams, as shown in Fig. 4. 3D beam elements were used for all beams. 

Boundary conditions are viscoelastic contacts between I-beams and crossbeams, all 

being defined as spring-damping contacts in the y direction. Crossbeams are 

supported in y direction by two constrains (item 4 in Fig. 4(b)) which are allowed to 

slide in the z direction. The sliding constraints are then supported by fixed constraints 

item 5. Values of the physical parameters assigned in the models are given in Table 1. 

The dynamic loading is modeled as a moving force pulse of a sine wave at a constant 



speed in the traffic direction, shown in Fig. 3(b) as a time sequence over five I-beams. 

A mesh sensitivity study shows that a total number of 830 beam elements and 855 

nodes provide an appropriate model with good convergence. 

 

(a) The whole structure 

 

(b) The local structure 

 

Fig.4. The finite element model of expansion joints, 1. Crossbeam, 2. I-beam, 3. 

Viscoelastic element, 4. Sliding bearing, 5. Fixed constraint 

 

 
4. Results and Discussion 
 

4.1 Response of a single and multiple I-beams 

 Depending on the deck gap, a designer may choose to use a single or several 

I-beams to reduce the dynamic effect of the traffic. We looked first at a basic model 

consisted of only one single I-beam with ten supporting crossbeams of equal distance 

(at the full width of the bridge). The deck gap is 100mm and the width of the I-beam 

is 90mm. The amplitude of the wheel loading is set at 70kN. The interest here is on 

the maximum displacement of the I-beam, as the bending stress under the traffic 

loading may lead to fatigue failure of the system. To ensure result convergence and 



calculation efficiency, NL and NC, the numbers of the vibration modes of the I-beam 

and the crossbeam, respective, need to be specified. Table 2 gives the displacement 

response of the midpoint of the I-beam in different values of NL and NC. It shows that 

when NL>25 and NC>5, the displacement does varies. Hence 25 and 5 were chosen in 

all calculations for NL and NC, respectively. 

 

Table 2. Midpoint displacement (in cm) of one I-beam system in different NL and NC 

     NL 
 NC   

10 15 20 25 30 35 

3 2.14 2.51 2.75 2.89 2.89 2.90 
5 2.37 2.72 2.96 3.07 3.07 3.07 
7 2.37 2.72 2.96 3.07 3.07 3.07 

 

Fig. 5 shows displacement histories of the midpoints of the I-beam (Fig. 5(a)) and 

the No. 6 crossbeam (Fig. 5(b)) respectively when the dynamic loading moves at 

80km/h. Results of the theoretical model and FEA are very similar, though the latter 

produces slightly larger magnitude of vibration, particularly for the crossbeam at the 

first peak. The difference is about 10%. The overall response shows a very strong 

damping effect in the I-beam with the first peak displacement, marked by A in Fig. 

5(a), significantly bigger (thus the highest magnitude value) than the 2nd highest 

(rebound) for the I-beam. The overall attenuation pattern and period are similar in 

both the I-beam and the crossbeam. 

As mentioned earlier, Eq. (7) is only applicable to simply supported beams. The 

different boundary conditions in the analytical model and FEA contribute to the 

differences in their results. Nevertheless, the differences are moderate in the response 

of both the I-beam and the crossbeam. As can be seen in Fig 5, the overall attenuation 

is the same, and the frequencies are the same. The only noticeable difference is in the 

magnitudes which do not differ significantly. With the benefit of much simplified 



derivation for analysis, the adoption of Eq. (7) as the format of solution can be 

accepted as the first approximation. 

(a) Midpoint of the I-beam 

 

(b) Midpoint of the 6th crossbeam 

Fig.5. Dynamic response of one I-beam unit  

 
 

 

 

 

 Fig.6. First peak displacement of I-beams vs the speed of the dynamic loading 
 

 Two more units were analyzed by FEA, having three I-beams and five I-beams, 

respectively. Fig. 6 illustrates the first peak displacement (corresponding to reading of 

A in Fig. 5(a)) in terms of the load moving speed for the units of a single I-beam, 3 

and 5 I-beams, respectively. It shows that there exists a particular velocity at which an 

overall maximum displacement occurs for each unit. For the 5 I-beam unit, the speed 

is 80km/h. And for both the single and 3 I-beam units, the speed is 100km/h. This 

maximum displacement (thus the maximum bending stress) needs to be identified, 

A 



together with the corresponding velocity of the travelling load, for design and 

maintenance purposes.  

 

4.2 Full model of an application design (as shown in the Appendix) 

The schematic 2D view of a full expansion unit is shown in the Appendix. The unit 

has five I-beams and two parallel L-shaped side beams, supported by ten crossbeams. 

Pn is the contact force between the vehicle wheel and the I-beam. Taking the width of 

the I-beam as 90mm, the ground contact length of the wheel as 200mm, and the gap 

between adjacent I-beams as 40mm, Pn can be calculated as [12], 
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Fig.7 shows the trace of the displacements of the midpoint of the 3rd I-beam and 

the 6th crossbeam (both are in the middle of the system, thus the worst cases), 

respectively. The overall response is similar to those shown in the previous section 

(Section 4.1). 

 

 
(a) Midpoint of the 3rd I-beam 

 
(b) Midpoint of the 6th crossbeam 

 

Fig.7. Displacement response of the full expansion unit  

 

The maximum displacement of the I-beam (Fig. 7(a)) is much larger than that of 

the crossbeam (Fig. (b)), indicating that the I-beams and its connecting elastic 



elements may fail easily, which is consistent with observations in practice. The 

damping effect is very strong and the remaining vibration is moderate and attenuated 

quickly.  

As vibration can be controlled to attenuate over a short time, it is possible to 

optimize structure parameters for improved performance. To achieve this, the 

parameters of the elastic elements including the impact coefficient of the system, the 

stiffness and the viscous damping coefficient of the viscoelastic supports are studied 

in the following sections. 

 

4.3 The impact coefficient 

The impact coefficient is introduced here as a non-dimensional magnification factor 

of displacement as defined in Eq. (15),  

0D

Dv                                                                 (15) 

where Dv is the maximum displacement of the beam under a moving load at a speed 

of v, and D0 the maximum displacement of the beam under the same moving load at a 

reference speed v0. 

Using the full model described in section 4.2, the peak displacement of the 3rd 

I-beam in different load moving speeds is shown in Fig. 8. The influence of the gap 

width B is also illustrated. Similar to Fig. 6, it shows a maximum value of the peak 

displacement under a certain velocity.  

Bases on Fig. 8, the impact coefficient can be calculated as a function of the load 

moving speed. Because the peak displacement of the I-beam varies noticeably at 



velocities higher than 10km/h, but hardly changes at lower speeds, in calculation, the 

reference speed was taken as v0=10km/h. In fact, at 10km/h, the peak displacement 

can also be taken as the same of the static loading.  

 

 
 

 Fig.8. Peak displacement of the 3rd I-beam vs. load moving speed 
 

The calculated impact coefficient of the expansion unit for different joint widths 

and load moving speeds is shown in Fig. 9. With the increase of speed, Dv increases 

until it reaches the maximum, then reduces. For design purpose, one may do a static 

analysis, then use Fig. 9 to obtain the maximum dynamic displacement. For instance, 

for the case B = 40mm, one can calculate the peak displacement at the speed 80km/h 

by multiplying 1.36 to the static displacement. We can also draw the conclusion that 

the maximum bending stress in the I-beam at 80km/h is 1.36 time that of the static 

one. 

 

   Fig.9. Impact coefficient for increasing vehicle speed 



 

 

4.4 The influence of the stiffness and the damping coefficient of the I-beam support (k1 

and c1) 
 

Apart from the flexural rigidity of the beams which affects the vibration 

performance of the system, the viscoelastic supports of the I-beams also play an 

important role. The supports consist of elastic elements, including rubber pads. They 

are pre-compressed to control rebounding displacement and to produce very quick 

attenuation of vibrations (thus the effect of the follow-on dynamic loading does not 

add on to the overall vibration). Figs. 10 and 12 illustrate the effect of the stiffness 

and the damping coefficient of the supports for the case in which B = 80mm and the 

load moving speed v = 100km/h. 

In Fig. 10 where the damping coefficient is assumed to be c1 = 5kNs/m, the 

maximum displacement of the 3rd I-beam is given, showing a nonlinear relationship in 

a reducing trend in terms of the stiffness of the support. The rate of the reduction is 

decreasing. The choice of the k value should satisfy the requirement that the 

maximum rebounding displacement does not exceeding the applied pre-compression. 

This is to ensure the contact between the beam and the support always being 

maintained in compression, and the support is never loaded in tension which may lead 

to separation failure. For the example shown in Fig. 10, if the pre-compression of the 

viscoelastic support is 0.2mm, k1 can be chosen as 90kN/mm as the rebound 

displacement of the support is 0.16mm.  

 



 
  

Fig.10. Peak displacement of the 3rd I-beam in different stiffness of the support, c1=5Ns/mm.  
 

For attenuation of I-beam vibrations, the concept of the decay time needs to be 

defined: it is the duration from the moment the dynamic loading leaves the I-beam to 

that when the displacement amplitude of the I-beam is no more than 0.01mm, as 

shown in Fig.11. For the case B = 80mm, v = 100km/h, and k1 = 80kN/mm, the decay 

time shows a rapidly reducing trend in terms of the damping coefficient of the support, 

as illustrated by Fig. 12.  

 

Fig.11. Dynamic response of I-beam for the 

definition of the decay time 

 

Fig.12. Decay time in different damping 

coefficient of the support, k1=80kN/mm 

 

To ensure the system is attenuated before the arrival of the following dynamic 

loading, the decay time should satisfy  

v

d
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where d is the distance between the dynamic loading, such as the wheel base which is 



the distance between the front and rear wheels of a vehicle, and v the travelling speed 

of the vehicle. Based on this, the value of c1 can be chosen. For instance, from Fig. 12, 

for a lorry with a wheel base of 5m travelling at 100km/h, the decay time is 0.18s and 

the damping coefficient of the elastic element can be calculated as 7kNs/m.  

 

5 Conclusions 

The dynamic response of a continuous beam with discrete viscoelastic supports was 

studied using a theoretical analysis and finite element simulations, to describe the 

vibration behavior under a moving sinusoidal pulse. Numerical results of the 

theoretical analysis agree reasonable well with those of the finite element modeling. 

Single and multi-beam units, and a practical design case were studied. Several system 

parameters were explored for design considerations. The following conclusions can 

be obtained: 

 The bending displacement of I-beams on top is substantially larger than that of 

the supporting crossbeams, rendering the I-beams prone to fatigue failure 

under vibration. 

 The peak displacement of the I-beams is sensitive to the load moving (traffic) 

speed. A maximum value of the peak displacement occurs at a particular 

velocity (Figs. 6 and 8). This maximum value and the corresponding velocity 

need to be identified to check for the maximum bending stress for design and 

maintenance. 

 An impact coefficient is introduced, allowing the maximum dynamic bending 

displacement at different speeds being calculated from its static displacement. 



 The selection of the damping coefficient of the viscous supports can be based 

on the decay period corresponding to the speed of the moving pulse (eg. the 

speed limit on the bridge). 

Though the theoretical model and the finite element analysis have shown good 

agreement, comparison with experimental measurement is yet to be achieved. This 

remains as the scope for future work. 
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Appendix  Details of a bridge expansion unit used as the model in the analysis 

 

The modular expansion unit consists of five I-beams (sometimes termed centre 

beams) and two side beams positioned perpendicular to the bridge axis. The I-beams 

are supported by crossbeams. The side beams are fixed on the joist box at the end of 

the bridge gaps. The crossbeams are supported at the ends by the joist boxes with 

sliding bearings and the pre-stress element to allow for the expansion and contraction 

of the structure. Brackets, pre-stress and pressing elements are used to coordinate the 

sliding motion and the deformation of the crossbeam. The vertical stiffness of the 

pre-stress and pressing elements can be treated as spring-damper supports of the 

beams. Waterproof rubber shields are used to prevent water and debris/dirt dropping 

into the system and have little influence on the mechanical performance of the system. 

Fig. A1 shows the schematic view of a design of an expansion joint unit. 

 

 
Fig.A1. Schematic view of ZL480 expansion joints 

     1. Pre-stress element  2. I-beam  3. Waterproof rubber shield  4. Side beam  5. Sliding bearing 

     6. Elastic element  7. Pressing element   8. Bracket  9. Crossbeam  10. Joist box 

 

   

 


