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Abstract—Automatic continuous affective state prediction from
naturalistic facial expression is a very challenging research topic
but very important in human–computer interaction. One of the
main challenges is modeling the dynamics that characterize nat-
uralistic expressions. In this paper, a novel two-stage automatic
system is proposed to continuously predict affective dimension
values from facial expression videos. In the first stage, tradi-
tional regression methods are used to classify each individual
video frame, while in the second stage, a time-delay neural net-
work (TDNN) is proposed to model the temporal relationships
between consecutive predictions. The two-stage approach sepa-
rates the emotional state dynamics modeling from an individual
emotional state prediction step based on input features. In doing
so, the temporal information used by the TDNN is not biased
by the high variability between features of consecutive frames
and allows the network to more easily exploit the slow chang-
ing dynamics between emotional states. The system was fully
tested and evaluated on three different facial expression video
datasets. Our experimental results demonstrate that the use of
a two-stage approach combined with the TDNN to take into
account previously classified frames significantly improves the
overall performance of continuous emotional state estimation in
naturalistic facial expressions. The proposed approach has won
the affect recognition sub-challenge of the Third International
Audio/Visual Emotion Recognition Challenge1.

Index Terms—Affective computing, emotion dimension, emo-
tion prediction, facial expression, neural networks.

I. INTRODUCTION

EMOTIONAL expressions are very important in human
communication. They mediate interaction between peo-

ple, enrich and often clarify the meaning of words or sentences
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and help regulate tension. They also act as an important
regulatory loop on oneself. Evidence has shown that, when
portraying an expression through either our face or our body,
our emotional state is also biased in the direction of the
expressed emotion [1], [2]. As interactive technology becomes
ubiquitous in our society and takes on social companionship
and coaching roles in “serious” tasks (e.g., education [3] and
physical rehabilitation [4]), it is critical that it is endowed with
the capability to read people’s emotional expressions in order
to react or adapt appropriately. The work proposed in this
paper aims to advance the state of the art in the recognition
of continuous naturalistic affective expressions by taking into
account their temporal dynamics.

Since the emergence of the field of affective comput-
ing [5], much attention has been dedicated to create sys-
tems that could recognize affective expressions. Work has
focused on most modalities that people and animals con-
sciously or unconsciously use to communicate or detect
emotions: vocal (see [6], [7]), facial (see [8]–[10]), body
expressions (see [11]), touch behaviors (see [12]), physio-
logical (see [13], [14]) and neurological activation patterns
(see [15]–[17]), or media-mediated expressions (see [18]).

Initially, the field has focused on acted or stereotypical
expressions and on very controlled environmental conditions.
The datasets created and used to develop such systems typi-
cally contained well-defined, separate acted expressions [19]–
[22]. Today, however, we are assisting to an increasing attempt
to shift to expressions that reflect or are closer to those encoun-
tered in real-life situations. This shift is due in part to the
successful results obtained on controlled and acted expres-
sions, but also to the fact that sensing technology has entered
our everyday life and is now embedded in many forms of
technology (e.g., Google glasses and smart-phones). This, in
turn, requires modeling the variability and richness found in
everyday emotional expressions and also the fact that these
are not presegmented but need to be continuously tracked
over time.

Even if most of the work is still done in a controlled envi-
ronment, applications are emerging built on real-life situations.
For example, the work by [23], [25]–[28] attempts to con-
tinuously monitor facial expressions and body movement to
provide continuous and more objective measures of clinical
conditions (e.g., depression, anxiety disorder, and pain levels).
Engagement in computer games is continuously achieved by
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reading the emotional state of the player [14], [29], [30] and
consequently adapting the game according to the available
cognitive resources or the type of experience the player is
looking for in that moment [31]. There is also growing interest
in stretching the challenge by considering noncontrolled envi-
ronments (e.g., changes in illumination, perspective, etc. [24])
since real-life applications need to work in such environments.

Another change that is occurring in the field of automatic
emotion recognition is the shift in what needs to be mod-
eled. Given the initial focus on stereotypical expressions, most
of the work focused on modeling an emotional space con-
sisting of discrete basic states such as anger, disgust, fear,
happiness, sadness, and surprise [32]. However, naturalistic
expressions present a bigger challenge to the research com-
munity because they are less stereotypical and not always
full-fledged expressions [33]. In addition, the dynamic of these
expressions is more complex and changes more slowly than
acted expressions. The discrete emotional space has shown to
be too limited to capture the complexity and variety of these
expressions. The field is now moving toward a continuous
space characterized by emotional dimensions. A continuous
space not only allows for a more complete description of a
complex emotional state [34] but also leads itself better to
continuous tracking and classification of expressions and their
temporal dynamics.

This has also led researchers to create data-
sets [26], [35]–[40] that challenge the community to
focus more closely on real-life situations and compare their
results. Whilst these datasets raise the bar for the creation of
an automatic emotion recognition system as they require to
address the inherent complexity of an expression, they also
provide the possibility to exploit this complexity to improve
the classification process.

The work presented in this paper aims to contribute to this
research area by proposing a novel framework for automatic
emotional state prediction from facial expressions in a contin-
uous space. In a previous work [41], we showed that, by taking
into account temporal information on the decision level of a
multistage system, the classification of a unit (e.g., a video-
frame) of an emotion expression significantly improved. We
extend this paper in two ways. First, the proposed framework
reflects a more real-life situation where only past information
is used for modeling the decision level. Second, the classifica-
tion is not only continuous over time but also continuous over
affective dimensions rather than binary. A time-delay neural
network (TDNN) is used to capture the temporal relation-
ship between predictions on continuous instances of a facial
expression video recording. The system is fully evaluated on
a purposely created dataset of facial expressions of people
watching videos [42] as well as on the public AVEC2012 [36]
and AVEC2013 [26] datasets. The results show that significant
improvements are achieved in comparison with a one-stage
method where temporal relationships are considered. In addi-
tion, the results show that by decoupling the modeling of the
temporal dynamics of emotional states from high variability
contained in the low-level features, we obtain an increase in
performance and a decrease in computational cost. Whilst the
system is tested on videos, it is modality independent.

The rest of this paper is organized as follows. Section II
provides an overview of related research to highlight the
motivation for suggesting the proposed approach. Detailed
description of the TDNN and of the two-stage automatic emo-
tional state prediction system is given in Sections III and IV,
respectively. This is followed by the evaluation of the sys-
tem on the three datasets. Finally, we conclude by discussing
the lessons learnt and how the system could be further
developed.

II. RELATED WORK

With the emergence of real-life datasets, the research
field has moved from building systems that recognize pre-
selected instances of expressions to continuously track and
classify such expressions over time. Recently, the survey by
Sariyanidi et al. [43] on registration, representation, and recog-
nition of facial expressions highlighted some open issues
in this area and future directions for designing real-world
affect recognition systems. In particular, they highlighted the
need for work that makes a better use of temporal informa-
tion. Indeed, initial approaches treated videos as sequences
of independent facial expressions and focused on improving
the classification performance of each independent expres-
sion. Bartlett et al. [44] proposed, for example, a system
that detects, at run-time, video frames containing frontal faces
and for each frontal face detects action units that relate
to emotional expressions. It uses a combination of support
vector machine (SVM) and AdaBoost to increase both accu-
racy and speed. Schuller et al. [35] model each unit of
expression (e.g., a video frame, a word) independently and
makes it a standard classification problem at frame level.
Romera-Paredes et al. [45], [46] proposed to use the relation-
ships between identity features and facial expression features
to improve the detection of pain expressions over time. In [45],
the algorithm modeled the quasi-orthogonality between these
two types of features to optimize performance in identity
recognition and facial expression recognition. In [46], a new
multilinear multitask learning approach that facilitates transfer
between tasks and limits negative transfer is used to clas-
sify frame by frame the activation of action units of facial
expressions for continuous pain estimation. This traditional
frame-by-frame approach is also used in building the baseline
systems for the AVEC2012 [36] and AVEC2013 [26] chal-
lenges although different advanced features were extracted,
feature selection process was added and optimized kernel-
based SVMs for classification and regression were used. The
results from these works were very positive, however, they
missed the opportunity to exploit the temporal relations that
exist between consecutive instances of an expression.

Other approaches have used spatio-temporal representations
of an expression by computing features over a temporal win-
dow [47] rather than over a single frame (see [43] for a
review). However, as this review discusses, most of these
approaches make use of simple registration approaches and the
variability of texture from frame to frame may be more appar-
ent than the expression activity itself. Even if a few approaches
have proposed more accurate registration techniques [48],
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these still lack in their capability to effectively perform a
temporal registration of the frames. Sariyanidi et al. [43] sug-
gested that there is a common unsaid assumption that within
a window of expression there are no head pose variations but
only facial activity changes. Sariyanidi et al. [49] tried to
overcome these issues by proposing a probabilistic subpixel
temporal registration method that measures registration errors
and makes use of this information to improve its performance.

Other researchers explored other modeling techniques able
to take advantage of this information. Modality-independent
approaches attempted to use modeling techniques that have
the inherent capability to model temporal information with-
out exploiting modality-specific knowledge. A typical method
used is the hidden Markov model (HMM). Already used for
this purpose in speech recognition [50] and body movement
tracking and classification [51], it is now increasingly used in
emotion recognition.

An extension of these works is in the multimodal recogni-
tion of emotional expressions and audiovisual affect recogni-
tion [52]–[54]. Other than considering hierarchical structures
to facilitate a refinement of the initial predictions, another
important point raised by these recent studies is that attention
should be paid to the level of granularity of the model-
ing (unit of an expression). In the case of vocal modeling,
Lee et al. [55] showed that different phonemes contribute dif-
ferently to a vocal emotional expression. Their HMMs produce
better results when the unit of recognition is not the entire
emotional expression (i.e., from the onset of the expression
to its end) but the subunits that compose it as the expression
develops and ends (phonemes in their case).

Most of these works are still using datasets that are not
really continuous and where the expressions have already
been presegmented or defined through controlled recording.
However, the encouraging levels of performance reached by
all these systems suggest that the temporal relationship may
be even more informative in the case of nonacted expres-
sions as the expressions do not always start from a predefined
neutral state. As researchers tackle naturalistic expressions,
they are starting to take advantage of the knowledge avail-
able about naturalistic expressions and results have shown that
this information is indeed very beneficial [41], [56]. Modeling
techniques used to make use of the knowledge and constraints
of the muscular structure of the face to reduce the complex-
ity of the modeled phenomenon include dynamic Bayesian
networks [57]–[60], restricted Boltzmann machines [61], and
latent-dynamic conditional random fields [62], [63]. In these
approaches, the temporal relationship is represented by the
transition probabilities between hidden states. The main short-
coming of this is that the hidden states are unknown and
need to be estimated based on assumed probability distribu-
tions of the data. Although optimization methods, such as the
expectation maximization algorithm, could be used, the esti-
mation is not always accurate because the data might violate
the assumptions.

Nicolaou et al. [64] exploited the temporal dependencies
over a dimensional domain by extending the relevance vector
machine regression framework to capture the output struc-
ture and the covariance within a predefined time window.

Baltrušaitis et al. [65] proposed continuous conditional neu-
ral fields for structured regression for dealing with all the
affect dimensions together. The aim is to improve performance
by using both temporal information and correlation between
affective dimensions. Indeed the literature shows that arousal
and valence (AV) are correlated as the physiological processes
they relate to appear to be correlated (for a review, see [33]).
Long short-term memory (LSTM) is one type of recurrent
neural network (RNN) that has been successfully used for
modeling the relationship between observations [66]–[69] by
making use of past classifications. Wöllmer et al. [66] first
proposed a method based on LSTM RNN for continuous
emotion recognition that included modeling of long-range
dependencies between observations. This method outper-
formed techniques such as support vector regression (SVR).
Eyben et al. [67] used it for audiovisual classification of vocal
outbursts in human conversation and the results showed sig-
nificant improvements over a static approach based on SVM.
Nicolaou et al. [68] also used LSTM networks to outperform
SVR due to their ability to learn past and future contexts.
Wöllmer et al. [69] used bidirectional LSTM networks to
exploit long-range contextual information for modeling the
evolution of emotions within a conversation.

Whilst the methods discussed above make use of modeling
techniques that are able to capture temporal information, they
are still very tied to the feature level. Unfortunately, as already
suggested in [43], there is a significant gap between fea-
ture level and semantic information in the data. For example,
face images can change fast and dramatically in naturalis-
tic videos, even if the emotional state of the person will
change at a slower speed [41]. Many of the expression
changes may be due to information that is not always relevant
to the emotional expressions (e.g., head pose, illumination).
Multistage approaches have been proposed to overcome this
problem [41], [70], [71]. Nicolaou et al. [70] trained a mul-
tilayer hybrid framework composed of a temporal regression
layer for predicting emotion dimensions, a graphical model
layer for modeling valence-arousal correlations, and a final
classification and fusion layer exploiting informative statistics
extracted from the lower layers. In [41] and [71], a multi-
stage approach was proposed to separate the feature level and
the decision level. In the feature level, traditional classifica-
tion methods were used to predict the emotion labels. In the
decision level, the transitions (over time) between consecu-
tive affective dimension levels were modeled as a first-order
Markov model. The temporal sequences of affective dimen-
sion levels (i.e., binary labels) were defined as the hidden
states sequences in the HMM framework. The probabilities
of these hidden states and their state transitions were com-
puted from the labels of the training set. The rationale behind
this approach was to transform the continuous binary classifi-
cation problem into a best path-finding optimization problem
in the HMM framework. The approach won the AVEC2011
audio sub-challenge [35]. The results showed that a multistage
approach decoupling the classification at feature level from
the classification at semantic level could further improve the
recognition performance for slow-changing emotional dimen-
sional aspects of the expressions by exploiting the temporal
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relationships only at the decision level. The main limitation of
the approach was that it could be used only for categorization
and not for regression. The other limitation was that the cat-
egorization of each frame was based on the whole sequence
of frames (i.e., video) rather than just on past information,
making it not useful in real-time applications.

In this paper, we propose to use a two-stage model with
a TDNN model for continuous dimensional emotion predic-
tion from facial expression image sequences. TDNN [72] is
another neural network model with the capability of capturing
the dynamic relationship between consecutive observations. In
a TDNN, a current input signal is augmented with delayed
copies of the previous input values and the neural network is
time-shift invariant since it has no internal state. In term of
affect recognition this means that an instant of an emotional
expression (e.g., a video frame) is classified by taking into
account not only the input features describing that instant, but
also the input features describing the previous instants, i.e.,
how the expression evolved over time to the current state.
The delay, that is the number of past instants considered, is
set as a parameter of the network. Its structure is much sim-
pler than other RNN networks. For example, LSTM contains
LSTM blocks instead of, or in addition to, regular network
units. An LSTM block contains gates that determine when the
input is significant enough to be remembered, when it should
continue to be remembered or instead be forgotten, and when
it should output the value. The simpler structure of the TDNN
makes it less computationally expensive. Studies have in fact
shown that TDNN are less computationally expensive than
other RNNs [73]. Whilst the increased complexity of a RNN
like the LSTM may be very beneficial at the first stage of emo-
tion classification to deal with high dimensional and highly
variable video features and their complex temporal relationship
as in [68] and [74], we propose to use the simpler TDNN struc-
ture when modeling the temporal relationship at the semantic
level (second stage). In addition, it should be noted that to
reach higher performance in modeling the temporal complex-
ity presented by the low-level features both [68] and [74] had
to use both past and future information making the approach
less useful in continuous real-life emotional state prediction.
This is very important in the context of emotion recognition
especially when dealing with video-based data.

The proposed two-stage TDNN-based method combines
the benefits of the hierarchical approach proposed in [71]
but overcomes its limitations. First, it can deal with regres-
sion problems instead of categorizations due to its nature.
Second, it only uses past knowledge gathered in real time,
rather than having to analyze the full sequence. Our method
won the AVEC2013 affect sub-challenge (ASC). We also
tested it on the AVEC2012 dataset and on our own record-
ing dataset to verify its performance on different types of
contexts.

III. TIME-DELAY NEURAL NETWORK

TDNN is an artificial neural network model developed in
the 1980s [72] in which all the neuron-like units (nodes)
are fully connected by directed connections. Each unit has a

Fig. 1. Single TDN with M inputs and N delays for each input at time t.
Di

d are the registers that store the values of delayed input Ii(t − d).

time-varying real-valued activation and each connection has
a modifiable real-valued weight. It has two special layers:
1) hidden layer and 2) output layer, in which the nodes are
time-delay neurons (TDNs) as shown in Fig. 1 and described
in the following.

A single TDN has M inputs (I1(t), I2(t), . . . , IM(t)) and one
output (O(t)) where these inputs are time series with time
step t. For each input Ii(t) and i = 1, 2, . . . , M, there is one
bias value bi, N delays (indicated as Di

1, . . . , Di
N in Fig. 1)

storing the previous inputs Ii(t−d) with d = 1, . . . , N, and the
related N independent unknown weights (wi1, wi2, . . . , wiN).
F is the transfer function f (x) which is a nonlinear sigmoid
function here. A single TDN node can be represented

O(t) = f

(
M∑

i=1

[
N∑

d=0

Ii(t − d) ∗ wid + bi

])
. (1)

From (1), it can be seen that both the inputs at current
time step t and previous time steps t − d, with d = 1, . . . , N
contribute to the overall outcome of the neuron. A single TDN
can be used to model the dynamic nonlinear behavior that
characterizes series inputs.

Fig. 2 shows the overall architecture of the TDNN neural
network, in which the hidden layer has J TDNs and the output
layer has R TDNs with all the TDNs fully connected. The
neural network model can be described using (2) for the output
layer and (3) for the hidden layer

Or(t) = f

⎛
⎝ J∑

j=1

[ N1∑
d=0

Hj(t − d) ∗ vr
jd + cr

j

]⎞
⎠, r = 1, 2, . . . , R

(2)

Hj(t) = f

(
M∑

i=1

[ N2∑
d=0

Xi(t − d) ∗ w j
id + b j

i

])
, j = 1, 2, . . . , J

(3)
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Fig. 2. Overall architecture of the TDNN neural network. It is a fully-
connected two-layer neural network model with TDNs.

where w j
id and vr

jd are, respectively, the weight of the hidden

node Hj and of the output node Or with b j
i and cr

i , the respec-
tive bias values. As seen from (2) and (3), the TDNN is a
fully-connected forward-feedback neural network model with
delays in the nodes of the hidden and output layers. The num-
ber of delays for the nodes in the output layer is N1 and that
for the hidden layer is N2. It is called distributed TDNN if the
delay parameter N varies between nodes.

For supervised learning in discrete time settings, the training
set sequences of real-valued input vectors (e.g., representing
sequences of video-frame features) are the sequences of acti-
vations of the input nodes, with one input vector at a time. At
any given time step, each noninput unit computes its current
activation as a nonlinear function of the weighted sum of the
activations of all units from which it receives connections. In
supervised learning, the target labels at each time step are used
to compute the error. For each sequence, its error is the sum
of the deviations of the activations computed by the network
at the output nodes from the corresponding target labels. For
a training set, the total error is the sum of the errors com-
puted for each individual input sequence. Training algorithms
are designed to minimize this error.

A TDNN can be trained by using traditional meth-
ods for forward-feedback neural networks such as
the Levenberg–Marquardt algorithm [75]. In the
Levenberg–Marquardt algorithm, the training process
optimizes the weights W through iterations on the basis of
the input time series X(t) and the known labels Y(t) for
t = 1, · · · , T , where T is the length of the sequence. During
the testing process, the weights of the neural network are
fixed and a predicted label is produced based on the input
feature vectors only. Due to the delay property in the TDN
nodes, the model can capture the dynamic behavior between
consecutive elements of a sequence (e.g., video frames).

IV. TWO-STAGE EMOTIONAL DIMENSION

ESTIMATION SYSTEM

Following the approach used in [41], we propose to inte-
grate the TDNN into a two-stage architecture to predict the
emotional state of a person along an affective dimension. We
first describe the overall two-stage architecture and the ratio-
nale for it and then briefly present the algorithms used for the

first-stage prediction. We then present the three datasets used
to evaluate the architecture.

A. System Overview

As discussed in the previous section, TDNN is a good can-
didate for real-time affective state prediction at unit level.
It captures the dynamic relationship existing between con-
secutive units of expressions and utilizes it to improve the
recognition performance. However, since facial expression fea-
tures are generally very high dimensional, the TDNN model
will have a large number of inputs and hence a large number
of weights to be trained. This increases the model’s complex-
ity and the computational time. In addition, features between
consecutive frames may show high variability due not only to
change in emotional expressions but also to other factors such
as head pose or illumination.

To overcome these problems, a two-stage system is pro-
posed in this paper. In the first stage, a standard basic
regression method is used to produce an initial prediction of
the affective dimension level based on the highly variable and
high-dimensional input features. Then, in the second stage,
a TDNN is used to improve the accuracy of the prediction
by taking into account past observations. This process mim-
ics the method proposed in [41] with the difference that the
new approach allows for real-time classification as it does not
need to process the full sequence of observations (i.e., past,
present, and future units) to classify a unit of expression. It
only requires a subset of the previous observations. This allows
the recognition model to be used in real-life situations where
prediction can be based only on already seen instances. In
addition, by using a regression method at the first stage, the
model is able to deal with continuous labels rather than just
binary or discrete ones. This is an important requirement as
real-life applications deal with complex emotional states that
are better captured by continuous affective dimensional spaces.
The problem to address is hence a regression problem rather
than a classification one.

Fig. 3 shows the overview of the proposed dimensional
affective state prediction system. In the first stage, basic regres-
sion methods can be used for a first prediction of affective
dimension value for the unit of expression in input (e.g., a
video frame of a facial expression). The second stage is per-
formed by a TDNN, where the prediction is updated by taking
into account the label assigned to the previous frames (units)
by the first-stage prediction. For the basic regression step, any
standard regression method can be used, such as k-nearest
neighbor (k-NN) and SVR. During the training process, two
models are produced. The first one is a direct output of
the first-stage training process (basic regression) and can be
directly used to make inferences. The output of this first-stage
model (basic regression) is used to train the TDNN-based
model (second stage). These two models are both built using
the same training dataset. Once the two models have been
trained, they can be used in tandem as a two-layered system
where the predicted values are produced continuously as units
of sequences of expressions are received.

It should be noted that in this paper, our focus is to investi-
gate the contribution made by a two-stage approach embedded
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Fig. 3. Two-stage continuous prediction system. A basic regression model predicts the values of affective dimension conveyed by an individual video frame;
the second level, based on TDNN, takes into account the relationship of predictions to finalize the labeling of frames.

with the capability to exploit temporal information rather than
optimize the feature extraction level. More complex features
extraction methods may possibly lead to further improvement
but this is outside the scope of this paper.

B. Data Recording and Labeling

The inputs to the system are continuous streams of data rep-
resenting continuous levels of affective expressions (e.g., facial
expressions and body or vocal expressions of a person in pain).
Whilst the system is independent on the modality used to rec-
ognize the affective state of a person, we tested our system on
three video datasets of facial expressions that were continu-
ously labeled over time by multiple raters. The labels used are
continuous values over two or four of the following affective
dimensions (according to the dataset): 1) arousal; 2) expec-
tation; 3) power; and 4) valence. These dimensions are well
recognized in the psychological literature and account for most
of the variability between everyday emotion categories [76].
Arousal is the individual’s global feeling of dynamism or
lethargy, including mental and physical activity. Expectation
also subsumes various concepts such as expecting, anticipat-
ing, and being taken unaware. The power dimension combines
two related concepts: 1) power and 2) control. It relates to the
social experience of dominance and is also characterized by
vocal and action tendency responses. The valence dimension
indicates the overall positive or negative feeling of an individ-
ual toward the object which is the focus of his/her affective
state.

Each frame of a video is hence labeled with a vector of real
values, one for each affective dimension. The ranges of values
change in accordance with the affective dimension labeled and
the protocol used in labeling the dataset.

C. Feature Extraction

Whilst the framework is independent of the modality used
and accepts any type of input features, for completeness,

we briefly describe here some of the image features that were
purposely developed for testing, or provided with the selected
datasets.

1) LBP: The local binary pattern (LBP) operator is defined
as a gray-scale invariant texture measure derived from a gen-
eral definition of texture in a local neighborhood. It was first
described in [77]. It has since been found to be a power-
ful feature for texture classification [78] and has further been
developed in different ways such as in [79] and [80]. In this
paper, only the basic LBP descriptor is used and the feature
vector has a dimension of 256.

2) EOH: The second texture feature is computed by using
the edge orientation histogram (EOH) operator. The EOH is a
simple, efficient and powerful operator that captures the texture
information of an image. It has been widely used in a variety of
vision applications such as hand gesture recognition [81] and
object tracking [82]. It has also been used for facial expression
analysis [83].

In the implementation of EOH, each image is scaled into a
40 × 40 size image and then divided into cells of 8 × 8 pixels.
2 × 2 cells form a block. The EOH feature is then computed
for each cell and normalized within a block. This yields a
384-component vector [83].

3) LPQ: The local phase quantization (LPQ) feature [84] is
based on computing the short-term Fourier transform on local
image blocks. At each pixel the local Fourier coefficients are
computed for four frequency points. Then the signs of the real
and imaginary parts of each coefficient are quantized (binary
scalar) to calculate phase information. The obtained eight
bit binary coefficients are then represented as integers using
binary coding like LBP. In this paper, this feature was pro-
vided by the AVEC2013 organizer, with face detection and
normalization also used [26].

D. First-Stage Regression

The first stage of the architecture performs a typical regres-
sion process to provide a first classification of the unit of
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expressions (i.e., a video frame of a facial expression in our
test case). In this paper, we explored both the k-NN regression
and SVR methods. The first is very simple but very effective.
The second is typically used for its generalization capabili-
ties [85]. However, the architecture is general and any standard
regression method could be used for this stage.

1) k-NN Regression: k-NN is a lazy learning method for
classifying objects based on the closest training examples in
the feature space. Given a sample x, its predicted label ŷ can be
computed as the average of the labels in its k neighbors N(x) ⊂
{1, 2, · · · , N} within the N training samples as follows:

ŷ = 1

k

k∑
l=1

yl, l ∈ N(x). (4)

For simplicity, k was set to 5 in all testing.
2) SVR: The SVR algorithm [85] can be considered the

regression version of the SVM algorithm. The model produced
by SVR depends only on a subset of the training data because
the cost function for building the model ignores any training
data close to the model prediction. In all our experiments, the
linear kernel and default parameters were used for simplic-
ity. In addition, no parameter optimization was carried out in
order to provide a more fair comparison between the different
architecture.

E. Second-Stage Prediction: TDNN Modeling

The TDNN architecture was used in the second-stage pre-
diction. The inputs are the predicted values from the first-stage
regression method (i.e., the outputs of the first-stage regres-
sion). As the number of input and output to a TDNN can
be any positive number, the architecture could be designed to
model one affective dimension only or to model multiple affec-
tive dimensions at the same time. In the latter case, the TDNN
will output a vector of values, one for each affective dimen-
sion modeled on the basis of the prediction of the units along
the various dimensions. The latter approach could be useful
when a certain relationship is known to exist between affec-
tive dimensions. The affective dimensions considered here are
supposed to have minimum redundancies in modeling cer-
tain affective states [86]. In order to verify this assumption,
we computed the Pearson correlation coefficients between the
labels of the affective dimensions in the training set for each
of the datasets presented below and these were overall quite
low, as shown in Table I with only a few values reaching 0.4
(e.g., about 20% of variation in arousal is explained by either
changes in valence or in power). We will discuss further this
aspect when dealing with the specific datasets.

The implementation of the TDNN was simply achieved by
using the TDNN function available from the MATLAB neural
network toolbox and by experimentally setting its parameters.
The parameters for the training of the TDNN were set as
indicated in Table II for the video watching and AVEC2013
datasets, and Table III for the AVEC2012 dataset.

TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN THE AFFECTIVE

DIMENSIONS FOR THE THREE DATASETS USED FOR THE EVALUATION

OF THE ARCHITECTURE. THE CORRELATION VALUES WERE

COMPUTED ON THE TRAINING SUBSETS FOR EACH

DATASET. ALL CORRELATION VALUES WERE

STATISTICALLY SIGNIFICANT,
I.E., p-VALUE < 0.0001

TABLE II
VALUES FOR THE TDNN PARAMETERS USED FOR THE VIDEO-WATCHING

AND AVEC2013 DATASETS. M = NUMBER OF INPUT NODES,
R = NUMBER OF OUTPUT NODES, J = NUMBER OF HIDDEN

NODES, N1 = NUMBER OF DELAYS PER INPUT NODE,
AND N2 = NUMBER OF DELAYS PER HIDDEN NODE

TABLE III
VALUES FOR THE TDNN PARAMETERS USED FOR THE AVEC2012

DATASET. M = NUMBER OF INPUT NODES, R = NUMBER OF

OUTPUT NODES, J = NUMBER OF HIDDEN NODES,
N1 = NUMBER OF DELAYS PER INPUT, AND

N2 = NUMBER OF DELAYS PER

HIDDEN NODE

V. EXPERIMENTAL EVALUATION

To test the performance of the systems, three datasets of
videos of facial expressions were used. The first one was an in-
house built dataset of people watching videos. The second and
the third ones were, respectively, the AVEC2012 [36] and the
AVEC2013 [26] audio-video datasets. Whilst the first dataset
is part of our research, the second and third datasets allow us
to compare our results with those of the research community.

A. Video-Watching Dataset

1) Data and Labels: Facial expressions of people watching
videos were continuously collected from a webcam [87], [88].
An example of the video watched and of the facial expres-
sions gathered through the video camera are shown in Fig. 4.



MENG et al.: TDNN FOR CONTINUOUS EMOTIONAL DIMENSION PREDICTION FROM FACIAL EXPRESSION SEQUENCES 923

Fig. 4. Left: the video the person is watching. Right: the person watching
the video captured by a webcamera.

A Logitech HD Webcam C270 was used for recording
the facial expressions of the participants. Every video clip
was recorded at a rate of 10 frames/s and a resolution of
RGB24_160×120. The “motion JPEG AVI” was chosen as
the compression format. A total of 2100 frames were recorded
for each watching session.

The dataset consists of the recordings of five participants
watching videos, with every participant recorded twice for a
total of 21 000 frames. The videos were selected to generate
a variety of emotional responses such a disgust, fear, surprise,
happiness, and so on.

Only AV dimensions were used for the labeling. The Gtrace
software [89] was used by two raters to annotate all the facial
expressions reaching interrater Pearson’s correlation values of
0.5538 for arousal and 0.4814 for valence. The ground truth
was computed as the average of the raters’ ratings. Detailed
information of the dataset can be found in [42].

2) Features: Both basic LBP and EOH features were
extracted for the testing experiments. For each frame, a basic
LBP feature consisted of 256 values, whilst the EOH feature
was formed of 384 values. Finally, LBP and EOH features
were concatenated into a unique vector called LBP+EOH.

3) Results: To test the proposed architecture, we compared
the results of the one-stage regression system with either
k-NN or SVR with the related two-stage architecture. Twofold
cross-validation method was used and Pearson’s correlation
coefficients (CORR) and root mean squared error (RMSE)
between the ground truth and the output of the four systems
were computed.

The results are shown in Table IV. The table shows that
for both AV dimensions, SVR performs better than k-NN.
It also shows that the best results are obtained by using the
two-stage architecture rather than just the single-stage regres-
sion approach for both SVR and k-NN versions of the system.
Fig. 5 provides an example of the predicted and ground truth
values for AV dimensions for a sample video record for the
SVR version of the architecture. The EOH feature seems to
provide the best performance overall. This could be because
EOH feature not only captures the texture information but also
the spatial information.

We further evaluated the performance of a two stage-
architecture versus directly modeling the temporal relationship
between the frame features, i.e., by applying the TDNN
directly at the first level. This was tested only on the EOH
features as these had shown better performance in Table IV.
The results are reported in Table V. We can see from the
first column that using a one-stage TDNN leads to very poor
performance compared to a SVR approach that does not use

TABLE IV
VIDEO-WATCHING DATASET. PEARSON’S CORRELATION

COEFFICIENTS (CORR) AND RMSE AVERAGED

OVER TWOFOLD TESTING

temporal information and to the SVR+TDNN approach that
exploits and decouples such information from the low-level
features. These results confirm that the temporal information
is more effective when modeled at the semantic level rather
than at the feature level. In addition, Table V shows a high
decrease in computational cost when modeling the temporal
relationship at semantic level rather than at feature level. For
example, in the case of arousal, the computing speed decreases
from 4833 to 216 + 4 seconds. The reduction in the case of
valence is even bigger due to the more complex structure of
the TDNN used for it.

Finally, even if our results show a relatively small cor-
relation between AV (Table I), for completeness we model
these two affective dimensions together. The results show
that modeling them together does not lead to further increase
in performance but rather to a slight decrease: 1) 0.4533
instead of 0.4720 for arousal and 2) 0.3574 instead of 0.4037
for valence. The lack of increase in performance is possi-
bly due to the fact that the correlation is not strong and
may also vary between the subsets used in cross-validation
process.

B. AVEC2012 Dataset

1) Data and Label: The AVEC2012 challenge [36] uses the
SEMAINE corpus [90], which consists of a large number of
emotional interactions between human participants and with
sensitive artificial listener agents. This database is recorded
to study natural social signals that occur during conversations
in face-to-face interactions. In the data collection, participants
were invited to engage in a conversation with other humans
or with four emotionally stereotyped characters: Spike always
angry, Poppy always happy, Obadiah gloomy, and Prudence
being the sensible one. The emotional traits of the charac-
ters aimed to induce emotional changes in the participants.
The AVEC2012 challenge dataset consists of a subset of the
SEMAINE dataset, with 95 video clips split into: 1) 31 training
sessions; 2) 32 development sessions; and 3) 32 test sessions.
The frame number of each session is different because of the
variability of the conversations.
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(a)

(b)

Fig. 5. Predicted dimensional affect labels for a video sample of the video-watching dataset. (a) and (b) AV. The ground truth label is shown by the green
line, the blue line represents the first-stage prediction by SVR, and the red line is the predicted labels for the second-stage prediction (SVR+TDNN).

TABLE V
VIDEO-WATCHING DATASET. COMPARISON IN TERM OF

PERFORMANCE (PEARSON’S CORRELATION COEFFICIENT—CORR)
AS WELL AS COMPUTING SPEED TIME (SECOND) BETWEEN THE

ONE-STAGE METHOD (EOH+TDNN) AND THE TWO-STAGE

METHOD (EOH+SVR+TDNN)

Each video is recorded at a frequency of 49.479 frames/s
and has a resolution of 780 × 580 pixels and 8 bits per pixel.
Whilst the dataset also contains the audio modality, only the
visual modality was used to evaluate our architecture. The rea-
son to focus on one modality only is that we can test the power
of the TDNN-based architecture modeling independently of
the power of data fusion techniques. The baseline result of
the AVEC2012 dataset [36] for the video modality was used
for comparison.

Labels for the four affective dimensions (arousal, valence,
power, and expectation) were provided with the AVEC2012
dataset. The labels for each dimension are real values at
video frame level. More details about the dataset are pro-
vided in [36].

2) Features: In this experiment, EOH feature and uniform
LBP feature were used. The uniform LBP is an extension
of the original LBP operator which reduces the length of
the feature vector and implements a simple rotation-invariant
descriptor. For each video frame, the EOH feature has a dimen-
sion of 384. To compute the uniform LBP, each frame was
divided into 100 blocks producing an LBP vector of 5900
elements for each frame. In addition, LBP and EOH features
were also concatenated as in the previous experiment.

3) Results: As with the previous dataset, the results of the
four systems were compared. Only the SVR regression method
was used for this dataset given its superior performance
to k-NN.

TABLE VI
AVEC2012 DATASET. COMPARISON BETWEEN RECOGNITION

PERFORMANCE (PEARSON’S CORRELATION COEFFICIENT—CORR)
OF THE PROPOSED SYSTEM FOR THE DEVELOPMENT SUBSET AND

TESTING SUBSET. IT IS ALSO COMPARED WITH BASELINE [36]
AND THE WINNING METHOD [91]. IT SHOULD BE NOTED

THAT THE WINNING METHOD [91] USES AN OPTIMIZED

SET OF FEATURES AND BOTH VIDEO AND AUDIO

INFORMATION RATHER THAN JUST VIDEO

The AVEC2012 training dataset was used for training the
architecture and the AVEC2012 development subset and test-
ing subset were used for testing. The Pearson correlation
values (CORR) between the ground truth and the output of
the systems were computed. The results are shown in Table VI
in comparison with the AVEC2012 baseline and the winning
method [91].

The results are similar to those obtained for the video-
watching dataset. As with the previous experiment, the
two-stage architecture using TDNN made a significant
improvement on the performance from basic regression in all
cases. Again, the best performance was obtained with the EOH
vector as input feature for all affective dimensions with the



MENG et al.: TDNN FOR CONTINUOUS EMOTIONAL DIMENSION PREDICTION FROM FACIAL EXPRESSION SEQUENCES 925

exception of power. For power, better results were obtained
by using the combination of EOH and uniform LBP.

In comparison with the AVEC2012 baseline results on the
video modality, it can be seen that our proposed approach
obtained better results most of the time. In the develop-
ment dataset, only valence was just slightly lower than the
AVEC2012 baseline, whilst, in the testing dataset, the results
on expectation were lower than the baseline results. The large
discrepancy on expectation may be due to the fact that tem-
poral information may play a lower role than in the other
dimensions as shown in [41]. This may be due to the higher
entropy presented by the expectation dimension.

The AVEC2012 winning system [91] produced better results
for every affective dimensions. There are a couple of main
reasons for this. First of all, Nicolle et al. [91] used opti-
mized features with respect to those used in this paper.
Log-magnitude Fourier spectrum was used to modify the shape
features, the global appearance feature and the local appear-
ance features with dynamic information integrated. Second,
a correlation-based measure was used for the feature selec-
tion process to increase the robustness of the labels. This
boosted the performance further. In addition, in the testing
set, Nicolle et al. [91] used fusion of video features and audio
features to further boost the results. As indicated earlier in
this paper, our focus has been on the modeling rather than the
optimization of the features. In future work, it will be very
interesting to integrate the new features and feature selection
process of the winning system [91] in the first level of our
system.

Finally, given that Table I highlighted a certain amount
of correlation between all four affective dimensions of this
dataset, we carried out further analysis to investigate if mod-
eling the dimensions together could be of any interest. We
first computed the Pearson correlation coefficients for each
subset of the AVEC2012 dataset. Fig. 6 shows that the corre-
lation values between each pair of affective dimensions vary
significantly between training, development and testing sub-
sets. Only the correlation value between AV is still around
0.4 when considering all three subsets together. For complete-
ness, we used our two-stage architecture with EOH feature
to model these two affective dimensions together. As with the
video-watching dataset, the results show that modeling the two
affective dimensions together does not lead to further increase
in performance but rather to a slight decrease: 0.1318 instead
of 0.162 for arousal and 0.1942 instead of 0.204 for valence.
Again, the lack of increase in performance is possibly due to
the fact that the correlation is not strong and mainly varies
between subsets used for training and testing.

C. AVEC2013 Dataset

1) Data and Labels: The third dataset that was used for
testing is the AVEC2013 challenge dataset [26]. This is a
subset of the audio-visual depressive language corpus [26].
The dataset is composed of 340 video recordings of people
performing a human–computer interaction task while being
recorded by a webcam and a microphone. There is only one
person per clip and the total number of subjects is 292,

Fig. 6. Pearson correlation coefficients between four dimensions for the
AVEC2012 training, development and testing sets, and p-values < 0.0001.
A = Arousal, V = Valence, P = Power, and E = Expectation. Each pair of
capital letters indicates the two affective dimensions being correlated.

TABLE VII
AVEC2013 DATASET. PEARSON’S CORRELATION COEFFICIENTS (CORR)

AVERAGED OVER ALL SEQUENCES, I.E., DEVELOPMENT

DATASET AND TESTING DATASET

i.e., some subjects feature in more than one clip. Each per-
son was recorded between one and four times, with a period
of two weeks between the measurements. Five subjects appear
in 4 recordings, 93 in 3, 66 in 2, and 128 in only 1 session.
The length of the clips varies between 20 and 50 min
(mean = 25 min) and the frame rate is 30.

In this paper, we focus on the AVEC2013 ASC. The
sub-challenge required the prediction at frame level of the
value of the affective dimensions (AV). The AVEC2013 dataset
provides both audio and video modalities, but only the video
modality was used here for the reason stated above. There are
50 videos for training, development, and testing.

2) Features: For each frame, the texture features were
extracted. In the AVEC2013 dataset, LPQ features were pro-
vided by the challenge organizer. In addition, the EOH feature
was also computed as it provided the best results in the
previous experiments.

3) Results: As with the previous experiments, we compared
the results for the one-stage regression system with the two-
stage prediction system. Only the SVR regression method was
used for this dataset given its superior performance over k-NN.
The AVEC2103 training dataset was used for training the
architecture and the AVEC2013 development dataset was used
for testing. Pearson’s correlation coefficients (CORR) between
the ground truth and the output of the systems were computed.
Table VII shows the results for the AVEC2013 development
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Fig. 7. Performance comparison on the affect recognition sub-challenge of
AVEC2013. Correlation and RMSE values are used as measures of perfor-
mance. Our approach is represented by the Brunel–Beihang Team with relative
high CORR and lowest RMSE2.

dataset. The results show that the combination of SVR+TDNN
outperforms SVR alone. For the arousal dimension, the com-
bination of LPQ and EOH achieved the best result, while the
EOH feature alone achieved best performance for the valence
dimension.

The results were also compared with the ones from the base-
line [26] and the runner-up [92] at AVEC2013. The TDNN
based two-stage architecture obtained better results for arousal
but performed worse than the AVEC2013 baseline for valence
for the development dataset. However, when we compare the
results of the two-stage architecture with the AVEC2013 base-
line results for the testing dataset, the two-stage architecture
reaches higher performance for both dimensions with a clear
improvement for valence (see Table VII). This may suggest
that the system was better able to generalize to new datasets by
using the temporal information. In the runner-up system [92],
a three-stage system was proposed to perform multiple fusions
but temporal information was not considered in the modeling
process.

In addition, our results outperform those of the other par-
ticipants in the AVEC2013 ASC, as can be seen from Fig. 7.2

Our team (Brunel–Beihang team) produced the lowest RMSE
among all participants with 0.1829 and higher correlation
value with 0.1409 when compared with the baseline and [92].
Whilst we took part and won the ASC challenge, the material
produced here was not submitted for publication.3

VI. CONCLUSION

In this paper, a two-stage architecture that combines a
simple regression algorithm and a TDNN was proposed for
automatic continuous affective state prediction from facial
expressions in naturalistic contexts. In the second stage, the
dynamic temporal relationship on the decision level was
modeled by a TDNN model and significant improvement in
performance was achieved. The TDNN receives input from

2Taken from http://sspnet.eu/avec2013/
3Reference [83] appearing in AVEC2013 is for the Depression

Sub-Challenge (DSC) only. Although we submitted testing results for both
ASC and DSC sub-challenges, due to time limitation, only the paper on DSC
was submitted for publication in the challenge proceedings.

a regression stage rather than the large and highly variable
input features describing the sequence of expressive units. This
reduces the computational complexity and facilitates training
and generalization capabilities. The length of history to be
taken into account was decided experimentally. In comparison
with the HMM-based method [41], the proposed TDNN-based
method can deal with regression problems instead of catego-
rization problems at the level of unit of expression. It also
allows for a continuous assessment over time without having
to assess all the sequences at once.

The two-stage continuous affective state prediction system
was tested on three different datasets of naturalistic facial
expression videos. The three datasets varied depending on the
type of tasks that the person recorded was engaged in. Across
all datasets, the two-stage architecture performed better than
the single-unit assessment approach. The results also outper-
formed the baseline set for the AVEC2013 challenge and the
performance of other teams that participated in the challenge.
The result of the valence dimension on the development set
was lower than that of baseline. However, the baseline method
might have overfitted because the baseline valence result on
the AVEC2013 testing set was very low. Instead, our approach
reached interesting results on the testing dataset showing pos-
sibly greater generalization capabilities through decoupling the
modeling of the features from the modeling of the temporal
relationship characterizing the affective expression.

The results for the AVEC2012 dataset were also good with
only the results on the expectation dimension being worse than
baseline results on the testing set. This could be due to the fact
that for expectation faster changes in expressions may lead to
a lower contribution of temporal information during the mod-
eling process, as shown in [41]. The results also showed that
modeling the most correlated affective dimensions together
did not lead to better results. This is possibly due to the fact
that the correlation was not very high and that this may even
strongly decrease according to the dataset at hand. It is pos-
sible that to exploit their weak relationship, more complex
approaches are needed when fusing them together as shown
in other works (see [62], [63], [70]).

It was also found that, overall, the use of the EOH feature
only yielded better performance than the other image features
in most cases and for both one-stage and two-stage types of
approach. This is interesting as it reduces modeling complex-
ity. A possible reason for this is that the EOH feature captures
not only the edge information of the image but also its spa-
tial information. However, the results were worse than those
of the AVEC2012 winning system [91]. The main reason for
this was probably the optimization of the features used in [91]
and computed using advanced methods. These results together
suggest that a combination of a two-stage approach proposed
here and optimized features may lead to further improvements
in the recognition rates.

In this paper, the proposed method was only tested on the
facial expression image sequences. However, the modeling
and affective dimension prediction method is independent of
the affective dimension or affective modality used. However,
as it was discussed above, it is possible that different delay
parameters may be needed as different modalities or different
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affective dimensions may present different temporal dynamics
and temporal dependencies.

In conclusion, the method proposed appears to be a good
candidate for building automatic real-time affective state pre-
diction systems thanks to its lower computational complexity
during training and the fact that the predicted values depend
only on past information. It is ideal for real-world applica-
tions where the signals are imputed in streams and continuous
affective state levels are expected to be predicted in streams.
TDNN can be regarded as a simple model of deep networks,
other models (see [93]) will be studied for facial expression
analysis in future work.
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