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ABSTRACT 

Today’s 3D imaging techniques offer significant benefits over conventional 2D imaging 

techniques. The presence of natural depth information in the scene affords the observer 

an overall improved sense of reality and naturalness. A variety of systems attempting to 

reach this goal have been designed by many independent research groups, such as 

stereoscopic and auto-stereoscopic systems. Though the images displayed by such 

systems tend to cause eye strain, fatigue and headaches after prolonged viewing as 

users are required to focus on the screen plane/accommodation to converge their eyes 

to a point in space in a different plane/convergence.  

Holoscopy is a 3D technology that targets overcoming the above limitations of current 

3D technology and was recently developed at Brunel University. This work is part W4.1 

of the 3D VIVANT project that is funded by the EU under the ICT program and 

coordinated by Dr. Aman Aggoun at Brunel University, West London, UK. The objective 

of the work described in this thesis is to develop estimation and segmentation 

techniques that are capable of estimating precise 3D depth, and are applicable for 

holoscopic 3D imaging system. Particular emphasis is given to the task of automatic 

techniques i.e. favours algorithms with broad generalisation abilities, as no constraints 

are placed on the setting. Algorithms that provide invariance to most appearance based 

variation of objects in the scene (e.g. viewpoint changes, deformable objects, presence 

of noise and changes in lighting). Moreover, have the ability to estimate depth 

information from both types of holoscopic 3D images i.e. Unidirectional and Omni-

directional which gives horizontal parallax and full parallax (vertical and horizontal), 

respectively. 

The main aim of this research is to develop 3D depth estimation and 3D image 

segmentation techniques with great precision. In particular, emphasis on automation of 

thresholding techniques and cues identifications for development of robust algorithms.  

A method for depth-through-disparity feature analysis has been built based on the 

existing correlation between the pixels at a one micro-lens pitch which has been 

exploited to extract the viewpoint images (VPIs). The corresponding displacement 

among the VPIs has been exploited to estimate the depth information map via setting 

and extracting reliable sets of local features. 
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Feature-based-point and feature-based-edge are two novel automatic thresholding 

techniques for detecting and extracting features that have been used in this approach. 

These techniques offer a solution to the problem of setting and extracting reliable 

features automatically to improve the performance of the depth estimation related to 

the generalizations, speed and quality. 

Due to the resolution limitation of the extracted VPIs, obtaining an accurate 3D depth 

map is challenging. Therefore, sub-pixel shift and integration is a novel interpolation 

technique that has been used in this approach to generate super-resolution VPIs. By 

shift and integration of a set of up-sampled low resolution VPIs, the new information 

contained in each viewpoint is exploited to obtain a super resolution VPI. This produces 

a high resolution perspective VPI with wide Field Of View (FOV). This means that the 

holoscopic 3D image system can be converted into a multi-view 3D image pixel format. 

Both depth accuracy and a fast execution time have been achieved that improved the 3D 

depth map. 

For a 3D object to be recognized the related foreground regions and depth information 

map needs to be identified. Two novel unsupervised segmentation methods that 

generate interactive depth maps from single viewpoint segmentation were developed.  

Both techniques offer new improvements over the existing methods due to their simple 

use and being fully automatic; therefore, producing the 3D depth interactive map 

without human interaction. 

The final contribution is a performance evaluation, to provide an equitable 

measurement for the extent of the success of the proposed techniques for foreground 

object segmentation, 3D depth interactive map creation and the generation of 2D super-

resolution viewpoint techniques. The no-reference image quality assessment metrics 

and their correlation with the human perception of quality are used with the help of 

human participants in a subjective manner. 
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Introduction 

1.1 Preface 

When analysis needs to be performed on real three-dimensional objects and their 

environments, a 3D study needs to be developed; and, 3D object reconstruction is a way 

to achieve this. Todays, 3D imaging is a new type of visual media that has greatly 

expanded what the viewer can see over the traditional 2D imaging technology, where, in 

2D media, there are four cues missing [1]: 

 Stereo parallax—seeing a different image with each eye.  

 Movement parallax—seeing different images when we move our heads.  

 Accommodation—the eyes’ lenses focus on the object of interest.  

 Convergence—both eyes converge on the object of interest. 

With the development of different display systems and the requirement to delight the 

user with a realistic 3D world, the representation and rendering of realistic 3D 

impressions is a research area with excellent prospects and great challenges. 3D 

imaging technology has become an attractive technique that offers natural products of 

3D depth and motion parallax that humans can perceive naturally as being true to the 

real world [2]. There is growing evidence that 3D imaging techniques will have the 

potential to establish a future mass-market in the fields of 3DTV (i.e. 3D display and 

video communication systems), 3D cinema, medical imaging, military design, robotic 

vision, biometrics, detection and tracking of people and in video games development 

through appropriate integration of real and synthetic images [3] [4] [5]. 

Chapter 1  
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Today most 3D technologies are competing to provide a new form of 3D video objects 

that have natural colour, full parallax and without the need to wear any specific glasses. 

The first type of 3D system created the illusion of depth by looking simultaneously at 

different images taken from a slightly translated viewpoint of the same scene through 

each eye. It was invented by Sir Charles Wheatstone in June 1838 and he proposed that 

it should be called a “Stereoscopy”, to indicate its property of representing solid figures 

[6]. This 3D creation technique requires special 3D glasses that filter the corresponding 

views for the left and right eyes of each viewer [7] [8].   

Despite the disadvantages of this technique, i.e. unnatural 3D depth, single fixed 

perspective and eye stress, it is still used for creating depth effects in movies, computer 

games and product presentations, etc. In this technique, the filtering glasses are an 

essential requirement that enables viewers to perceive the left eye image and the right 

eye image with the left eye and the right eye, respectively [9]. The human brain then 

processes the two images and leads the viewer to believe he or she is viewing a real 3D 

space. 

Developments in digital technology have resulted in a demand for true 3D viewing, and 

research groups have developed more advanced 3D display systems referred to as 

“auto-stereoscopic”. These “no glasses” systems provide true 3D images during work 

procedures; therefore, they are more comfortable for the viewer as they do not require 

the use of special glasses [1] [10]. Holography [11], volumetric displays [12], multi-view 

[13] and integral imaging [14] are some types of auto-stereoscopic technology. In this 

technique, a combination of stereo parallax and movement parallax effects are exploited 

to give 3D without glasses in multi-view and head-tracking auto-stereoscopic displays 

[15]. All the auto-stereoscopic display systems utilize optical components to enable 

different images to be visible in the same plane from different points of view. These 

systems have found practical uses in applications ranging from scientific and medical 

visualization of complex 3D structures, remote manipulation of robots in hazardous 

environments, in computer games and marketing [16]. In such systems, the viewer’s 

eyes converge to a point in space in a different plane, which tends to cause fatigue, 

headaches and eyestrain [5]. 
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In recent years, many 3D recording and display systems have focused on the multi-view 

technique to create multiple view-windows, where the viewer observes two view-

windows to perceive 3D effects. In such techniques, the creation of motion parallax is 

highly dependent on the change in the multiple view-windows with viewer movement. 

Such techniques are liable to cause eye strain, fatigue and headaches after a prolonged 

viewing motion [17].  

With recent advances in digital technology, some human factors that result in eye 

fatigue have been eliminated in the “holography” 3D system. This utilises coherent light 

sources to construct a true 3D object in space where the image scene is recorded by the 

interference of the coherent light source. Colour holography produces 3D images of 

startling quality, with depth cues and parallax that are difficult to achieve in the other 

techniques. However, a number of challenges need to be overcome before a holographic 

3D display is ready for the mass market, due to the high end optical requirements, 

which means that it is an expensive approach [11].  

Despite much work and effort, the currently established methods for acquiring and 

displaying 3D images, as presented above, still cannot provide a truly realistic 3D 

viewing experience in an ergonomic and cost effective manner as they all exhibit 

various drawbacks. A method that could overcome these drawbacks is holoscopic 3D 

imaging (also referred to as integral imaging), which is a type of auto-stereoscopic 3D 

display developed from the work of Gabriel Lippmann, 1908 [18]. Holoscopic 3D 

imaging theory is based on the idea of holographic imaging. Each of the viewer’s eyes 

sees a different picture due to the distance between them, and the brain decides that the 

object must really be 3D [19]. Recently, technological advances in micro-lens 

manufacturing as well as increases in processing power and storage capabilities have 

enabled holoscopic 3D imaging technology to become a practical and promising future 

candidate technology.  

This technique allows 3D images to be viewed without any special eyewear, exhibits 

continuous motion parallax throughout the viewing zone and presents a variety of 

different scene views independent on the observers’ position with less visual 

discomfort. Additionally, the holoscopic 3D imaging system is capable of creating and 

encoding a true volume spatial optical model of the object scene in the form of a planar 
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intensity distribution through the use of unique optical components. It is also suited for 

multi-viewer applications with a single aperture camera and conventional flat panel 

displays, which are equipped with and overlaid with a micro-lens array [21] [22]. These 

advantages have attracted many interested researchers in the 3D imaging field so that a 

range of areas such as depth inversing, object depth extraction, electronic display for 

image compression, optical capturing and post production processes as well as 

computer generation and refocusing are included in areas being studied presently. 

1.2 Research Motivations 

Undoubtedly, vision is the most important sense for humans, and different types of 3D 

imaging technology have endeavored to provide the capability to present remarkable 

3D estimation results. Thus, creating 3D content has been the goal of many researchers 

in academia and industry for many years due to its desired properties. This includes the 

development of a new generation of 3DTV that can be watched with the naked eye and 

that produces a 3D effect that is comparable to real life. 

Holoscopic 3D imaging (H3DI) technology endeavors to provide a new method of 

creating and representing 3D images. The principle of this technique uses a naturally 

occurring process as in the “fly eye” for capturing and displaying 3D images [23]. It is a 

unique method for creating a true volume spatial optical model of the object scene in 

the form of a planar intensity distribution through a micro-lens array [24]. It uses 

natural light and a single aperture camera setup with a micro-lens array in the capture 

process. Moreover, it offers a full parallax object scene as in the real-world without the 

need for calibration that is required by other currently available 3D imaging techniques. 

Therefore, due to these advantages it does not cause eye strain [25]. Holoscopic 3D 

imaging is a technique that is close to holography, in which a laser beam (as a coherent 

light source) is used in the capture process; however, this makes holography an 

expensive technique. Due to progress having been made in the manufacture of micro-

lenses, some of the related problems have been solved, for example, limited depth of 

field [26] and resolution of display images [27]. This has caused the quality of the H3DIs 

to improve markedly. Therefore, capturing and displaying real-time 3D images via this 

technique constitutes a promising production 3D technology and has attracted the 

attention of many researchers. This technique shall be available to the public as a 

glassless technology [5] [17]. 
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Holoscopic 3D imaging in its simplest form consists of small micro-lenses closely 

packed together that are in contact with a recording device. When this technology is 

used, the 3D information is stored in a specially coded 2D format called an “Element 

Image”, in which each micro-lens records one elemental image. As each micro-lens is in-

effect a small, low-resolution camera, each of the elemental images is very small. The 

complete set of all the recorded elemental images constitutes the H3DI in a 2D format. 

These 3D cues can be replayed with a micro-lens array placed in front of an optical 

device (e.g. LCD) to reconstruct a true 3D scene. The extraction of the depth information 

is necessary for the holoscopic 3D image to be processed further (e.g. for coding or 

feature extraction, etc.). Depending on the type of micro-lens array, H3DI techniques are 

categorised into two types: unidirectional and omnidirectional parallax.   

1.3 Research Aim and Objectives  

The research presented in this thesis aims to develop estimation and segmentation 

techniques that are capable of estimating precise depth information from an observed 

scene, and are applicable in a range of vision tasks for the H3DI technique. In this 

investigation, a special focus was given to tasks that favour algorithms with wide 

generalisation capabilities (no restraints were placed on the algorithms).  These have 

the ability to estimate depth information from both types of H3DIs and features with 

variable characteristics of objects in the scene (e.g. viewpoint changes, deformable 

objects, presence of noise and changes in lighting). Indeed, this is required to develop a 

deeper understanding of the performance of such systems from two directions: the 

optical model and scene depth estimation perceptions.  

In this research four aspects will be investigated for the estimation and evaluation of 

the depth information map from both real-world and virtual holoscopic 3D cameras, as 

follows:  (1) depth through re-arranging the pixels of the captured H3DIs, (2) 3D feature 

detectors and descriptors thresholding techniques, (3) 3D object segmentation and (4) 

H3DI processing including correction and increasing the extracted viewpoint image 

resolution for depth estimation of the source content. 

Recently, a novel and interesting approach for decoding the depth information 

embedded in a planar recording image was investigated by Wu, et al. [23, 24]. In this 

approach, there exists a correlation between the pixels at a one micro-lens pitch 
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distance interval, and this has been exploited to extract the viewpoint images.  A 

method for depth-through-disparity has been built upon these extracted viewpoint 

images to estimate the depth information map by exploiting the corresponding 

displacement among the viewpoint images. However, this approach has the following 

main limitations: (1) generalization capability, i.e. the approach can only work on 

unidirectional holoscopic 3D imaging (UH3DI) due to the inherent loss of information 

associated with local feature detection and description process. (2) Computational 

complexity (time consuming), where the approach failed to set local invariant features 

that were well-suited for learning variable 3D objects in the scene, i.e. the approach 

requires the manual setting of the feature threshold for each captured H3DI. (3) The 

correct perception of the object scene layout, which depends on whether or not the 

depth information is realistic or acceptable, i.e. the different planes can be distinguished 

and their relation in space can be understood. Furthermore,   the approach was unable 

to; (1) Build a 3D object segmentation technique to separate the 3D image into different 

3D object planes according to the different object depths, i.e. separate the foreground 

objects from background (noise). (2) Generate super-resolution viewpoint images to 

further improve the acquisition of the high resolution depth information map and 

perspective correctly. 

The main objective of this thesis was to provide lightweight techniques for H3DIs that 

have good depth perception, i.e. algorithms with a trade-off between accuracy and 

speed. So far, the speed and accuracy of H3DI techniques have been critical for the 

performance of the whole system. 

The new approach presented in this thesis was built upon overcoming the problems 

associated with the existing multi-baseline disparity analysis algorithm. Significant 

progress was attained through the development of local invariant features on the 

objects in the scenes from both processes: setting distinctive features and matching 

local descriptors to estimate the depth information map through viewpoint image 

extraction. In addition, the generalisation depth information algorithm was utilised, 

which is based on the principle of invariability, to produce most of the appearance 

based variation. Furthermore, the approach can remove the effect of the projection 

distortions and effect of the camera orientation.  
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The viewpoint images (VPIs) were formed through re-arrangement of the pixels from 

different micro-lens H3DIs that are presented in 2D. Each VPI within the H3DI contains 

a different perspective of the 3D scene and it is within these scenes that the 3D 

information is contained. However, these extracted VPIs have much higher pixel 

numbers than the elemental images (EIs) and are still considered to be low resolution 

images compared to perspective projection images, due to the orthographical projection 

of the scene. Feature-based match similarity measure algorithms have been used in this 

approach, and have been widely proven to be the most reliable approach used to 

estimate the depth map in stereo vision systems [28]. This is a first and crucial step 

towards obtaining depth information to identify objects in the scene. The goal is to 

obtain a set of local features that capture the essence of the underlying input images 

and that encode their interesting structure. A reliable setting feature has been achieved 

by relating stored geometric model properties and projection parameters from the 

extracted viewpoint image. Two feature detector and descriptor techniques have been 

used to improve the performance of the depth estimation related to the generalization, 

speed and quality. 

The depth-through-disparity feature analysis techniques used in this work were: multi-

baseline technique, adaptive aggregation cost technique, auto-thresholding feature-

based-point detection and description technique, auto-thresholding feature-based-edge 

detection and description technique, 3D object segmentation techniques, super-

resolution viewpoint image generation technique, and depth evaluation technique. In 

addition, image pre-processing and post-processing techniques were used and 

implemented on the H3DI for further development and adaptation, including the local 

histogram analysis technique, quantization technique, smoothing filters technique and 

cross-validation technique.  

1.4 Original Contributions  

This work is part of the 3D VIVANT project that is a FP7 specifically targeted research 

project that aims to capture scenes automatically in 3D space and deliver them for 

realistic, interactive, fatigue-free and immersive play back to home users/viewers. This 

work is based on part W4.1 of the project, which is aimed at extracting depth 

information and obtaining a segmentation of the holoscopic 3D content that can be used 
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for specifying an interaction map. To achieve the above goals the following aspects were 

investigated experimentally and presented in this thesis: 

1. Reviewing 

A brief review of the current display technology relevant for 3D. A review of the main 

H3DI capture and display systems is presented to show the advantages of this 

technology in terms of simplicity, accurately and cost benefits against other 3D 

technologies. In other words, it shows that it is a simple and efficient system of 

capturing real 3D content without having to go through complex dual or multi camera 

calibrations. 

2. Rectification  

H3DI rectification is the first and crucial stage to eliminate camera distortions (lens 

distortion), which cause barrel distortion when sampling all the pixels at the same local 

position under different micro-lenses. It is important to correctly extract the pixels with 

the same position in each EI; thus, the H3DI distortion needs to be corrected before 

extracting the viewpoint images. 

3. Setting and Extracting Features 

Proposed two novel techniques for setting and extracting invariant distinctive features 

for further applications. A novel, fully automated optimal thresholding algorithm for 

setting and extracting feature-point-based on the training VPI has been investigated. To 

provide more stable features for the illumination variations in noise and wide 

generalisation capabilities implementation, an adaptive auto-threshold feature-edge-

based detector was investigated. This thresholding algorithm enabled automatic 

extraction of feature-edge maps with reduced noise. 

4. Generation of High Resolution View/Multi-view 

Proposed a novel technique to set and analyse more feature blocks that can improve the 

visual quality of the depth map. The novelty of this technique is based on transforming a 

set of orthographic projection low resolution VPIs into a form of high resolution 

perspective projection geometry using a modified shift and incorporation method.  This 

proposal is another novel aspect associated directly with the creation of a high 

resolution viewpoint image. When using the sub-pixels-shift technique for creation of 
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multiple high resolution views, the new generation technique of the 3D multi-view from 

a H3DI system was investigated. 

5. Depth Map Estimation 

Proposed an adaptive depth estimation technique for measuring and estimating full 

parallax depth maps that is, as far as the author knows, the first computer-based 

technique that has been implemented on omni-directional holoscopic 3D images 

(OH3DIs). A modified aggregation cost window in the correlation technique was 

employed to vary the shape of the window across the image depending on local 

variations in intensity and the majority vote query within the block window. 

6. 3D Object Segmentation 

Proposed two 3D object segmentation (object extraction) techniques to separate the 

foreground (object in the scene) from the background (noise) automatically. The object 

extraction performance has a great importance in achieving the correct object, i.e. 

identification of 3D object in the scene. The novelty of this work is based on the simplest 

way of performing the object extraction from the holoscopic 3D content via generation 

of a 3DIM that combines exploitation of the available depth estimation technique with 

the 2D segmentation technique.  

7. Performance Evaluations of 3D Depth Estimation Techniques  

To analyse and evaluate the obtainable results from the proposed techniques, a new 

form of performance evaluation is investigated for a H3DI system. The novelty of this 

proposed method lies in designing a specific environment to evaluate the results of a 

H3DI system where no-reference image for the quality assessment metric is available 

from this system. This was carried out through the evaluation of the product of each 

phase of the techniques individually using subjective, objective or combined criteria. 

Subjective Quality of Experience (QoE) described by the Mean Opinion Scores (MOS) of 

human opinion was performed to verify the 2D H3DIs’ quality, foreground mask quality 

and depth accuracy. While objective quality metrics to reliably rate the performance 

were implemented to verify the performance of depth measurement and foreground 

object segmentation. 

1.5 Thesis Outline and Chapters’ Summary 

The whole thesis is divided into seven main chapters as illustrated in Figure 1.1.  The 

following sections briefly outline the contributions that were made in each chapter and 

summaries of how the main body of the work was carried out:   
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Chapter 2- Exploitation of 3D Depth Estimation Techniques 

This chapter surveyed and briefly described the main 3D display technologies. The 

technologies were listed and related to each other using their stereoscopic and auto-

stereoscopic 3D depth estimation and display methods. They were classified based on 

whether or not glasses were required. These technologies are also the ones that are 

most commonly found being used in 3D television, 3D cinema and 3D games. Then there 

is a thorough description of the H3DI technique that has been developed by the 3D 

VIVANT project at Brunel University. 

Chapter 3- Holoscopic 3D Depth Estimation Technique Based on Disparity 

An intensive review of the most common depth map estimation methods for holoscopic 

3D technology is provided. The methodology adopted in carrying out the research is 

explained and how this technique can be implemented on UH3DIs. In addition, the 

obstacles and constraints associated with this technique are discussed. Two 

contributions were made to improve its performance, which were as follows: i) 

incorporating sub-pixel analysis (up-sampling) computation on the extracted 2D 

viewpoint images for setting more feature blocks and ii) the implementation of 

modified aggregation cost windows in the correlation technique using three weighting 

factors (distance, colour and intensity value) to vary the shape of the window to speed 

up the process. An additional contribution is the implementation of this adaptive 

technique on (OH3DIs) to estimate the full parallax depth map, and based on the 

author's knowledge, this is the first technique to have been implemented on (OH3DIs). 

Chapter 4: Hybrid 3D Depth Estimation Techniques 

Two automatic threshold techniques were developed for setting and then extracting 

distinguishing features reliably from orthographic projection viewpoint images. These 

were used to estimate the speediness and accuracy of depth maps produced from 

extracted training features models. The detected features were geometrically contained 

between the multi-baseline viewpoint images in the same scene. The techniques proved 

to be successful as they detected features easily and solved problems related to image 

based feature correspondence. Then the two techniques were employed to modify the 

multi-baseline disparity algorithm so that the performance of the depth-through-

disparity method of generating 3D contents was improved. Redundancies in the multi-

baseline disparity criteria of the two problems were solved by relating them to the 
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depth in the disparity analysis algorithm via local features. The solved problems were 

the speediness and invariance of the features that correspond to different multi-

baseline images. Both unidirectional and omnidirectional real/computer generated 

H3DIs were used to test the accuracy of the depth estimation.  

Chapter 5- Holoscopic Depth Estimation Based on Super Resolution Viewpoints 

Two problems associated with depth through multi-baseline disparity analysis are the 

accuracy and precision for 3D shape. A longer baseline (more viewpoint images) 

produces superior precision due to wider triangulation. However, this makes the range 

of search for the best match larger and leads to an increased possibility of false matches 

(reducing the accuracy). The challenge in this chapter is to optimize the overall 

performance of depth-through-disparity analysis in terms of accuracy, smaller number 

of viewpoint images and less computation, which then leads to an estimate of high-

resolution depth maps. Of course this requires additional input features to increase the 

technique’s effectiveness in setting and detecting features to realize the increase in 

quantity and quality of the reliable feature. This is done to generate super-resolution 

viewpoint images (SRVPIs) through integrating two compatible techniques i.e. the 

transformation of a set of orthographic projection VPIs into a perceptive projection 

image and the deblurring-sharpening filter technique is a necessity to estimate the full 

parallax 3D depth. The contributions from this chapter are clearly shown in Figure 1.1. 

Chapter 6- Holoscopic 3D Image Segmentation  

Object segmentation is an important requirement for a wide range of holoscopic 3D depth 

applications that includes finding the object’s borders and separating them from the 

background or other objects. Consequently the developed segmentation module is a 

promising topic for research studies. In this chapter two different 3D object segmentation 

filter techniques based on central (reference) viewpoint image segmentation were 

investigated and implemented. These filters were implemented from the built-in 

algorithms and run in the existing framework. They produced the mask through 

morphological functions that are applied to the center viewpoint image and a threshold 

equal to the maximum intensity value of the object is then applied to obtain the 

foreground mask. The mask is produced through seeding and growth around the valid 

feature sets detected and then extracted from both of the auto-feature setting techniques 

presented in the previous chapter. The objective and the subjective test scores are used 
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individually in the rest of this chapter to evaluate the performance of; the two foreground 

object extraction techniques, the 3D Interactive Map (3DIM) creation and SRVPI 

generated process using the numerical data collected as well as through visual 

comparisons analysis.  

Chapter 7- Conclusions and Future Work 

This chapter provides an overview of all the work presented in this thesis and considers 

how successful it has been. Where hybrid techniques (the integration of two or more 

techniques) have been developed, they have been highlighted. The effects of the overall 

impact on improving the depth-through-disparity analysis algorithm are considered. 

Then finally recommendations are made for future work that will overcome limitations 

in the technique presented here. 

1.6  Author’s Publications 

A number of journal and conference papers related to this thesis have been published at 

international conferences and in journals while there are additional papers that have 

been submitted to international conferences and journals recently.  In addition, a list of 

journal and conference papers that are under preparation is also included. 
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IEEE International Symposium on Broadband Multimedia Systems and 

Broadcasting, China, June 14-18, 2014. 

[2] E. Alazawi, M. Abbod, A. Aggoun, M. R. Swash and, O. Abdul Fatah, “Super Depth-

Map Rendering by Converting Holoscopic Viewpoint to Perspective Projection,” 

IEEE 3DTV-CON: Vision beyond Depth, AECC, Budapest, Hungary, July 2-4, 2014. 

[3] E. Alazawi, A. Aggoun, M. Abbod, M. R. Swash and, O. Fatah, “Scene Depth 

Extraction from Holoscopic Imaging Technology,” IEEE 3DTV-CON: Vision 

beyond Depth, AECC, Aberdeen, Scotland, Oct. 7-9, 2013. 

[4] E. Alazawi, A. Aggoun, O. Abdul Fatah , M. R. Swash, “Adaptive Depth Map 

Estimation from 3D Integral Images”, IEEE International Symposium on 

Broadband  Multimedia Systems and Broadcasting, London, UK,  June 2013. 
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Parallax Barriers based Holoscopic 3D Displays,” IEEE International Symposium 
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International Conference on 3D Imaging (IC3D), 2013  
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Pixel Mapping for Refining Dark Areas in Parallax Barriers Based Holoscopic 3D 

Displays”, 5th International Conference on 3D Imaging (IC3D), 2013. 

[11] M. R. Swash, A. Aggoun, O. Abdul Fatah, B. Li,J. C. Jacome, E. Alawazi, E. 

Tsekleves, “Moiré-Free Full Parallax Holoscopic 3D Display based on Cross-

Lenticular”, 3DTV-CON: Vision beyond Depth AECC, Aberdeen, Scotland, 7-9th 

Oct.  2013. 

[12] M. Nawaz, J. Cosmas, A. Adnan, M. Inam Ul Haq, E. Alazawi, “Foreground 

Detection using Background Subtraction with Histogram,” IEEE International 

Symposium on Broadband Multimedia Systems and Broadcasting, London, UK,  
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Tsekleves, “Generating Stereoscopic 3D From Holoscopic 3D”, 3DTV-Conference: 

The True Vision-Capture, Transmission and Dispaly of 3D Video (3DTV-CON), pp. 

1-3, Aberdeen, UK, 2013. 
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Viewpoint Interpolation”, IEEE International Symposium on Broadband 
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algorithm”, IEEE International Symposium On Broadband Multimedia Systems and 

Broadcasting Seoul, Korea 27th Jun 2012. 
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Figure 1-1 Illustration of thesis roadmap that shows contributions that have been made in each chapter. 

 Learning cross-validation algorithm for training 
valid sets of features by comparing the 
performance of variants of the training sets’ 
features and setting only valid feature blocks. 

Chapter 7: Conclusions and Further Work 
Examine the results of the development work described in this thesis, and analyze how the contributions successfully 
led to advances in this work and identify a number of areas for improvement. 

 

Feature-point detector/descriptor automatic-ally 
detects interest points in an image depending directly 
on the variance of the texture present in the imaged 
scene.  

 Feature-edge detector/descriptor automatically 
sets robust feature edges using refined multi 
quantization on local histogram analysis to provide 
an accurate object contour. 

Chapter 3: Holoscopic Depth Estimation Technique Based on Disparity 

 Depth map estimation based on local method using multi-baseline disparity analysis algorithm on unidirectional 
and omnidirectional H3DIs by incorporating sub-pixel analysis (up-sampling) on the extracted 2D viewpoint 
images.  

  Modified aggregation cost window in correlation technique using three weighting factor (distance, colour and 
intensity value) to varying the shape of the window. 

Chapter 2: Explorations of 3D Imaging 
Technologies 

 Provides an overview of a range of research related to 
displaying 3D depth information display technologies.  

 Extensive detailed explanation of the mechanism of the 
H3DI technique by describing the design of this new 
technique from capture to display process. 

Chapter 5: Holoscopic Depth Estimation Based on Super Resolution Viewpoints 

 Generate super-resolution viewpoint image through transformation of a set of orthographic projection viewpoint 
images into a perceptive projection image. 

 Develop a de-blurring-sharpening filter technique. 

 Generate multi-view super-resolution images from the H3DI technique through sets of extracted viewpoint images. 

 3D depth map estimation from super-resolution viewpoint images to estimate full parallax 3D depth.  

Chapter 6: Holoscopic 3D Image Segmentation 
Two 3D Image segmentation techniques were proposed to find the objects’ borders and separate them from the 
background or other objects as follows:  

 Producing a mask through morphological functions that are applied to the center viewpoint image and a threshold 
equal to the maximum intensity value of the object is then applied to obtain the foreground mask. 

 Producing a mask through seeding and growth around the valid feature sets detected and extracted from auto-
feature detection algorithm in the previous chapter.  

 Subjective and objective quality assessment on no-reference image a valuable for H3DI system.  

Chapter 4: Hybrid 3D Depth Estimation Techniques 
Proposing two automatic threshold techniques for setting and extracting reliable keypoints (features) from 
orthographic projection viewpoint images are investigated to estimate the performance of the extracted training 
features model and the generalizability of the algorithm. Their locations are geometrically constrained between 
multi-baseline viewpoint images of the same scene.  They detect features easily and are applicable to solve problems 
of image based feature correspondence. 

Chapter 1: Introduction 
Initial review is providing to the 
research background, including the 
aim and objectives, the original 
contributions, published papers and 
thesis layout. 
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2 Exploitation of 3D Depth 
Estimation Techniques 

2.1 Introduction 

This chapter provides a summary of the main current 3D imaging technologies and 3D 

depth estimation techniques. It also highlights research into H3DI technology. Therefore 

the chapter has been split into two parts with the first covering 3D display technology 

and the second on 3D depth estimation techniques. The first part will include 3D display 

techniques that require the wearing of special glasses, such as anaglyph, shutter glasses 

and polarized glasses. Then areas that do not require glasses to work will be discussed, 

such as holography, volumetric, two-image display, multi-view, light field displays and 

H3DI. Then finally, H3DI technology will be covered in detail.  

The second part will cover 3D depth estimation for spatial change (stereoscopic) as well 

as spatial and temporal changes (motion). In addition, the second section will include a 

description of the H3DI system. The rest of this chapter will be an introduction before 

covering 3D imaging display technology that incorporates stereoscopic 3D imaging and 

auto-stereoscopic 3D imaging. After that there will be information about the 

development of H3DI that will cover the history of H3DI, the properties of H3DI and the 

construction of the camera used in this research. Then 3D depth estimation techniques 

will be considered including stereoscopic 3D depth maps, motion information 

techniques and holoscopic 3D depth maps, before a final conclusion.  

Chapter 2  
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2.2 3D Vision 

Industrial level 3D technology has become much more wide spread in areas such as 

entertainment and gaming, education and training, data visualization and teleportation, 

as well as other areas due to the power of computers significantly increasing. Research 

is needed in the area of using a 2D display to present a 3D object as this is one of the key 

challenges in the development of 3D-based interfaces. This is where the relationship of 

objects in 3D space needs to be identified by the viewers (they need to experience depth 

perception, which is the ability to interpret the world in 3D from visual cues). There are 

various cues that lead to the perception of depth in a scene, and these cues vary 

according to the scene in question, the distance to the items being focused on in the 

scene and the way the information is formed both consciously and subconsciously. 

Figure 2.1 [29] illustrates the components of the complex and powerful human visual 

system. The most significant part of this is the depth perception imparted by the two 

eyes, while other areas are the pre-learned interpretation of 2D images and the 

unconscious ability to determine motion parallax. The brain merges the information 

obtained from both eyes to create a sense of 3D [30]. The depth cues from real 

environments, such as perspective, size difference, occlusion, shadow, accommodation, 

convergence and disparity, provide a clear picture of the environment that results in an 

increased performance quality. Thus, it is important to consider that the performance of 

machine vision systems is also strongly dependent on a good performance of their 3D 

perception [31]. In these systems, real world 3D effects are replicated as well as motion 

parallax so the observers can experience 3D effects [32]. This overcomes the four 

missing cues from 2D images via low-level features and cues [33]:  

• Stereo parallax—a different image is seen by each eye. 

• Movement parallax—a different image is seen when we move our heads. 

• Accommodation—the object of interest is focused on by the eye’s lenses. 

• Convergence—object of interest is viewed by both eyes converging on it. 
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Figure 2-1 Image analysis of Mona Lisa by the Human Visual System (HVS), up to simple cells in visual 
cortex. By Karel Kulhavy, July 2012 [29]. 

2.3 Taxonomy of 3D Imaging Display Technology 

Figure 2.2 shows the different ways that 3D displays can be categorized from the user's' 

point of view. This means, the taxonomy for 3D display in this chapter was built upon 

whether the 3D display technique used by the user requires glasses or not, as a main 

display category. These techniques are stereoscopic display where optical devices are 

required close to the viewer’s eyes or auto-stereoscopic display where the eye-

addressing techniques are completely integrated into the display itself. The second type 

is much more technically demanding than the first [34]. The following sections describe 

the various current 3D display techniques. 
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2.3.1 Stereoscopic 3D Imaging Technology 

The characteristics of binocular vision are used in stereoscopic images to record 3D 

visual information that has the illusion of depth as in the real world [35], and the 

technique was first invented by Sir Charles Wheatstone in 1838 [36] (Figure 2.3). A 

screen shows two images and a viewer, often bulky, presents the correct image to each 

eye via spatial or temporal multiplexing [37]. There are three main types of systems for 

the special displays of the images that can be differentiated via colour, light, time and 

space multiplexing of the special glasses. The three most used systems will be described 

in further detail [38].  

Two-view  

Multi-view  

Super Multi-
view (SMV) 

Holography  

Volumetric  

Multiple Images  

Colour-Multiplexed 
(Anaglyph Display) 

Time-Multiplexed 
(Shutter Display) 

Polarization-Multiplexed 
Display 

Dynamic 
Aperture  

Holoscopic 3D 
Imaging 

3D Display Technologies 

 

3D Glasses Display 
Taxonomy 

 

3D Without Glasses 
Taxonomy 

 

Light Field Displays 

Figure 2-2 Most common state-of-the-art 3D display technologies. 
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Figure 2-3 Earliest form of Wheatstone’s stereoscopic system 1838 [36]. 

a) Colour-multiplexed (Anaglyph) Displays 

Near complementary colours are used in the anaglyph display system to filter the 

images for the left and right eyes. The possible colour pairs are red and green, red and 

cyan or green and magenta, which the viewers wear as a pair of colour filter glasses for 

separation. Limited colour (binocular colour mixture) can be obtained by mixing the red 

from one eye with the green/blue from the other eye as shown in Figure 2.4 [39]. By 

using the glasses an image can be viewed that seems to have depth [40]. As human 

vision is more accurately defined by the dimensions of the  L, a, b colour 

space are L*a*b* values (RGB or XYZ), as they match the lightness, hue and saturation of 

human colour perception, they have been used in a new algorithm for anaglyph image 

generation that prevents deficiencies in colour distortions, retinal rivalry and ghosting 

effect [41].  

 

Picture 1 Picture 2 Mirrors 

Viewer 
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Figure 2-4 Red and blue lens filter glasses and two projected images only, one image enters each eye [39]. 

 

This system has the drawbacks of causing eye strain and headaches as well as nausea in 

some people. In addition, some people have one eye that is dominant and this causes 

them to not see the image as 3D [42]. As only one image enters each eye, the quality as 

perceived by the brain is less than with the polarized system.  

b) Time-Multiplexed (Shutter) Display 

A 3D image can be created via the use of a display screen as well as liquid crystal shutter 

glasses (LC shutter or active shutter glasses). Shutters in the glasses open and close 

rapidly to show the left and right eyes alternating images displayed on the screen. The 

shutter system is controlled by an infrared link and is usually part of a pair of glasses, as 

shown in Figure 2.5 [43].  

 

Figure 2-5 Illustrates the principle of operation for frame sequential design and liquid crystal shutter 
glasses with IR sensor to synch the two [43]. 
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Recently a product has been developed that has rapid switching between the open and 

closed states as well as high contrast that is a polarizer-based nematic liquid crystal 

(LC)[44] optical shutters that have the LC cell as the polarization modulator. Despite the 

recent developments, there are still some disadvantages related to this technique. One 

of these is that there is a time delay between the two images, which has to be 

reproduced exactly, as if this does not happen the items in the images will be out of 

position relatively. In addition, as the image is split between the two eyes, each eye is 

only seeing half the material, which can result in a notable flicker if the refresh rate is 

not high enough.  

c) Polarization-multiplexed Displays 

Currently, the most popular type of 3D system used in the entrainment industry is the 

polarization technique. In this there are two screens, covered by orthogonally oriented 

filter sheets (polarization that is either linear or circular), that are positioned so they 

are at right angles. Linear and circular polarization work in the same way but the use of 

circular polarization lets the viewers’ move their heads without losing the 3D 

perception [45]. The glasses used in this system filter-out light that has been polarized 

at specific angles: only light that is compatible with the lens will be allowed to pass 

through. Therefore, each eye will only see a specific set of images on the screen, as 

shown in Figure 2.6 [46].   

 

Figure 2-6 Polarized glasses passively block light waves to create the illusion of depth. The lenses in LCD 
shutter glasses darken when voltage is applied [46]. 
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This 3D stereoscopic delivery technique has various disadvantages despite advances in 

the area of stereoscopic 3D display technology as follows: 1) viewers are required to 

wear special glasses, 2) viewers may experience headaches and eye stress after 

extended use, 3) full resolution full natural colour images cannot be delivered to each 

eye at the same time and 4) there is no motion parallax meaning the 3D scene is only 

seen from a fixed perspective [47]. Thus, there is motivation for the development of 

auto-stereoscopic techniques that do not require the use of special glasses. 

2.3.2 Auto-stereoscopic 3D Imaging Technology 

An auto-stereoscopic display is able to generate a stereoscopic image without the use of 

glasses, or other devices at the viewer. The divisions within the technology are not 

always clear but the most useful distinctions divide the auto-stereoscopic displays into 

four areas as follows: 1) electro-holographic where wave-front reconstruction is used to 

make the image, 2) volumetric where the image is formed within a volume of space 

without the use of light interference, 3) multiple images where the viewing field 

displays many 2D images and 4) a light field display where projector and micro-lens 

arrays form the image out of light from all directions [48]. The fundamental trends in 

the newest auto-stereoscopic 3D technology are the areas that this work focuses on. 

a) Holography 3D Imaging 

Due to them recording and reproducing the light wave-amplitude, wavelength and 

phase differences, holography or holographic 3D techniques are able to offer 3D depth 

and motion parallax in all directions, as was proven by Denis Gabor between 1946 and 

1951 [49]. However, this could not be put into practice until 1964 when the first 

hologram was created after the laser was invented in 1960, and then holography was 

available commercially [50]. Lasers create coherent light that is used in holographic 3D 

technology to illuminate the scene and camera target when recording and then when 

the recorded scene is played back again (Figure 2.7). When the hologram is being 

recorded a laser is divided into two paths with one going to the object being 

holographed and the other onto the film: the interference pattern between the two 

beams is the hologram. Then to view the hologram the laser light is reconstructed and 

sent to the hologram at the same angle as when it was recorded. The hologram diffracts 

the beam and the image of the object is created [51].  
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Figure 2-7 Representation of the process for recording a hologram and then viewing the hologram [50]. 

The need for high resolution emulsions for the holographic recording and 

reconstruction of films and television has limited its use. However, recently holographic 

transmission has become digital, and therefore possible, due to developments of CCD 

capture and spatial light modulators (SLMs). A new holographic projector has been 

developed at MIT’s Media Lab that will enable practical colour 3D holographic video 

display as well as lower power use when displaying higher resolution 2D images. 

Guided wave optics was used to build the new projector based on SLMs that are the 

basis of digital holography. Figure 2.8 shows an example of an image from this projector 

at 30 frames per second (fps) and a resolution that is comparable to standard definition 

[51].  
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Figure 2-8 MIT’s new holographic display showing a butterfly [51]. 

Due to holography needing coherent illumination and dark conditions when the data is 

recorded, as well as the images containing a large amount of information, the technique 

may not be a commercially viable 3D display product in the foreseeable future [52].   

b) Volumetric 3D Imaging 

Complete parallax is offered by volumetric displays as each point of light comes from a 

specific point in space [53]. These displays can produce images that are viewable from 

360 degrees. These images display accommodation/convergence (AC) and so the 

focusing of the eyes and the convergence of their visual axes takes place in a 

harmonious manner [54]. This is also beneficial as the depth cue portfolio can be 

enhanced by the accommodation. Due to them being composed from a wide range of 

methods, volumetric displays can be divided into two main types: virtual image and real 

image [53].  The most common methods use projection screens that rotate, a gas or 

several liquid crystal panels. Figure 2.9 [55] shows a low-cost volumetric 3D display 

producing a 360 degree image that was created by the Graphics Lab (ICT) at USC via 

spinning mirrors, high-speed DLP projectors and very precise computation that 

calculates the correct axial perspective [54]. 
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Figure 2-9 VolumetricDisplayfromUSC’sGraphicsLab(ICT)[55]. 

c) Multiple Image Display 

Multiple image 3D displays can be divided into two systems depending on the amount 

of views, either two-view display (dual-view) or multi-view display. The two-view 

display has the left and right views so that they are overlaid as a set of thin vertical 

strips and displayed at the same time. Then, when the observer is within the ‘viewing 

zone’ an optical element is used to make sure that the left view is visible to the left eye 

and the right view to the right eye. There is a significant difference in the efficiency of 

the two most widely used approaches at displaying the light on the screen to the viewer 

from two-view display system [56]. The two common approaches are shown in Figure 

2.10 [57]. 

 

Figure 2-10 Two common methods used in the two-view display (a) lenticular cylindrical lenslet array 
and (b) parallax barrier array [57]. 

(b) (a) 
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The first uses alternating cylindrical lenslets in a faceplate and the second has 

transparent slits incorporated into an opaque surface. Compared to the parallax barrier 

technology, the lenticular technology has brighter image lighting but it suffers from the 

moiré effect. These approaches’ disadvantage is that pseudoscopic images are formed, 

that is the viewer must remain within the viewing area for the image to be seen 

correctly, and if they move away from the ideal viewing distance the chance of seeing 

the image is significantly reduced [58].  

To combat these limitations it has been necessary to add more views, and in these 

multi-view displays a range of individual views (cameras) are shown over the viewing 

area. It is necessary to reduce the native resolution of the display in the multi-view 

display for each zone of the image. This can be achieved by using a vertically-aligned 

light directing screen as the display that causes the horizontal resolution to be reduced 

by the number of views. However, the use of a slanted view-directing screen is generally 

a better option as this causes the transition between views to be made softer so that the 

viewer experiences continuous motion parallax that is similar to viewing natural images 

[59]. The multiview display’s advantage is that as long as both of the viewer’s eyes are 

in the viewing zone they will experience the 3D image. The multi-view technique 

typically displays from 8 to 24 views and uses either lenticular sheet or slanted parallax 

barriers [57] as shown in Figure 2.11. Multiple viewers can be accommodated and each 

sees the 3D image from their own point of view. To look around an object all the viewer 

has to do is to move their head [60].  

 

Figure 2-11 Multi-view 3D display using, a) lenticular sheet, b) parallax barrier and c) viewers visibility 
zones [57]. 
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Development has been taking place on lenticular multi-view displays for over a decade 

and current performance is limited by the multi-view 3D display because of a reduction 

on the resolution, the constrained depth of field and the limited viewing regions. As 

LCDs with higher resolutions are developed the performance in these areas will 

increase.  

d) Light Field Displays 

It is possible to capture light field displays in various ways and they aim to create 

stereoscopic disparity and motion parallax. This means that the viewer does not need to 

wear special equipment to see a scene as 3D. Generally controlled acquisition is used, 

such as camera gantries and arrays [61], lenslet arrays or coded aperture techniques, 

however, it is also possible to use hand-held devices for unstructured acquisition [62]. 

In this technique, discrete beams of light radiate from each point on the display screen.  

Here, three fundamental techniques that enable most light field displays will be 

considered, which are multi-beam, dynamic apertures and integral imaging [63].  

I. Super Multi-View (SMV) Displays 

A SMV display is a natural 3D auto-stereoscopic display that employs multiple 

projectors or optical modules to generate 3D images with satisfactory quality. The SMV 

display technique produces a large number of perspective projections parallax images 

into corresponding viewpoints. Multi-beam displays optical modules is a type of SMV 

display where the real image voxels are formed in front of the screen or virtual voxels 

are formed behind the screen by the multiple beams converging and intersecting or 

diverging, respectively [63]. The screen diffuses the beams in the vertical direction only 

allowing viewer’s vertical freedom of movement without altering horizontal beam 

directions. A new type of light field 3D display is the Holografik technique from the 

Holografika Technology Company that uses its proprietary light-field technology as the 

product ‘HoloVizio 360P’ for viewing natural 3D images on its 44” 3D resolution display 

with 30 megapixels [64] (Figure 2.12).  
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Figure 2-12 Multi-beam light field 3D display using the Holograik technique to produce a natural 3D view 
[64]. 

II. Dynamic Aperture 

A fast frame rate projector and a horizontally scanned dynamic aperture are used in the 

dynamic aperture type light field display. When the light passes through the aperture it 

diffracts in a way that is inversely related to the aperture size, which means that for a 

spatial resolution the angular resolution is maximised [65]. The visual quality can be 

further improved as the dynamic aperture can adapt to the content of the image. The 

results are very similar to those achieved via the multi-beam approach despite the 

embodiment appearing to be significantly different. The dynamic aperture forms the 

beams in a temporal manner. The former technology has been developed so that it is 

able to include head tracking and view steering [66] as well as high-speed temporal 

modulation [67]. Currently, in combination with high-speed LCD, lenslet arrays are used 

as rear illumination that can be programed to direct individual views to tracked 

observers [68]. Multilayer architectures that include a low angular resolution and 

provide binocular disparity as well as depth cues through motion parallax have been 

suggested previously [69]. A new “Focus 3D” prototype has been proposed that could 

generate almost correct accommodative depth cues that would enable the device to be 

viewed from a wide range of distances [70]. In addition, it would be possible for the 

camera to focus at a range of depths using this practical 3D prototype. The technique is 

based on a novel computational display architecture that could support correct 

accommodation due to its design of the display optics as well as the synthesis of the 

compressive light field that provides the viewers with almost perfect accommodative 

and binocular cues as well as motion parallax. Figure 2.13 [71] shows the design of the 
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prototype that is able to let viewers see various depths that are in and out of the screen 

by sending high resolution light cones to the viewer’s eyes.  

In light field displays, a new image needs to be presented every 2 mm on the screen, 

which means that a large amount of data needs to be presented to give motion parallax. 

As there is only horizontal motion parallax the eyes generally attempt to focus on two 

distances at the same instance. This is an area for further research work.  

 

 

Figure 2-4 Dragon 3D display result focused at two different depths. Using the focus 3D prototype, where 
a stack of two transparent LCDs is mounted on rails in front of a Fresnel lens with an additional LCD 
monitor behind the lens the dragon photograph [71]. 

III. Integral Image Display 

The simplest type of light field 3D display technique is integral imaging. This is 

considered to be a type of holography where the light field is not required to be 

coherent. The technique records and displays the 3D image as a planar intensity 

distribution, and it stores the multi-perspective 3D scenes’ information in a 2D form 

[72]. This system was invented in 1908, and since then one of the main problems has 

been the production of pseudoscopic images, also known as depth inverted images, 

where the depth is reversed [73] (see next section for more detail). In addition, as the 

ray bundles spread out, there is very poor depth of field (DOF) in the reconstructed 

images.  

This technique has been developed in the last few decades through improvements that 

have solved the pseudoscopic problem and enhanced the quality of the lenticular sheet 

arrays. Therefore, the use of the integral image technique has become attractive and 

much work has been conducted in this area, for which further details will be given in 

the next section.     
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2.4 Holoscopic 3D Imaging Technology 

A Holoscopic 3D image display, also referred to as integral images display [72], is a true 

auto-stereo method type light field display technology that has the ability to provide all 

four eye mechanism: binocular disparity, motion parallax, accommodation and 

convergence. This method does not require any special glasses to view the 3D object 

and does not cause visual fatigue to human eyes. The image is formed by a very large 

amount of closely packed distinct micro-images. These are viewed via an array of 

spherical convex lenses.   

2.4.1 Holoscopic 3D Imaging: From Past to Present 

The use of a series of lenses was proposed by the physicist Prof Gabriel M. Lippmann 

(1845-1921) on 3rd of March 1908 instead of using opaque barrier lines [73]. This 

enabled him to record an image with parallax in all directions. An array of small 

spherical convex lenses known as a fly's-eye lens array was used to record and play 

back the image (Figure 2.14). The array of lenses is placed over the film sheet or 

electronic image sensor to capture all the 3D information in a single recording. When 

the scene is recorded, each lens captures overlapping sections that are recorded in an 

elemental image (EI) as a special 2D image, and then these are used to form H3DI [72]. 

However, there were limitations in the depth of field in the method [74].  

 

Figure 2-5 Principle of H3D system, a) capture (recording) object process and b) display (reconstruction) 

of 3D image. 

A pinhole sheet was used instead of the plastic materials by Sokolov in 1911 that 

produced a similar effect but worked on the basis of refraction rather than diffraction 

[75]. In integral photography (IP), the problem of pseudoscopic images is encountered 
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(Figure 2.14a) where the image presented is opposite to the orthoscopic image 

normally seen. The first attempt to solve this problem was made in 1931 by Ives [76] 

where he suggested recording the reconstructed image a second time and therefore 

inverting it again. This method, called “two-step integral photography” resulted in a 

real, undistorted, orthoscopic 3D image being produced. However, the pseudoscopic-

orthoscopic conversion problem is not solved by this proposal as the two-step 

recording process results in image degradation due to the structure of the CCD and LCD 

that is pixilated and subject to diffraction effects [77]. More noise, distortion and moiré 

interference are added by the second lens array because of sampling effects, aberration 

and precision of the manufacturing [78]. 

The one-step integral solution of generating a pseudoscopic (reversed depth) image to 

the lens array via computer-generation was suggested by Chutjian and Collier of Bell 

Labs in 1968 [79] and this produced a correct depth orthoscopic image. The method 

was improved with the use of colour transparency masks and objective lens cameras by 

Villums in 1989 [80].  Hain et al. [81] continued to explore the use of diffractive lens 

arrays for integral imaging. However, there are still the following limitations related to 

the technique: 

 Pseudoscopic image (depth inverse) 

 Image resolution. 

 Limited viewing angle 

 Depth range of 3D scene 

 Distortion of 3D scene in adjacent viewing zone 

Various companies and researchers considered the mass-production of integral-based 

products once lenticular products had been successfully mass-produced. The camera 

system developed by Davies and McCormick between 1998 and 2003 included good 

developments in the area of H3DI technology that overcame the two-stage recording 

causing image degradation by using a multiple lens array to optimize the image position 

and correct the image depth inversions that are caused when the image is replayed 

through a single-lens array [82, 83]. The correct spatial 3D image can be captured for 

orthoscopic replay via a two-tier network. The simplest version possible of a two-tier 

lens array is shown in Figure 2.15 that can make an integral orthoscopic image.  
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Figure 2-15 Two-step integral imaging for orthoscopic 3D. (a) Pickup and pseudoscopic real image 
reconstruction, and (b) orthoscopic virtual image reconstruction after EI conversion [78]. 

The principles of integral photography (IP) have been rediscovered and applied due to 

advances in micro-lens manufacturing, optoelectronic sensors (e.g. CMOS and CCDs), 

display devices (e.g. LCDs), increases in processing power and computational storage 

capacity. Recently, the use of a curved lens array as opposed to a flat lens array has been 

proposed to expand the viewing angle drastically by a team from Next-Generation 

Information Display Centre [84]. However, the method fails to keep the space between 

the lens arrays constant and also has a problem related to overlapping. While the same 

centre proposed a method where the resolution of the EI is enhanced by jointly 

estimating the sub-pixel disparity and pixel intensity values from the high resolution 

grid to be able to use many low resolution EIs to form a high resolution EI [85]. 

Developments in H3DI techniques obtained from strong research efforts [86] have 

helped solve problems related to limited depth of field, low resolution, pseudoscopic to 

orthoscopic conversion, production of 3D images with continuous relief and the 

observers’ limited range of viewing angles.  

Very recently, the 3D VIVANT research team at Brunel University has developed new 

technologies for the capture and display of 3D content for H3DI. A prototype of a 2D 

camera has been enhanced for the capture of the H3DI. The camera is a single aperture 

ultra-high definition H3DI camera. For the display, holography is used as it can provide 

immersive ultra-high resolution 3D content where eye-strain is prevented due to the 3D 

optical accommodation and convergence working together [72, 73].    
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2.4.2 Holoscopic 3D Image Properties 

The properties of the H3DI come from the geometry of the system used. The concept of 

the resolution in the H3DI system is not simple.  In this process, the lateral and 

directional information is obtained from an array of lenses and a 2D matrix sensor. This 

means that the conclusions drawn from either the camera model or display process can 

be deliberated and transferred to the other due to the high degree of geometrical 

symmetry. To achieve this, there is a range of properties that are essential  for the 

viewing experience of the 3D scene that need to be understood to determine the 

resolution of the H3DI systems and they are listed as follows: 

 Pseudoscopic image: If the H3DI system is in its standard configuration than the 

images have reversed depth: they are pseudoscopic (Figure 2.16). The advantage 

here is that all objects are depth-inverted [78].  

 3D image resolution (3D reconstructed image resolution): This is a combination 

of spatial lateral resolution and depth resolution. To obtain a measurement of 

the H3DI system’s resolution the number of samples in each lateral plane as well 

as the amount of rays that cross each other at a sample point should be 

considered. A point will have a greater differentiation when there are a higher 

amount of these rays when compared to other points along the depth (axial) 

direction. This means that the level of error when mapping other points in the 

H3DI reconstruction is determined by the number of rays in each crossing point. 

From Figure 2.16, the reconstructed image pixel at depth Z is defined as: 

Image resolution ( 𝜌𝐼) =𝜌𝑍 𝑓⁄                                            (2.1) 

 Viewing angle: The area within which each EI is displayed (Figure 2.16) limits 

the angle at which observers can view the reconstructed H3DI, as defined in the 

following [84]: 

Viewing angle (     ) =2 tan−1(𝑃/2𝑓)                                   (2.2)  𝜽 
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Figure 2-6 Geometrical model of H3DI display, where the various properties of the system are 

provided and identified. 

 Image depth range: If there is an image plane, then objects that are not part of it 

will have a reduced resolution or be out of focus. The H3DI system’s marginal 

image depth ∆𝑍 represents the range where objects are accurately reconstructed 

(Figure 2.16) and defined as:  

Image depth ( ∆𝑍) = 2(𝑍𝜌𝐼)/𝑃                                           (2.3) 

2.4.3 Holoscopic 3D Camera 

The photographic holoscopic 3D camera that has been assembled in the 3D VIVANT 

project at Brunel University follows the type 2 camera models [87], which has been 

developed and used to capture H3DIs for processing purposes. The main components of 

the holoscopic 3D camera are micro-lens array, relay lens and digital camera sensors. 

The micro-lens array is mounted in close proximity to the sensor as shown in Figure 

2.17 (a). The main lens image plane is formed in front of the micro-lens array, which 

allows the micro-lens array to capture the positions in the scene from different 

perspectives. The layout for integrating the holoscopic prototype camera with the 5.6k 

sensor of the Canon 5D Mark2 (C5D M2) DLSR is shown in Figure 2.17 (b). In addition, 

the total weight of this system is lighter i.e. 1.57 kg compared to 3-4 kg for telephotos. 
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Figure 2-17 Assembled holoscopic 3D camera at Brunel University [87]. 

2.4.4 Principal Components of Holoscopic 3D Imaging 

Holoscopic 3D imaging uses lens arrays to collect many views of a 3D scene, and the 

lens arrays, which are made from hundreds of micro-lenses, can be classified either as a 

1D lenticular sheet or 2D micro-lens array. Depending on the application requirements, 

a holoscopic 3D display can be built on the lens arrays. Depending on the type of lens 

used, there are two main forms of H3DI. The first is the unidirectional technique, which 

is a simplified form using a lenticular sheet to form a single direction 3D depth and 

motion parallax image. While the second type is the omnidirectional technique that uses 

a 2D micro-lens array that is based on the fly’s eye technique to offer an image that has 

full parallax 3D depth and motion parallax [72, 73]. The structures of both the 

unidirectional and omnidirectional micro-lenses are shown in Figure 2.18.   
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Figure 2-7 Micro-lens structures of H3DI systems [88, 89]. (a, b) Lenticular sheet and (c, b) spherical 

micro-lenses array. 

I. Captured Component Image 

It is possible to use only a single sensor and snapshot to capture a 3D scene from a 

range of different perspectives through the use of a micro-lens array. Each of the 

separate images is called an EI and each comes from a slightly different view of the 

scene, and they are recorded with a CCD or CMOS sensor [110]. As each EI has a limited 

size, the image’s resolution is very low. EIs in their matrix are referred to as the 

holoscopic image of the 3D scene. If an array has K micro-lenses, then K EIs will be 

produced with L pixels each. Then when the ELs’ pixels are rearranged L viewpoint 

images will be formed with K pixels each [72]. There are differences between the 

extracted viewpoint images (VPIs) and common images as they are parallel projections: 

that is they are an orthographic projection. As shown in Figure 2.16, depending on the 

lens parameters (such as pitch size (P) and focal length (f)) the VPIs are the 

orthographic projections of the 3D image that have been rotated in a plane by an angle 

of θ. As shown in Figure 2.19, the 3D scene is being recorded in the VPIs from an angle 

that is different from that in the perspective projection used in traditional 2D recording.  
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Figure 2-19 Shows the orthographic projections for the extracted VPIs (for simplicity, assume there are 
only three pixels under each micro-lens), i.e. all the pixels in the same position under a different lenticular 
lens array are represent by the same. 

II. Displayed Component Image 

To display the H3DI the recording technique is reversed, that is the micro-lens used 

should be similar. In the holoscopic technology, screens are used to display the 3D 

images and the light distribution remakes the original scene. Independent of their 

position, the viewers see the image as 3D. The H3DI properties given in section 2.4.1 

need to be considered when searching for the best device for the display of the images. 

There are some problems to be considered, with the main being the image is 

pseudoscopic [90]. Then the viewing zone is also defined by the maximum viewing 

angle. In addition, the lateral resolution can be a problem when only one pixel of the 

display device is seen via the micro-lens [91] and the viewer sees the same number of 

pixels as there are micro-lenses. The 3D resolution is generated from the pitch of the 

micro-lens array and due to this a micro-lens with a very small pitch (P) should be used 

to build a high resolution holoscopic imaging monitor.  

2.5 3D Depth Estimation Techniques 

A depth map is a 2D array where the x and y distance information corresponds to the 

rows and columns of the array as in an ordinary image. It is the simplest and most 

convenient way used to store and represents the depth cues taken from a scene where 

the corresponding depth readings (z values) are stored in the array’s elements. There 
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are a range of methods to estimate the visualizing 3D depth scenes and they vary 

immensely in basic principles of recording and display techniques.  

There are two systems to generate the perception of depth. In stereoscopy a different 

image is projected for the left and right eyes and the brain makes the fusion to perceive 

depth, while in H3DI different light intensities are produced by micro-lenses. Both 

techniques should be considered in current computer vision applications when 

developing H3DI data.   

2.5.1 Stereoscope 3D Depth Map  

In daily life, depth perception is due to each eye seeing a slightly different perspective, 

and replicating this remains a challenge for 3D technologies. In this section the cues in 

human visual systems are considered to develop good performance related to accuracy, 

speed and generalization. By simulating the optical back projection of many 2D images 

in computers it is possible to develop depth estimation methods. When excluding the 

pictorial method the most reliable and common approaches can be split into two 

categories: depth estimation from changes in spatial resolution and spatiotemporal 

changes [92, 93].  

1. Spatial 3D Structure  

Stereo vision or spatial 3D structure is the widest used method to obtain information on 

3D structure and distance from a scene and the accuracy. It depends on the stereo 

camera used and the stereo correspondence algorithm, for which much work has been 

undertaken [93, 94]. The algorithms give either sparse or dense outputs. Sparse outputs 

come from methods that are based on matching the segments or edges of images; 

however, if the speed and accuracy of the calculation are increased this disadvantage 

can be reduced. Using this there are either local or global algorithms. The local methods 

have increased speed and reduced accuracy, while global methods need more time but 

have good accuracy. A full discussion on the taxonomy of dense stereo correspondence 

algorithms has been published previously [94] and an explanation of the depth 

estimation is available in the next chapter.   

Stereo correspondence is very demanding with regards to computational resources, 

which means that the computation of dense and accurate disparity maps is a problem. 

Most of the algorithms used can be described using the same structural set [95]. The 
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problem is a long way from being solved and there have even been new restrictions 

introduced due to advances in related technologies. The reliability of the results is the 

most important aspect despite real-time frame rates imposing constraints [96].   

2. Spatiotemporal 3D Structure 

Estimating the 3D structure of a scene from a 2D image stream is one of the most 

popular computer vision approaches. It is also referred to as Structure from Motion 

(SfM) or 3D reconstruction from video sequence. Useful information about a scene can 

be identified from a series of images taken over time by moving cameras by 

determining the differences between the images due to motion [97]. In the last two 

decades, SfM based on stereo matching has generated much interest. This is despite it 

having excessive time consumption when the frame-by-frame approach is applied. The 

method can also result in flickering-artefacts between frames when the area is highly 

textured or has fast motion [98]. The artefacts are a disadvantage that might prevent 

this method’s use in 3DTV technologies and teleconferencing. There are also limitations 

related to its use with real-world video frames [99].   

2.5.2 Holoscopic 3D Depth Estimation Techniques 

Most of the work that has been conducted into overcoming the problems related to 

H3DI reconstruction has been related to determining the viewing parameters and 

enhancing the image generation rather than optical hardware issues. The main 

problems are limited depth of field [100] and the displayed images’ low quality [101]. 

The areas of research have been related to enhancing the holoscopic 3D image’s viewing 

angle [102, 103] and forming an orthoscopic H3DI [104]. However, there are many data 

processing issues that need to be addressed to overcome the inherited restrictions and 

remedy many of the aforementioned problems of H3DIs. These issues require unique 

computational data simulation and the application of a wide variety of digital image 

processing. Moreover, digital computers have been used for imaging applications and 

recent developments in computers allow for the application of digital methods in almost 

real-time. Depth knowledge or spatial position is one of the area’s issues that can 

benefit a wide range of situations, such as coding and transmission. In addition, depth 

may also be used to generate virtual image information of a virtual 3D object by 

combining images from the real-world with those that are computer generated.  
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The quality of the images produced through computer-based H3DI methods are now 

achieving better results than those from all-optical H3DI [105]. Through digital image 

processing it is possible to use Computational Holoscopic Image (CHI) reconstruction 

and achieve good quality images that are free from diffraction, device limitations and 

system misalignment [105]. There are many advantages from the ability to determine 

3D depth information and generate 3D reconstructions that are related to H3DI 

applications in areas such as 3D cinema, medical imaging, robotic vision, detection and 

tracking of people, biometrics and in video games [72, 74]. The following are the recent 

techniques that have been developed to provide computational simulation of H3DI 

systems with a micro-lens array related to depth extraction: 

a) Depth-through-PSF  

The 3D images are reconstructed by extracting pixels periodically from the EI array 

using a computer. Images viewed from an arbitrary angle can be retrieved by shifting 

those pixels which are to be extracted.  Early work related to the estimation of depth in 

H3DIs used Point Spread Function (PSF) or intensity distribution function by identifying 

and matching corresponding intensity distributions in EIs [106]. When the PSF is used 

to identify the H3DI system the depth estimation is an inverse problem [107]. Due to 

the loss of information in the direct process used with the model the inverse image 

problem is ill-posed while the discrete correspondents are ill-conditioned. This means 

that the method is not suitable for use with real-world H3DI data [108]. Two schemes 

have been proposed to combat the ill-posedness that enable approximate realistic 

solutions to be achieved and obtain constrained least-squares solutions as well as give 

realistic reconstructions [109]. The first was developed from the projected Landweber 

method [110] and the second is a form of Tikhonov’s regularization method [111]. Both 

of the methods can only be used with simulations based on numerical data [112]. 

b) Depth-through-Disparity 

More recent work has focused on depth-through-disparity approaches as in this the 

estimation of the relation between depth and disparity is straightforward. First, the 

horizontal positions of the pixels in the EIs are rearranged to give the horizontal VPIs, 

and then the disparity field is calculated between the pairs of VPIs. Park et al. [113] and 

Wu et al. [112] were the first to report the testing of correlation metrics for disparity 

estimation. There was also a multi-baseline technique developed to take advantage of 
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the recurrence of information between VPIs. In later work a neighbourhood constriction 

parameter was developed, due to the depth being piecewise continuous in the space 

and this enhanced the accuracy of the algorithm [114]. The modified algorithm was 

validated experimentally using both synthetic and real-world H3DI, and where the 

background contained noise, non-smooth depth solutions were prepared. In addition, 

the method needed manual marking of setting and extraction feature points for the 

estimation of depth maps so it is time consuming and not suitable for use in automatic 

systems. This can lead to three problems: i) uncertainty and region homogeneity at 

points where errors are common in the hybrid multi-baseline disparity process, ii) 

dissimilar displacements related to the object borders and their matching block and iii) 

3D object segmentation. 

If a set of feature points are first extracted and matched before fitting the surface to the 

features that have been reconstructed it is possible to overcome the feature 

reconstruction problem [115]. Two sets of depth extraction parameters were proposed 

that used sets of “strong” extracted correspondences. The first method considers the 

depth estimation problem as a 3D optimization problem and uses a H3DI grid and the 

intersections between a subset of the surface points. However, this method generates 

non-smooth resolutions due to the non-uniform sampling of the 3D space. The second 

method needs to merge all depth maps to form the final depth map as it treats the depth 

estimation as a problem of merging many stereo-like problems. In this method, which is 

based on the concept of depth-through-disparity, each multiple stereo problem is just 

made up of a pair of sequential VPIs. Graph cut algorithms were used to determine the 

disparities between each pair of the image’s pixels. Multiple optimizations are needed to 

generate accurate depth maps.  

A new development has been the use of a block matching algorithm to determine the 3D 

visualization of a micro-object from the EIs and reconstructed 3D slice images [116]. In 

this method, optical magnification of the micro-object is performed and a set of 3D slice 

images are visualized from the EIs via computational reconstruction from the back-

propagation. This produces the estimated depth map by matching blocks in the EI and 

3D slice image. The sum of absolute difference (SAD) minimizes the errors when using 

the block matching algorithm. However, the method produces low-resolution depth 



Holoscopic 3D Image Depth Estimation and Segmentation Techniques 
 
 

Chapter 2- Exploitation of 3D Depth Estimation Techniques  43  
 

maps due to the 3D microscopy images having a narrow field of view and the EIs’ low 

resolution.  

c) Depth-through- Anchoring Graph Cuts  

The methods of Zarpalas et al. [115] contain two disadvantages, which are non-smooth 

resolutions and they suffer from ambiguity in the extraction and matching of the depth 

map. The extraction of reliable features, called “anchor points”, has been suggested as a 

solution to the previously mentioned problems [116]. The anchor points constrain the 

optimization procedure, and so this works as an energy optimization algorithm for the 

depth estimation and this also improves the estimation accuracy and reduces the 

complexity of the optimization. The method uses graph cuts to estimate the depth of the 

3D points rather than the disparities between the pixels in VPIs that are adjacent. The 

piecewise nature of the depth is combated via a dual energy regularization term for 

adjacent pixels in the EIs and VPIs [116]. The method produces a smooth scene 

structure by overcoming the unidirectional H3DIs problems. The method uses a 

foreground mask to identify the objects from the background. However, the masks 

could not be produced form the H3DI system as the large non-informative and 

homogeneous regions make them hard to generate [116]. The problem of a low-

resolution depth map has had a solution proposed [117, 118] that uses two sets of slice 

images. One of the slice images is calculated from the rectangular window (RW) and the 

triangular window (TW) is used for the other. Block matching is then used to extract the 

depth information. The block matching error is defined via the sum of absolute 

difference (SAD). 

d) Depth-through-Focused Plane 

An object within a plane is focused correctly when it is reconstructed in the correct 

depth plane. When many plane objects are present it is not possible to measure the total 

intensity value and determine the depth. When there are multi-objects and an image is 

reconstructed in the correct plane, noise will be added from the blurred images of other 

objects that are out of focus in that plane. This means that the depth detection accuracy 

and quality of the image that is correctly reproduced are reduced. The defocusing depth 

estimation has been overcome via the use of pixel weight factor (PWF) or the 

reconstruction of the CHI with depth sensitivity [119]. The PWF is small when a plane 

image is reconstructed in a plane with the wrong depth, and the pixel can be 
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suppressed. The level of suppression for the wrong depth planes is related to the 

weighting factor: the level is one if the image is at the correct depth. The unfocused 

image is suppressed but the focused plane has a lot of noise. This means that the pixel 

weight method has been used to produce binary foreground object masks. Gaps are 

removed and edges smoothed in the binary region through the use of the morphological 

image-closing function. In addition, this is used to combine pixels, eliminate noise and 

produce separation between the background and the images. The method has been 

used to detect and reconstruct a clear image that was part of a plane image that was 

unfocused. However, due to the method having limitations related to object size and the 

presence of environment noise in the images the suppression of the incorrect depth 

plane was not obvious.   

e) Depth-through-optical flow 

Between neighbour frames in motion pictures, the motion vector estimation algorithm 

is optical flow [120, 121]. One of the crucial issues related to 3D optical information 

processing from H3DI systems is the limitations in the occluded region, which all the 

previously mentioned 3D depth estimation and object reconstruction techniques have. 

In addition, when the disparity based depth extraction methods with pixel-unit 

accuracy as well as the disparity determined from the depth extraction method, it is 

only possible to generate discontinuous depth planes and not an accurate depth of the 

3D volume, which again is the case in all the pervious methods. This causes an 

imprecise reconstruction of the occluded object and is referred to as the depth 

quantization problem. This problem has been eliminated in a proposed method that 

used optical flow with sub-pixel accuracy for precise depth extraction [122]. In this 

situation, the optical flow is the pattern of movement of brightness in the scene due to 

movement capture by the camera [120-122].  

The optical flow in the image sequence of the motion picture is either velocities or 

disparities within the image. Different weights are used to determine the optical flow 

with high accuracy from the spatial distance, brightness, occlusion state and median 

filtering. Then the depth is determined in the sub-image array by ensuring the center of 

the sub-image is the point of reference and that only the x or y-direction sub-images are 

the target for the flow calculation. Then the histogram of the center of the sub-image’s 

depth map is used to set the segmentation threshold. To ensure that each sub-image has 
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an accurate depth map the point clouds are sent to the center of the sub-image. From 

this a triangular mesh reconstruction is used to estimate the point clouds and the 

occluded region can be reconstructed. Despite this, there are areas with ambiguous 

depth values and holes that lack depth information in the depth map due to optical flow 

field errors from occlusions and low-textural regions.  

2.6 Summary  

The two sections in this chapter have presented a summary of the background studies 

and the most recent developments. These covered 3D display technology and 3D depth 

estimation techniques. The literature review covered areas that are related to the work 

presented in this thesis.    

The first part presented developments related to stereoscopic and auto-stereoscopic 

work. In the stereoscopic area the viewer sees a different image with each eye as they 

wear a pair of glasses that enable each eye to see a different image. In addition, the 

method offers stereo parallax. However this method has some disadvantages such as 

unnatural colour, eye fatigue and motion sickness so is not suitable for extended use. 

Viewers do not need to wear glasses when the auto-stereoscopic 3D technology is used, 

and it is based on one of several different concepts.  In these methods multiple images 

are displayed so that the viewer or viewers see a separate image with each eye. 

However, this means that the viewer needs to be located in a specific spot to fully view 

the image and there are the drawbacks of eye fatigue and motion sickness. These 

systems generally use controlled acquisition, which could be camera gantries or arrays, 

lenslet arrays or coded aperture techniques. It is also possible to successfully use hand-

held devices.  

Holoscopic 3D imaging is a technique that offers true 3D via the fly’s eye technique, and 

the light field does not need to be coherent. The 3D scene does not have side effects, that 

is, depending on the micro-lens array, the 3D depth and motion parallax are continuous. 

Due to steady improvements, this technology has distinct advantages over other 

methods as follows: 

 Full colour real-time 3D images are produced within the viewing angle.   

 Horizontal and vertical continuous parallax in both viewing zones. 

 Multiple simultaneous viewers.  
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 Simple optical system (low weight and cost). 

 Animation and interactivity in real-time. 

 Can be used with large screen formats. 

 Post production enhanced through refocusing features.  

 Use with both stereoscopic and multi-view 3D image formats. 

The second part of the chapter summarized the most common depth estimation 

techniques for use with computer vision applications. Both stereoscopy and holoscopic 

depth were considered to gain a full understanding of H3DI data. Work has been 

conducted on both hardware issues as well as data processing to overcome the 

restrictions related to H3DIs. One area of significance was the understanding of spatial 

position (depth estimation), as this is the simplest and most convenient method of 

obtaining depth information from H3DIsystems.    

This promising technique has been limited due to complexity and that a tradeoff is 

required between the accuracy of the depth estimation and computation time needed. It 

is a difficult research area to obtain high depth resolution and high-speed 

computational simulation. More advanced data processing techniques are needed 

before further progress can be made in this area. The areas that need further work are 

feature points extraction, feature matching, 3D object segmentation and super-

viewpoint image generation.  
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3 Holoscopic Depth Estimation 

Technique Based On Disparity 

3.1 Introduction 

A depth map is a 2D array where the x and y distance information is used to store the 

depth readings. Depth estimation is an important task both for content-based image 

coding and data manipulation. Additionally, a depth map is essential if real and/or 

computer generated objects are to be integrated within integral 3DTV images. 

Moreover, digital computers have been used for imaging applications, and recent 

developments in computers allow for the application of digital methods in almost real-

time. There are a range of methods to estimate the 3D depth in a scene with most of 

them using the stereoscopic principle. The majority of the stereo correspondence 

algorithms can be described using more or less the same structural set [123, 124].  In 

stereoscopy a different image is projected for the left and right eyes as shown in Figure 

3.1, while in H3DI different light intensities are produced by micro-lenses [23, 24, 125], 

see Figure 3.2. These techniques were designed based on the human visual depth 

perception mechanism. There are several factors (referred to as monocular depth cues) 

such as light and shade, relative size, motion parallax, interposition (partial occlusion), 

textural gradient and geometric perspective, which help the human visual system 

perceive the relative distance of objects within a real scene. In fact, depth map 

estimation techniques try to use these monocular depth cues and imitate the human 

Chapter 3  
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visual system when estimating the distance between objects to generate binocular 

parallax (disparity) for the viewer. Due to the unique recording process that exists in 

the information distribution of the H3DI, common approaches used in stereo vision 

cannot be directly applied to obtain depth information from the H3DIs. 

Previous work by Wu et al. [23, 24] attempted to deal with the task by using 

computationally simulated H3DIs. A novel depth extraction method based on depth-

through-disparity analysis has been used. The method achieves acceptable quality 

results on simulation by using a modified multi-baseline stereo technique. In this 

method the feature’s information points from multiple VPIs are exploited to improve 

the matching results. Therefore, most of the objects in the scene can be perceived at the 

correct depth position. However, the method has difficulty to obtain precise depth maps 

from real H3DIs due to the inherent loss of information associated with the feature 

selecting and the corresponding process in the multi-baseline disparity algorithm. This 

can be considered to be an ill-conditioned problem.  

The following are limitations of the previous approach [23, 24]: 

 Current work on depth extraction has concentrated on unidirectional data 

involving only 1-D space in the disparity analysis. 

 Speed process, i.e. the method is computationally expensive in terms of the 

number of logic elements required when the operation is being replicated many 

times to take advantage of the parallel mechanism. 

 The algorithm involves using the feature block pre-selection threshold, 

parameter. This parameter is currently manually operated.  

 Sharp/true depth edges i.e. contour 3D object boundary. 

 Object segmentation to separate the foreground (objects in the scene) from their 

background (noise). 

  Low-resolution range depth map. 

New techniques need to be considered when trying to overcome the limitations stated 

above when developing a technique that can be used to extract applicable information 

from realistic real-world and computer generated H3DIs.  This chapter presents an 

improved version of the algorithm in [23, 24] from two aspects: i) improving depth 

estimation map accuracy by developing a novel an adaptive shape aggregating matching 
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costs (section 3.3.2) over a correlation window, also referred to as adaptive support 

weight (ASW), and ii) generalizing a previous approach which has been implemented on 

UH3DIs to OH3DIs (section 3.5). 

3.2 Geometrical Analysis Depth-Through-Disparity Systems 

3.2.1 Depth Equation for Stereo System 

The geometric basis key problem in stereo vision is to find corresponding points in 

stereo images. Corresponding points are the projections of a single 3D point in the 

different image spaces. The difference in the position of the corresponding points in 

their respective images is called disparity (Figure 3.1).  Consider two cameras: Left and 

Right, Optical centres: 𝑂𝑙 and 𝑂𝑟 . The virtual image plane is a projection of the actual 

image plane through the optical centre. Baseline (B) is the separation between the 

optical centres. Scene Point, P, is imaged at 𝑃𝑙  and 𝑃𝑟 .  Since there are similar triangles 

(𝑃𝑙 , P,𝑃𝑟) and (𝑂𝑙, P, 𝑂𝑟): 

𝐵+𝑋𝑙−𝑋𝑟

𝑍−𝑓
=  

𝐵

𝑍
 ⟹     𝑧 =

𝐵𝑓

𝑋𝑟– 𝑋𝑙
                                  (3.1) 

where, Z and f  are the depth and focal length, respectively. Disparity (d) is the amount 

by which the two images of object point (P) are displaced relative to each other. Define, 

d = 𝑋𝑟– 𝑋𝑙  , then the depth (𝑍) is:    

𝑍 =
𝐵𝑓

𝑑
                                                                       (3.2) 

    

Figure 3-1 Geometric form of a simple stereo vision system. 
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3.2.2 Depth Equation for Holoscopic 3D Imaging System 

As we have seen above, the baseline acts as a magnification factor when measuring 

disparity from which the depth can be obtained. The depth equation also reveals that 

the accuracy of the depth estimation is related to the baseline. For precise distance 

estimation, a long baseline is desired. To determine the method for extracting depth 

cues from the H3DIs, two aspects are investigated [23-24]: the first is to derive the 

depth of an object point position through geometrical analysis of the H3DI recording 

process using the general depth estimation methods used in the computer vision area 

(e.g. stereo vision). The second area is the mechanism of spatial resolution information 

encoding within H3DIs. Therefore, the depth equation gives the relationship between 

the depth and the corresponding displacement between two 2D parallel records of the 

3D space images associated with the recording of the H3DI.   

 

Figure 3-2 Geometric form of 1D lateral direction H3DI system. 

To simplify the analysis of an object point 𝑃0(𝑋0 , 𝑍) we will just consider one lateral 

direction (x-direction), though the analysis is easily expandable to the two-dimensional 

lateral plane. As shown in Figure (3.2) the matrix sensor behind each micro-lens 

recorded an EI, which was obtained from a slightly different point of view. The z-axis 

starts from the plane coincident with the micro-lenses surface, while the x-axis is 

measured from the center of the first micro-lens. From Figure (3.2) the mathematical 

relationship for depth and disparity can be simplified to:  

𝑍 =  
𝑑 .𝜑.𝑓

∆
                                                                     (3.3) 
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where, ∆ =  𝑑𝑠1 −  𝑑𝑠2 is the sampling distance between two adjacent pixels, 𝜑  is the 

pitch size of the micro-lens sheet and d is the disparity of the object point 𝑃0(𝑋0 , 𝑍)  

within two resampled pixels from two EIs i.e. one micro-lens is the disparity unit 

distance between two resampling pixels in the original H3DI data.  A detailed 

explanation on resampling all pixels in the H3DI at the same local position under 

different micro-lenses is presented in the following sections. As seen from Eq. (3.3), the 

range for the depth estimation from two resampling EIs is inversely proportional to the 

baseline, which indicates that a longer baseline can give a better accuracy. Therefore, 

ambiguity exists when determining the exact position of the object point from two 

resampling EIs, which can be reduced by using the information from another resampled 

EI. 

3.3 Multi-baseline Disparity Map Algorithm 

Stereo matching uses the multiple-baseline stereo pairs algorithm that was first 

developed by Okutomi and Kandade [126] to compute the disparity of multiple stereo 

image pairs with different baselines. The matching is performed by accumulating the 

evaluation function from each stereo image pair and then making a judgment from the 

accumulated evaluation function. The judgment is carried out on the score function 

from each pair directly. The final result is obtained from all intermediate judgments. 

The criterion to measure similarity of matching features between two stereo images is 

the sum of squared differences (SSD). The SSSD (sum of SSD) is the intensity value 

decisions about the correspondences made from multiple stereo pairs. The score 

function has been made over a window that is the simplest and most efficient criteria 

[127]. In this approach, the multiple VPIs can be viewed as being similar to multiple 

stereo image pairs used in the multi-baseline stereo. However, the VPIs are 

orthographic projections (low resolution) and stereo vision images are perspective 

projections (high resolution). In addition, the baseline in the VPIs is the distance 

between two cylindrical micro-lenses, which is different from the distance between the 

two cameras used in stereo vision.   

Accordingly, the extracted VPIs are often used to track the displacement of individual 

features from VPI to VPI. The selected desirable features to track are often obtained in 

the same way as proper features to match them. In the matching process the small 

displacements from pairs of VPIs (i.e. reference VPI and target VPI) have been 
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calculated using the sum of square difference (SSD) cost function. The implementation 

of feature points on the reference VPI has led to an increase in the stability of 3D 

solutions. The disparity displacement is extracted, which is the physical distance 

between corresponding pixels in pairs of VPIs. To determine the initial disparity of the 

central pixel p within the window block, the SSD is used as a score of the cost match 

function for disparity estimation and is mathematically described as: 

  𝐶(𝑝, 𝑑) = 𝑓 (𝐼1 (𝑝), 𝐼2 (𝑝 + 𝑑))                                      (3.4) 

 where, 𝐶(𝑝, 𝑑) is the cost function, d is a horizontal displacement vector between a pixel 

(p) in 𝐼1 reference VPI and (𝑝 + 𝑑) in 𝐼2  target VPI. To determine the initial disparity of 

the central pixel p (𝑥1, 𝑦1), the score for all neighbouring pixels (bn) is calculated using 

different values of d (d = 0,1,….,dmax ); then the value of 𝑑𝑝
∗  is chosen that gives the pixel 

the minimal cost among all computed disparity cost functions of (bp). Hence, 𝑑𝑝
∗  has the 

minimum given by: 

𝑑𝑝
∗ = arg {min𝑑∈𝑅{ 𝑠𝑐𝑜𝑟𝑒 (𝑏𝑝, 𝑑 )}}                                       (3.5) 

where, bp represents the window around pixel (p) and R is the research area. The cost 

match function for the initial disparity map estimation ∀ 𝑑 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is 

mathematically described as: 
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where, 𝐶(𝑝, 𝑑) is the cost function, IpIpI  )()(ˆ and 
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, N  is the number of 

pixels within the window (w) and d is a horizontal displacement vector between pixel p 

over the window (block) w in the 𝐼1 centre VPI and (𝑝 + 𝑑) in the 𝐼2  target VPI. 

The Multi-Baseline Algorithm (MBA) matching score function is used where there are a 

number of stereo pairs (K) to estimate the initial disparity map. The initial matching 

decision is carried out using the built up score function from all the VPIs pairs with 

different baselines: 

𝑆𝑆𝑆𝐷(𝑑) = ∑ 𝑆𝑆𝐷𝑖
𝐾
𝑖=1 (𝑑)                                                    (3.7) 
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where, SSSD is the sum of SSD which minimizes the depth map (Z) and i is the target VPI (i 

= 2,3,……K+1). Disparity is estimated in the ‘winner-takes-all’ method by only selecting 

the disparity label with the lowest cost [23, 24]. The disparity is verified whether it is 

dominant in the block centered on pixel p (𝑏𝑝). If it is, then this disparity is considered 

as the final disparity and no further refinement is required; if it is not, further 

refinement is required. The disparity can be more robustly estimated if the disparity 

within the neighbourhood is considered in the H3DIs multi-baseline algorithm. Wu et al. 

[23, 24], addressed the problem of choosing an appropriate matching window size in 

the disparity analysis and neighbourhood constraint and relaxation technique. To 

improve the matching position of a feature block, the neighbouring blocks are 

considered rather than individually considering each block.  

The matching position of a feature block and the number of neighbour blocks has been 

used to allow local variation of the disparity in considering the fact that the expected 

disparity of a neighbour block is not essentially equal to the centre block. The matching 

decision was carried out using the below built up score function from all the VPI pairs 

with different baselines and the result is a data file that contains the corresponding 

disparity between VPI pairs. Considering the neighbourhood relaxation, the score 

function can be written as:   

𝑠𝑐𝑜𝑟𝑒 (𝑏𝑝, 𝑑) = 𝑆𝑆𝑆𝐷 (𝑏𝑝, 𝑑) + ∑ 𝑤 (𝑏𝑛 , 𝑏𝑝𝑏𝑛∈𝑁 (𝑏𝑝) ) ×

min {SSSD (𝑏𝑛 , 𝑑 +   𝛿)   (3.9)     

where, 𝑏𝑝 represents the window around pixel )( p , whose disparity is to be determined,  

N  is a set of neighbouring blocks of center block bp and 𝑏𝑛  is the neighbour block as 

shown in Figure 3.3. The parameter δ has been used effectively to allow some depth 

variations between the neighbour blocks. The score function has the minimum disparity 

as 𝑑𝑝
∗  and 𝑆𝑆𝑆𝐷 (𝑏𝑝, 𝑑)  is the sum of SSD that minimizes the disparity of the centre 

feature block 𝑏𝑝. The weighting factor 𝑤 (𝑏𝑛, 𝑏𝑝) between 𝑏𝑝 and 𝑏𝑛 is introduced to 

reduce the estimation error caused by setting extra emphasis on the center block rather 

than the surrounding neighbouring blocks. 
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A higher weighting factor is assigned to a block which has a great possibility of being in 

the same object as the feature block. Only the distance of colour space was used from 

Wu et al. [23, 24], in which the distance factor (DF) is defined according to the inverse 

distance to the central block. Those blocks that have high colour similarity to the central 

block will have a relatively high weighting factor. 

3.3.1 Setting and Matching Feature Blocks 

Local features are points on the 3D object that are considered as interesting or salient. 

The significant features from each image must be extracted to identify the matching 

features in a set of images, and the number of features is related to the image’s spatial 

resolution. Wu et al. [23, 24] considered the block’s variance before the disparity 

analysis to set the number of feature blocks for the matching VPI pairs. A block will be a 

low confidence block (one that is invalid) when its intensity variance is less than a 

determined threshold. The only blocks that are retained are those with the required 

number of features to give a confident match. The threshold varied between images and 

is set manually. If the threshold is increased then more information is needed resulting 

in a greater number of blocks being classified as invalid. For each image the feature 

block selection threshold (FBST) is manually determined. There can be missing depth 

cues on the final depth map due to many factors between VPI pairs, e.g. noise, lack of 

texture, occlusion, and unaligned surfaces. This means the depth with the lowest cost 

and therefore may not be the true depth. Due to the manual aspect of this procedure it is 

very time consuming, and therefore it cannot be used in real-time situations. This 

means that further work is needed to develop an algorithm that can deal with these 

issues and provide a good result. 

       

  15 10 16   

 14 5 1 6 17  

 9 4 𝒃𝒑 2 11  

 13 8 3 7 18  

  20 12 19   

       

Figure 3-3 Centre feature block 𝒃𝒑 , neighbour block and the sequences of neighbour blocks (𝑵(𝒃𝒑)) to 
the centre block. 

𝑏𝑛 
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3.3.2 Adaptive Aggregation Cost Window  

Local algorithms reduce ambiguity by aggregating matching costs over a correlation 

window [127]. The correlation window also refers to the local support region that 

implicitly indicates that the depth is equal for all pixels inside.  This intrinsic 

assumption will lead to numerous errors, especially at regions of depth discontinuities 

[128]. The support from a neighbouring pixel is valid only if such a pixel has the same 

disparity. The way to select appropriate support is a key factor of the correlation 

method [129].  

The main problem in depth based multi-baseline methods is how to match the flexibly 

selected shape and size of the matching window that are based on the content of the VPI 

pair [130]. To improve the performance of the algorithm, an adaptive weighting factor 

(AWF) algorithm is used for refinement of the disparity map to prevent multiple 

neighbouring blocks from being selected as interesting for the same feature and to 

obtain large support areas in untextured zones, while adapting shapes near the object 

boundaries. Moreover, unreliable pixels are properly extrapolated from surrounding 

high confidence pixels. This is done by setting extra emphasis on the center block than 

the surrounding neighbouring block. The weighting factor set by the correct 

neighbourhood can be flexibly adjusted to match the center window in the process that 

contributes to the scoring function. The development is based on computing a 

confidence kernel distance weighting factor to detect decisive regions with ambiguities 

(homogeneities, similarities, etc.) that might cause mismatching (untrackable region). 

An adaptive k-NN (nearest neighbors) weighting factor filter has been applied to the 

initial disparity values center block 𝑏𝑝. The weighting factor 𝑤 (𝑏𝑛, 𝑏𝑝) between 𝑏𝑝  and 

𝑏𝑛 is used to increase the frequency of the initial disparity 𝑑𝑝. This can be made 

dependent on spatial distance to the central block and the confidence of the 

neighbouring blocks where a block with high variance always contains more 

information. The adaptive weighting factor is a combination of three confidence terms: 

𝑐𝑜𝑛𝑓 (𝑤𝑝) = exp(− ‖𝐼𝑏𝑝 − 𝐼𝑏𝑛
̅̅ ̅̅ ‖ 𝜎2) ⁄ that represents the high variance of the center block 

bp and neighbouring blocks bn, where, 𝐼𝑏𝑝  and  𝐼𝑏𝑛
̅̅ ̅̅  represent the center pixel value bp 

and average value of the pixels within the block bn, respectively. Using a small 𝛿 allows 

for a reduction in the variance within each block. The distance term 𝑑𝑖𝑠𝑡(𝑤𝑝) 

=√(𝑖𝑏𝑝 − 𝑖𝑏𝑛)2 + (𝑗𝑏𝑝 − 𝑗𝑏𝑛)2  is calculated as the spatial Euclidean distance between 
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the coordinates where the high variance is closer to the center block 𝑏𝑝. The colour 

difference term is calculated as the Euclidean distance between neighbour blocks in the 

CIELab colour space of pixel bp(Cbp=[Lbp,abp,bbp]) and pixel bn(Cbn=-[Lbn,abn,bbn]),  marked 

as: 𝑐𝑑𝑖𝑓𝑓(𝑤𝑝) = √(𝐿𝑏𝑝 − 𝐿𝑏𝑛)2 + (𝑎𝑏𝑝 − 𝑎𝑏𝑛)2 + (𝑏𝑏𝑝 − 𝑏𝑏𝑛)2. The dual distance-

weighted k-NN (k-nearest neighbours) majority vote method was employed to select 

the neighbours’ size k of the 𝑏𝑝 block to reduce the weight of other neighbouring blocks 

outside the found k nearest neighbour [131]. Thus, this lead to the reduction of the 

sensitivity in the choice of nearest neighbour blocks in the corresponding process. If k is 

very small, the local estimates bias will be very poor. This enables us to develop a 

robust and precise filtering smooth cost aggregation function by summing the SSD 

functions of the windows in the neighbourhood of the disparity score function. The aim 

of all of the above is to produce good performance in feature matching and the 

corresponding process and accelerate the searching strategy. By this strategy, the 

source region is limited to a smaller region surrounding the centre block. Different 

weights are given to the distances of the neighbours to set the corresponding dual 

weights function to the centre block. Thus, the closer neighbouring block is weighted 

more. The steps are as follows:  

1. Firstly, a set of k with high variance labelled target neighbours for the centre 

block 𝑏𝑝 is identified where a block with high variance always contains more 

information. 

2. Compute the distance 𝐷 between the centre block 𝑏𝑝 and other neighbours 𝑏𝑖, 

where 𝐷 = [𝑑(𝑏𝑝, 𝑏1), 𝑑(𝑏𝑝, 𝑏2), … , 𝑑(𝑏𝑝, 𝑏𝑁)]. 

3. Let 𝐹 = {(𝑏𝑖
𝑁 , 𝐾𝑖

𝑁)}𝑖=1
𝑘  denote the set  of the k-NN to the centre block 𝑏𝑝 arranged 

in an increasing order in terms of Euclidean distance 𝐷 = (𝑏𝑝, 𝑏𝑖
𝑁) between 𝑏𝑝 

and neighbour block 𝑏𝑖
𝑁 ∀ 𝑖 = 1,2,3, … … . , 𝑁.  Where, 𝑏𝑖

𝑁 is the i-th neighbours of 

the centre block  𝑏𝑝 and 𝐾𝑖
𝑁 is the label for the i-th nearest neighbour among its 

k-NN. 

4. Arrange the distances in 𝐷 in an ascending order and store in 

𝐷𝑚 = [𝑑𝑚1, 𝑑𝑚2, … , 𝑑𝑚𝑁] where 𝑑𝑚  is used to represent the ordered distance, 

e.g., 𝑑𝑚1 is the distance between the first nearest neighbour and the center 

block 𝑏𝑝. 
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5. Let 𝑊 = {𝑤1, 𝑤2, … … , 𝑤𝑘} be a set of the corresponding dual weights. By assign 

to the 𝑖 − 𝑡ℎ neighbours 𝑏𝑖
𝑁 of the centre block 𝑏𝑝 a dual weight 𝑤𝑖 is defined by: 

       𝑤𝑖  ={
𝑑𝑚𝑘−𝑑𝑚𝑖

𝑑𝑚𝑘−𝑑𝑚1
×

𝑑𝑚𝑘+𝑑𝑚1 

𝑑𝑚𝑘+𝑑𝑚𝑖 

1
 
            ,    𝑖𝑓    𝑑𝑚𝑘 ≠ 𝑑𝑚1

            ,   𝑖𝑓    𝑑𝑚𝑘 = 𝑑𝑚1
                                 (3.10)              

6. Then the distance-weighted factor between 𝑏𝑝 and neighbour blocks 𝑏𝑖
𝑁can be 

calculated by applying majority weighted voting (K), where, 𝛾 as the Dirac delta 

function takes a value of one if  𝛾(𝐾 = 𝐾𝑖) and zero otherwise. 

  𝑤𝑝 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝐾 ∑ 𝑤𝑖 × 𝛾 {
  1    𝑖𝑓   𝐾 = 𝐾𝑖   
0    𝑖𝑓   𝐾 ≠ 𝐾𝑖

(𝐿𝑖
𝑁 ,𝐾𝑖

𝑁) ∈ 𝐹           (3.11) 

The aggregated cost is computed as a weighted factor of the bp for the different 

neighbouring blocks and can be written as:    

         𝑊(𝑏𝑛, 𝑏𝑝) =𝑐𝑜𝑛𝑓 (𝑤𝑝). 𝑑𝑖𝑠𝑡(𝑤𝑝). 𝑐_𝑑𝑖𝑓𝑓(𝑤𝑝)                         (3.12) 

 The voting scheme used was from the pixels in the support region; therefore, each pixel 

p collects votes from reliable neighbours as:  

 

     Vote p (d) = {𝑛|𝑛 𝜖 𝑈(𝑝) ˄ 𝑑𝑛 = 𝑑}                                           (3.13) 

where, n is a consistent pixel from a reliable neighbour in the support aggregation 

window of the centre pixel p and the disparity dn contributes one vote, which is 

accumulated in the set Vote p (d). The final disparity of the bp is decided by the 

maximum majority weighted vote number and defined as: 

           𝑑𝑝
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥|𝑉𝑜𝑡𝑒𝑝 (𝑑)|                                                       (3.14)  

The dual distance-weighted k-NN is an effective method for reassembling neighbouring 

hard problems that search for and allocate independently a set in the neighbouring 

blocks N of (𝑏𝑝). This function is employed to reduce the influence of the sensitivity 

from two aspects: data sparseness and mislabelled blocks (noisy, ambiguous) of the 

nearest neighbour blocks. Furthermore, it produces good performance in the matching 

process by recovering the boundary for the objects (untrackable region) and 

reconstructed scenes with high spatial smoothness. Moreover, its power-smoothness-
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face (rising when two neighbouring blocks are allocated to the disparities) is inserted 

into the original feature block 𝑏𝑝 to produce an efficient total disparity score. 

 According to Eq. (3.9) and Eq. (3.12), the total cost match function in Eq. (4) resolves 

into, 𝐶(𝑏𝑝, 𝑑)𝑂𝑢𝑡 = 𝐶(𝑏𝑝, 𝑑)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐶𝑠𝑚𝑜𝑜𝑡ℎ), where 𝐶(𝑏𝑝, 𝑑)𝑂𝑢𝑡  represents the filtered 

output disparity at the 𝑏𝑝 block, while 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙  and  𝐶𝑠𝑚𝑜𝑜𝑡ℎ  indicate the cost match 

function of feature block 𝑏𝑝 and the nearest neighbour block (𝑏𝑛), respectively. The 

adaptive filter weighting factor 𝑊(𝑏𝑝, 𝑏𝑛) is applied to the initial disparity 

𝐶(𝑏𝑝, 𝑑)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 at center block 𝑏𝑝 to increase the frequency of a particular initial 

disparity before a standard median operation. Finally, the cost score disparity map is 

written as: 

𝐶(𝑏𝑝, 𝑑)𝑂𝑢𝑡 = 𝐶(𝑏𝑝, 𝑑)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + ∑ 𝑊(𝑏𝑛, 𝑏𝑝)𝑏𝑛∈𝑁(𝑏𝑝) × 𝑚𝑖𝑛{𝐶(𝑏𝑛, 𝑑 + 𝛿) }        (3.16) 

The depth is achieved directly by implementing all the extracted VPIs at the location 

where the cost score match function has the minimum cost. The right side columns of 

Figure 3.7 and Figure 3.9 show that the optimal performance results are achieved. The 

post-processing takes place to recover other blocks by applying the dual distance-

weighted function over k-NN block. 

3.4 Depth Estimation from UH3DI 

Only horizontal directional parallax is contained in the UH3DI as the capture of the 

image only uses a 1D cylindrical micro-lens array. At a fixed-time, both intensity and 

directional 2D information can be stored in the holoscopic 3D camera. All the 3D spatial 

information is contained in a 2D format and it is therefore called an EI. In a H3DI, each 

EI contains information obtained from slightly different directions. The number of EIs is 

related to the number of lenses that record the 3D object from different perspectives. 

The recording contains the depth information embedded in a unique way. Along the 

outline path of the image, an image profile analysis is used to determine the intensity 

values and then along the horizontal line an auto-correlation is conducted. In an H3DI 

the pixels’ intensities are closer to those from a micro-lens distance than those that are 

adjacent.   
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3.4.1 Transform UH3DEIs into Viewpoint Images 

The key idea behind the EI transform step is the resampling of the collected data into 

the form of a 2D image for the subsequent process. This resampled image is called the 

viewpoint image (VPI) that contains information of the scene from one particular view 

direction. To obtain a single orthographic VPI view from the UH3DI data will require the 

resampling of all the pixels in the same location under different micro-lens (e.g. one 

particular pixel from all micro-lens images at once), resulting in a one view direction of 

the recorded scene.  Resampling is the mathematical technique used to generate a new 

image with different sizes (height/width) and resolutions in the same image.  For 

instance, if there are N cylindrical lenses and each micro-lens covers five pixels, thereby 

offering N EIs and extracting five orthographic, as is clearly illustrated in Figure 3.4.  

 

Figure 3-4 Principle of reconstruction of VPIs from UH3DI by periodically extracting pixels from the 
captured EI (for simplicity, assume there are only five pixels under each micro-lens), i.e. pixels in the 
same position under different micro-lenses, represented by the same pattern, are employed to form one 
viewpoint image. 

The extracted VPIs are orthographic projections, which is a type of parallel projection 

with rays perpendicular to the projection plane as shown in Figure 2.19 in Chapter two. 

Hence, the intensity matching between these VPIs is much easier when compared to EIs.  

The resolution of each VPI is equal to the resolution of the micro-lens array (or sheet), 

therefore, it produces low resolution images.  

3.4.2 Experimental Results 

This section presents the results of the above described approach on two data sets. The 

algorithm has been implemented on the real-world and synthetic datasets UH3DIs 

[132] using MATLAB software. To evaluate the above approach and compare it with the 

First 
Micro-lens 
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presented work in this study, the same parameters have been used in the test including 

different given thresholds for setting and extracting matching feature blocks.   

I. Synthetics UH3DI Database 

To test the algorithm, three various types of computer generation UH3DIs were used for 

the implementation of the above approach. These were noiseless test images, in 

particular designed for the matching task, therefore it was essential to add some noise 

to test the effectiveness of the algorithm. The noise can significantly degrade the 

accuracy of the automated computational saliency detection algorithms; meanwhile, it 

provides more stable results and implicitly suppresses the noise during the process of 

computing [133]. The noise added to the test image was a white Gaussian noise with 

variance σ = 0.5.  Figure 3.5 shows the synthetic H3DIs and their extracted VPI, where 

each image portrays a multiple object 3D scene. In the first and second images (bed and 

toy, respectively) the 3D object scenes had a diverged texture quality and were 

transformed to fit the Field Of View (FOV) of the computer-generated micro-lens array. 

The virtual camera and the complete dataset are publicly available at [132]. The micro-

lens array consisted of 99 cylindrical lenses with a 7 × 700 pixels resolution; therefore, 

the resolution for the extracted VPI = 7 × 700 pixels, lens pitch size = 0.5 mm, focal 

length f = 4 mm, lens height pitch = 50 mm with a resolution of 700 pixels and the 

resolution for each H3DI size = 693 × 700 pixels [131, 116]. The third computer 

generated H3DI (CG-balls) used for the test contained several objects at different depths 

and a plain background, and it had pitch size (ψ) = 0.6 mm, focal length f = 1.237 mm and 

lens height pitch = 0.88 mm.  The parameters listed in Table 3.1 were used in the 

algorithm to estimate the final depth map, and were considered and confirmed as being 

suitable parameters previously [23, 24].  

Table 3-1: Main parameters used to estimate final depth map from synthetic UH3DI. 

 

 

 

      

Main Parameters Ball Toy Bed 

Number of VPI 7 7 7 

Block size 10 10 10 

Research area (R ) 3 3 3 

Neighbouring blocks number  (N) 8 12 12 

Neighbouring weighting factor  0.5 0.8 0.5 

Extracting features blocks threshold 1 1.5 1.2 
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Figure 3-5 Left column computer generated UH3DIs and right column their extracted VPIs. 

Figure 3.6 shows and compares the depth maps obtained from different feature block 

threshold parameters without using post-processing to recover the invalid blocks and 

smoothing the final depth map. The red colour indicates, the near object to the camera, 

while the dark blue is the background of the scene and colour calibrator between red 

and dark blue is the depth planes of the objects in the scene. It is seen that the high 

feature block threshold value can increase the untraceable position, i.e. one block of 

pixels may look identical to another block of pixels and consequently more than one 

position has been detected. This is because it requires more feature information for the 

matching window. Figure 3.7 shows the corresponding depth map obtained from [23, 

24] (left side column in Figure 3.7) and the further improvement in the performance of 

the depth map (right side column in Figure 3.7) obtained after employing the adaptive 

shape and size support window to recover the invalid blocks from the surrounding 

neighbouring blocks.  
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Figure 3-6 Comparison of the depth maps obtained from different feature block thresholds on synthetic 
UH3DI (bed). 

 

 

(a) FBST= 2  (b)  FBST= 1.7  (c)   FBST= 1.4  

(a) FBST= 1.5  

(b) FBST= 1.2  

(c) FBST= 1  

Near 

Far 

Figure 3-7 Comparison of the depth maps obtained from Wu et al.’s [23-24] method in the left 
column and from the new adaptive weighting factors algorithm in right column. In this task the 
feature block threshold is preferred, a) Toy = 1.5, b) Bed= 1.2 and c) G G-Ball= 1, for a good viewing 
effect on the depth map. 
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II. Real-world UH3DIs 

Encouraged by the results on the synthetic images, the algorithm has been tested on 

real-word UH3DIs. The “Horseman” and “Tank”, both H3DIs sized 1280 ×  1264 pixels, 

had 160 cylindrical lenses, therefore offering 160 EIs of size 8 × 1264 pixels and 8 VPIs 

of size 160 × 1264 pixels. The “Horseman” has some non-informative and homogeneous 

regions, while the “Tank” has some textureless regions (feature lacks).  Figure 3.8 shows 

both real-world UH3DIs and one of the eight extracted VPIs for each image.  

 

Figure 3-8 Real-world UH3DIs. The top is the “Horseman” and “Tank” is on the bottom. The right side 
column presents their extracted VPIs. 

The final depth maps obtained from the method in [23-24] are shown in Figure 3.9 (a) 

using the parameters listed in Table 3.2. The result illustrates that the depth variations 

within objects are perceivable with acceptable quality. However, the algorithm 

performs poorly for regions with less texture. This results in holes in the disparity map 

and 3D object scene.  Furthermore, the disparity map is noisy along the edges. There are 
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potential ambiguities in matching resulting from object surfaces at different depths that 

alters the contour 3D object boundary. This is because selected candidate feature blocks 

have certain features in the image that produce more reliable matches than others.  

Since it accumulates multiple VPIs, sufficient precision is still achievable while avoiding 

matching ambiguities. Figure 3.9(a) illustrates the estimated “horseman” depth map 

where the head of the horse is estimated to be near the camera in yellow colour, the 

man light green while the tail far with blue colour. Poor results are obtained on the 

background region due to the lack of enough features in the region for matching. The 

second image “Tank” (Figure 3.9(b)) contains a tank model on a simulated sandbank 

basement. The variations within the tank and basement are perceivable within the 

colour range of the estimated depth map. The algorithm requires the presence of a 

detectable texture within each correlation window, therefore it tends to fail in 

featureless or repetitive texture environments as shown in Figure 3.9 (red squares). 

Moreover, the algorithm constraints are insufficient to remove the matching ambiguity 

for all features. Therefore, the selection of a suitable support window for aggregation 

matching costs ensures reliable estimation. Figure 3.9(b) shows the desired result, 

thereby reducing potential matching ambiguities of those neighbours at occlusion 

boundaries and within featureless regions. Experiments prove that the algorithm works 

effectively in achieving a good balance of reduced mismatching while maintaining a 

good object contour. 

Table 3-2: Main parameters used to estimate final depth map from real-world UH3DI. 

 

 

 

 

 

  

Main Parameters Horseman Tank 

Number of VPI 8 8 

Block size 4 5 

Research area (R ) 4 4 

Neighbouring blocks number  (N) 8 4 

Neighbouring weighting factor 0.8 0.8 

Extracting features blocks threshold 6 4 
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3.5 Depth Estimation from OH3DI  

The principal of the OH3DI system involves the two processes of capture and display as 

seen in Figure 3.10. The distribution of the light rays from the object in both processes 

requires a square based spherical micro-lens structure, which offers parallax from all 

directions, i.e. horizontal and vertical direction parallax. The planar detector surface 

records the H3DI as a 2D distribution of intensities that are sampled in the form of an EI 

array. 

 

Figure 3-9 Comparison of the depth maps obtained from Wu et al. [23, 24] method in the left column 
and from the new adaptive weighting factors algorithm in right column. In this task the feature block 
threshold was preferred, a) Horseman = 6 and b) Tank = 4 for a good viewing effect on the depth map.  

 

(a) Horseman FBST= 6  

(b) Tank FBST= 4  
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Figure 3-10 Omni-directional H3DI system. 

3.5.1 Pre-processing Recorded OH3DI   

Holoscopic 3D images were captured and stored in two formats (jpg and CR2) using a 

canon 5D camera with 90 mm lens. The OH3DI resolution was 5616 × 3744 pixels with 

193 × 129 micro-lenses. This gave an EI resolution of 29 × 29 pixels while the number 

of micro-lenses used in the recording was used to determine the VPI resolution. Thus 

the VPI resolution was 193 × 129 pixels, the same as the number of micro-lenses (see 

Figure 3.11).  

 

Figure 3-11 Shows real-world OH3DI captured by canon 5D camera , a) “Box-Tags” image with size 5616 
× 3744 pixels, and b) magnified part of image. 

Two types of distortion are commonly caused during the capture process by the lens, 

which are: 

Elemental Images 

3D Object 3D Image 
Recorded 
Medium 

Flat 
Planer 
Display 

Lens Array 

f :Focal Length f :Focal Length 

Display Process Recording Process 

Lens Array 

(a) 
(b) 
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1. Barrel distortion: This is due to the imaging being fitted into a space that is too small. 

The distortion varies radially with the most obvious imperfections at the corners and 

sides of the images, which is due to the design of the lenses (Figure 3.12(a)). 

2. Scaling errors distortion: This is when a “dark moiré effect” causes dark borders in 

the recorded image and errors in the playback of the 3D display. This causes errors 

when the 3D scene is constructed in space (Figure 3.12 (b)). 

 

Figure 3-12 Common H3DIs distortions, a) barrel distortion effect, and b) dark borders on captured H3DI 
effect. 

In most image applications the distortions cannot be seen by the naked eye, therefore 

they can be ignored. However, when extracting VPIs each pixel has to be extracted from 

the EIs. Thus, image distortion would cause a problem and so needs to be prevented. 

Examples of the VPIs extracted when the distortions have not been corrected are shown 

in Figures 3.13(a, b). These have unusual forms as the same pixel could not be extracted 

from multiple EIs. 

The barrel distortion is removed with a Photoshop application. The raw data from the 

camera (the CR2 image) was opened in a lens correction window before it was used in 

the Photoshop window. In this form the data is at its most detailed as there is no 

compression or interpolation. If this is not ingested like this the image may be harder to 

correct as the intensity value for each pixel will be spread-out to neighbouring pixels, 

thereby decreasing the richness. The parameters can be adjusted with greater flexibility 

if the raw data is used. (See Appendix (A) for more details related to the correction of 

the barrier distortion.)    

(a) (b) 
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 A simple and fast visual data processing process is used to correct the scaling error 

distortion as once the camera is setup, a simple histogram filtering algorithm generates 

the micro-lens grid from a H3DI of a white background and then captures the H3DI, the 

proposed method uses the calibrated micro-lens grid information to eliminate the dark 

borders of the 3D image. More details and explanation of the scaling error distortion 

correction is available in Appendix (B).  Figure 3.13(c) shows the effects of both 

distortions on the VPI position (10, 10) and the accurate VPI. 

 

Figure 3-13 Distortion effect on VPI (10, 10), a) barrel distortion effect, b) scaling error distortion effect 

and c) the correction VPI. 

3.5.2 Transformation of OH3DEIs into Viewpoint Images 

To extract VPIs from the OH3DI, the computational reconstruction algorithm generates 

VPIs independently by superimposing the pixels from all EIs, as shown in Figure 3.14. 

The OH3DI is defined as:  OH3DI = [𝑂𝐻3𝐷𝐼 (𝑚, 𝑛)]𝑚=1,2,….,𝑀
𝑛=1,2,…..,𝑁

, where 𝑚 = 1, 2, … . , 𝑀 

and 𝑛 = 1, 2, … . , 𝑁, and they are the horizontal and vertical positions of the OH3DI 

pixels respectively.  

(a) (b) 

(c) 
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Figure 3 14 Principle of extraction for nine VPIs from OH3DI by periodically extracting pixels from the 
captured EI ((a-b) for simplicity, assume there are only 3 × 3 pixels under each micro-lens from 3 × 3 EIs). 
Extract one pixel from the same position under different micro-lenses and place them in an orderly 
fashion to form one VPI, and ( c) extract nine VPIs from 5 × 3 EIs (i.e. m × n number of VPIs). 

Furthermore, an EI is the recording image under the recording micro-lens, the OH3DI 

uses quadratic EIs that are uniformly positioned, with each EI at row k and column l, 

and defined as: 

𝐸𝐼 = [𝐸𝐼𝑘,𝑙(𝑢, 𝑣)]𝑘=1,2,….,𝐾
𝑙=1,2,…..,𝐿

= 𝑂𝐻3𝐷𝐼 [𝑘. 𝑈 + 𝑢, 𝑙. 𝑉 + 𝑣]𝑘=1,2,…..,𝐾
𝑙=1,2,….,𝐿

                 (3.17) 

where, 𝑢 = 1,2, … . , 𝑈 and 𝑣 = 1,2, … . , 𝑉 are the horizontal and vertical pixel positions 

within the EI. Therefore, each 𝐾 × 𝐿 EI has a resolution of  𝑈 × 𝑉 pixels and has its u, v 

coordinate system. The VPIs are formed as subsets of pixels in the OH3DI sharing the 

same relative horizontal and vertical offset to each EI centre, and thus the VPI is defined 

as: 

  𝑉𝑃𝐼𝑢,𝑣(𝑘, 𝑙) = [𝐸𝐼(𝑢, 𝑣)]𝑘=,1,….,𝐾
𝑖=,1,…..,𝐿

= 𝑂𝐻3𝐷𝐼 (𝑘. 𝑈 + 𝑢, 𝑙. 𝑉 + 𝑣)           (3.18) 

Let the total number of EIs be K × L and a VPI (x, y) is evaluated by the summation 

of 𝐸𝐼𝑘,𝑙, which is the intensity of the k-th column and the l-th row of EL. This gives: 

𝑉𝑃𝐼(𝑥, 𝑦) = 𝑉𝑃𝐼𝑢,𝑣(𝑘, 𝑙) =  ∑ ∑ 𝐸𝐼𝑘,𝑙(𝑥 − 𝑘𝑆, 𝑦 − 𝑙𝑆)

𝐿−1

𝑙=1

𝐾−1

𝑘=1

                       (3.19) 
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where, x and y are the index of pixels in the x and y directions, and S is an integer 

number of shifted pixels (pixel by pixel) in the overlapping EIs: the minimum step  

between the shifting distances becomes one pixel. Figure 3.15 shows the display of 

some extracted VPIs of the real-world OH3DI “Box”.  

 

 

Figure 3-14 Various display positions of VPIs extracted from the OH3DI “Box” by periodically extracting 
pixels from the captured EIs.  It is a real-world image captured at the 3D VIVANT project lab. The 
resolution of the image is 5616 × 3744 pixels. A 29 × 29 grid of VPIs was extracted from the image each 
with 193 × 129 pixels.   

3.5.3 Experimental Results 

One of the most challenging tasks for the adaptive algorithm is when it is utilized on an 

OH3DI system to improve the ability and efficiency of the algorithm to accurately 

𝑉𝑃𝐼7,1 𝑉𝑃𝐼10,20 

𝑉𝑃𝐼16,29 𝑉𝑃𝐼11,4 

𝑉𝑃𝐼18,19 𝑉𝑃𝐼10,10 
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measure the 3D depth map. Most state-of-the-art algorithms for computational depth 

generation from H3DI systems employ their algorithms with a UH3DI system. This 

experiment performed on OH3DIs was based on the proven success after implementing 

the adaptive multi-baseline algorithm on both synthetic and real-word data UH3DIs. To 

the best of the author’s knowledge, this process of depth estimation through 

computational simulation of OH3DIs has not been reported in the literature previously. 

Depth estimation from H3DI system in most of the literature has been addressed as an 

optical hardware issue. In this section the experiments were carried out on two types of 

OH3DIs: computer generated and real-world images. 

I. Synthetic OH3DIs Database 

The approach outlined above was used to test the feasibility of depth estimation from 

computer generation OH3DIs.  A “3DVIVANT” OH3DI that contained the object scene 

was computer generated using a software tool developed by the Brunel team, which 

involves a 3D holoscopic virtual camera containing a micro-lens array with a 150 × 150 

micro-lens. Figure 3.16 shows the computer generated OH3DI and a magnified part. The 

resolution on the computer generated OH3DI is 4500 × 4500 pixels, with 150 × 150 EIs 

with a resolution of 30 × 30 (900) pixels each, corresponding to a 1:1 ratio and 

therefore each VPI = 150 × 150 pixels. The micro-lens pitch size was (P) = 90 mm,  focal 

length (f) = 0.001 mm and pixel pitch (𝜌) = 3.1 mm.  

 

Figure 3-15 Display a) CG-3DVIVANT image and b) magnified part. 

Figure 3.17 shows one of the 900 views that can be extracted from the “3DVIVANT” 

data, the objects are placed at an accurately measured distance from the camera. The “4 

(a) (b) 
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Globes”, “3D” and “VIVANT” objects are placed in front of a plane background. The 

background plane has some pattern colours to facilitate the disparity analysis. The 

recorded OH3DI therefore has seven depth planes. The distance for each object, also 

referred to as a ‘Target’, is recorded from the camera’s micro-lens as listed in Table 3.3.  

 

Figure 3-16 One of the 900 VPIs extracted from the CG-3D VIVANT image with a resolution 150 × 150 
pixels. The targets are numbered based on the distance from the camera micro-lens. 

After the transformation of all the pixels located in the EI array into the VPI array, a 

block array with 7 rows by 7 columns picked up from the 3D object located at the centre 

axis of the pick-up system of 150 by 150 arrays of VPIs is produced. It is found that the 

object size is invariant even though the object location relative to the micro-lens array 

has shifted, and the 3D object imagined on the VPI array is shifted as the 3D object is 

moved on the pickup condition [134]. Therefore, a highly focused image containing 

most of the perspective data from a 3D object at the centre of the VPI array and focused 

VPIs can be used for a reference VPI to be compared with the other rearranged VPIs.  

Applying the adaptive weighting factors obtains the accrued score functions from the 

adapted multi-baseline algorithm using Eq. (3.16). The parameters listed in Table 3.4 

were used to estimate the final depth map, and were considered and confirmed as being 

suitable parameters experimentally. The estimated depth results of the CG-3DVIVANT 

targets are listed in Table 3.4.  The Mean Relative Error (MRE) was used to evaluate the 

efficiency of the algorithm and has been defined as [135]: 

MRE =
100%

N
∑ |𝑇𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) − 𝐸𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦)|

𝑁=𝑇𝑑𝑒𝑝𝑡ℎ(𝑥,𝑦)

(𝑥,𝑦)
              (3.20) 
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where, 𝑇𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) and  𝐸𝑑𝑒𝑝𝑡ℎ(𝑥, 𝑦) are the actual depth and estimated depth at the 

(𝑥, 𝑦) pixel position, respectively, and N is the amount of compared pixels. Figure 3.18 

shows the depth maps obtained from the computer generated OH3DI data.  The result 

illustrates that the depth variations within objects are perceivable with acceptable 

quality. However, the algorithm performs poorly for regions with occluded objects. 

These results identify this as the yellow rectangles in the disparity map and 3D object 

scene.  Furthermore, the disparity map is noisy along the edges. There are potential 

ambiguities in matching results (red rectangles) from objects at different depths that 

alters the contour 3D object boundary. This is because of selected candidate feature 

blocks in the matching and corresponding process.  

The mean relative error (MRE) increases as the object’s distance from the camera also 

increases [136]. Generally, this error increases parabolically with the distance, whilst it 

remains low for distances below 100 mm. Experimental results have shown notably, 

that the use of the proposed AWF algorithm has significantly reduced the percentages of 

MRE (see Table 3.4). Therefore, a significant improvement has been shown on the 

quality of output depth estimation maps (see Figure 3.7).  It should be noted that there 

exists a dependency between the depth of an object and its corresponding resolution in 

the image i.e. far and near objects are seen as small and large in the image, respectively. 

It is apparent that the accuracy of the method is directly related to the actual object’s 

distance from the camera. More specifically, the closer the object is to the camera the 

better the estimation. This is again because of the inherent ambiguities of the setting 

feature blocks.  

Table 3-3: Depth measurement results on CG-3DVIVANT OH3DI. 

Target Max Distance 
(mm) 

Min Distance 
(mm) 

Actual 
Depth 

Estimated 
Depth 

MRE(%) before 
AWF 

MRE(%) after 
AWF 

1 80 48 32 29.4 8.12 5.32 

2 90 66 24 22 8.33 5.91 

3 100 78 22 20.1 8.63 6.57 

4 120 94 26 23 11.5 7.35 

5 135 102 28 23.8 15 9.58 

6 168 139 29 23.68 18.34 11.23 

7 186 153 33 26.35 20.14 12.08 
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Table 3-4: Main parameters used to estimate the final depth map from OH3DI. 

 

 

 
 

 

 

 

 

Figure 3-17 Depth results on CG-3DVIVANT OH3DI. 

II. Real-world UH3DIs 

To evaluate the generalization and the efficiency of the approach, the algorithm was 

implemented with real-world OH3DIs.  Two OH3DIs “Box” (see Figures 3.11 and 3.15) 

and “Airplane-man” (see Figure 3.19) were captured by the “3D VIVANT PROJECT” 

using a 5D canon camera with 50 mm main lens and 21-megapixel size image. The 

resolution of each image was obtained at 5616 × 3744 pixels, which consisted of 193 × 

129 micro-lenses, with an EI resolution of 29 × 29 pixels and VPI resolution determined 

by the number of micro-lens contained in the recording, thus the VPI resolution was the 

same as the number of micro-lenses i.e. 193 × 129 pixels. The parameters, which were 

empirically determined and not specifically adapted to each data set, are listed in Table 

3.4.  

Main Parameters 3DVIVANT Airplane-man Box 

Number of VPI 49 49 49 

Block size 11 11 11 

Search area (R ) 3 3 3 

Neighbouring blocks number  (N) 8 8 8 

Extracting features blocks threshold 5 4 1.5 
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Figure 3-18 Real-world OH3DI captured by canon 5D camera , a) “Airplane-man” at 5616 × 3744 pixels 
resolution and b) one extracted VPI of a 841 low resolution orthographic VPI at 193 × 129 pixels 
resolution. 

Figure 3.20(a) shows the estimated depth of the “Airplane-man” images without an 

adaptive shape weighting window. This results in holes in the disparity map and 3D 

object scene within the object near the camera because of inconsistent matches, which 

creates holes in the region, thus in the result no disparity values are assigned in 

the disparity map. While the background is occupied with false matching due to 

the inherent ambiguity in matching, this is further complicated by phenomena such as 

occlusion and untextured regions.  Better depth estimation quality results can be 

achieved by employing an adaptive shape weighting window as shown in Figure 

3.20(b). 

 

Figure 3-19 Real-world OH3DI “Airplane-man” depth map results, a) depth before employing   adaptive 
shape weighting window and b) depth after employing adaptive shape weighting window. 

Further tests were carried out on the “Box-Tags” OH3DI with different targets (e.g. 

variations in size and textures) having various depth ranges. Tags starting at 600 mm 

from the camera to a background distance of 3000 mm from the camera with 200 mm 

steps between each tag.  

(a) (b) 

(a) (b) 
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Figure 3-20 Real-world OH3DI “Box” depth map results, a) depth before employing adaptive shape 
weighting window and b) depth after employing adaptive shape weighting window. 

In addition, there was a different texture OH3DI “Box” with 1200 mm distance from the 

camera. The visual quality of the resulting 3D depth maps are shown in Figure 3.21. The 

adaptive algorithm, using a multi-baseline disparity with adaptive shape weighting 

window, was subjectively tested against the original depth map based on Wu et al. [23, 

24]. The accuracy performance of the depth map improved, though there was some 

sacrifice of the neatness in the background with some holes. However, increasing or 

decreasing the setting of and extracting the feature block threshold results in holes and 

ambiguities, feature blocks at different depths start to enter the matching window and 

make correct matching difficult to detect, thus invalid feature blocks cannot be properly 

recovered from the neighbouring blocks.  

Another important aspect is the fact that, both the size and the texture of the sought 

object play an essential role in the calculation of its spatial information, in addition to 

the distance from the captured camera. For example, location assignments for the target  

“Box”, which is the largest object in the scene with the most texture, are more effective 

due to the fact that the “Box” attributes provide more features to extract. As a result, the 

greater the number of features the better their distribution over the surface of the 

object. Since the algorithm is mainly based on the feature block spread, the enhanced 

distribution of the setting of reliable features can lead to more qualitative and 

quantitative results. 
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3.6 Summary  

This chapter presents an approach that improves the quality of the visual depth maps in 

UH3D and OH3D images, the two types of H3DIs. Using a set of orthographical 

projection low resolution VPIs a new modified multi-baseline algorithm that contained 

an adaptive weighting factor shape window technique was used to enhance the 

estimation of the 3D object’s position. First, the correlation between the feature’s 

information points in several VPIs was used to modify the multi-baseline algorithm. To 

obtain depth from 2DVPIs, the first step is to select the features, before optimizing the 

corresponding and matching process to produce the 3D depth map. Multiple 

neighbouring blocks were prevented from being identified as interesting in the same 

feature through the use of a novel adaptive weighting factor algorithm that introduced 

refinement to the disparity map. In addition, this improved the computation efficiency. 

An adaptive aggregation cost window was used to identify large support areas in 

untextured zones as well as adapting shapes that appeared near the boundaries of 

objects. This was achieved by ensuring that extra emphasis was placed on the center 

block rather than surrounding blocks. This was tested via computational experiments 

that were performed using both computer generated and real-world UH3DIs. This gave 

a successful result in which both object recognition and position estimation were 

improved.  

In the chapter’s second section, the computational simulation of depth estimation was 

studied on both computer generated and real-world-images in which the estimation of 

3D depth from OH3DI is considered. This had not been previously covered in the 

literature as most work was related to the estimation of 3D depth on UH3DIs. The 

capture of OH3DIs introduced geometric distortions that had to be corrected before it 

was possible to transform the EIs into VPIs. This had to be done to ensure that it was 

possible to extract the same pixel from multiple EIs. The most common argument 

against the use of the multi-baseline approach is, “occlusions become an issue for large 

baseline” [126]. This problem was overcome by using a multi-baseline technique where 

the center VPI was used as a reference image from which the surrounding VPIs were 

selected as target images. This new method was evaluated experimentally by using 

complex object scenes that were computer generated or real-world OH3DIs. The 

method proposed here was an obvious improvement over the method proposed by Wu 
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et al. [23, 24], which was due to it incorporating an adaptive weighting factor shape 

window and multi-baseline technique.  

The proposed algorithm was proven to be effective via experiments on both UH3DIs 

and OH3DIs. The approach forced the algorithm to work with complex object scenes in 

OH3DIs by overcoming the problem of generalization capability. In addition, the 

generated depth maps have improved the performance. However, there are limitations 

and these come from the loss of information due to the setting and extracting of reliable 

features, with the most noticeable errors occurring in the background region as there is 

a lack of features to make the match. The threshold for the setting of the features is 

determined manually for each image, which is very time consuming, as there are 

differences between all the images that could result in false matching and faults in the 

depth estimation process.  

The disparity map’s performance is an essential part of obtaining accurate depth 

estimation. This work developed and implemented a new corresponding and matching 

technique that was based on automatic 3D feature detectors and descriptors in the 

thresholding that improved the performance (generalization and quality) of the depth 

estimation.   
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4 Hybrid 3D Depth Estimation 

Techniques 

4.1 Introduction 

In general, manual, semi-automatic and automatic are the three categories that depth 

map estimation techniques can be classified into. In the manual method, the outline of 

the chosen object would be drawn by an operator. When the depth map is estimated 

with the through-disparity-analysis algorithm the first step is often performed manually 

as this is the hardest. Chapter three used the manual initialiser method, and the depth 

map is estimated from the amount of feature descriptors used.  This system is based on 

databases that contain many more feature descriptors than are needed. This means that 

the methods are time consuming and expensive, and therefore not suitable for real-time 

applications. This affects the quality of the 3D models in the reconstruction process as it 

takes a very long time to search a very large database. This could be solved by removing 

the least important feature descriptors by selecting distinguished feature descriptors.  

This means that when estimating the depth map either a semi-automatic or automatic 

technique is preferred. The human visual depth perception mechanism is used as the 

base from which these techniques are designed.  

In this thesis, the main topic is to develop automatic initialization techniques for 

creating and manipulating 3D models from a H3DI system that are fast and accurate. 

This will enable specific points in the reference VPI to be found and then matched to 

other targets in an image sequence via reconstruction algorithms. These features are 

Chapter 4  
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then created in 3D by the H3DI display system so the viewers can see and appreciate an 

object or scene fully. 

The features in a 2D image have to be known before they can be used to undertake 

depth estimation. For this a feature that has the characteristics of being repeatable and 

distinctive, is a good feature. For it to be repeatable it must be possible to extract it from 

multiple representations of the same scene. A distinctive feature means that it will 

closely correspond to a matching feature in another image. The information on these 

characteristics has to be stored in a way that is unique to that feature. In addition, the 

descriptor should not be influenced by the position of the camera. For a feature to be 

identified as known, its descriptor has to match the known feature via the matching 

process. 

This chapter proposes two novel automatic local feature setting and selecting 

techniques that are based on binary data. These will often be edges or points of the 3D 

object. Two techniques (auto-feature-point setting and auto-feature-edge detection), 

which identify the known features through a learning methodology, are reviewed in 

section 4.2 and 4.3, respectively. Once suitable matching features are identified, the 

adaptive multi-baseline disparity algorithm (see Chapter 3) is implemented to 

determine the matching features in multi pairs of VPIs by comparing the relation 

between the features.   

The aim when detecting and then setting 2D features from the input VPIs is to obtain a 

set of matching pixel positions across all the images. The depth map is then developed 

by converting the 2D features into a 3D space, but this is influenced by the content of 

the images. This depends on the scenes’ complexity. Corresponding features to be 

matched are required them to be unique. This means that the content must have 

descriptors that are distinctive and easily recognisable throughout the set of VPIs. This 

limits the content that can be used with 3D reconstruction.  

4.2 Feature-Point Setting Technique 

Points of interest on the 3D object are the local feature points that can be extracted and 

matched between VPIs reliably, and they are either a point (Interest Point) or group of 

pixels (Region of Interest). The local feature selection, description and matching are 

regarded as low level processes that follow a bottom-up approach. Once they have been 
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completed the higher level processes are conducted where this basic information is 

converted until a conclusion at a semantic level is reached. The meaning is recovered, 

recognition performed or a high-level structure is estimated at this stage. The optimal 

current descriptor approaches all use binary string descriptors where the vector 

dimensions of the descriptor are recorded as a string of 1’s and 0’s [137-140]. The use 

of these descriptors is less demanding of computer processing than when real value 

descriptors are used, which is due to the ability to compute the Hamming distance 

between two binary descriptors [140, 141].  

Feature extraction is the first and most important step in depth map estimation when 

the extracted image features from the 2DVPIs are matched. Rather than use a discrete 

or sparse set of points, the relative depth is estimated for each pixel in the VPI. This can 

only be used for short base-line applications where the difference between VPIs to be 

compared is small. In a wide baseline image it is not possible to use the image patch 

individually as this is inefficient due to instability and sensitivity to small changes, as 

well as lack of robustness against geometric or photometric transformations and 

reduced distinctiveness capabilities. Therefore, better strategies are needed to identify, 

distinguish and match the points from the various possible matches. 

To set and detect feature blocks from H3DI automatically a new and simple Feature-

Match Selection (FMS) technique has been developed. The FMS algorithm is an efficient 

and informative procedure implemented via assessing the intensity variance of the image 

blocks before disparity analysis. A block is considered as “untraceable” if the intensity

variance within the block is smaller than a given threshold. Those blocks containing 

sufficient features for a confident match are chosen for further analysis. The depth of the 

chosen blocks can be recovered from the neighbouring blocks. 

The spatial intensity distribution in an image is used as features to represent an image. In 

order to extract the features from 2DVPIs, a threshold giving highest local contrast is 

required. False matching from this, leads to an incorrect depth analysis process by the 

untraceable block that is identified via the feature block. To ensure good efficiency in 

the matching, these types of blocks should be identified before starting the matching 

process, which can be achieved by considering the variance of the blocks. The matching 
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results from these untraceable blocks will then be treated as low confidence and 

discarded, so that only blocks with confident matches are retained.  

The technique is novel due to two aspects: the corresponding/matching process on the 

2DVPI’s for the selection and optimization of the feature block selection. Thus solving of 

the three main problems related to depth map estimation from H3DI system requires: i) 

that at the image location where errors are frequently found in the disparity process 

has uncertainty and region homogeneity, ii) dissimilar displacements within the 

matching block around object borders and iii) object segmentation.  

4.2.1 Optimal Threshold Technique 

The principle of the method is to search for the optimal threshold value that gives the 

highest local contrast by comparing small patches extracted at each region in the image 

to their immediate neighbourhood. The spatial intensity distribution in an image is used 

as features to represent an image. The threshold that gives the greatest local contrast is 

needed to obtain the features from a 2DVPI. The principle of this method is depicted in 

Figure 4.1. 

 

Figure 4-1 Pipeline mechanism for Optimal Threshold Technique (OTT). 

The optimal threshold algorithm is described in the following steps:  

1. Select Reference Images 

Select the centre part of the extracted VPIs as a learning image. This is due to the over or 

under-exposure near the edges of micro-lenses during the capture process, which 

means the extracted VPI would be either too bright or too dark.   

2. Up-sampling Viewpoint Image 

Each extracted VPI’s resolution is equal to that of the micro-lens array (or sheet), which 

means they are low resolution images. To obtain a high-resolution information image, 

the training reference VPI is up-sampled by the number of input VPIs used to estimate 

the disparity map via fast bi-cubic interpolation [142]. The highest repeatability is 
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obtained when up-sampling scales capable of generating sharp edges with reduced 

input resolution grid-related artefacts [143]. When performing up-sampling, then more 

pixel intensities than the given number take place. From this, the number of correct 

matches increases as the number of feature points increases.  

3. Sampling Viewpoints Image 

The VPI is sampled to speed up the FMS process by minimized inclusion of data from 

different classes. The up-sampled VPI is firstly divided into 3 × 3 non-overlapping square 

regions, in which different sized blocks and a grid can be used, as shown in Figure 

4.2(a).  

4. Select First Point and K-nearest Neighbour  

The initial testing point, for each region, in the training VPI is one randomly selected 

individual sample block (offspring) Figure 4.2(b). The other blocks will be around the 

sequence nearest neighbour (NN) blocks (Figure 4.2(c)).  

5. Generate Variance Vector 

Then for each block (see Figure 4.2(d)) determine the intensity variance 𝛿 as its 

representative feature. Each block has an area of 3 × 3 pixels. Let 𝐼𝑖 be the intensity of 

each block and B as the number of pixels in each block (e.g., nine in this case). Then the 

following gives each block’s variance (𝛿): 

𝛿 =
1

𝐵−1
∑ (𝐼𝑖−𝜇)2𝐵

𝑖=1  , for 𝑖 = 1,2, … … ,8                                    (4.1) 

where each block’s mean is:       𝜇𝑖 =
1

𝐵
∑ 𝐼𝑖

𝐵
𝑖=1    

For the centre of the block and the neighbour blocks the vector of the variance 

is 𝛿 = [𝛿1, 𝛿2, … , 𝛿9]𝑇 . Without loss of generality, for the centre block the variance is 𝛿1  

and any one neighbouring block as 𝛿2 and so on until the last neighbour has been 

denote. 

6. Applying K-NN Majority Vote Method 

Of all the machine learning algorithms that have been developed one of the simplest is 

the k-nearest neighbours (k-NN) algorithm. Its central assumption is that class 

probabilities are approximately constant at least locally, but for most neighbourhoods 

this is not true. Therefore, in new neighbourhoods the class probabilities need to be 

made “more” constant via changing the metric (distance) and the majority will vote for 

the k closest training instances.  
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For records that have been stored in ascending order the distance between them can be 

computed using the distance matrix vector 𝑑 in 𝑑𝑚. Let  ℒ = [𝑑𝑚, 𝛿𝑚], in which the 

corresponding vector of variance 𝛿𝑚 is based on the order of 𝑑𝑚. Each region’s features 

are classified via the majority from the votes of the k nearest neighbours. 

The following have been proven by experimental results in this work: 

 When k is too small it will be sensitive to noise points.  

 When k is too large there maybe points from other classes included in the 

neighbourhood. 

 k should be an odd value so that ties will be eliminated 

From 𝛿𝑚 the first three variances should be chosen, which are representative of the 

sample random block’s (offspring) variance.   
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Figure 4-2 The optimal threshold Technique, a) Nine sub-divided non-overlapping regions on central 
sampled “Horseman” VPI,  b) A sampled randomly selected block in red and k-NN blocks sequences 
on first region, c) The k-NN blocks distance –weight direction of the centre selected point block. 
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 𝛿𝑚,𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘{(𝛿𝑚,𝑖)}   ∀   𝛿𝑚 => 𝛿𝑐                                 (4.2) 

where, 𝛿𝑐 is the variance of the centre block.  

Voting is conducted to determine which class the majority of the k’s vote for in the k-NN.  

In the case of a tie the smallest k is the tie breaker. The average of the majority should 

be calculated, as in the variance feature 𝛿𝑚,𝑖 that has obtained the greatest amount of k-

number “votes” from all of the vectors 𝛿𝑚  related to the sample centre point block 𝑏𝑝. 

That is, these are all the selection features that apply to the same centre block. Then, the 

representative feature for the first region is determined from the average of these three 

variances 𝑣1.         

                     𝑣1 =
1

𝑘
∑ 𝛿𝑚,𝑖

𝑘
𝑖=1                                                              (4.3) 

If the block’s variance is 𝛿𝑚,𝑖 = 0  𝑜𝑟 < 𝛿𝑐, when 𝛿𝑐 = 𝛿1 is the center point’s variance, 

there is no feature block. When this occurs the next nearest neighbour should be 

identified and the above procedure repeated. 

7. Optimal Threshold (OT) 

To calculate 𝑣 = {𝑣1, 𝑣2, … , 𝑣𝑀}, all the steps in the k-NN procedure should be repeated 

for all regions 1~𝑀 in the reference VPI. Then calculate the mean variance 𝜐 as in the 

following to obtain the optimal threshold OT*:  

𝑂𝑇∗ =
1

𝑀
∑ 𝑣𝑖

𝑀
𝑖=1  ,  𝑖 = 1, 2, … , 𝑀                                            (4.4) 

4.2.2 Generate Feature Block Profile (FBP) using Optimal Threshold  

The procedure for setting and extracting individual feature-point profiles will be 

considered in this section. Binary decision descriptors in a look-up table are used for 

further analysis of the standard feature point’s profile that represents a particular 

feature. Each dimension of the vector that describes this descriptor is a binary bit string 

i.e. “1” or “0” that depends on the distribution of the optimal threshold along the VPI’s 

patch (block) in the form of:  

Υ (𝛽; 𝑥, 𝑦) = {
1             (𝛽; 𝑥, 𝑦) >  𝑂𝑇∗ 
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

                                              (4.5) 

where, for pixel point (x, y) the intensity value is represented by (𝛽; 𝑥, 𝑦). The binary 

descriptors are less demanding computationally than real value descriptors, resulting in 

greater efficiency in the matching process. The method that is used to locate and then 

extract all the valid feature-points to form the accumulator vector from the profile is 

shown in Figure 4.3.  
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Figure 4-3 Flowchart to illustrate the algorithmic design of generates FBP using optimal threshold. 
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When the highest local contrast is identified as the optimal threshold it is used to show 

the set of feature blocks on the central/reference 2DVPI. The feature blocks are 

obtained for additional analysis using the optimal FMS threshold process, where the 

spatial intensity distribution used as features to represent an image. The training task 

can be commenced once the training set is ready. If the intensity variance from a block 

is lower than a certain threshold value, then the block will be labelled as “untraceable”. 

If the block contains enough features to enable a confident match (those where the 

value is greater than the threshold value of OT*) then it is labelled as a valid feature 

block.  

The blocks classified as “untraceable” have low confidence and are discarded so that 

only blocks with an appropriate number of features are kept for further analysis. When 

performing model selection (feature selection), the data that has not yet been used can 

be split for use with fixed training feature points and validation sets. From this the 

generalization error confidence intervals can be determined from the cross-validation 

technique used with the feature point profile [144]. When the main goal is prediction, 

that is to determine how accurately a predictive model will perform in practice, this 

technique will be the primary one.  

The following steps will explain how to evaluate a set of input features’ performance: 

1. Using the optimal threshold algorithm a subset 𝑋𝑠 of the full set of input features 

𝑋 = {𝑥1, 𝑥2, … … . . , 𝑥𝑀} is chosen for feature selection from the centre (learning) VPI. 

2. A 3 × 3 median filter is used to reduce the noise from the learning VPI. As median 

filters are not based on needing values that are significantly different from those that 

are typical values in the neighbourhood, they can remove salt and pepper as well as 

impulse noise very well while details of the image are retained [145]. The way that 

the median filters work in successive image windows is comparable to that of linear 

filters [146]. 

3. From the features �́� ={�́�1, �́�2, … … , �́�𝑀} select a sub set �́�𝑠 by using the optimal 

threshold algorithm with a smoothed VPI. 

4. Unnecessary features need to be deleted accurately and to do this the generalization 

ability estimated by cross-validation is used as the selection criteria when optimizing 

performance by selecting features to estimate a feature points process and to 
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perform the evaluation of all the candidates in a feature subset. The candidate set of 

features �́�𝑠 are set by the following: 

�́�𝑠
́ =  {𝑠 ∀ 𝑋𝑠

́ = 𝑋𝑠, 𝑠 ∈ {1,2, … . . , 𝑀}}                               (4.6) 

Using this method it is possible to select only the valid feature point set that is present 

in both the initial leaning VPI and the smoothed VPI as the invalid features can be 

detected and removed without reducing the generalization ability.  If the irrelevant 

features are maintained over-fitting may occur. It is also important to ignore features 

that have minimal or no effects on the output as the size of the approximator model 

should be kept small, which means the cross-validation of selected feature points is 

important as the aim is to determine the function between the input and output. There 

is a considerable reduction in the computation time, which is a benefit as when there 

are a large number of predictions the cost will increase significantly. Due to this the 

matching and corresponding process (the overall number of further steps) is reduced 

and a set feature point estimation can be optimized through modelling the piecewise 

nature of depth.    

4.2.3 Depth Map Estimation Based on Auto Feature-Point  

This section details the method for processing the entire H3DI and how to select the 

optimal feature block profile. The proposed depth map estimation from the H3DI 

system is summarized in Figure 4.4. 

The methodology used to generate the 3D depth is demonstrated in the following 

steps:  

1. Use the strong interval correlation between pixels that have been displaced by one 

micro-lens to extract the VPIs. 

2. Then use the central VPI as the reference and training sample to compute the optimal 

threshold automatically from the distribution of variances in non-overlapping blocks. 

3. Use fast bi-cubic interpolation to up-sample the extracted low resolution VPIs to 

produce the high-resolution information image [143].  

4. Implement the Hybrid Multi-Baseline Algorithm (HMBA) that is a modified multi-

baseline technique combined with an adaptive aggregation window, from Chapter 3, 

to estimate the depth map. 
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Figure 4-4: Proposed flowchart depth map estimation from OH3DI using 7 × 7 low-resolution VPIs.
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The non-informative descriptors, which either contain homogeneous areas or no 

feature points, can be discarded once the local set of feature descriptors for the whole 

VPI have started to be computed using the feature points setting and detection 

technique. Then, a matching and corresponding process is used between the 

remaining informative pixels of a reference VPI, which is selected to be the central 

one, with pixels of the target VPIs. For the information pixels from the reference VPI a 

set is formed that includes all the strong links with the target VPI’s pixels. For each 

correspondence pair, they provide the coordinates of their own 3D origin, and when a 

set has pixels with the same correspondence pairs they are considered to be a chain. 

Each chain corresponds to an anchor point. The chance that false positive feature 

points may be formed is removed by making the correspondence set start from 

successive VPIs. Then Eq. (3.16) is used to compute the final 3D coordinates of the 

feature point.  

4.2.4 Evaluation of Auto Feature-Point (AFP) Detector 

In this work a synthetic database was created in which the ground truth was known, 

this enabled the quantitative evaluation of the proposed algorithm and its 

components’ performance by measuring its efficiency and intrinsic variations. The 

parameters of the database were included in Chapter 3. The commonly used tool for 

setting and extracting distinctive feature points for image matching is Scale-Invariant 

Feature Transform (SIFT) [147, 148] and Speeded Up Robust Features (SURF) [149-

150] descriptors. These local descriptors were used as comparisons to evaluate the 

performance of the auto feature point’s detection efficiency. The comparison methods 

are based on the computation of statistics related to the pixel intensity or colour 

values in the area that contains the points of interest. This means that the local image 

patches are discretized or quantized in discrete bins by the descriptors, which means 

that every time pixels are sampled for computing the bins they are unique each time. 

Both processes follow a similar approach but in SURF the computational cost has 

been reduced. In addition, a number of real-world UH3DIs and OH3DIs were used to 

test the accuracy and efficiency of the method when estimating the depth.  The results 

from the feature points detection for the four detectors used (manual threshold , 

SIFT, SURF and the proposed AFP detector) are contained in Table 4.1 for the “Bed”, 
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“Toy” “Ball” and “3D VIVANT” data sets. The densest clouds of interest feature points 

were obtained by the manual and AFP detectors.  

It can be seen from Figure 4.5(a, b) that for the proposed AFP detector its interest 

feature points were close to those of the manual threshold method. The Mean 

Relative Error (MRE) was used to evaluate the performance of the proposed AFP 

algorithm and has been defined in Eq. (3.20). The proposed AFP detector was able to 

achieve these impressive results due to the cross-validation technique that ignored 

input features that had only a small effect. Table 4.1 demonstrates the average and 

mean relative error of the detected feature points from four employed algorithms. It 

shows the ability of the proposed AFP descriptor algorithm to produce an enormous 

number of reliable feature points in comparison to SIFT and SURF. Experimentally, 

notable improvement results were achieved on overall depth estimation maps 

especially on low-textured and texture-less images, when the AFP algorithm 

produced a large number of feature point descriptors. The proposed AFP was 

competent, and created an average of 1260 feature points on each synthetic image, 

which was close to the number from the manual threshold algorithm (1356). 

Whereas, the widely-used feature point descriptors tools (SIFT and SURF) detected 

on average 544 and 780 points, respectively. The proposed AFP algorithm being able 

to produces a large number of reliable feature points, which helps on the overall 

depth estimation, especially on images poor in gradients and texture. However, the 

proposed AFP is more proficient in producing feature points on average per image 

from both types of H3DI system, whilst a minor increase of error on the proposed 

AFP algorithm has been noted in comparison with 4.26% and 4.07% on SIFT and 

SURF, respectively. However, the average feature points number of AFP were close to 

those of the manual threshold, since the highest percent error of 6.24% was observed 

for depth  estimation maps within manual threshold as compared to 4.88% within the 

proposed AFP algorithm .  This is due to the capability of the proposed algorithm to 

detect and identify a high reliable feature points. This means, that the proposed 

algorithm provides enormous quantity of feature points with high-quality 

representation. This means, that the most important information from the interest 

feature point can be captured. This has significantly led to an improvement in the 

performance of adaptive multi-baseline algorithm in terms of quality and speed.  The 
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underlying structure can be determined even when captured under different 

conditions, such as geometric or photometric transformation.   

Table 4-1: Comparison feature points detected from different descriptors. 

Synthetics Database Manual SIFT SURF Proposed AFP 
Type of 
H3DIS 

BED 1305 430 720 1233 UH3DIs 

TOY 1411 539 832 1324 UH3DIs 

BALL 1603 679 879 1502 UH3DIs 

3D VIVANT 1105 528 689 979 OH3DIs 

Average feature Point Descriptors 1356 544 780 1260  

Depth Mean Relative Error % 6.54 4.26 4.07 4.88  

 

Figure 4-5 (a) Number of interest feature points detected in four data set VPIs (Bed, Toy, Ball and 3D 
VIVANT, respectively in order). (b) Comparison of feature points detection from different scenes vs. 
descriptors algorithms.  
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The results showed that, independent of the image, the manual method always 

obtains the maximum number of detections possible. A drawback of this is that the 

detection points are very close and can form clusters, which may cause problem 

when estimating the depth map. The AFP method obtained a similar number of 

detection points as the manual method but they are spread more evenly over the 

image. The SURF approach generated less detections than when using SIFT. A dense 

collection of detections are preferred as the detectors usefulness can be hampered if 

only a small number of detections are obtained. The number of feature points 

detected is not the be all and end all of a successful detector: their ability to overcome 

geometric or photometric transformations is also important. 

4.2.5 Experimental Results 

This section reports the experiments conducted to test the AFP algorithm. Two 

aspects related to it were the focus: i) efficiency: can it select and extract a number 

feature points that represents the number of vertices in the 3D depth map and ii) 

accuracy: precision loss after the simplification of the model i.e. comparison with the 

manually determined feature block selection and extraction threshold. For each 

experiment, the evaluation was carried out by comparing the model of depth 

estimation containing the complete set of features (full model) with one that had 

been manually simplified. A median filter was applied to smooth the estimated depth 

map. A median window size filter of 13 × 13 was calculated by systematizing 

neighbouring pixels so that they were in a numerical order and then substituting the 

middle pixel for the pixel that was being considered.    

I. UH3DI Results 

Figure 4.6 shows the results obtained from the proposed algorithm applied to a range 

of H3DIs that are both synthetic and real-world images. For all the images, the 

proposed method identifies the different objects correctly and differentiated them 

from neighbours, via the estimated depth values. However, contours and other fine 

details are not always included. This occurs most often for small objects or those with 

parts that are textured as there are only small differences between them and the 

surrounding parts.   The VPIs are low resolution images, so for some of them, even the  
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Figure 4-6 Proposed algorithm results show the effectiveness of cross-validation technique (a, b) 
synthetics 3D images, “Bed” and “Toy”, (c, d) real-word “Horseman” and “Tank” with cross-validation 
and (e, f) without cross-validation process. In all results the matching window size=17.  

human eye finds it difficult to be able to determine the differences. However, despite 

these problems in all cases the method was able to make an acceptable 

approximation of the object contour as the specific type of object. In small baseline 

configurations the problem of occlusion is generally regarded as negligible, but as the 

baseline gets wider occlusion becomes a major problem that limits the depth map’s 

(a) (b) 

(c) (d) 

(e) (f) 
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quality in the experimental results. Occlusion becomes a problem because it is 

possible for each pixel from the reference image to be hidden in many supporting 

images. The 3D structure of the scene induces the occlusion, and this cannot be 

determined until the correspondence is established, which is the final aim of the 

algorithm (Figure 4.6 (e, f)). How the depth estimation and the baseline are related is 

revealed by the depth equation. To enable a precise estimation of the distance a long 

baseline is required. However, this causes a problem as when there is a long baseline, 

a much larger disparity range must be considered when identifying the matching 

position. This means that it is more likely to generate a false match. It has been 

proven that ambiguity is reduced and matching precision increased when multiple-

baseline matching cost functions are used in stereo with multiple camera images 

[126]. This work modified the algorithm from [126] to generate a new chain of target 

pixels from the reference VPI pixels as shown in Figure 4.7 that have the same 

matching feature points and corresponding process. From this the occlusions can be 

reduced as VPI pairs are used to reduce the width of the baseline.  

 

Figure 4-7 The chain corresponds to pixels from the reference viewpoint image among the target 
viewpoint images, where D1, D2, . . . . , D6, are the disparities between canter (reference) viewpoint 
image and targets. 

The image shown in Figure 4.8(a) is another real-world H3DI that was captured by 

the 3D VIVANT PROJECT using a cylindrical lens array that was different from the one 

used to capture the “Horseman” and “Tank” images. In the micro-lens array each of 

the 84 cylindrical lenses was 67 pixels across, which generated 67 VPIs at a pitch size 

of 1.65 mm with a focal length of (f) = 2 mm. The “Palm” image is 5628 × 3744 pixels. 

For this the EIs were 67 × 3744 pixels and the VPIs were 84 × 3744 pixels.  There is a 

lot of noise in the extracted VPIs and they have a low resolution: the range of depth 

values is very narrow (Figure 4.8(b)) and the palm seems to be very flat. It should be 

Reference VPI 

D4 D3 
D5 D2 

D6 D1 
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noted that the algorithm produced a smooth surface and was able to show the depth 

transitions between each finger (Figure 4.8(c)). In this situation the algorithm took a 

long time as there were 21 VPIs that required the up-sampling of 84 × 3744 pixels 21 

times to obtain the depth map from the 21 × 21 matching windows.  

 

 

Figure 4-8 Results on real-world “Palm”. (a) Palm UH3DI, (b) up-sampled VPI, and (c) estimated depth 
map. 

II. OH3DI Results  

A simple experiment carried out at 3D VIVANT lab was performed on the real-world 

OH3DI named “Box-Tags” to evaluate the efficiency of the approach strategy that was 

used in the adaptive multiple baseline technique. The image is formed from a box 

(a) (b) 

(c) 
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placed in front of the camera and Tags separated by 200 mm that start 600 mm away 

from the camera and go up to 3000 mm. The image contains multiple depth planes as 

the distance between each Tag is invariant. The box was placed at a 45-degree slant 

from the Tags (Figure 4.9(a)) and its thickness was measured in the experiments with 

the camera starting at a distance of 600 mm from the ”Box”. In this experiment the 

diagonal of the rectangular parallelepiped is used to represent the real depth of the 

box. The image capture process used a 21-megapixel image size and a 5D Canon 

camera with a 50 mm main lens. To enable the distance between the main lens image 

plane and the micro-lenses as well as the micro-lenses to the image sensor the main 

lens is attached to the camera using a mountable extension tube to provide a flexible 

way of adjusting the distance. For the micro-lens the pitch size is 0.9 mm while the 

focal length is 0.25 mm. Due to the micro-lenses being square the main lens aperture 

was modified to also be square to enable the sensor space to be used more effectively. 

As shown in Figure 4.9(b) two local areas were chosen that showed the foreground 

“box” region at tag 1000 mm (p1) while the other was the background at tag 1200 

mm (p2) in the reference VPI that enabled the depth to be measured to 

corresponding matching positions in the two widows in the multiple pairs of VPIs. 

For the centre array (7 × 7) of the VPIs a series of correspondence pixels were 

detected in the 29 × 29 extracted VPIs array system at a resolution of 193 × 129 

pixels for the “Box-Tags” image. The depth measurements when using the proposed 

technique on the “Box-Tags” image are shown in Table 4.2. The algorithm’s efficiency 

was evaluated using the MRE (Eq. (3.20) Chapter 3). The box’s real length can be 

determined as 200 mm through the use of a calliper gauge and geometric projections. 

The depth of the Box can be estimated using the compensated expected disparity as 

identified from the position when the global minimum is reached by the score 

functions. As illustrated, when the box is at the 1000 mm tag position the matching 

position (disparity) of 46.6 for the red patch in the foreground and 18.56 for the 

yellow patch in the background from searching range from -50 to +50. This translates 

into the box’s surfaces which give the depth at 338.225 mm and 134.71 mm, 

respectively, which gives a thickness of 203.5 mm. The error is less than 2% when the 

result is compared with the real thickness of 200 mm. 
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Figure 4-9 “Box-Tags” image captured in 3DVIVANT PROGECT lab. (a) The measure of the actual “Box” 
depth, and (b) display reference VPI of Box-Tags, the blue arrow points to the box and tags, the red and 
yellow are two windows chosen for depth estimation from the foreground and background region 
planes, respectively.   

Table 4-2: Depth measurement results on real-world “Box-Tags” image. 

Camera Distances 
/mm × 𝟏𝟎 

Estimated Depth/ 
mm × 𝟏𝟎 

Actual 
Depth/ mm × 𝟏𝟎 

MRE (%) 

60 20.3 20 1.5 

80 20.32 20 1.6 

100 20.35 20 1.75 

120 20.38 20 1.9 

140 20.6 20 3 

160 20.85 20 4.25 

180 21.45 20 6.75 

200 21.85 20 9.25 

220 22.54 20 12.7 

240 23.36 20 16.8 

Figure 4.10 shows that for depths between 600-1200 mm the depth error was less 

than 2%. As the depth increased so did the error, but even at the furthest depth the 

error was only 17%. For the nearest depths with a 2% error, this is very good 

especially when compared to the first attempt with the CG-3DVIVANT OH3DI (Table 

3.4, Chapter 3). Therefore, this technique could be used for the accurate and fast 

depth measurement. 
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The modified hybrid multiple baseline algorithm has had its effectiveness proven via 

the obvious improvement that can be found in the results when it is applied to both 

computer generated and real-world H3DIs, and this is especially true for regions that 

lack detail (e.g. tank). Figure 4.11 shows that for the “Box-Tags” and “Airplane-man” 

under laboratory conditions, the process detected the features and the depth that are 

correctly estimated. There is a marked improvement over previous results when 

considering the final depth maps that were generated form the available UH3DI and 

OH3DI data. The matching window size is bigger, the matching results are improved 

within the object/background region but the object has worse contours. Therefore, to 

improve the contour performance an edge detection technique was investigated for 

the setting and detection of feature blocks to identify the object contours.  

 

Figure 4-10 Plot experimental Box OH3DI error results from Table 4.2. 

 

 

Figure 4-11 proposed approach final depth map results using matching window size 21 × 21 pixels. (a) 
Real-world OH3DI “Airplane-man” depth map and (b) “Box-Tags” depth map. 
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4.3 Feature-edge Detection Technique 

4.3.1 Preface 

Edges typically occur on the boundary between two different regions in the image, 

and therefore, are viewed as a contour across which the image intensity value 

undergoes a sharp variation that can be exploited to aid segmentation and 3D object 

recognition [151]. In other words, an edge is the boundary between an object and the 

background. The task of finding and localizing these changes in intensity is called 

edge detection. This is one of the most vital parts of early vision and is a prerequisite 

for automated vision systems. It is important for edge detection to be able to 

accurately find the edges and orientate them well. Edge detection maintains 

important information about the structure of the boundaries in an image to be 

processed while significantly reducing the amount of information to be processed. 

The three main stages of image smoothing, edge enhancement and edge extraction 

are included in most edge detectors [152]. In general, the edge detection has the 

image edges enhanced with a linear filter that approximates a first or second order 

derivative before a threshold is used in the edge extraction stage. The technique of 

thresholding is normally applied in the edge extraction stage as a post-processing 

step that separates real edges from noise. Most often a trial and error process is used 

to find the threshold value, which is then applied to the image to identify all the edges 

present. However, due to differences in the detector being used and the edge 

characteristics it is a taxing problem to find a threshold value that can be applied to 

various image types [153]. A major drawback in the thresholding based Feature-Edge 

Detection (FED) methods is the use of Automatic Feature-Edge (AFE) thresholding. 

The main problem relates to the automatic identification of a threshold value that is 

suitable for images with variations over a range of levels because of noise, multiple 

object with varying reflectance or illumination that is not uniform [154]. The 

threshold selection is very important for achieving good Feature-Edge (EF) 

performance, and automatic threshold edges have received attention.   

To be able to produce a true volume that is accurate it is essential to model and 

implement an Auto-Feature-Edge (AFE) descriptor algorithm for a holoscopic system. 

The aim of using an AFE is to have a single detector that is able to integrate 3D cues 
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and locate objects in a scene by detecting both contours (edge-based detection) and 

objects (region-based detection). For each FE block this will be an individual process 

of looking for large contrast changes. This work generates 3D-Interactive-Maps 

(3DIM) that include the use of depth estimation technique and FE segmentation into 

one technique automatically, and this is the novel aspect of this work. The algorithm 

was applied to two domains to establish its efficiency and robustness: a) for 3D depth 

map estimation setting and selection of the FE and b) separating the foreground 

objects from the background noise to segment the objects from the scene (see 

Chapter 6).   

4.3.2 The Proposed Technique 

To be able to create an accurate volume for a H3DI system it is necessary to develop a 

modelling AFE detector algorithm. This detects both the edge-based and region-based 

features so the image can be analysed efficiently by using the automatic threshold 

selection method. The FE points are the areas of the image where the values of the 

pixels are subject to large changes. There are three steps to be able to successfully set 

features via edge detection. Initially suppress any noise, before detecting and 

enhancing the edges, with the final stage being to localize and then accurately extract 

the feature points. The extracted feature points are then used to integrate the 3D cues 

that can be used to find the position of objects in the scene. Due to it being simple and 

fast to perform and easy to implement, thresholding is one of the simplest and most 

powerful methods to detect features [155]. A new technique for edge extraction has 

just been introduced that aims to provide the optimal trade-off between feature-edge 

localization and noise reduction. In this the objects and background from the centre 

(reference) VPI are separated into regions using an automatic bi-level (one threshold 

value) thresholding algorithm. However, when a single method is used with a wide 

range of image content, it is not always possible to generate strong feature edge 

information. To be able to identify distinctive FE blocks (large contrast changes) it is 

best to integrate more than one technique. The principle behind the use of the AFE 

algorithm in the Multi-Quantize Adaptive Local Histogram Analysis (MQALHA) 

algorithm is shown in Figure 4.12.  
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Figure 4-12 Enhancement and extraction of the Feature Edge phases in the AFE detector algorithm. 

The processing can be divided into the following two major phases: 

4.3.2.1 First Phase; Feature Edge Enhancement  

First or second order derivative masks in the spatial domain are used in the edge 

enhancement phase to smooth the image and calculate the potential edge features. 

The following explains the main steps in this part of the overall AFE detector 

algorithm: 

1. From the 2D Gaussian function: ]2/)(exp[
2

1
),( 222
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yxyxG  , use a discrete 

Gaussian window = 3 to smooth the VPI to reduce the noise, where the width of the 

Gaussian defines the effective spread of the function is σ.  

2. The main method to sort the good and bad edges is the gradient magnitude. The 

boundary between two regions increase as the contrast between the FE on a 

smoothed VPI (�⃗�, σ) and the background is identified using the gradient 

magnitude. The magnitude 𝑚(𝑥)⃗⃗⃗⃗⃗⃗⃗  and orientation 𝜃(𝑥) ⃗⃗⃗⃗⃗⃗  of the greatest change in 

intensity are generated from each pixel’s small neighbourhood [156] and derived 

from the difference between the pixels: 

Convolve VPI with 3x3 Gaussian Filter 
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𝑚(𝑥)⃗⃗⃗⃗⃗⃗⃗ = √[𝑉𝑃𝐼(𝑥 + 1, 𝑦) − 𝑉𝑃𝐼(𝑥 − 1, 𝑦)]2 +  [𝑉𝑃𝐼(𝑥, 𝑦 − 1) − 𝑉𝑃𝐼(𝑥, 𝑦 + 1)]2     (4.7) 

𝜃(�⃗�) = 𝑡𝑎𝑛−1[𝑉𝑃𝐼(𝑥, 𝑦 − 1) − 𝑉𝑃𝐼(𝑥, 𝑦 + 1) 𝑉𝑃𝐼(𝑥 + 1, 𝑦) − 𝑉𝑃𝐼(𝑥 − 1, 𝑦)⁄ ]     (4.8) 

Therefore, for the smoothed VPI the gradient can be written as: 

𝑉𝑃𝐼𝜎 = ∇[𝐺𝜎(𝑥) × 𝑉𝑃𝐼(𝑥)] == [∇𝐺𝜎](𝑥) × 𝑉𝑃𝐼(𝑥)                       (4.9) 

3. Each contour should be thinned so it is only a single pixel wide. A non-maxima 

suppression process is performed to keep only FEs where the gradient magnitude 

is the local maximum. In the gradient magnitude 𝑉𝑃𝐼𝜎 all pixels are set to zero 

apart from those that have the maximum values, and these are not changed. To 

remove pixels with weak FE intensities each pixel’s intensity is changed to be the 

average of the surrounding pixels in a 3 × 3 window.  

4.3.2.2 Second Phase; Feature Edge Extraction  

The reliable feature edges are selected in this phase by processing the computed 

gradient VPI. The aim in this step is to be able to increase the continuity of the FEs for 

the multi-resolution aspect to enhance the computational speed and to enhance the 

techniques efficiency so it can be used with a range of noise levels. The following lists 

the main steps: 

1. Multi-quantization Adaptive Local Histogram Analysis (MQALHA) algorithm 

The MQALHA algorithm is used in this step to increase the FEs’ continuity, make the 

multi-resolution aspect faster and optimize the method for use with various noise 

levels. The quantization process, which is adaptive, is related to the image’s estimated 

noise level. Figure 4.13 shows the MQALHA algorithm that was used to make and 

setup a new first derivative that was generated from the edge detection method so 

that it had the best integration of the detection and the edge’s localization and 

resolution [157]. The task, which is multi-resolution, is performed using the MQALHA 

with local histogram analysis of the low and high edge maps that come from two 

quantized thinned gradient magnitude VPIs. 
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Figure 4-13 MQALHA flow diagram for detecting and extracting feature-edges. 

The following steps explain the algorithm: 

First step: Image Quantization  

Using the scheme presented in [157] and shown in Figure 4.14, the multi-

quantization process scheme is used to automatically quantize the refined thinned 

gradient magnitude VPI into two 12-level intensities.  
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In the gradient magnitude histogram the small peak fluctuations were smoothed 

using a 1D Gaussian filter with a standard deviation of 0.8. The first local maximum in 

the smoothed histogram was located and the grey level was set to 𝜎𝑟 that 

corresponds to the position of the first maximum. The first quantized VPI is 

generated by using this estimated value to quantize the thinned gradient magnitude 

VPI. The 𝜎𝑟 value is moved a distance (d) right so that the second VPI is produced 

from a higher starting point than that in the 12-level quantizer. The  value of 

estimated 𝜎𝑟 as the grey level that synchronization with a full-width-at-quarter-

maximum (FWQM) height of the distribution is used to automatically predict the 

distance (d) and model the noise inhabitants in the gradient magnitude image.  

 In this work due to the VPIs having a lower resolution (from orthographic projection 

image) than the perspective projection images, the higher value of (𝜎𝑟+d) was 

experimentally selected to correspond to the position of a full-width-at-quarter-

maximum (FWQM) of peaks in the noise distribution (see Figure 4.15 (a)). Due to the 

noise level in the image, the second quantized starting point will increase or decrease 

along with 𝜎𝑟 . The noise can be reduced by the adaptive quantization process at this 

stage, which is an advantage as this means that larger local histogram smoothing 

operators are not needed. This results in the overall edge extraction algorithm having 

a greater computational speed. To robustly represent the local histogram without 

losing information the quantization step is required, and it is needed to enable the 

processing to be conducted on a small block.  

Second Step: Optimal Threshold 

To extract the two edge maps at different resolutions local histogram smoothing and 

thresholding is undertaken on the quantized VPIs, which are divided into 4 × 4 non-

overlapping blocks [155]. A 1-D Gaussian kernel of width W = 3 is used to smooth the 

blocks that are computed from the local histograms of the blocks. Then depending on the 

smoothedhistogram’sshapeeachblock is classifiedaseitherabackgroundblockorEF

block. Background blocks are those where the histogram is unimodal, and in these all the 

pixels are set to a value of zero. If the block is not in the background, take the smoothed 

histogramanddifferentiateitbeforetakingthefirstvalley’spositionasthethresholdvalue

for that block. For all pixels where the threshold value is exceeded by their quantized grey 

levels they are considered to be edge pixels and set to a value of one [157]. In the lower 
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threshold FE map the thresholded block has the VPI of 𝜎𝑟 and is saved, while in the 

higher threshold FE map the thresholded block has the VPI of (𝜎𝑟+ d) and is saved for 

further processing. The auto threshold results are shown in Figure 4.15(b, c) for the 

“Horseman” VPI. More detailed explanation is available in Chapter 6 (section 6.4.1).  

 

Figure 4-15 AFE extraction phase, a) first starting point (𝝈𝒓) (low threshold) setting strong edges and 
second starting point (𝛔𝐫+d) (high threshold) setting weak edges, b) low thresholding result on 
“Horseman” real-world VPI (noisy map), c) high thresholding resultant on “Horseman” (without 
noise), d) applying extraction and link process to set final EF map and e) magnified section of a final FE 
map.  

2. Concatenating and Linking Edge Process (Combination Process) 

This process combines all the edge maps obtained from the use of the MQALHA 

algorithm into a single edge image. The two EFs maps are combined via the edge 

combination process so that a “final edge map” is produced by extracting and linking 

the discontinuous segment FEs from the higher threshold and the lower threshold. An 

endpoint is found in the higher threshold FE map to start the process. Then using a 

local neighbourhoods’ window size of 3 × 3 in the direction of the non-maxima 
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suppression stage, the end points in the lower threshold FEs map are examined for 

possible connected successors. Figure 4.16 shows the process where the successor 

edge point is generated by considering the values of three probable neighbours from 

the lower threshold edge map that were determined from the endpoint’s direction. 

Then if an edge is found in the lower threshold edge map, this will be extracted by the 

algorithm and linked to the endpoint in the high threshold map, and this new pixel 

will then become the endpoint. 

    

                                                         

              

 

 

 

 

The process will continue until all the connected edge points in the lower VPI are 

extracted and combined. This means that all the features from the higher VPI map can 

be extended and carried through to the final FE map (Figure 4.15(d, e)). Due to these 

features and depending on the task and object domain, the method for getting the 

required feature map and derivation of the final representation will be different 

between applications. 

As the FE descriptors described above are scale invariant, illumination invariant and 

noise resistant, they are considered to be robust and efficient.  

4.3.3 Depth Estimation Based on Feature-Edges 

Using the method explained in section 4.3.2 for the estimation of a 3D object map 

from a multi-baseline this part will consider the contour based depth estimation 

problem. A flowchart of the adaptive hybrid depth map estimation technique that 

eliminates spurious edges in the UH3DI depth edge map via alternative 

implementation of feature edge detection is shown in Figure 4.17.    

 

 A B 

  C 
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End Point 
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Figure 4-16 Probable successor location of the end point [157]. (a) The three 
possible successors pointed by 90° central pixel and (b) 45°. 
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Figure 4-17 Proposed depth map estimation and segmentation flow chart using MQALHA based on 
FED from UH3DI. 
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4.3.4 Experimental Results 

Figures 4.18(a-c) shows the results of the qualitative edge depth map on the 

“Horseman” real-world noisy scenario UH3DI, the “Tank” image that is lacking detail 

and the “Palm” that is a very flat image. Then the real-world OH3DIs “Box-Tags” and 

“Airplane-man” were used to test the generalisation algorithm with objects that had 

more complex shapes, as shown in Figures 4.18(d, e). The AFE algorithm was shown 

to be suitable for reconstructing the shape of the objects; however, there were 

prominent errors in the foreground regions that were caused by a lack of features for 

matching. The system can handle camera VPI changes, while also generating 

information about the 3D depth estimation and 2D foreground object segmentation. 

However, the thinning edge term (non-maximum suppression) caused some 

ambiguities related to the depth estimation map that prevented multiple responses. 

Due to the resolution being low in the VPI, not many details are visible and the 

feature detection and extraction are constrained. In addition, the score function 

judgment could be limited due to the illumination, focusing and similar patterns being 

present within the object scene.  

Compared to the results produced using the AFP algorithm in section 4.2 the final 

depth maps from the AFE method have a marked improvement at the furthest depth 

ranges as well as having a visually satisfactory appearance. The AFE algorithm 

combines the adaptive multi-baseline technique producing results that show a clear 

improvement on the depth map contour segment. However, as far as accuracy is 

concerned the results from the AFP algorithm are much better than those from the 

AFE technique.  

The new approach offered significant improvements in the reliability of the 

algorithm’s performance and improved the depth discontinuities at the boundaries of 

objects. However, due to ambiguities in the matching process wrong matches were 

shown in the qualitative depth image results, which were caused by the non-

maximum suppression scheme that was part of the FED algorithm. However, the local 

geometric information, in which the associated image feature edge’s strength is 

indicated by a number, may be destroyed by a limitation of the non-maximum 

suppression. In addition, in weakly textured regions many valuable candidates may 
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be over-suppressed by the non-maximum suppression [158] when a feature has its 

strength reset to zero, i.e., if it is not a local maximum its candidacy will be eliminated.  

For example, the condition: Strength (b) > Strength (p)  ∀𝑝 ∈ 𝑂𝑏 {𝑏} where, 𝑂𝑏 is a 

small neighbourhood of b (usually a 3 × 3 window cantered by (b)), is checked by 

non-maximum suppression to determine the candidacy of a feature block b [159]. The 

strength (b) is reset to zero if the condition is false. This can cause the number of 

possible neighbour blocks to be significantly reduced that are around the candidate 

feature block in the matching process. For the “Box-Tags” OH3DI results and depth 

estimation from two techniques the depth measurement efficiency was also involved. 

Table 4.3 includes the depth measurement results, while Figure 4.19 shows a 

comparison of the two techniques’ performance, in which the estimated depth 

measurement error from implementing the AFE algorithm is less than the error 

percentage as determined using the AFP algorithm. However, despite the slight 

chance of false matches being generated, overall the algorithm gives very good depth 

position, which is due to the use of the adaptive multi-baseline algorithm. Both depth 

estimation techniques have had their effectiveness proven when generating accurate 

depth measurements via mathematical and experimental means. The promising 

outcome of the AFE depth estimation technique has been shown by the results where 

the 3D object depth segment contour has performed well with only minor errors that 

need to be improved in the future.  

Table 4-3: Depth measurement results on real-world “Box-Tags” image using AFE algorithm. 

Camera Distances 
/mm  × 𝟏𝟎 

Estimated Depth/ 
mm  × 𝟏𝟎 

Actual Depth/ 
mm  × 𝟏𝟎 

MRE (%) 

60 15.95 20 1.53 

80 15.947 20 1.56 

100 15.942 20 1.59 

120 15.939 20 1.61 

140 15.929 20 1.67 

160 15.725 20 2.93 

180 15.50 20 4.31 

200 15.19 20 6.22 

220 14.72 20 9.11 

240 14.36 20 11.33 
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Figure 4-18 Proposed AFE depth map estimation and segmentation. (a-c) real-world UH3DI 
“Horseman, Tank and Palm”, respectively, and (d, e) real-world OH3DI “Box-Tags and Airplane-man”, 
respectively, where the red and black rectangles represents the errors. 
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Figure 4-19 Plot of error results comparison from Table 4.2 and Table 4.3. 

 

4.4 Summary  

The information in this chapter was related to identifying algorithms that 

demonstrate the simplest way that H3DIs can have their depth estimated. The first 

and most important step towards determining the depth of extracted VPIs is to set 

and extract feature blocks. During feature selection the image is simplified so that it is 

in a form where it is easier to analyse and determine the positions of objects within it. 

This cannot be done manually as to do so would be prohibitively expensive and take 

too long for use in real-time applications. If a reconstruction process was to be used it 

would take too long to search the database that would be immense and this would 

affect the 3D model’s quality. Therefore, it is better to automatically select 

distinguishing feature descriptors for the depth map estimation and then remove the 

least important ones. For use with a H3DI system, the automatic initialization 

techniques for creating and manipulating 3D models is fast and accurate. 

The goal of this chapter was to set as well as detect 2D features that are present in the 

input VPIs and for which there are corresponding pixels in the set of VPIs. Then the 

2D extracted features are used to compute the depth map by converting the features 

in them into 3D feature space. To enable the adequate production of descriptors, 

there must be features that can be easily recognised and matched reliably across the 
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content of the set of VPIs. Two novel automatic local feature setting and extracting 

techniques were elaborated, which were built on binary data. The techniques were 

simple and widely applicable as well as being easy to compute. Often the features are 

the points or edges of the 3D object.  

This chapter was presented in two sections with the first presenting a novel AFP 

algorithm that is capable of producing an accurate true volume of the object scene via 

extraction and setting of the unique features. The algorithm that is a local feature 

descriptor is based on the sub-dividing non-overlapping regions that are obtained 

from the VPIs and the distribution of sample variance in them. It was proven that the 

well-known SIFT and SURF descriptors were outperformed by the proposed AFP 

algorithm when setting and extracting the distinguished feature blocks. Using both 

real-world UH3DI and OH3DI data satisfactory quality depth maps were produced 

while the consistency of the measurements were proven in the OH3DI “Box”,  

The second section aimed to further refine the precision depth estimation map and 

presented an AFE descriptor algorithm that was based on verifying the importance of 

the objects’ edges through adjustment of contours of the object based on edge 

detection to extract the distinctive feature edge blocks. This generates robust feature 

edge information that holds data about the shape boundaries of objects in the 

foreground that is closely related to the geometry of the 3D scene and background 

clutter is completely removed due to reflectance discontinuities. The efficacy of the 

approach depends on the robust estimation of edge features and their connection.  

It is worth pointing out that, due to the object distances from the camera, the 

captured light rays for the object that is far enough away will likely hit nearly all 

micro-lenses. This results in representations of that object in nearly all EI’s; therefore, 

the object will register with high spatial sampling. In other words, the same region of 

the object will be sampled in multiple EIs. As a result, the new (second) proposed 

algorithm was shown to be an improvement as at the nearest depth of 600-1200 mm 

it gave an error of less than 1.7% against the previous (first proposed algorithm) 

error of 1.9%. The AFE algorithm also showed improvement on the depth map 

contour segment that was due to using the adaptive multi-baseline technique. 

However, when the matching of the corresponding feature edge blocks was 
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undertaken near untextured areas or those with similar texture patterns there were 

numerous ambiguities observed, such as the ambiguities observed on the flat image 

“Palm”.  

Furthermore, for real-world H3DI the distinctive features obtained from the AFE 

algorithm are used to generate the foreground mask for 3D object segmentation that 

enables the location of objects that are in the foreground of the object plane. 

Therefore, for the foreground objects only the depth is calculated to separate the 

foreground object/objects in the scene from the background (see Chapter 6 for more 

details). From this it was possible to correctly estimate the relative positions of the 

objects. Regions that are textureless are likely to have the most prominent errors due 

to the thinning edge term (non-maximum suppression) that causes viable candidates 

to be suppressed when present in weakly textured regions.  

It became obvious that a straight forward extracted VPI to represent the whole scene 

is a very limitative solution and thus leads to a limitation when extracting robust 

features. Enhancement of the VPI’s resolution is important to increase the depth 

estimation performance from the extracted low resolution VPIs to enable high-

resolution image features to be produced that can be used to obtain super depth 

information maps.   

 

 



Holoscopic 3D Image Depth Estimation and Segmentation Techniques 
 
 

115 
Chapter 5- Depth Estimation Based on Super Resolution of H3DI 
 

 

 

 

5 Depth Estimation Based on 
Super Resolution of H3DI 

5.1 Introduction 

The focus of this chapter is to use the orthographic VPIs approach as an alternative 

way to solve the resolution problem and improve the depth map’s visual quality. This 

chapter aims to compensate for the poor features of the low resolution VPIs (LRVPIs) 

to develop a high-quality depth map of a 3D scene by generating super resolution 

multi-view images from a H3DI system. As previously stated, a H3DI system is 

attractive as it can store both intensity and directional information in a 2D image at 

fixed-time, which is modeling VPI. It is formed from parallel rays that are projected at 

different angles from the object. Accordingly, in practice images from a H3DI system 

have different properties than standard perspective images due technological 

reasons i.e. the radiance sensor resolution. In practice, the resolution of VPIs 

(orthographically projected rays) is much lower than the resolution of a traditional 

2D image (perceptively projection rays). This is due to the similar technology of the 

radiance sensor that is used to capture both traditional 2D images and the multiple 

points of view present in the H3DIs. This results in a factorization of the VPI 

resolution, which is proportional to the number of VPIs in a H3DI that causes adverse 

image distortion. Therefore, further processing is required on the produced 3D-

display image. To cope with this, in this chapter a new noval technique to 

Chapter 5  
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reformatting a set of VPIs to a perspective view image is capable of generating a new 

form of VPIs in perspective projection with high resolution and wide Field Of View 

(FOV). 

It is worth to pointing out that, the EIs of the H3DI system are vital for the estimation 

of High-resolution (HR) 3D information of the scene. The limit of the EIs resolution is 

due to the physical distance of the pixels (the pixel pitch or picture element) in the 

display panel. In other words, the absolute resolution of each picked-up EI should be 

severely decreased according to the dimension of an employed micro-lens array. 

Hence, it might be difficult to obtain the accurate depth data of 3-D objects from these 

low-resolution EIs. Therefore, the pixel pitch of display is a fundamental resource that 

rules the display quality of 3D depth or disparity maps. Therefore this technique’s 

aim is to determine the full parallax super-resolution 3D depth map from a H3DI to 

generate 3D images that are more natural and fatigue-free. 

5.1.1 Image Resolution 

The amount of detail that can be observed from an image is the resolution. In cases 

where information needs to be extracted from images, the more detail there are the 

better it is to extract information from an image. Optical super resolution methods 

are expensive and are usually developed to enhance the resolution of an already 

expensive imaging system [160].  Henceforth, the term ‘super-resolution (SR)’ in this 

context is used exclusively to refer to the process of overcoming the sensor density 

limitation using signal processing methods. This means that super-resolution can be 

used to increase the sensor density of an image cheaply. By combining a number of 

images of the same scene additional information is added to the reproduction. In 

general, this information is high frequency content of the scene. Not all the LRVPIs are 

identical as there are some variations between them, for example, different viewing 

angles [161, 162]. A much better image of the object can be generated from the 

information that is in multiple LRVPIs as well as an understanding of the 

transformations between the VPIs.  

5.1.2 Multi-Image Super Resolution Technique  

Multi-image super resolution is a well-studied problem now and several methods by 

researchers introduced the idea of image super resolution techniques to reconstruct 
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the SR image by receiving additional information from multiple LR images [163]. 

Then SR became an exciting research area and many SR techniques that are superior 

have been developed [164]. Most of the methods for multi-frame SR images from the 

literature can be divided into three stages as follows [164, 165]:  

1. The first stage identifies the relative shifts between the LR images compared 

to the reference LR image using fractional pixel accuracy. Thus, the same 

coordinate system is used to register all images i.e. “Registration Stage”.  

2. To generate a uniformly spaced composite of the LR images to form the SR 

image, interpolation is used. There are several methods to perform the 

interpolation that has a key role in the framework. The nearest neighbour 

algorithm is the simplest interpolation algorithm, in which each pixel that is 

unknown is given the same intensity value as that of its neighbours. The 

drawback is that blocky appearing images are produced with this method.   

3. In the final stage the blur and noise are removed from the SR image produced 

in the above stage “Interpolation Stage” i.e. “Restoration Stage”.   

Figure 5.1 represents the process of constructing a SR image from multiple registered 

LR images.  

 

Figure 5-1 Scheme for general super-resolution image generation from multiple low resolution images 
[164]. 

In the stages presented above, the assumption is that it is possible to map all pixels 

from all frames back to the reference frame using the motion contained in the vector 

information, from which the up-sampled frame can be obtained. The steps can be 

implemented either at the same time or individually depending on the reconstruction 

method chosen. This chapter’s context is related to the SR of a light field, which is due 

to an extra amount of information about the scene being provided in each LRVPI. 

Therefore the aim is to produce an SR image that is clearer and more detailed from 

the ‘fusing’ of all the information rather than just duplicating the pixels to make a 

bigger sized image.  
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5.2 From Orthographic to Perspective Projection 

The camera sensor’s and micro-lens array’s resolutions limit the H3DI system’s 

performance. According to the sampling theorem, these define the trade-off between 

the recovered light field’s angular and spatial resolutions [166]. In addition, because 

of diffraction, the micro-lenses’ size restricts the sampling VPIs resolution [167]. As 

stated in Chapter 3, the VPIs are a collection of all the pixels at the same position in 

each EI and they have orthographic projection geometry. This means that a parallel 

grid without a vanishing point is used to sample the object space. The EI’s field of 

view (FOV) is limited to 2 tan−1(𝜑/2𝑓), where the focal length and lens pitch are f and 

𝜑, respectively. The VPIs’ resolution is not greater than the number of EIs as these are 

too small and coarse. This means that due to each EIs’ limited size the images are low 

resolution. The EIs have the object’s 3D information embedded as the set of EIs give 

the 3D object’s ray space. In other words, the accuracy of the disparity detection has a 

direct effect on the quality of the generated VPI. Not many features (details) can be 

observed in the corresponding process as the resolutions of the VPIs are so low. 

Accordingly, it is vital to improve the quality of these images for more reliable feature 

correspondences through rendering SR or full resolution VPIs via transforming a set 

of VPIs into a perspective view.  

At a particular plane a new interpolation technique is needed to generate the SR 

images from the H3DI system, therefore the new full resolution VPI rendering 

technique is proposed from unregistered sets of sample VPIs. Three stages are 

involved in the rendering of one plane in the high spatial resolution image.  The 

hybrid interpolation algorithm overcomes the problem of artefacts, which are mainly 

produced in areas that are out of focus in the light field super-resolution method. The 

first is up-sampling a set of extracted VPIs, then shift and integrate the up-sampling 

set of VPIs and finally de-blurring or (restoration) stage.  The method is presented in 

detail in Figure 5.2 that shows the stages of up-sampling, shift and integration of the 

orthographic projection LRVPIs that are for focusing a specific depth plane for any shift 

value to generate a SRVPI with perspective projection geometry.  
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Figure 5-2  Flowchart of the proposed super-resolution VPI generated from H3DI system; displaying 
effectively the stages and processes of up-sampling, shift and integration of the N set of orthographic 
projection LRVPIs. 
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5.2.1 Up-Sampling using Integer Factor 

During integer up-sampling zero-valued samples are placed between original 

samples using an integer factor to increase the image’s sampling rate. When an 

integer factor is used to multiply the sample rate the undesired spectral images from 

the original image are added to that, and these have multiples of the original sampling 

rate at their center. This means that the up-sampled image is distorted compared to 

the original, and that interpolation digital filtering is vital to remove the undesired 

images. Often a simple but fast low pass interpolation technique is used for scene 

reconstruction and warping via high throughput machine vision tasks. Bilinear and 

bi-cubic interpolations are two such linear filters using pixel values for fitting locally 

linear and cubic functions, respectively [168]. In commercial software these two 

filters are the most common as well as simplest nearest neighbour interpolation.  

Up-sampling is often needed for image matching and registration when using 

computer vision applications: it is often used to aesthetically manipulate images. In 

the context of this approach, the up-sampling occurs before the stages of shifting and 

integration. This allows the integration of sub-pixels from the same spatial point in 

different views and improves the image’s resolution due to the representation of 

more pixels around the same point. However, due to the shifts between LRVPIs being 

arbitrary it is not always possible for the SRVPI to match an evenly spaced SR grid. 

This means that when there are non-uniformly spaced composite LRVPIs non-

uniform interpolation is needed to generate a uniformly spaced SR image.  

The following steps explain the up-sampling method used in this approach:  

1. First one SRVPI is generated from a selected set of N number sampling LRVPIs. 

Identify each LRVPI as 𝑉𝑃𝐼𝑖,𝑗,𝑛,𝑚 , where the VPI coordinates are i, j and the parallel 

light rays of the OH3DI’s coordinates are n and m. Figure 3.14 in Chapter 3 give the 

principles used to transform the EIs from the OH3DI system into VPIs. 

2. Before applying the shift and integrations, each LRVPI should be up-sampled in the 

horizontal and vertical directions by a factor of N (Ni × Nj). A 4D stack of 𝑉𝑃𝐼𝑖,𝑗,𝑛,𝑚 

images is formed by placing adjacently the up-sampled VPIs horizontally and 

vertically from top to bottom direction. This step enables the enhancement of the 
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VPI’s resolution, as the same spatial point from different views can be used for sub-

pixel integration. Figure 5.3 shows the process of up-sampling using five EIs with 

three pixels for each. 

The up-sampling process used MATLAB bi-cubic interpolation filter that is smoother 

and has less interpolation artefacts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2 Shift with Sub-pixel Precision and Integration   

The human observer may be distracted or mislead by the fused image’s quality if 

artefacts or inconsistencies are introduced. This might occur if the shift and 

integration (fusion) technique is not applied to make sure that the fused SR image has 

all the spatial and spectral information transferred from the input LRVPIs. Each 

LRVPI contains complementary information that means the maximum amount of 

information can be contained within the SR perspective projection geometry. Sub-

  1 2 3 4 5 

  1 1 1 2 2 2 3 3 3    5 

(a) 

(b) 

(c) 

Figure 5-3 Example of up-sampling process, (a) 5 micro-lenses each with 3 pixels, i.e.   5 
EIs each with 3 pixels, (b) sampling EIs into VPIs and (c) up-sampling by the number of the 
sets of VPIs (=3) using MATLAB quadratic interpolation. 
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pixel shifts are used to introduce the non-redundant information that is present in 

the LRVPIs. These sub-pixel shifts may occur due to uncontrolled motions between 

the imaging system and scene, e.g., movements of objects, or due to controlled 

motions [170]. The first work related to SR was about the shift and aliasing 

properties in the Fourier transform [171]. In frequency domain approaches the image 

observation model that can be handled is very restricted as real problems are more 

complicated. The spatial domain is mainly used by current researchers to address the 

problem as it is flexible and can model all image degradations. A non-uniform 

interpolation using a generalized multi-channel sampling theorem has been proposed 

for a set of spatially shifted LR images in which the LRIs are merged over a fine grid 

and a higher spatial sampling rate blurred image is obtained [170]. A good overview 

of existing SR methods is given by Macwan et al. [172]. 

This work has considered moving many LR images at the sub-pixel level (fractions of 

a pixel) and then positioning them in a spatial multiplexed manner as a way to 

enhance the perceived resolution. This is closely linked to the SR techniques in [173] 

and [174] where a group of LR images that have different translational offsets are 

used to compute a high-resolution image. Once the LRVPIs have been shifted with 

precision at the sub-pixel level, the new information contained in each VPI can be 

exploited to obtain a SR image. When shifting is done at integer units each VPI will 

contain the same information as previously and there will be no new information to 

reconstruct the SR images. This means that SR reconstruction is possible if sub-pixel 

shifts can be done between LRVPIs.   

An “in-focus” high spatial resolution VPI plane can be produced when the window 

size is returned to where the plane is focused after shift and integration where one 

sub-pixel = (1/N) from the input set of the LRVPIs (N). Only one plane of high spatial 

resolution image will be generated from this process. As well as the all-in-focus image 

other depth planes are needed which means different shift values are required.  

From the integrated up-sampled N set of LRVPIs (𝒦) the SRVPI (𝑆ℛ𝑛,𝑚) can be 

generated as follows: 
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𝑆ℛ𝑛,𝑚 =  ∑ ∑ 𝒦𝑛+𝛿𝑥(1+𝑖),𝑖,   𝑚+𝛿𝑦(1+𝑗),𝑗  𝑁
𝑙=1

𝑁
𝑘=1                           (5.1) 

where, the up-sampled VPI coordinates set are n and m; the VPIs indexed numbers 

from 1 to N are k and l. For the horizontal and vertical directions the sub-pixel shift 

parameters are  𝛿𝑥, 𝛿𝑦, respectively, for the Nth LRVPI with respect to a reference 

image.  These represent the modified index of the n and m coordinates. The numbers 

of EIs’ in horizontal and vertical resolutions are i and j. As long as the shifts are 

known in this proposed technique’s context, then 𝛿𝑥 =  𝛿𝑦 = 1. The shift parameter’s 

value 𝛿 is given by:   

 𝛿 =  
𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒

𝑁
                                                                (5.2) 

The process is shown in Figure 5.3(a) with an example where the depth plane Z1 can 

be observed by using a shift value of 1 from different EIs. This means that for pixels 

under EI n*shift from all the different EIs will be collected at point Z1, in which n=1, 

2,…, N represents the number of EIs. From this, a single depth plane (Z1) will be “in-

focus” with one sub-pixel shift using up-sampling-shifting and integration algorithm.   

As shown in the blue square, the FOV is directly increased via the enhancement at the 

depth plane Z1 and the rays from the neighbouring VPIs. At the depth plane Z1 three 

pixels were intersected that increased the resolution in the refocusing process. It is 

worthwhile pointing out that, SR reconstruction is not possible from images shifted 

by an integer amount as they would not contain any new information (only the same 

intensity values at the same spatial locations). For example, when a reference VPI that 

has been shifted by one pixel is integrated with another VPI the modified pixel = two 

sub-pixels, which, as shown in Figure 5.4(a), results in the same resolution as if the 

VPIs had not been shifted, meaning there is no resolution enhancement.  Using Eq. 

5.2, when undertaking a shift of 1/N (e.g. half a pixel, if two VPIs are involved) the 

pixel shift = one sub-pixel, in this situation new information will be contained in each 

sub-pixel LRVPI, which can be used to generate a SRVPI. Figure 5.4(b) shows the 

relative shifts between LRVPIs compared to the reference LRVPI that can be 

estimated with fractional pixel accuracy.    
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Figure 5-4 Relative shifts between LRVPIs compared to the reference LRVPI, (a) without up-sampling 
using 5 micro-lenses i.e. 5 EIs each with 3 pixels, (b) resolution enhancement, where, up-sampled all 
VPIs before the implementation of shift and integration process. 

5.2.3 Post-Processing 

Due to over or under fitting during the reconstruction of SR images associated with 

the fixed shifting of the neighbouring LRVPIs there is often blurring. Images that are 

blurred do not have definable features [175]. Therefore, a new simplified model of 

the basics for a typical de-blurring filtering process is employed as a point-spread 

function. This filter is the inverse of the Gaussian blur filter, in which there are two 

processes: smoothing and sharpening. The third stage of Figure 5.2 shows the process 

that is explained in the following:   

1. Smoothing Phase: The blurred 𝑆ℛ𝑛,𝑚 VPI is convoluted with a 2D Gaussian blurring 

low-pass filter kernel in each direction (to the nearest odd integer) so that noise 

and small functions are suppressed. The mask is calculated with a Gaussian 

function. Within the filtering process both the standard deviation (𝜎) and size of the 

mask are important. The image will be blurred slightly when there is a small sigma 

and mask size, while a large sigma and mask will result in heavy blurring. The most 

general 1D directional Gaussian function used when the mask is calculated is the 

following: 

𝐺 (𝑥) =
1

𝜎 √2Π
𝑒

−
(𝑥2− 𝑎2)

2𝜎2                                                       (5.3) 

where, (σ) is the standard deviation and (a) is the statistical expectation  that 

causes the distribution shifting along the x axis so it is zero: a = 0. This means that 

Integrate VPIs 

First Pixel on Each EIs 

Reference VPI 

Up-sampled First  
Pixel on EI 1 

. . . . . . .  

(a) Shift and integrate with out up-sampling (b) Sub-pixel Shift and integrate process 
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a zero mean Gaussian distribution is assumed for the distribution. The following 

gives the horizontal and vertical 2D Gaussian distributions: 

𝐺 (𝑥, 𝑦) =
1

𝜎 √2Π
𝑒

−
𝑥2+ 𝑦2

2𝜎2                                                              (5.4) 

Then, the mask M of size 𝑏 × 𝑏 is given as: 

𝑀 (𝑥, 𝑦) = 𝐺 (𝑥 −
(𝑏+1)

2𝜎
) ×  𝐺 (𝑦 −

(𝑏+1)

2𝜎
)                                 (5.5) 

where: 1<=x<=b and 1<=y<=b.   

The 2D Gaussian filter is applied on the original image as a point-spread function. 

This is then split into two 1D distributions that are in the horizontal and vertical 

directions. This means, firstly determine the 1D mask weights and then use them 

as filters for every line as a 1D signal then filter every filtered image column as a 

1D signal. To smooth the blurred SRVPI its error is modelled as a Gaussian noise 

filter that is used to smooth it. For each signal element 𝑆ℛ𝑖 , the Gaussian filter’s 

convolved image signal is 𝑆ℛ𝑛,𝑚 = { 𝑆ℛ𝑖} , and for each EI the new modified 𝑆ℛ′𝑖 

will be calculated. This means that each EI in the center of mask (M) of size 𝑏 × 𝑏 

will be in the centre of the window. The new filtered value is given by the 

following, which multiplies each element in the mask by its corresponding weight 

and provides a sum of all the products: 

𝑆ℛ′𝑛,𝑚 =  𝐺 (𝑥, 𝑦) *  𝑆ℛ𝑛,𝑚                                           (5.6) 

This causes the low frequencies in the element to be amplified while suppressing the 

high frequencies. 

2. Sharpening Phase: The higher frequencies in the image are amplified and the noise 

is not via the use of image sharpening methods [176]. While successfully creating 

sharper images, the methods also have the possibility of causing haloing artefacts. 

This approach is able to improve the image without generating artefacts, since the 

low frequencies are suppressed while the high ones are amplified. This is done by 

rescaling the non-filtered 𝑆ℛ𝑛,𝑚 by converting the intensity to double precision, 

which is subtracted from the filter 𝑆ℛ′𝑛,𝑚. This means that, it sharpens edge 



Holoscopic 3D Image Depth Estimation and Segmentation Techniques 
 
 

126 
Chapter 5- Depth Estimation Based on Super Resolution of H3DI 
 

preservation of Gaussian blurred image with the same parameters, and it works as 

follows:  

𝑆ℛ"
𝑛,𝑚 = 2* 𝑆ℛ𝑛,𝑚 - 𝑆ℛ′𝑛,𝑚                                       (5.7) 

where, the modified original signal element is (2* 𝑆ℛ𝑛,𝑚) which when subtracted from 

the smooth signal element is 𝑆ℛ′𝑛,𝑚 , and hence the de-blurred 𝑆ℛ"
𝑛,𝑚 image is 

produced. This has an inverse smoothing effect in the horizontal and vertical directions 

and is a simple and effective way to ensure that the signal has had the noise removed 

while ensuring the detail remains in the SR image. This gives gentle smoothing and 

maintains the sharp edges by suppress the low frequencies and amplifying the high 

frequencies depending on the smoothness of the signal.  

This de-blurring filter technique is a simple yet very effective process that suppresses 

noise while maintaining the SR image’s details by avoiding the over-sharpening 

effects while also removing the blur noise. This means that this interpolation based 

adaptive filtering approach is suitable for real-time implementation. This has a 

prominent impact on the images that have been refocused as the structural details in 

the focused regions of the image were enhanced. 

5.3 Implementation and Experiments 

Using UH3DI and OH3DI (two types of real-world image), this section presents the 

results of experiments showing the new method’s reliability and efficiency. Data 

invariant linear filters will be used for comparisons as they are popular in commercial 

software. The well-known Bi-cubic (MATLAB precision) filter is among them, 

furthermore, the frequency domain algorithms by Vandewalle et al. [177] are used for 

comparison. This is a graphical user interface (GUI) for the MALAB program used to 

implement multiple image registrations and for the reconstruction algorithms found 

in SR images. It will also be compared with Keren et al.’s [178] spatial domain method 

that was based on Taylor expansions.  

5.3.1 UH3DI Experimental Results 

This section presents a range of SRVPIs that were created with the algorithm 

described above and then compared with other techniques. The results obtained from 
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the “Palm” UH3DI are shown in Figure 5.5, which had a pitch size of 1.65 mm, focal 

length of 2 mm and each micro-lens had 67 pixels at a VPI resolution of 84 × 3744 

pixels. The proposed SR technique uses a set of 5 LRVPIs {V1, V2, V3, V4, V5}, i.e. (N = 5) 

to produce one SRVPI. This separately used a bi-cubic interpolation algorithm that 

has the properties of low computational complexity, smoother and fewer artefacts. 

This means that the VPI size becomes 420 × 3744 pixels when a sample rate integer 

factor of five is used. Each LRVPI is up-sampled in the horizontal direction five times. 

The sub-pixel number = 1 (the original image’s pixel size which has the shift value of 

1/N) is used to shift all the up-sampled LRVPIs before they are fused. For the post-

processing stage the parameters are [15 15] and 2 that give the Gaussian filter size 

and 𝜎, respectively. This means that the FOV is increased directly for the fusion of 

rays for the neighbouring VPIs. Only the horizontal direction has the up-sampled 

shift, which integration algorithm used. This means that there is an eight pixel 

increase in the horizontal direction making the size of the de-blurred SRVPI equal to 

428 × 3744 pixels. The following shows the calculation for the up-sampled- shift and 

integration of the SRVPI: 

(VPIi)R* N + (N-1) (𝛿𝑥 +1) = 84 × 5 + (5 − 1)(1 + 1) = 428 

When compared with the other algorithms used this new method showed significant 

improvement in the experimental results showing its effectiveness when using the 

same data throughout. Figure 5.5(a) shows the original reference LRVPI that has a 

resolution of 84 × 3744 pixels, the results from the new method are shown in Figure 

5.5(b) and the comparison to other algorithms shown in Figures 5.5(c-d). 

This work only used the judgments by human observers to test the subjective image 

quality as this is how the images will be judged in reality to prove the performance of 

the proposed algorithm when there is no-reference image/ground truth available. 

More details of the subjective quality assessment are available in Chapter 6 section 

6.5.2. While the physical measurement of the images’ quality i.e. objective image 

quality is used to evaluate the images so that the reconstructed SR images are 

compared with known original images (reference) that were used to obtained 

sequences of LR image.  
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Figure 5-5 Simulationresultsof thedifferentalgorithmson“Palm”UH3DI images (flat, noisy image). (a) 

One of the five LRVPI size 84 × 3744 pixels used as reference for up-sampled shift and integration 

algorithm, (b) reconstructed SRVPI size 428 × 3744 pixels from the proposed algorithm, (c-e) reconstructed 

SRVPI size 420 × 3744 pixels from [177], [178] and bi-cubic MATLAB software, respectively.  

There are many parameters that determine the optimal number of LR images that are 

needed to perform up-sampling-shifting and integration algorithm, such as the 

accuracy of the sampled set of LRVPIs, imaging model and total frequency content, 

etc. Intuitively, there is a trade-off between the number of images and level of 

reconstruction: better reconstruction can be obtained with more images while at 

some point a limit will be reached on the level of improvement obtained. Sometimes 

even with many images it is not possible to get a sharp SR image. The resolving power 

is limited by the blur, noise and inaccuracies from the signal model.  The result of 

using 18 LRVPIs (N = 18) with the new method is shown in Figure 5.6 and it can be 

seen that the image is over-smoothed. This shows that it is only really practical to 

increase the resolution by a factor of five sets of VPIs. In this work, the VPIs are 

sampled from H3DI system; therefore, there is no existence of the original VPI image 

(see Chapter 3). The aliasing artefacts present in the input VPI, Figure 5.5(a), are 

removed in (b) using the sampled VPIs approach to form the SRVPI. 

(e) 
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Figure 5-6 Result of the proposed algorithm on “Palm” real-world OH3DI using 18 sets (N = 18) of 
LRVPIs shows clearly the over smoothing SRVPI. 

There were also significant improvements over the images in (c) and (d) that were 

obtained using the frequency domain algorithms and spatial domain algorithms 

respectively. However, (e) used the bi-cubic interpolation and this is outperformed by 

the results from (c) and (d) with methods that can be used to obtain 2D signals from 

many sets of images, but they are computationally complex, which is their limitation. 

This means they can really only be used in domains where real-time reconstruction is 

not needed. This shows that the new method produces images with sharper edges 

and less noise as well false edge irregularities when compared to the other 

algorithms. More details for the evaluation are available in Chapter 6 section 6.5.2.    

5.3.2 OH3DI Experimental Results 

The SR technique was applied to full parallax real-world OH3DIs to test the proposed 

approaches’ performance. The “Box-Tags” and “Airplane-Man” images, both are 

obtained at 5616 × 3744 pixels, consisting of 193 × 129 micro-lenses, with EI 

resolutions of 29 × 29 pixels. The extracted VPIs from the first stage of the proposed 
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algorithm had the same resolutions as the number of micro-lenses (193 × 129 

pixels). Figure 5.7 shows the sampling stage of the “Box-Tags” VPIs. The sample rate 

integer factor was five as the SRVPI was created from fusing five sets of LRVPIs with 

each VPI shifted in the horizontal and vertical direction by one sub-pixel before being 

integrated in the second stage. A kernel size = [15 15] and (𝜎) = 2 was used in the 

post-processing stage for de-blurring of the SRVPI, which is demonstrated in Figure 

5.8 for the “Box-Tags” image. Figure 5.9(b) shows the blurred SRVPI obtained after 

implementation of the process of up-sampled-shift and integration, while a magnified 

region is shown in (a). The image de-blurring filter is used to remove the blurry noise 

effect in the SRVPI in a post-processing stage that results in sharper edges, as shown 

in Figures 5.10 (a, b). The overall sharpness is not affected but the steepness of 

transition between the edges is enhanced to make them more prominent. This gives a 

more natural blurring effect as the region that is in-focus has the blurring noise 

removed while the defocused region is smoothed, as shown in Figure 5.9. As can be 

seen from the magnified region (a) of the de-blurred SRVPI the display is much 

improved and the edge can be seen in the final image (b) compared to the results in 

Figures 5.9(a, b). Figure 5.11 confirms the effectiveness of the new method by using 

the “Airplane-Man” image that has objects at a range of distances from the camera.   

 

 

Figure 5-7 Sampling stage of the proposed algorithm on “Box-tags” real-world OH3DI, (a) one of the 
five LRVPI size 193 × 129 pixels used as reference for up-sampled shift and integration algorithm and 

(b) a set of the 5 LRVPIs been used in the experiment. 

(a) 

(b) 
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Figure 5-8 Post-processing stage of the proposed algorithm on real-world OH3DI, de-blurring process 
on “Box-Tags”. 

 

Figure 5-9 Results of stage up-sampled, sub-pixel shift and integration of the proposed algorithm on 
“Box-tags” real-world OH3DI, (a) a magnified region of the blurred SRVPI in (b). 

 

Figure 5-10 Results of final stage (post-processing) of the proposed algorithm on “Box-tags” real-world 
OH3DI, (a) a magnified region of the de-blurred SRVPI in (b). The size of the de-blurred SRVPI is 973 ×
 653 pixels in perspective projection geometry. 

(a) 
(b) 

 

(a) 
(b) 
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Figure 5-11 Results of real-world “Ariplane-man”OH3DI, (a) blurred “Airplane-Man” SRVPI and (b) de-
blurred “Airplane-Man” SRVPI. 

(a) 

(b) 
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5.4 Generating Multi-view Images from Holoscopic 3D Imageing  

The up-sampling, shift and integration approach as well as the de-blurring smoothing 

filter are used in this section to render different perception views from a H3DI 

system. However, to use a H3DI system to produce multi-view SR images is difficult 

as the size of the image sensor limits the use of wide viewing angle micro-lenses. 

When the proposed SR algorithm is used to generate multi-view SRVPIs it is not 

necessary to have large baselines in the viewing. In general, five to nine perspective 

projection views are used in the multi-view auto-stereoscopic techniques [179], while 

the VPIs from the H3DI technique are orthographic projection LR images. As 

previously stated in Chapter 2, the capture process in the 3D multiple views system is 

expensive due to multi-cameras as well as the calibration process is linked to their 

use. The use of multi-cameras is also not suitable for content producers as they are 

not very mobile, when compared to the H3DI system. Therefore, to produce seven 

views without complex and expensive multi-camera calibration the holoscopic 

capture process is suggested. 

It is possible to generate a composite VPI that is formed from the same scene as 

recorded from different perspectives through the use of a H3DI pixel format. This can 

be converted into a multi-view 3D image pixel format with the correct slanting. The 

following explains the rendering process where seven views are obtained from each 

EI of resolution 29 × 29 pixels. The process to generate the SRVPIs from the VPI’s is 

shown in Figure 5.12 in which different colours (1-29) correspond to the EIs’ 

positions. As also shown by different colours (SR1-SR7), each SRVPI view is 

maintained at a constant distance from each other in the rendering. For example, 

each EI has five views extracted from it to generate SR1. Within the EI, the first view 

is at x = 5 and y = 5, while for the second view is at x = 8 and y = 5. The y-axis is kept 

constant while the x-axis position is changed so that it is different but the distance 

between them remains the same otherwise there will be misalignments in the 

projection of the views causing bad 3D affects when displayed. Then the SR1 is 

rendered using the same parameters as in the previous section, with the integration 

algorithm to implement the up-sampling-shift. The horizontal direction is shifted by 

three views: that is, between pixel 1 in view 1 and the same pixel in view 2 is a 
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difference of three pixels, and this is done for all seven views.  As well as for the seven 

extracted views the parameters are set to be constant throughout. As shown in Figure 

5.12, each view has a difference of three pixels for each view’s axis position under 

each EI. Figure 5.13 shows the seven SR views that have been produced from the 

H3DI system.  

  

 

 

 

 

 

 

 

   

View 1 at position (x = 5, y = 5) View 2 at position (x = 8, y = 5) 

View 3 at position (x = 11, y = 5) View 4 at position (x = 14, y = 5) 

Figure 5-12 VPIs selection process to generate 7 SRVPIs. 
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Figure 5-13 Display of 7 “Box-tags” SRVPIs generated from a single H3DI. 

5.5 Depth Map Estimation using Multi-view SRVPIs 

Due to the size of the camera sensor the VPIs extracted from the H3DI system have 

limited resolution, as stated previously. In this there is a trade-off between the 

baseline and the views. This means that the resolution and depth perception of the 

views generated from larger image sensors are greater. When using a larger image 

sensor with the multi-view auto-stereoscopic 3D imaging technique the views will be 

in perspective projection rather than the orthographic views from the H3DI system.  

Techniques like these are very expensive to use when capturing the image as they 

need multiple camera configurations. In addition, the brain is required to join 

separate images to make the 3D perception. This can cause eyestrain and headaches 

for the viewer due to unnatural viewing caused by focusing on the screen plane and 

the convergence of their eyes on a location in space at the same time [180]. Thus, the 

3D technology is enhanced when the advantages from both techniques are combined. 

View 7 at position (x = 23, y = 5) 

View 5 at position (x = 17, y = 5) View 6 at position (x = 20, y = 5) 
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Both depth accuracy and a fast execution time have been achieved to improve the 

depth map estimation field obtained from the H3DI system via the use of the multi-

view SRVPI’s characteristics. The estimation of the depth map from the holoscopic 

technique is achieved directly from increasing the baseline between the views and 

the resolution of the VPIs. This is directly related to increases in the robustness of 

candidate feature edges/points during the setting and extracting of the feature blocks 

process. There is also a reduced complexity in the computation when the H3DI 

system is used to produce the 3D image from the VPIs in the depth estimation. This 

method nullifies the two main problems linked with the holoscopic system, which are 

the VPI’s limited resolution and computational complexity, by combining the 

advantages from multi-algorithms to optimise the performance implications in the 

real-world.  

This approach is very clearly focused as a simple and efficient way of generating a 

high resolution depth map from seven sets of multi-view SRVPIs with a long baseline, 

which improves the disparity estimation’s accuracy. Three techniques are combined 

to achieve this: 1) generation of SRVPIs by reformatting the extracted VPIs from 

orthographic (i.e. low resolution) to perspective (i.e. high resolution) projection 

geometry (see previous section). This sets reliable feature information blocks that are 

vital for improving the feature matching algorithm. 2) AFE detection algorithm for 

setting and extracting reliable 3D information (see Chapter 4), which is the key to 

success in realizing reliable features on SRVPIs for the next stage. 3) An adaptive 

hybrid multi-baseline algorithm (see Chapter 3) to improve the performance of the 

depth estimation and simultaneously maintain a low computation time. Figure 5.14 

shows the performance of the multi-view SRVPIs algorithm for depth map estimation 

and the proposed algorithm’s encompassing framework.  

When the multi-view SRVPIs algorithm is used for depth map estimation the principle 

steps are: 

1. A set of EIs are selected for the process. 

2. Using the strong interval correlations that are present in pixels moved by one 

micro-lens, transform the EIs into VPIs. 
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3. Use the new interpolation, up-sampling-shift and integration algorithm to form 

higher spatially dimensioned VPIs from the LR orthographic projection VPIs that 

have been converted into a perspective projection.  

4. To enable the extraction of a set of reliable features select the reference VPI as a 

training image using the AFE thresholding algorithm (as in Chapter 4). 

5. Employ the adaptive window shape (AWS) in the new version of the adaptive 

multi-baseline disparity algorithm that was highlighted in Chapter 3.   

 

Figure 5-14 Overall representation of the proposed procedure process for 3D high-resolution depth 
map estimation on real data “Box-Tags” OH3DI. 
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When compared to the other algorithms presented in Chapter 4, these experiments 

showed that the new method outperformed them when identifying the precise depth 

map results and the specific objects in a scene with regards to the accuracy and 

speed. In these tests the previous algorithms used sets of 49 LRVPIs to form the depth 

maps. Experiments have shown an obvious improvement on the depth map results 

achieved by the proposed method on several captured holoscopic 3D contents.  

Figure 5.15 shows a summary of the depth map estimation results generated via a 

range of different algorithms. The results of the auto-feature-point (AFP) algorithm 

are shown in the first column, the second has those of the auto-feature-edge (AFED) 

detection algorithm and the third has those of the proposed high-depth estimation 

method.  The third column clearly proves the improved performance of the proposed 

high resolution method from a set of SRVPIs. The rows in the figure correspond to the 

different H3DIs used with the first being the “Palm”, the second being the “Box-Tags” 

and the third being the “Airplane-Man”. 

   

 
   (a) “Palm UH3DI Results”  

 
(b) “Box-Tags OH3DI Results” 

 

(c) “Airplane-Man OH3DI Results” 

Figure 5-15 Comparison of the quality of depth map estimation results using various images with 
different algorithms. 
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5.6 Summary  

This chapter explained the depth map creation by reformatting holoscopic VPIs to 

perspective view image and how a H3DI technique can be used to generate multi-

view SRVPIs with computational SR method. Within the SRVPIs there is ample 

information that can be used for depth estimation.  This method produces a single 

view direction of the recorded scene by registering a set of VPIs. This registration is 

based on forming the VPIs by sampling the same pixel in the same location under 

different micro-lenses. This means that the set of LRVPIs have already been 

registered. The reconstructed SRVPI is made by reformatting a set of sample VPIs so 

that it has known offsets within a multichannel sampling problem. The new method 

transforms and refocuses the set of LRVPIs orthographic projections into a SRVPI 

perspective projection. The visual quality is improved through the use of a new 

interpolation approach that adds high frequency information contained within the 

scene to the final VPI.  

It has also been shown that when using the new SR algorithm it is possible to 

generate multi-view SRVPIs from a H3DI system. These multi-view SRVPIs have been 

used successfully for depth map estimation due to the rich information they contain 

as these results come from large image sensors. The information is successfully used 

for object detection and recovery, and then employed to extract robust 

correspondences, thus leading to a reliable estimation of 3D object depth. In this 

proposed approach the algorithm is implemented for the high resolution VPI to 

extract reliable feature information blocks by searching for the optimal threshold 

value, which guides the setting and then extraction of a reliable set of features.  

This chapter presented work that was focused on developing algorithms to extract 3D 

depth maps by reformatting holoscopic VPIs to perspective view images in the 

simplest way. It was shown that to determine the correct object from the scene with 

high accuracy the disparity analysis was very important. Exhaustive experiments 

demonstrated the consistency and efficiency of the proposed method to extract 3D 

object boundaries surfaces and forecast mislaid depth values for texture-less regions. 

The proposed method outperforms existing algorithms for overcoming 3D measure-

ment based object boundary limitations using a MATLAB simulation environment.
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6 Holoscopic 3D Image 
Segmentation 

6.1 Introduction 

3D imaging systems are judged to be successful when a view synthesis of suitable 

quality is obtained at the receiver. Generating a depth map with high quality 

synthesis is a challenging task when there is a lot of noise in the image and there are 

no extra cues related to the scene available. This is often due to passive pre-pixel 

depth estimation in the 3D systems. The methods used in computer vision are based 

on stereo principles rather than utilizing laser range scanning or computer graphics 

models. There is also noise introduced at the receiving end due to the quantization of 

the pixel depth [181]. This chapter presents a segmentation method for a H3DI 

system that offers interactive depth mapping of integral scenes.  

3D image segmentation systems are used to segment and determine the objects 

presence in a scene as the objects needs to be identified despite the noise, partial 

occlusion and clutter in the scene.  The approaches utilizing 2D cameras produce a 

fast result when there are no changes in illumination, shadows or occlusions as these 

cause them to fail to generate an accurate estimation of the object’s pose [182]. 

Researchers have proposed good potential algorithms for image segmentation that 

are based on simple edge detection and more domain specific algorithms such as with 

eye tracking algorithms, which have been used in a wide range of application areas. 

Despite being able to utilise a large amount of previous research when developing 

Chapter 6  
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new computer vision applications, the robustness to cope with the effects of various 

noise is still lacking.   

“Segmentation” refers to an image being partitioning into various sections in 

computer vision. Nevertheless, the proposed work focuses on separating the 

foreground from the background. This work does not just focus on segmentation 

algorithms despite them being the end objective. In addition, the interactive 

algorithm will be used to generate the base-map that is used to determine the regions 

of interest in the image. Thus the basis map will be referred to as an interactive map. 

This map provides the information about the areas that will be of interest to the 

viewer, which should be the focus. As far as this work is concerned the objects in the 

scene are defined by the object segmentation and by the 3D-Interactive-Map (3DIM). 

The proposed 3D object segmentation technique is a hybrid method that combines an 

existing 2D segmentation technique with the 3D depth cues. This means that the 

3DIM uses information obtained from the 2DVPI segmentation module and the 3D 

depth estimation map. This enables the advanced object registration that is needed 

by editing tools. The proposed 3D object segmentation framework is shown in Figure 

6.1. The visual cues and interactive map are encoded together, so that additional cues 

about the contents can be correlated. 

 

Figure 6-1 Block diagram of the 3D object segmentation framework.  
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This means that for a 3D object to be recognized the related foreground regions and 

depth information map needs to be identified. To be able to use the H3DI system to 

produce the 3DIM model, the segmentation of the extracted 2DVPI is essential. The 

module gives cue of the object in the scene via incorporating the shape before the 

background noise/objects are removed in the resulting depth map. In other words, 

the segmented VPI is active as a segmentation filter mask module.  As far as this work 

is concerned, the most important filters are the feature extraction filters, which 

produce binary mask feature maps that are represented as “0” or “1” values. Zeroes 

denote non-salient regions, while ones denote salient regions. This mask map is 

combined with the depth map’s output and gives the descriptive output (as shown in 

Figure 6.1). For 3D image segmentation from H3DI systems, there is no solution 

despite there being many general segmentation, methods. It was necessary to make 

yet another segmentation, as part of this work because all the current ones use a set 

of fixed algorithms that are combined in a fixed configuration. This means that using 

an adaptable environment over a fixed one is a way that successful data input 

processes can be identified. 

This chapter focuses on the separation of tangible 3D objects from a 3D scene using a 

3D image segmentation algorithm. It has always been a great challenge to effectively 

extract the foreground surrounded by backgrounds to distinguish the object in the 

scene from the background in a single image. For a 3D object to be recognized the 

related foreground regions and depth information map needs to be identified. This 

was achieved despite the area of research being new. Two novel unsupervised 

segmentation methods that generate interactive depth maps from single VPI 

segmentation were suggested and tested on real data and C.G. H3DIs. Both techniques 

offer new improvements over the existing methods due to their simple use and being 

fully automatic; thereby, producing the 3DIM without human interaction. Section 6.3 

and 6.4 give discussion, implementation and results for each method.    

6.2 Related works  

There are two types of H3DI reconstruction techniques, namely: optical and 

computational [183, 184]. Based on ray optics, a lenslet array is used in the 

computational H3DI reconstruction technique to inversely map EIs. The object 
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images are reformed as depth plane object images in the output plane, where the 3D 

object is originally located [185]. This means that the depth data of 3D objects in a 

scene can be extracted when the foreground (object) can be separated from the 

background (noise or any other objects on a different plane).  

The capability to reconstruct the depth plane of 3D objects along the output plane is a 

unique feature of the computational H3DI reconstruction technique. Using the 

estimation of the blur metric of each image from the object plane, the computational 

reconstruction of depth plane data from a H3DI technique has recently been 

accomplished to generate a 3D object [185]. When the points of inflection are 

examined it is possible to use the blur metric to see which objects are or are not in 

focus. The blur metric is low when the image is in focus and high when the image is 

out of focus. This enables the object’s original output plane to be identified and the 

depth data extracted. This has been proven by experimental results. However, near 

the edges of the objects the performance becomes worse as there are many local 

maximum points in the contour plane for instance when there is a small change in the 

values of the blur measure a point might be between two planes. This method is 

tested using objects that are positioned only 60 mm in front of the camera (Figure 

6.2). This means that when used with objects in the real-world that are much further 

away there can be problems with the small discrimination values of the points of 

inflection that occur in the middle of the located object points’ plane and neighbour 

planes. 

 

Figure 6-2 Experimental H3DI system setup that uses pinhole array [185]. 
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At the moment, the use of the segmentation technique on a VPI has been presented 

[186] and it uses a novel feature approach for 3D object segmentation from a H3DI. 

This method uses a graph based approach in a multi-level system to integrate various 

analysis and processing algorithms to form an environment for use with any type of 

3D object segmentation. The first step is to use a smooth filter from the segmentation 

technique on the 2DVPI to change the extracted VPI into the frequency domain so 

that the filter can be processed in a rapid way. It is assumed that for the spectral 

residual the average VPI has a smooth spectrum that enables the 3D object to be 

located in the scene; anything that is not smooth should be something that the viewer 

needs to recognize. Then a Canny edge detection algorithm is used to determine the 

feature edge from the original VPI for object separation, as well as the closing of small 

gaps that might be present around the edges of the objects via a morphological 

closing operation. Then all the values that are set to 1 are counted to determine the 

objects from the background (set to 0) to form a map that has been transformed into 

a logical map using the smooth spectrum filter map. Then the feature edge map is 

generated by starting from the maximum value that is found in the smooth spectrum 

map. The final result is a map where objects are shown by values that are “1” and the 

background by “0”.  

Experimental results have shown that 3D objects in the scene can be correctly 

identified by using the previously described approach by producing a separation 2D 

filter map from the H3DI technique. When optimising the result it was found that the 

VPI’s size was a critical factor and it was possible to get adequate results when the 

input data had a size of 64 × 113 pixels. The better the resolution, the fewer details 

were effected. However, if an object is used that has a resolution that is too high then 

it will no longer be considered a complete object. A lower resolution generally gives a 

more defined outline for the objects, which is what the algorithm detects.  This means 

that the algorithm is only suitable for use with specific sized holoscopic 3D content: it 

lacks generalisation. In addition, for the algorithm to function successfully the 

determined edge map must be closed and this depends on the quality of the 

calculated feature edge map. In this work the Canny edge detection algorithm has a 

range of values that can be adjusted, and these settings have an impact on the 

algorithm’s effectiveness. When smaller Gaussian filters are used there is less 
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blurring that enables smaller and sharper lines to be detected in the Canny algorithm. 

In contrast, if a large filter is used, then the values generated from each pixel will be 

spread over a larger area resulting in blurring. The threshold needs to be set to the 

best position in the middle since too low noise in the image is determined to be 

important then when it is set too high, objects will be missed.  As often each image 

needs a unique threshold therefore it is not possible to set a generic threshold, which 

works on a wide range of images [187]. 

6.3 3DIM Generation Based on Intensity Segmentation 

Generating a well segmented 3D object level requires an algorithm that is capable of 

identifying two items: foreground/background regions and their boundaries. This 

work focuses on the segmentation of foreground objects from background regions 

that are in the scene starting from the centre of the image. It focuses on improving 

accuracy of the foreground extraction that produces an accurate 3DIM. This provides 

an improved solution to the 3D segmentation problem by integrating 3D information 

techniques and 2D foreground object segmentation technique. The algorithm 

proposed in [188] is used to extract the foreground map using a morphological 

operation for the reconstruction of the 3D object.  

Morphology consists of various operations for processing the image that use shapes, 

and there are many examples of morphological segmentation algorithms in the 

literature. While another group consists of mathematical morphology, within which is 

a set theoretic shape oriented method that considers the image as a set and the kernel 

operation is referred to as a structuring element (SE). This means that the input and 

output images are the same size when the SE is used: the output pixel values are 

based on the corresponding value from the input and those of the neighbouring 

pixels. The SE used and its size determines how many pixels are added or removed 

from the objects located within the image. A strong mathematical concept is the basis 

of the morphological operation and is used to alter the size, shape, structure and 

connectivity of the objects found within the image, and consists of a range of binary 

and grayscale operations.  

6.3.1 Morphological Reconstruction 

This algorithm used the following morphological operators: 
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1. Erosion is used to remove pixels from the edges of objects in the image. It splits 

joined objects or shrinks objects by removing extrusions. 𝑓(𝑥, 𝑦) ⊖  𝑆𝐸 gives the 

erosion of an image 𝑓(𝑥, 𝑦) by a SE. This means that all the pixels under 𝑓(𝑥, 𝑦) are 

in the foreground and should be left alone, but if not, then the current pixel is in 

the background and should be classified as such. The following formula can be 

used to identify the new pixel value where the SE’s original place was (x, y): 

𝑔 (𝑥, 𝑦) =  {
1  𝑖𝑓 𝑆𝐸 𝑓𝑖𝑡𝑠 𝑓(𝑥, 𝑦) 
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠             

                                                 (6.1) 

2. Reconstruction is a method for identifying shapes in an image and providing useful 

cues related to them. It  can extract marked objects, define regions of brightness 

that are surrounded by areas of dark pixels, find and remove, if necessary, objects 

that cross the images’ edge, find and then fill object holes, remove areas that are 

abnormally high or low as well as many other operations [189]. The method is 

very powerful when used to identify objects that are completely within the image. 

The method needs two images and the SE. One image is the initial point that acts as 

a marker, while the other confines the transformation and acts as a mask. The 

process starts from the peaks in the marker image that is developed from the mask 

image. Then the peaks start to spread and fill the mask image until the values 

become constant. When the SE is located at the origin, then K and M are the mask 

and marker images, respectively. The following equation defines the 

reconstruction from M to K: 

𝑀𝑛𝑒𝑤 = (𝑀𝑜𝑙𝑑 ⊕  𝑆𝐸) ∩ 𝐾           𝑤ℎ𝑒𝑟𝑒, 𝑀 ⊆ 𝐾               (6.2) 

3. Dilation inserts pixels around the object boundaries in the image. It enables breaks 

to be repaired or objects to be made bigger. It is denoted by 𝑓(𝑥, 𝑦) ⊕ 𝑆𝐸 which 

shows the increase in size of the image 𝑓(𝑥, 𝑦) by SE. This means that when the 

current pixel is in the foreground, all the other pixels under 𝑓(𝑥, 𝑦) should be the 

foreground in the output. The following equation determines the new pixel value 

when the SE has its origin at (x, y): 

𝑔 (𝑥, 𝑦) =  {
1  𝑖𝑓 𝑆𝐸 ℎ𝑖𝑡𝑠 𝑓(𝑥, 𝑦) 
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠                

                                     (6.3) 
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Computational costs in the system can be reduced when dilating 𝑓(𝑥, 𝑦) by SE and 

the result should also be dilated by SE in a process called decomposition of the SE.  

6.3.2 The Proposed Technique 

The proposed method provides fully automatic 3D image segmentation by identifying 

the objects in the 3D scene to those from the 2D image, and the algorithm is called 

morphology-based-threshold (MBT). The method is based on the spatial intensity 

distribution in the image, which forms the simple thresholding technique. In the 

method, each pixel is defined as either an object point or a background point by 

giving each pixel an intensity value T (threshold). All the pixels in the image are 

assigned a threshold value independently of their sounding pixels, which means the 

threshold value is constant throughout the image. The method classifies high-

intensity pixels as interesting and those that have a low-intensity as not interesting. 

Then the image is used with a specific threshold value to determine the regions of 

interest by generating a binary mask. As shown in Figure 6.1, the proposed MBT 

algorithm is used to identify the foreground objects in the scene. Then a 3D object can 

be produced that is noise free and in which the foreground and background are 

separated from each other by using the 3D information map (generated previously) 

and the 2D foreground mask. MATLAB software is used to run the MBT algorithm 

following the flow diagram presented in Figure 6.3. As stated previously, the 

morphological image processing uses a strong mathematical concept that 

incorporates a range of binary and greyscale operations. The method uses similar 

pixel intensities as given by the radius in the training reference VPI, morphologically 

manipulated operations of erosion, reconstruction and dilation that give a single 

value for pixel intensity. All of these methods have been discussed in detail 

previously. The following steps form the proposed MBT method: 

1. Based on the intensities’ variation from black to white in the image, the RGB 

training VPI is transformed into a grey level image. 

2. Then the image I has all its features extracted using multi-scale morphological 

operations. The object in the image is segmented using a dual multi-scale 

reconstruction operation. The first step is to use the SE of a specific size to segment 

the image by opening reconstruction morphological operations.  
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3. This is more effective than using standard opening as the object’s overall shape is 

not altered while small blemishes are removed. Then for the specific situation, the 

opening process is erosion followed by dilation. As shown in Figure 6.3(a), an SE 

value of 30 gives excellent segmentation while, extracting all the objects in the 

scene. 

4. In step 2 i.e. the complement result, the background and foreground swap 

positions, with the background becoming the foreground and vice versa (Figure 

6.3(b)).  

5. The background and foreground from step 3 are then indexed using a threshold 

that is equal to the maximum intensity value in the object [185]. 

6. The algorithm from [190] is used to fill holes via set dilations, complementation 

and intersections. Starting at point p inside the boundary, all the background 

points are filled with “dark” values, while the foreground points are filed with 

“light” values. The following morphological operation is used to fill the “dark” 

areas:  

𝑋𝑘 = (𝑋𝑘−1  ⊕  𝑆𝐸)   ∩  𝐴𝑐                                                (6.4) 

where, the initial assigned point is 𝑋0  = p, the symmetric structuring element is SE 

and the previous step’s output for set A is 𝐴𝑐 . When the iteration step k is 

 𝑋𝑘 =  𝑋𝑘−1 the algorithm terminates, where, as shown in Figure 6.3(c-d), the set 

union of (𝑋𝑘 and A) contains the filled set and its boundary. The region filling 

process is shown in greater detail in Figure 6.4. 

7. Then to generate the 3DIM of the scene, the result from step 5 should be masked to 

the depth map (Figure 6.3(e)). The interactive content is created from the 3DIM 

that comes from the combining of the 2DVPI segmentation module and the 3D map 

to identify the objects that compose the scene. This basically means that the areas 

in the image from the objects and background are identified. Any regions that have 

been miscalculated will be dealt with and removed during the process. 

The process described above can accurately separate the objects from the 

background and identify areas that have been miscalculated before removing them. 

When foreground mask map and the object are matched approximately it is possible 

for the filter to separate an object with a very detailed border from the scene.  
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Figure 6-3 Proposed MBT algorithm flowchart and the results obtained from each step on “Tank”. 
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Figure 6-4 Morphological region filling process, (a) set A, (b) Complement of A, (c) structure elements, 
(d) initial point inside the boundary, (e-h) various steps of Eq. (6.3), (i) final result, which is the union 
of (a) and (h) [190]. 

6.3.3 Experimental Results 

Several real-world and synthetic H3DIs with various texture qualities were used to 

determine the proposed MBT algorithm’s performance. This section presents some of 

the results obtained, using the new 3D object segmentation method. The intended 

aim for the algorithm is to generate segmentation of the H3DI system during the 

process of producing a 3D interactive map. Two techniques are integrated in the 3D 

segmentation module, the first being the proposed 2D segmentation technique that 

identifies objects in the training VPI with a 3D information map estimation technique 

𝑋7  ∪  𝐴 𝑋7  𝑋6  

𝑋0 =  𝑝 

𝐴 SE 𝐴𝑐  
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presented in Chapter 4. Some results are presented in Figure 6.5 for the real-world 

H3DIs (kidney, tank, horseman and palm) as well as synthetic images (plane and 

table).  The results show that the regions of greatest interest from the images are 

represented by the 2D foreground masks. In the final output the foreground and 

background areas are clearly separated using the final output that is a binary mask. 

The background is a dark blue colour, whiles the foreground, as represented by the 

binary mask, is red. Then it is possible to generate a wealth contour map of the 

objects when using the foreground mask, which shows that it is suitable for object 

separation: it can determine the borders of the objects and remove them from the 

background. Once the map has been generated from the previous steps it can be used 

to improve object separation from the depth information map due to the borders of 

the objects being very pronounced or it can assist in the removal of noise associated 

with the images when a filter was used. Some of the 3DIMs that were used to test the 

framework of the 3D object segmentation approach (Figure 6.1) are shown in Figure 

6.5. The algorithm works well as it prevents the background from being selected 

when determining the 3D object in the scene. In addition, the results showed that the 

3D object segmentation approach relies on the quality of the foreground mask; while, 

the degree of match approximation between the filter masks and object is important 

when the object to be separated has a very detailed border.  

Experimental results show that the contours closely belonging to the shape of 

an object and thus, used to improve the separation of the objects’ depth information 

map, can also be implemented as a filter to remove noise associated with images. 

Accordingly, the 3D objects were correctly localized. However, section 6.5 includes 

both subjective and objective evaluations of the approach, which has identified some 

over-segmentation errors. This mainly occurred due to the acquisition of false edges 

of markers, which highly depends on the gray level distribution (high variation 

between background and object).  
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Figure 6-5 Outline of the proposed MBT segmentation algorithm, representing the foreground mask 
results. The first and third rows display the foreground mask for real-world and C.G. H3DIs data and 
the others rows display their training VPIs. 

6.4 3DIM Generation-based Feature-Edge Extraction  

This section details the integration of the result of the edge detection algorithm 

obtained by the local histogram analysis process to form a new segmentation 

technique for the H3DI system. This method is used to identify the objects and 

separates them from the background. This combines a technique of grow regions and 

edge information from the edge detection method that was presented in section 4.5. 
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Due to its simplicity, high speed of operation and ease of implementation, 

thresholding is a very powerful method for use with digital image processing when 

the image is segmented and the objects are separated from the background. The 

method used in this section is based on automatic global multi-threshold values to 

segment the grey levels extracted from 2DVPI images into the objects and their 

backgrounds. Generally, the thresholding  technique from the histogram of an image 

is based on the assumption that there will be peak values identified from a histogram 

of the grey values from the image and the other values will be clustered around them, 

so if the peak value can be identified then the threshold can be identified [189-190]. 

This means that the threshold can be identified very simply, if there is an identifiable 

peak to the histogram, as this is all that needs to be detected. However, in many cases, 

interesting structures and objects within an image may occupy a small percentage of 

the background i.e. noises or other occluded objects due to several peaks of very 

unequal amplitudes separated by a broad contains only one peak. Therefore, the 

threshold method based on the histogram of one image is limited.  

The above difficulty can be overcome using the approach presented here which is 

based on the selection of the threshold as determined from histogram edge pixels. In 

the grey level histogram there should be a single peak contained within the pixels 

related to the neighbourhood of an edge that corresponds to the boundary of the 

object. Therefore, as long as the edge identification was accurate it is possible to use 

the grey levels in the boundary to form the threshold that enables the separation of 

the object from the background. In this process, the edge detection has a very 

significant influence on the techniques quality, and when generating the grey level 

threshold the edge position accuracy and edge thresholding process are both 

extremely important.   

Previously, the use of edge information when determining the threshold in a range of 

algorithms has been suggested [191]. However, the use of these algorithms is limited 

in automatic systems as the threshold value has to be set manually. The following 

section details the process of using the results from section 4.5 related to the use of 

multi-quantized local histogram edge detection in the automatic segmentation of a 3D 

object in a scene. 
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6.4.1 Edge Based Multi-Quantized Local Histogram Analysis  

In the majority of processing applications, before feature extraction and object 

segmentation occurs, edge detection will be used as a fundamental tool. This is when 

objects have their outlines defined to separate them from the background. Most often 

the edge will be detected in the spatial domain as this generates better results while 

requiring less computational resources. This work used Multi-Quantized Local 

Histogram (MQLH) edge maps with multiple thresholds to obtain a single feature-

edge map. In the process, a single feature-edge map is generated by integrating 

discontinuous edge segments from a higher resolution distribution ( r ) and those 

obtained from a lower resolution at full-width-at-quarter-maximum (FWQM) ( r + d). 

The strong edges, which are set by the first starting point (𝜎𝑟) (low threshold) and the 

weak edges, which are set by the second starting point (𝜎𝑟+ d) (high threshold) are 

presented in Figure 6.6.  

 

Figure 6-6 Illustration of the gradient magnitude histogram of the VPI showing the two different values 

of 
r called the quantizer starting point that identifies the estimated noise levels. 

The point at which the quantizer started (
r ) was set so that it was the same as the 

value for the grey noise as estimated from a smoothed histogram distribution of the 

thinned gradient magnitude image. The assumption is that all values less than or 

equal to the estimated value will be noise while those that remain are the significant 

features as well as some noise. This process needs to be repeated with increased 

values of 
r  to remove more noise as all of it is not removed in the first pass.  
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It was shown from the preliminary experiments that noise reduction could be 

achieved when the estimated 
r  value was increased by moving it a certain distance 

(d) to the strong end of the gradient magnitude histogram. The value for (d) is 

generated automatically from the 
r  value that matches the grey level at the FWQM 

of the distribution. From this, two quantized images are produced and no important 

edge segments are lost. From these, many binary images with different edge 

resolutions are generated from the non-overlapping segment block quantized images 

when using a single scale local histogram analysis. If the local histogram presents a 

single peak it will be labeled as a background block and all pixels within it are set to 

zero; while, the histogram will have two peaks, be bimodal, if there is an edge 

segment in the block. From this a final feature-edge map is obtained using the edge 

combining process. The boundaries of objects are located from the edge pixels and 

then developed into a region that can be used to separate the objects and background 

in the extracted VPI.   

The MQLH edge maps method is adaptive as based on the image’s noise level, which 

is an attractive feature. This is due to the required parameters being generated from 

each image, so that the noise reduction process is made adaptive depending on the 

noise present in the given image without the need to increase the size of the local 

histogram smoothing operator. The method also reduces the computational 

resources needed as a minimum size 1D Gaussian operator with size W = 3 is used. In 

addition no parameters need to be supplied as all the required parameters come from 

standard deviations of the Gaussian smoothing filter and all the parameters are fixed 

via the edge extraction process.  

6.4.2 Labelling Contour Process  

When the edge map has been detected all the feature-edge pixels are marked as “1” 

and the background pixels become “0”. The edge pixels are most often located at 

transitions between two different regions and so can be used a seeds from which the 

growth of the region around them can be initiated. This means that the gray level 

intensity in a relatively homogeneous object drops in between the shapes of those 

objects. Generally the objects will be lighter than the background, and between the 

dark and light areas there will be a transition region. This transition region will have 
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intermediate grey levels and these levels correspond to the edges of the objects. This 

grey boundary will enclose an object where the pixels will have a greater value than 

those of the boundary.  

For each object in the image there will be a contour that is a continuous line that 

separates the object from the background with a grey level value that is between the 

values of the object and background. This means that the 3D interactive-map 

generation approach can use the contour edge pixels as seed points from which the 

boundary can be grown by adding more pixels with similar values relative to the 

background. As this method only uses FED to initialize and grow the region rather 

than using a homogeneity criterion it is advantageous compared to other methods. 

These are the same feature-edge pixels used in Chapter 4 (section 4.3) to estimate the 

depth map, and simulation results showed that they have the potential and 

consistency to generate a 3D object map from the H3DI technique. The automatic 

seed point extraction process is presented in Figure 6.7. 

 

Figure 6-7 Illustration of the automatic seed points extracting process. 
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6.4.3 Region Growing Process 

Two popular techniques that are commonly used for image segmentation are region 

growing and feature-edge detection. When region growing is used with the 

segmented images, similar pixels are grouped into regions starting from seeds, while 

gradient discontinuities are used in edge techniques to segregate the pixels. In region 

growing the seed pixel has compatible neighbouring pixels (those with similar 

properties) added so that a region is formed based on predefined criteria [192]. 

Region growing is the preferred technique as it has benefits over edge detection such 

as being more robust against low contrast problems and providing a solution to 

connectivity issues [193]. Recently there has been much encouraging work on 

automating the seed point and threshold value selection. Both region growing and 

feature-edge based segmentation methods, have positive and negative aspects, and it 

has been suggested that combining both methods would generate much better results 

over all [194]. It has also been suggested that in region growing, already-extracted 

edges and completion of these edges can be used as well as pixel and neighbourhood 

similarity in region joining decisions [195].  

In this work region growing is based on the extracted feature-edge information that is 

used to select pixels automatically and guide the growth. The region growing starts 

from a seed point and selecting the correct point is very important for the 

segmentation result. The seed point has to be selected from within a region of 

interest (ROI), otherwise the final segmentation will be definitely incorrect. Recent 

studies have focused on integrating region growing and edge detection; for example 

this hybrid method using mathematical morphology is presented in [196]. A fuzzy 

technique was used to automatically determine the threshold that controlled the 

region growing process. When used with the 3D segmentation of MRI brain images 

the 3D segmentation method gave results that were superior to those obtained from a 

single technique used in the segmentation. A combined region edge preserving 

smoothing algorithm has been developed that removes the errors commonly 

encountered when using the methods individually [197]. A criterion has been 

suggested that would determine if the growing process should continue or terminate 

when each new edge pixel is encountered [198].  
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In this proposed technique, the following equation gives the syntax for the function to 

perform basic region growing: 

𝑉𝑃𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑔𝑖𝑜𝑛𝑔𝑟𝑜𝑤 (𝑉𝑃𝐼, 𝛼, 𝛽)                                        (6.5) 

where, the segmented output image is 𝑉𝑃𝐼𝑜𝑢𝑡𝑝𝑢𝑡, an integer value is used to identify 

the parts of each section, the image to be segmented is VPI, the input feature edge 

map has 1’s where all the seed points are and 0’s in the other places is 𝛼 and the array 

is 𝛽, in which there is a value for each location within the VPI. A noteworthy form of 

boundary-oriented pixel labelling for an automatic seed growth algorithm has been 

established in which the object is determined via dilating its boundary step by step 

[199]. Via the use of an 8-connection aggregation window, it is possible for this edge-

oriented seed pixel determination method to maintain parallel region growth. 

 When the seeded area is first being grown using the seed region growing (SRG) 

procedure, the cues related to the boundary pixels and the centroid for a certain area 

are equal. When this method is implemented, all the regions commence growth from 

their seeds simultaneously, which is a major advantage. The assumption that 

underlies the algorithm is that when an unlabeled pixel is encountered that is next to 

a 3 × 3 sized aggregation window it will be similar to the adjacent boundary feature-

edge pixel (BFEP) and thus it will replace the BFEP region once merged with it. Then 

the pixel’s intensity should be compared with that of the current test pixel and it 

should be merged into the region that it is most similar to, thereby becoming the new 

boundary pixel. To grow the regions, all unallocated neighbouring pixels should be 

compared with the regions. It should be noted that the results obtained will be based 

on the specific choice of seed pixels.  

6.4.4 Proposed Methodology and Implementation 

This work aims to identify, extract a depth information map and produce a 

segmentation of a 3D object in the scene from a H3DI system via the use of 3DIM. The 

3D object segmentation method is based on the methods of 3D information map 

technique and that of 2DVPI segmentation to form a combined segmentation 

technique. Within this, the 2D segmentation used in this approach is a hybrid method. 

This is a combination of edge based and region growth methods to produce the 2D 
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foreground map; and, this hybrid method also contains a filter that enhances object 

separation by clearly highlighting the boarder. Figure 6.1 presents the overall 

framework of this method where the depth map is merged with the VPI segmentation 

module’s output to generate the final form. Using the previous method as a base, this 

work explains a simple segmentation method to highlight the objects and separate 

them from the background. The edge map, produced from the FED algorithm, is used 

to determine the depth of the objects within the VPI displacement with an equation, 

and this produces the mathematical relationship that is present in the interaction of 

the object depth and correspondence VPI displacement. As explained in Chapter 4 

section 4.3, the adaptation of the multi-baseline technique is implemented and it uses 

the fact that when there are many VPIs of the same scene there is extra information. 

The same extracted features that identify the object boundaries are also used as seed 

points for the region growing.  

6.4.5 Experimental Results 

The 3D object segmentation method was implemented on real-world H3DIs with the 

feature-edge detection stage being undertaken using the edge detection algorithm 

from Chapter 4 that produced reliable features referred to as “feature-edges”. The 

object EFs maps produced are distinctive and robust when there are changes in the 

VPIs, as they have strong local feature information. The EFs can be used to both 

highlight geometric constraints and provide strong feature correspondences between 

the VPIs that form the depth estimation, while also being the initial seed locations. A 

range of real data H3DIs were used to test the algorithm. The “tank” image has a poor 

texture while the “horseman” is noisy with various levels of texture. Figure 6.8 

presents the outline generated from the EFs extraction, which is the first stage. Binary 

object outline EFs maps were produced from both images. The white represents the 

object feature-edges, as denoted by “1’s”, and the black is the background, as shown 

by “0’s”. The object boarders are very clear and used to enhance the separation of the 

object. As can be seen from the results, a suitable object contour is generated from 

which the fine details can be identified. For each H3DI, the center extracted VPI is 

presented in Figures 6.9 (a, c) while Figures 6.9 (b, d) shows the 2D foreground 

masks that are produced in the second stage that are the growth regions. 
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Figure 6-8 Illustration of the object outline seed points map, (a) Tank and (b) Horseman, and their 
magnified section. 

As all the contours of all the objects can be observed after the edge map cleaning 

process that takes place in the first stage, the segmentation process has been 

successful and it can be used to enhance the object separation. Now the binary object 

segmented map can be used as a filter to ensure the segmentation and separation of 

the 3D objects from the scene, which is also referred to as 3DIM.   
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Figure 6-9 Outline of 2D segmentation algorithm, representing the foreground mask results, (a) Tank 
and (b) Horseman. 

Further tests were performed with the algorithm on two type images; real and C.G. 

H3DIs, that were recorded using an alternative cylindrical lens array to the one used 

previously. It can be observed from the results that the algorithm was able to 

determine a surface with smooth contours and identify objects even in images with 

poor texture qualities. Binary masks from different VPIs with various textures are 

shown in Figure 6.10, and these can then be used by the algorithms to undertake a 

useful task.  
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Figure 6-10 Results of the proposed 2D segmentation algorithm. (a) The first column represents the 
central VPIs, the first and second images are the synthetic VPIs “plane and table”, respectively, while 
the third VPI is real data of “palm”, (b) foreground mask results obtained from the extracted VPIs. It is 
worth pointing out that the VPIs are displayed in colourmap “jet“ ranges from blue to red due to 
uncontrolled changes in luminance that prevent meaningful conversion to grayscale for display and 
different regions of the image are mainly distinguished by this colourmap [200]. 

 

(a) (b) 



Holoscopic 3D Image Depth Estimation and Segmentation Techniques 
 

165 
 

The part of this work that is novel is when the generated 3DIM automatically 

integrates the depth estimation technique and the FEs segmentation technique. The 

depth map estimation process is related to the use of the final FEs map to generate 

the depth through extraction VPIs and disparity (as in section 4.3) when producing a 

3DIM. When the depth map and the VPI segmentation module’s outputs are joined, 

this will be the final output. It should be noted that the results presented in Chapter 4 

Figure 4.18 and Chapter 5 Figure 5.14 are the preliminary results from the 3D object 

segmentation algorithm as shown by the 3DIMs. All the 3D objects generated by the 

H3DI system have been generated as required by the 3D segmentation process.   

When the final 3DIMs are studied it can be seen that the majority of the object 

boundaries have been correctly identified, and that there is minimal noise. The main 

reason for this is that the auto feature-edge detection algorithm has performed well 

and provided efficiency and robustness for the varied domains. In the first it set and 

selected the FEs for the 3D depth map estimation. Then in the second it enabled the 

separation of the objects from the background in the VPIs. 

6.5 Evaluation of the 3DIM 

When evaluating whether the segmentation algorithm meets its targets, it is vital to 

be able to determine the quality of the output result. The output’s targets are related 

to specific applications. Some situations may need very fine details to be identified 

while in others such a fine level of detail may not be required. The 3DIM presented in 

this work is used to find the places where there are objects with a suitable level of 

precision that they can be separated from the background. To evaluate whether a 

given segmentation algorithm reaches the application goals, both objective and 

subjective evaluations have been used to determine if the 3DIM generation algorithm 

meets the requirements.  This section aims to present and analyse the output results 

of the various tests performed according to the foreground object extraction 

techniques from SRVPI, which was presented in the previous chapter. The objective 

and the subjective test scores are used individually to evaluate the performance of 

the two foreground object extraction techniques, the 3DIM creation and SRVPI 

generated process using the numerical data collected as well as through visual 

comparisons algorithms. 
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6.5.1 Objective Evaluation: Scores and Analysis  

The proposed foreground object segmentation techniques are evaluated 

quantitatively to compare the performance of both techniques using synthetic and 

real data VPIs. Then the outputs from the methods presented are compared to that of 

state-of-the-art segmentation algorithms. Previously, foreground objects were 

compared to “ground truths” with regards to false negative error (FNE) and false 

positive error (FPE), for the foreground pixels missed and background pixels 

misclassified, respectively [201]. When considering the results from various 

environments the foreground objects were determined to not be accurate enough. An 

Intersection-Over-Union (IOU) similarity measure was developed to combat the 

above problem where the “detected region” and “ground truth” were used to test the 

foreground segmentation [202]. The following is the definition of the similarity 

measure: 

IOU (DR, GT) = 
𝐷𝑅∩𝐺𝑇

𝐷𝑅∪𝐺𝑇
                                                              (6.6) 

where, the detected region and the related ground truth are represented by DR and 

GT respectively, while the false positive and negative errors become a single 

parameter.  

This method reviews the function of the two foreground object segmentation 

techniques used for forming the 3DIM, with the IOU similarity measure that is 

presented in Eq. 6.6 used. IOU similarity (or Jaccard similarity) has been the standard 

measure since 2008 to determine the level of pixels that are incorrectly labeled [203]. 

Manual segmentation was used to separate the “ground truth” foreground objects 

pixels so they could have their values determined, and various examples of the 

ground truth binary masks and segmented images are shown in Figure 6.11.  

For the IOU the values will be in the range of “1” to “0” where a value of 1, shows that 

the DR and GT are exactly the same, and then the range of values to 0 show various 

levels of dissimilarly. Using the two methods, Eq. 6.6 has been used with the results 

obtained, and the results were compared to those obtained from existing 

segmentation techniques. The IOU similarity measure was used with the active 

contour based segmentation model, as this has a clear curve for the object [204].   
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Figure 6-11 Example images considered in the test, the left column shows the binary mask of 
“horseman and tank” segmented manually from the original images, the extracted ground truth object 
image using the binary mask is shown in the right column. 

An active contour based object segmentation algorithm [205] has been applied as it 

has previously found uses in a wide range of areas, such as medical imaging, motion 

analysis and image registration. When using the method it is necessary to manually 

set the anticipated contours.  

Examples of the active contour process [205] using 250 manually identified points 

that are located close to the object edges are shown in Figure 6.12(a, b), while the 

binary masks and segmentation objects that are formed are shown in Figure 6.12(c-

e). The values obtained from similarity measures for the contour algorithms from real 

and synthetic images are presented in Table 6.1. From the tested images, six that 

were VPI real or C.G. were used further in this section.  The images contain various 

textures and changes in the background to enable the methods to be evaluated, and 

considering the challenges, both methods provide good results. Table 6.1 shows a 

comparison of the methods similarity measures, which are illustrated in Figures 

6.9(c, d), 6.10(b) and 6.12.  
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Figure 6-12 Process and output of active contour model on some test VPIs using [205] model. (a) 

“Horseman”activecontourprocessused to locateobjectcontour toextractobject in thescene, (b) “Tank” 
active contour process shows the generation of binary mask of “Tank”, (c) active contour method  
binary masks results, (d, e) segmented object in the scene and their  extracted objects. 

The new region-growing based feature-edges method shows an impressive result 

compared to the intensity distribution method. This was due to the information 
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related to the surface structure that came from the feature-edge maps via the use of 

the MQLH edge maps at a range of thresholds. In the intensity distribution 

segmentation method the object mask and its quality is related to the morphological 

structuring elements and their size. This was used to probe the object’s shape in the 

image. This parameter needs to be determined manually.  

When comparing with the manual object segmentation (active contour object 

segmentation), the second proposed method had better performance related to four 

of the six images, and was only limited in the other images (kidney and hand) due to 

the fact that real-world textures are often not uniform. The results show that as far as 

the shape and boundaries were concerned the recognition was correct (Figure 6.13). 

Figure 6.14 show the “horseman” image and the results from the use of the two 

proposed automatic segmentation techniques and the manual active contour model 

as well as the ground truth results.  

 

 

 

Table 6-1: Quantitative evaluation and comparison of IOU values. 

VPIs 
Real 

Horseman 
Real 
Tank 

Real 
Hand 

Real 
Kidney 

C.G. 
Table 

C.G. 
Plane 

Average 

Active Contour  
Model 

0.907 0.789 0.813 0.815 0.711 0.827 0.810 

1st Proposed 
Algorithm 

[section 6.3] 

0.612 0.743 0.435 0.578 0.533 0.480 0.563 

2nd Proposed 
Algorithm 

[section 6.4] 

0.918 0.958 0.661 0.709 0.782 0.912 0.823 

 

 

 

Figure 6-13 Examples of IOU values of each individual tested image obtained with different methods 
and the result obtained from region-growing based on edge detection i.e. second proposal. 
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Figure 6-14 Resultant foreground masks of “Horseman” obtained from, (a) manually, (b) first and   
second rows results from the two proposed automatic segmentation techniques and the active contour 
model results display in the third row. 

6.5.2 Subjective Evaluation 

The qualities of proposed 3D image segmentation algorithms are evaluated in this 

section using subjective criteria as estimated by viewers. A different evaluation 

method must be used, where the human factor must be taken into consideration. 

Therefore, the experiment must be conducted with the help of human participants in 

a subjective manner. The ideal method to achieve this is an explicit subjective 

experiment where the results are directly rated by the viewers. Determination of the 

visual perception of the overall quality via subjective evaluation of the 3D 

segmentation is required.  For the 3D contents to be successful when used by the 

public costumer market, visual quality must be compared to conventional standards 

to guarantee a strain free viewing experience [206].  
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The aim of the assessment is to determine the participant’s ratings of the 3DIM 

including the areas of “SRVPIs quality” and “depth quality”. During the 3DIM’s 

evaluation the depth perception was measured via determining the relative positions 

of objects and the depth layout quality that was determined by the depth information 

being realistic or plausible. The impact of depth information on the perceived 3D 

image quality is one of the main issues that has to be investigated. Recent studies 

show that depth is not related to the perceived 3D effect. However, other studies 

point out the importance of depth for quality perception [186]. A previously 

identified subjective analysis methodology was utilized in [207, 208] to evaluate the 

3DIMs, where there is not a reference benchmark “ground truth depth map” available 

for the H3DI system. The method was based on the Single Stimulus Continuous 

Quality Scale (SSCQS) that can be used when there is no reference to refer to [208]. In 

this approach, human subjects evaluated a range of depth maps that had been 

segmented by four different algorithms. A five point scale (“5-Excellent”, “4-Good”, “3-

Fair”, “2-Poor”, “1-Bad”) is used to state the quality of experience (QoE) of the depth 

maps. While, the double stimulus continuous quality scale (DSCQS) method was used 

to evaluate the SRVPs that had been formed from multi-low resolution VPIs. The 

reference VPIs of the test images are used, therefore the observer can determine the 

relative quality of the distorted images. The scale of (“5-very high”, “4-high”, “3-

medium”, “2-low” or “1-very low”) was used for the SRVPI quality [209]. The pooling 

of the votes into a mean opinion score (MOS), which provides a measure of subjective 

quality on the media in the given test set was used. Assessment sessions were only 

half an hour in length so that the viewers would not become fatigued. The viewer was 

alone when viewing the images and there were no external noises that could distract 

the viewers.  

6.5.2.1 The Research Methodology 

During the subjective quality assessment the following steps were taken: 

1) The test session: Nine H3DIs (6 real-world; three OH3DIs and the other UH3DIs 

as well as three C.G. data: one OH3DI and two UH3DIs) were used.  Two scales (2DVPI 

and depth rendering quality) were used in each session to rate each method (two 

scales by four methods) so that six images were rated in total. 
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2) Equipment: The assessment was conducted in a room that matched the 

recommendations for subjective assessment of visual data as set forth by ITU-R 

BT.500 [209]. For the assessment two 32” display monitors with native resolutions of 

1920 × 1080 were used.   

3) Viewers: The test was conducted with 32 participants (14 female and 18 male), 

who were selected randomly from university international students and staff 

members. The average age was 31 years old and overall range: 21 to 41. Also, the 

overall experiences of the participants with 3D technology and image processing have 

been considered. Therefore,basedontheparticipant’sexperiencesthey are divided into 

two groups in order to assess perceived overall image quality and perceived depth. 

The first group of the subjects Group 1 (G1), have expert knowledge of both 3D 

technology and image processing. The second group, Group 2 (G2) do not have expert 

knowledge of neither 3D technology nor image processing. The purpose of this 

division was to obtain a more narrow and reliable analysis for the assessment 

regarding the Mean Opinion Scores (MOS). The availability of MOSs is fundamental to 

enable validation and comparative benchmarking of objective quality assessment 

systems to support reproducible research results. Table 6.2 illustrates the 

participants demographics where 55.25% of the participants were male and 43.75% 

were female.The participants had normal vision, or corrected so that it was 

equivalent to normal. The viewers started the main experiment individually and were 

requested to be as accurate as possible in their judgment of each viewing session. 

They were asked to complete the questionnaire based on their judgment.  

4) Stimuli: Six UH3DIs were utilized in this assessment, which were as follows; four 

real-world namely: horseman, tank, hand and kidney, and two synthetic images: table 

and plane, were used. In addition, for the generalization capability aspect, the 

evaluation involved two real-world and one C.G. OH3DIs. 

5) Procedure Instructions: Written instructions (Appendix C) have been provided 

to the test subjects that explained what was required. To ensure understanding and 

compliance the experimenter also reiterated the instructions with the subjects. The 

subjective test methodology was introduced and the depth map levels were 

presented using training stimuli during a training session. The viewers were told that 

once scores were recorded they could not be altered. On the session of depth map 
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quality, they considered four 3D depth maps from different algorithms while on the 

session of image resolution quality they were scoring on four VPIs produced from 

different methods; the sampled pixels, proposed algorithm, Vandewalle et al. and 

Keran et al.’s algorithms (see section 5.3) were used for each test image. The 

participant was presented with all nine test images so they could give their opinion 

according to the ITU-R BT.500 five point quality scales [209].  Four produced images 

and four estimated 3D depth maps from different algorithms were displayed on the 

left and right screen, respectively for each test image for 3 minutes.  A continuous 

scale was used to rate them:  [bad]-[poor]-[fair]-[good]-[excellent] for 3DIMs and 

[very low]-[low]-[medium]-[high]-[very high] for VPIs resolution. A specifically 

designed questionnaire for this test is given in Appendix D. 

A numerical scale (0-100) was also used in the evaluation to present exact values. 

Using this scale a stimulus that gave high sensations would be 100 (excellent or very 

high) with a bad sensation being scored as 0, and in-between values scored with a 

comparable numerical value. However, when using any scale it will be subjective and 

vary between participants; therefore, the steps in Figure 6.15 were applied [210]. 

These transformed the raw subjective scores in to a Mean Opinion Score (MOS). Then 

for each individual test k, the perceived quality was determined:   

 𝑀𝑂𝑆𝑘 =  
∑ 𝑆𝑙𝑘

𝑁
𝑙=1

𝑁
                                                               (6.7) 

where, for each test k the mean opinion score is 𝑀𝑂𝑆𝑘, the amount of viewers in N 

and 𝑆𝑙𝑘 is the score (∈ [0, 100]) of the viewer 𝑙 of the k. Then it is possible to calculate 

the average of the 𝑀𝑂𝑆𝑘 for each category and each algorithm of the two assessments 

types (3DIM and VPIs quality). Each of the two assessments results were performed 

separately according to the steps described in Figure 6.15.  
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Figure 6-15 Flow chart of the processing steps applied to the subjective data in order to obtain the 
MOS values [210]. 

The process set out in [210] for processing the raw subjective scores is as follows: 

1. First phase: Via the use of ANalysis Of VAriance (ANOVA) it was determined 

whether or not the score data would need to be normalised. This showed that 

there were large differences between the participants’ scores, which showed that 

they applied the rating scale in different ways.  

2. Second phase:  All the scores were normalised via an offset mean correction so that 

there was a viewer-to-viewer correction. 

3. Third phase: With regard to the normalised scores, suspected outlier viewers were 

identified using the guidelines described in Section 2.3.1 of Annex 2 from [209]. 

Table 6-2: Analysing the collected data of participants. 

Demographic Variable Participants Percentage Total 

Gender 
Male 

Female 
18 
14 

55.25 
43.75 

32 

Age range (yrs.) 
21-28 
28-41 

15 
17 

46.875 
53.125 

32 

Educational level 
PhD 

MSc 

BSc 

18 
8 
6 

56.25 
25 

18.75 
32 

Group 1 Expert 15 46.875 32 
 Group 2 Non-expert 17 53.125 

Group 1 after Refined Expert 15 50 
30 

Group 2 after Refined Non-expert 15 50 

 

Raw Scores 

MOS and CI 

ANOVA 

Outliers 
Detection & 

Removal 

 

Offset 
Correction 

Normalized 
Scores 

ANOVA 
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6.5.2.2 The Scores and Analysis  

A total of 32 participants voluntarily took part in the experiment. Form the 32 observers, 

two outliers were found in the results (see Table 6.2). The outliers were discarded 

and the MOS has been determined for each test condition at the 95% confidence level 

(CI). To measure the statistical reliability of the predicted data, the CIs of (100 ×  𝛼) % 

were calculated on the MOS values using the Student’s t-distribution, as follows: 

CI𝑗   = 
𝑡(1−𝛼)

2
 . 

𝑗

√𝑁
                                                       (6.8) 

where, the significance level is α, the t-value associated with the required significance 

level for a two-tailed test with N-1 degrees of freedom is 
𝑡(1−𝛼)

2
, the amount of 

observations (total minus outliers) is N and the standard deviation of the 

observations j for N observers is 휀𝑗 . The 𝛼 value of 0.05 is used in this situation is 

comparable to a degree of significance of 95% confidence intervals, and this confirms 

that there are no statistical differences between the MOS values. The overall VPI 

quality and depth perception are rated by both groups. 

1. Analysis MOS of 3D Depth Map Segmentation  

According to the collected data, it is possible to compare the performance of the 

3DIMs quality metrics using the averaged mean opinion scores. This analysis consists 

of the four rating methods (first method proposed in section 6.3, second method 

proposed in section 6.4, active couture model and C. Wu algorithm) for depth map 

quality assessment. The average score given by each participant for the depth maps 

produced from all the test H3DIs using the four algorithms at 95% CI after the 

refining procedure, is presented in Figure 6.16. It can be observed that the overall 

MOS values of the proposed second automatic algorithm are higher than the three 

other algorithms. In addition, the MOS of this automatic algorithm is nearly equal to 

the values of the MOS for the wide-user manual segmentation algorithm (active 

contour model).  
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Figure 6-16 Overall average score by each subject. 

The MOS scores given by the expert participants (Group 1) and non-expert 

participants (Group 2) are shown in Figure 6.17. This shows that the differences 

among the MOS values of the four algorithms are very significant within each group, 

and that the evaluations of them for both groups are very similar. Figure 6.18 

contains the MOS result for test images produced from the automatic algorithms, 1 

and 2, as well as the manual algorithms, active contour model and C. Wu. The results 

are similar for both groups for all test images, but with significant increases in most 

of the MOS rating values from the expert group. Based on the presented subjective 

scores, Table 6.2 lists the MOS percentage of the 3D segmented images, for each 

method, that are rated average and above (Excellent, Good and Fair) and below 

average (Poor and Bad). The average MOS shows that the C. Wu algorithm performs 

below average. 93.33% of this algorithm’s output is rated below average, indicating 

that the 3D depth map estimated using this method shows, typically, “poor” 

subjective quality. This is mainly due to the noticeable bulky noises associated with 

the segmented 3D depth map where the algorithm fails to separate the object from its 

background. In addition, according to Table 6.3 comparing the totals, the other three 

methods performed with an above average rating. The second algorithm had the 

highest percentage (46.6%) of “Excellent” ratings compared with the other two 

methods, while the first algorithm had the lowest percentage rate. This significantly 

indicates that the second proposed algorithm outperforms the other algorithms.   
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Figure 6-17 Comparing MOS scores for 3D depth map segmentation from different algorithms, (a) 
Expert participants /Group 1 and (b) Non-expert/ Group 2. 

As seen in Figure 6.17, the proposed second algorithm outperforms all the others, 

including the active contour model, which is a manual ground truth method 

generated subjectively. The objects in the second algorithm are finely segmented, 

whereas the objects in the active contour model are segmented less.  The proposed 

first algorithm is comparable to the manual ground truth result, and it outperformed 

the state of the art C. Wu algorithm, as shown in Figure 6.17. The evaluation was 

performed on nine images and the results are presented in Figure 6.17 and Figure 

6.18.  
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Figure 6-18 Quality rating results comparing the segmented 3D depth maps produced from different 
algorithms for nine teste images. (a) Expert participants/Group 1 and (b) Non-expert participants / 
Group 2. 

Table 6-3: Percentage of MOS ratings attributed for each 3D depth map produces method. 
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2. Analysis MOS of SRVPI Generation  

When using SR reconstruction to form an image, one of the problems encountered is 

to find a method of determining the image’s quality. Image processing experts often 

use Peak Signal-to-Noise Ratio (PSNR) and Mean Structural SIMilarity (MSSIM) as 

possible methods, as they can be used in prepared experiments for SR with a 

synthetic data set. However, in real-world applications, there will not be a known 

reference image. When using MSE error based measurements it is not possible to 

determine the level of visual improvement in the image. Therefore, a previous study 

did not attempt to determine the quality of the reconstruction, and just used 

comparisons of printed images undertaken with the human eye [211].  

In the work presented here, to evaluate the performance of the proposed method for 

generating SRVPIs from a set of low resolution VPIs, a subjective quality assessment 

is used. The distribution of the two groups under study for the SRVPIs obtained from 

the proposed and established methods are compared for a group of test images as 

shown in Figure 6.19 and Figure 6.20. As the results show, it was clear that when 

comparing Group 1 to Group 2, they both had very similar trends. This indicated that 

the participants, irrespective of their background in either 3D technology or image 

processing, are able to judge whether the quality of the image is good or bad in the 

same manner. However, the MOS rating values of the expert group are higher than the 

non-expert group, possibly due to their work experience in the field of image 

processing and 3D technology. For the purpose of understanding which methods can 

produce 2D SRVPIs with acceptable quality or poor quality. The MOS average score 

was generated based on this assumption by grouping together the four relevant 

methods of generating the VPIs. Table 6.4 listed the MOS percentage scale values for 

the SRVPIs generated from the four methods. According to Table 6.4, there are three 

methods that were evaluated to have average or above average scores. 83% of the 

proposed method’s outputs are rated as average or above with the “high” scale, while 

Vandewalle et al. and Keran et al.’s methods were rated as 77.8% and 55.6%, 

respectively, at the “medium” scale.  87.9% of the sampled VPI method’s outputs are 

rated below average. This is mainly due to the low resolution of this method where 

the VPIs are generated directly from sampling the pixels under each micro-lens. 

Comparing the totals, the proposed method has a great advantage to generate super 
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resolution VPIs. This is mainly due it being the only one with “Very High” ratings, and 

due to it also having with greater “high” rating scores than the other methods. The 

proposed super resolution VPIs are generated from 2DVPIs that are representations 

of an original scene. Additionally, it was the only tested method able to produce 

“Excellent” quality 2DVPI representations of a scene with the same large depth of 

field from each micro-lens, typically called All-In-Focus.  

 

 
Figure 6-19 Comparisons the quality rating values of SR images produced from different algorithms 
from nine test images, (a) Expert participants /Group 1 and (b) Non-expert/ Group 2. 
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Table 6-4: Percentage of MOS ratings attributed for overall participants for each 2DVPI generated 
method. 

 

This All-in-Focus production of VPI is an example of the capability of the proposed 

method to generate SRVPI. It is a novel, fully automated method for generating 2D 

images, and when implemented into H3DIs system that has micro-images with a 

uniform structure, the 3D scene relative depth can be estimated with correct 

localisation and high accuracy. Moreover, the proposed SRVPI solution outperforms 

all the available alternative methods, where the “poor” condition is almost zero 

compared to others methods as shown in Figure 6.21. 

 

 

Figure 6-20 Average human score correlation of expert versus non-expert participants for all nine 
images that generated from different methods. 
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Figure 6-21 Comparisons the percentage of average MOS rating scales for the four methods of all 
participants. 

 

6.6 Summary  

A method to render 3D objects from images so that the information from H3DIs is 

presented properly was described in this chapter. The work focused on the use of 

algorithms that gave binary assignments to foreground/background pixels. Therefore 

the method of 3D object segmentation presented means that the objects in the scene 

are separated from the background. This work provides a novel method of 

automatically producing a 3D interactive map (3DIM) that highlights the areas that 

the viewer is expected to focus on. In the other words, this method finds the objects in 

the scene that the observer will be interested in seeing. This process incorporates the 

2D construction of the object surface plane and the special integration of 3D volume 

that improves the perspective view. This means that the 3D interactive map can be 

considered to be a fusing of 2D and 3D techniques. The use of the hybrid technique 

means that better information and the geometrical shape of the objects in space are 

obtained.   
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Two methods were developed to extract the 2D foreground object that enables the 3D 

interactive map to be developed while giving a robust link between the 2D and 3D 

views. The methods were based on the principles of simple implementation and full 

automation so no human input was needed when generating the 3D interactive map. 

In addition, they also had to be efficient when generating the 3D objects from the 

H3DI system. With this approach the 3D object segmentation was significantly 

improved via the use of better determination of foreground/background pixels as 

well as object boundaries.  

The first technique, “morphology-based-threshold” was a fully automatic 

morphological segmentation algorithm that was used with the reference VPI. A binary 

foreground mask was produced using the VPI’s special intensity distribution and a 

morphological operation. A threshold value is maintained at a set value and pixels 

with high-intensity values are those that are important, while the background is 

composed of low intensity pixels. It was shown that the border was well defined and 

helped to enhance the object removal from the depth map while also filtering out 

noise in the image. The evaluation showed that this method reached the required 

quality level. The 3DIM identified the location of the objects of interest and their 

precise contours, which enabled their separation from the background. It should be 

noted that both objective and subjective evaluation of the method showed that small 

over-segmentation errors occurred where potions of the background were included 

as part of the foreground object. These were due to false edges of the markers due to 

the grey level distribution and the SE kernel size, and this was a common problem 

with all the VPIs used. This means that the ability to define an object that has a very 

detailed border will significantly be related to the match approximation between the 

foreground object mask and the object.  

So that the over-segmentation problem encountered above could be prevented the 

second method uses 2D segment regions with closed contours on the VPI. This 

technique produces a 3DIM that automatically integrates exploitation of the available 

depth estimation technique as well as a feature edge segmentation method. The 

information related to the edges comes from a single feature-edge map obtained from 

Multi-Quantized Local Histogram (MQLH) edge maps, and this is from where the 
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geometrical feature-edges of the object are acquired. 2D foreground masks are 

produced from the 2D segmentation algorithm that integrates the feature-edge map 

and region growing techniques. Then the extracted features from the feature-edge 

map are the basis for the 3D cues map that comes from the VPIs displacement. The 

validity of the method to extract 3D objects from a scene was determined.  

Objective and subjective evaluations showed that the second method to form 3DIMs 

had better performance than the first method and an external, well known, contour 

object segmentation technique. The second method produces outputs that are 

extremely close to the reference object. This means that the results from the 3DIM 

when this filter is used are of good quality. As high quality feature-edge maps can be 

produced that are reliant on the trainer VPI’s resolution it is possible to obtain high 

resolution images from a set of low resolution VPIs. The second method is reliant on 

the calculated edge-map as the object border must be complete for this technique to 

give successful segmentation. The high quality feature-edges are used in the second 

method to produce a 3D information map. 

The 3DIM creation methods are capable of obtaining a 3D object from an image, but 

they are more effective if a high resolution EI that has an extended baseline is used to 

fully identify high accuracy depth cues map and extract the 3D object. It is also 

required to ignore VPIs that have poor feature correlation so that the 3DIM can be 

more accurate and the process takes place faster. This means that a more accurate 3D 

object that has few if any errors will lead to a more accurate 3D information map 

estimation algorithm.  
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7 Conclusions and Future Work 

7.1 Summary  

The present research has approached the area of 3D technology through the use of a 

H3DI system. Holoscopy is a 3D technology that has the potential to solve some of the 

limitations of current 3D technology, such as delivery of the depth perception 

through special glasses and visual discomfort (eye fatigue). In holoscopic 3D 

technology, the perception of depth does not require glasses or any other gear 

whatsoever to aid the illusion. It produces a true sensation of depth by using natural 

light field reconstruction, projecting light rays in the direction they were travelling at 

capture time, resulting in an accurate reconstruction of the light at the moment of 

capture with natural horizontal and vertical parallaxes. The principal aim of this 

research was to study the subject of delivering true 3D depth, generating high 

resolution multi-views and extracting 3D objects in the scene from a H3DI system.  

This thesis set out to explore methods for the effective use of 3D cues, in the 

challenging task of delivering a high quality 3D image from a set of low resolution 

VPIs. The specific work of the author was to investigate a particular technique that 

would be appropriate for generating 3D depth maps by converting the H3DI into 2D 

images of objects named VPIs. The benefit of using VPIs was due to the existence of 

the high correlation between the features of these extracted images. It is however 

important to point out that the current available display technologies are still not 

compatible with H3DI formats. Therefore, it was essential to transform the 3D 

holoscopic formats into 2D formats to present the 3D image formats.  

Holoscopy 3D technology has arrived at the professional market and soon will hit the 

consumer market as a consequence of ambitious projects like the 3DVIVANT 

PROJECT. It is worth pointing out that this research work was developed as part of 

Chapter 7  
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the 3D VIVANT project.  With the appearance of a company (and its products) called 

Lytro, a 3D holoscopic camera is available to the public and everyone can produce 

their own holoscopic content. However, the display technology for H3DIs is not yet at 

an affordable price for the common buyer, which might be changed in the future by 

the efforts of researchers.  The H3DI technique proved that it is more appealing than 

other 3D techniques due its ability to create a real 3D image in full colour (true 3D 

model) and deliver a rich viewing sensation without eye fatigue and free of glasses 

from a single aperture.  

7.2 Conclusions 

This thesis set out to explore methods for the effective use of 3D information in the 

challenging task of investigating techniques that are able to achieve wide 

generalisation capabilities and with a trade-off between accuracy and speed for 

estimating precise depth perception. The work was motivated by the prices of the 

display technology for H3DIs being too much for public buyers. 

The first challenge addressed was the lack of generalization in [23, 24] the algorithm 

related to the estimation of 3D depth from 1D H3DIs, i.e. horizontal UH3DIs. The 

work was extended for the computationally estimation of full parallax 3D information 

maps from 2D OH3DIs, taking in to account the generalization capability of the depth-

through-disparity estimation algorithm, accuracy and speed. To this end, it was 

required to modify the multi-baseline algorithm by incorporating an adaptive 

weighting factor shape window technique to enhance the estimation of the 3D 

object’s position. The adaptive aggregation cost window was used to prevent multiple 

neighbouring blocks from being identified as interesting in the same feature and for 

identifying large support areas in untextured zones and near the boundaries of 

objects. This was achieved by ensuring that extra emphasis was placed on the centre 

block rather than the surrounding blocks. An obvious improvement over the method 

proposed by [23, 24] was proven to be effective via experiments on both UH3DIs and 

OH3DIs. Employing an adaptive aggregation cost window served to force the 

algorithm to work with complex object scenes in OH3DIs. This lead to a rise in 

average precision of the depth by focusing the estimation into areas where structural 

features are most valuable. However, it was noted that, varying the threshold lead to 
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different behaviours of the setting features for each image, and this led to a loss of 

useful information due to lack of control over the setting and extraction of reliable 

features. The threshold for the setting of the features was determined manually for 

each image, which is very time consuming, as there are differences between all the 

images that could result in false matching and faults in the depth estimation process. 

To overcome the above drawback, this work developed and implemented a new 

corresponding and matching technique that was based on automatic thresholding 3D 

features. The automatic identification of thresholds highlighted the fact that sparse 

features can sometimes lead to improved accuracy in the depth in addition to 

increased computation speed due to the performance generalization of the algorithm. 

Therefore, the next challenge was to identify algorithms that demonstrate the 

simplest way that H3DIs can have their depth estimated. Accordingly, the 

development of automatic initialization techniques for creating and manipulating 3D 

models from H3DIs was considered. This was the first and crucial step towards 

determining the depth via the extracted VPIs during the matching of the extracted 

feature. Where the image is simplified during feature selection, it produces a form 

where it is easier to analyse and determine the positions of objects. 

Two novel automatic local feature (point or edge) setting and extracting techniques 

were elaborated that were built on binary data. The techniques were simple and 

widely applicable as well as being easy to compute. The first algorithm was based on 

the intensity distribution of sample variance of sub-dividing non-overlapping regions 

of the training VPI. The optimal threshold was the mean value of the sub-dividing 

regions, which was then used for extracting and setting distinguishing feature-points 

on the training VPI. The standard feature point’s profile that represents a particular 

feature was generated using the distribution of the optimal threshold along the 

viewpoint image’s patch (block). The feature’s descriptors were stored in a binary 

form. This is because the binary descriptors are less demanding computationally than 

real value descriptors. Cross-validation was employed to optimize the performance of 

the estimated feature-points process, and thus led to reducing the computational time 

in matching and corresponding process. The proposed AFP algorithm outperformed 

the well-known SIFT and SURF descriptors when setting and extracting the 
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distinguished feature blocks. Using both real-world UH3DI and OH3DI data, 

satisfactory quality depth maps were produced while the consistency of the 

measurements were proven in the OH3DI “Box”. However, fine details in the object’s 

contours were not always obtained with high accuracy. This happens mainly for 

narrow parts of the objects or small objects due to the dissimilarity between them 

and the surrounding objects, which are very noisy, even for the human eye in those 

low resolution viewpoint images. However, even in such cases, a satisfactory 

approximation of the object contour can be obtained that makes this kind of object 

perceivable.  

Therefore, the other challenge here was to generate a foreground mask to separate 

the objects in the scene from their background, i.e. surrounding objects or noise, for 

further enhancement to improve the precision of the object depth map. In other 

words, to address the problem of representing the extraction of correct information 

from the H3DI system. The proposed fully automatic morphological segmentation 

algorithm named “morphology-based-threshold” was employed on the training VPI. 

The technique was mainly concerned with developing algorithms to show the 

simplest way of generating the 3D object in terms of determining the binary 

foreground/background pixel assignments.  A morphological operations and spatial 

intensity distribution was employed on the training reference VPI to generate a 2D 

binary foreground mask assuming high-intensity pixels are of interest, and low 

intensity pixels are background. Incorporating the new 2D foreground mask with the 

estimated 3D cues map produced an interactive map (3DIM) that carries information 

about where on the image the viewer is expected to look. This interactive map will be 

encoded together with the visual content to identify the applicable foreground 

regions and depth information map to recognize 3D objects in the scene. 

Experimental results show that the contours closely follow the shape of the object, 

and thus can be used to improve the separation of the object’s depth information map 

or can also be implemented as a filter to remove noises associated with the images. 

Accordingly, the 3D objects were correctly localized.  

However, objective and subjective evaluation criteria identified over-segmentation 

errors between the created foreground object’s masks and the object, where 
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background portions were attached to the reference segmentation of the object. This 

mainly occurred due to the false edges of the markers obtained, which highly depends 

on the grey level distribution (high variation between background and object). 

Therefore, separating an object with a very detailed border is highly dependent on 

the degree of match approximation between the created foreground object masks and 

the object. To improve the 3DIM algorithm performance an automatic edge detection 

technique was investigated for the setting and detection of feature blocks to identify 

the object contours and depth information map.  

The next challenge was the incorporation of the edge detection technique into the 

modified multi-baseline disparity algorithm to generate a new form of 3DIM. The 

previous technique for setting and extracting feature descriptors for depth estimation 

could not identify 3D objects or 3DIMs with very detailed borders. Thus a new 

formulation for compatible 3DIM estimation based on robust edge detection features 

was introduced. The novelty of this work lies in automatically generating a 3DIM that 

combines exploitation of the available depth estimation technique with the 

segmentation technique via a single feature-edges map. The feature-edge descriptors 

were scale invariant, illumination invariant and noise resistant, and thus were 

considered to be robust and efficient. This generated robust feature-edges 

information for the shape boundaries of objects that was closely related to the 

geometry of the 3D scene, and background clutter was completely removed. The 

extracted feature-edges were exploited in the two aspects of 3DIM production; depth 

estimation and foreground mask generation for 3D object segmentation. The 3D 

object map was estimated from an adaptive hybrid depth map estimation technique 

that eliminates spurious edges in the depth edge map via alternative implementation 

of feature edge detection. This part considered the contour based depth estimation 

problem. The 2D foreground segmentation algorithm was generated from the 

integration of region growth and edge detection techniques to generate a foreground 

object mask. The technique automatically used the extracted feature-edges as seed 

pixels and guided the process of region growing by iteration, which adds to these 

seed points all the pixels that are connected to it. The advantage of this technique is 

that no homogeneity criterion threshold is required in the region growing process 

and the seeded region growing starts from all the seeds at the same time.  
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Experimental results of the new algorithm (AFE)showed it was an improvement as at 

the nearest depth of 600-1200 mm it gave an error of less than 1.7% against the 

previous (AFP algorithm) error of 1.9%. The AFE algorithm also showed 

improvement on the depth map contour and gives a very good depth location. 

However, there is a slight chance of false matches being generated when the matching 

of the corresponding feature edge block was undertaken near untextured areas or 

those with similar texture patterns, such as the ambiguities observed on the flat 

image “Palm”. Regions that are textureless are likely to have the most prominent 

errors due to the thinning edge term (non-maximum suppression) that causes viable 

candidates to be suppressed when present in weakly textured regions.  

Both depth estimation techniques have had their effectiveness proven when 

generating accurate depth measurements via mathematical and experimental means. 

However, objective and subjective segmentation quality evaluations confirm that the 

performance of the second proposed method to create 3DIMs outperforms the first 

and a well-known active contour object segmentation technique. This is due to the 

closed border of the object, which was represented by the feature-edge map. Where, 

the successful segmentation is highly dependent on the closed border of the object, 

which has been achieved within this technique. Additionally, this approach was far 

more applicable to real computer vision tasks than the previously proposed 

technique, when the same feature-edges are directly employed to generate a 

foreground object mask.  The promising outcomes of the 3DIMs based on the edge 

detection technique have shown that the 3D object depth segment contour has 

performed well with only minor errors, despite the slight chance of false matches 

causing some ambiguities that reduce the accuracy of the depth map. Therefore, 

enhancement of the VPI’s resolution was essential to increase the accurate 

performance of the 3DIM algorithm and to obtain high depth information maps. This 

enabled the extracted LRVPIs to produce high-resolution image features and thus 

improved the depth map’s visual quality. 

Finally, the super-resolution techniques of image processing were exploited to 

generate more superior feature-edges for estimating the super 3DIM, thus to increase 

the visual quality of the 3D object in the scene. A H3DI system was used to generate 
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SRVPIs from many registered groups of sampled LRVPIs. The new method transforms 

and refocuses the set of orthographic projection LRVPIs into a perspective projection 

SRVPI using up-sampling-shift and integration image processing techniques. Due to 

the sub-pixel shifts process, which introduced the non-redundant information that is 

present in the set of LRVPIs, the visual quality was improved through the use of a new 

interpolation approach. This enabled the added high frequency information 

contained within the scene to be transferred to the final SRVPI. Due to over or under 

fitting during the reconstruction of the SRVPI associated with fixed shifting of the 

neighbouring LRVPIs, there was often blurring.  Therefore, a simple and effective de-

blurring filter technique was investigated to suppress noise while maintaining the SR 

image’s details. This SRVPI was exploited to generate more advanced and reliable 

feature blocks through the implementation of the second proposed AFE algorithm.  

Significantly, there was another novel aspect associated with the creation of SRVPIs. 

Thus the 3D multi-view technique was proposed, employing sub-pixel shift 

techniques to create super resolution multi-view images from a H3DI system without 

complex and expensive multi-camera calibration. The use of multi-view SRVPIs 

successfully estimated depth information maps with high accuracy. This is due to the 

rich information associated with the created SRVPIs that contain valuable 

information, as these results come from large image sensors. Results showed that 

depth accuracy and a fast execution time have been achieved via the use of the multi-

view SRVPIs. This also demonstrated the generalization of the approach to estimation 

of the depth information map on the two types of H3DIs. In other words, 

incorporating the super-resolution technique with the technique of H3DI significantly 

improved the performance of the depth estimation algorithm in the context of the 

generalization capability, the speed and the quality. Generally, the experimental 

results of the proposed technique showed excellent ability to measure and determine 

depth maps with high visual quality from H3DIs.  

An investigation to evaluate all the creation phases of the 3DIM technique for 

segmenting a 3D object in the scene was carried out. This was due to the absence of 

the reference (no-reference) ground-truth image for the quality assessment metric, 

where the VPIs are pixels sampled from the EIs. Hence, a subjective quality 
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assessment seems to be promising to assess the fully automated algorithm. This 

included the quality assessment of the extracted 2D SRVPI and 2D foreground mask 

as well as the accuracy assessment of the estimated depth map from the H3DIs. 

Subjective evaluation confirmed the outperformance of the second proposed 

technique for all 3DIM creation phases in comparison to the first proposed technique 

and active contour model.  It is important to point out that this technique benefited 

significantly from the outcome of the feature-edge detection algorithm, which aided 

the setting and extraction of a high quality feature-edge map that in turn was highly 

dependent upon the resolution of the extracted VPI.  

7.3 Suggestions and Future Work 

Upon implementation, experimentation and review of the test results, some 

enhancements were identified for the proposed techniques in the thesis. 

7.3.1 Holoscopic 3D Camera Lens Correction  

There is not a standard technique for holoscopic 3D camera lens correction, and the 

proposed technique utilizes VPIs extracted from a H3DI, which includes lens errors 

such as barrel distortions and unbalance elemental images.  There is a need for a 

robust holoscopic 3D camera lens correction algorithm to minimize the noise. 

7.3.2 Generalisation Capabilities 

In this approach, a special focus was given to tasks on the principle of invariability 

algorithms, i.e. wide generalisation capabilities (no restraints were placed on the 

algorithms). These have the ability to measure and estimate 3D depth from both 

types of H3DIs, real and CG images. Therefore, with respect to the generalisation 

capability algorithms, the comprehensive experiments presented in this approach 

clearly result in increases in the error score depth estimation when the algorithm is 

forced to work in various acquisition environments. In this regard, there is still 

significant room for the development of the best choices for regularization of the 

parameters automatically.  

7.3.3 2D Viewpoint Image Resolution 

The obtained SRVPIs were focused at a particular depth causing blurring effects 

where the object depth was out of plane. This is due to the choice of a fixed shift 

value, i.e. one pixel shifting. In other words, the choice of one shift value returns one 

depth plane ‘in-focus’. Experimentally, there was still some blurriness available even 
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after implementing the de-blurring filter. Thus, a different shift value would 

correspond to a different depth plane. Hence, employing the Michelson contrast 

algorithm on different pitch sized windows to estimate the blurring noise in all the 

depth plane images can be used to return all-in-focus images and will increase the 

efficiency of the super resolution process from LRVPs. 

7.3.4 4D Modelling  

To date, 3D depth estimation is performed on spatial information from the H3DI; 

however, there are sufficient low level cues in the H3DI to reconstruct a 3D model of a 

real scene.  There is a need for a 4D modelling algorithm that utilizes holoscopic low 

level cues to reconstruct a 3D model of a real scene captured by a H3DI camera.  

7.3.5 Holoscopic Elemental Image Resolution Enhancement 

The research exploited improvements in the VPI resolution, which resulted in a great 

difference in the 3D depth estimation algorithm. However, due to limited CCD/CMOS 

resolution, the H3DI still has low resolution elemental images, and now the next step 

is to investigate the enhancement of the elemental image resolution computationally 

in post-production. 

7.3.6 Computational Efficiency  

Currently, the proposed algorithms have been implemented in MATLAB.  It would be 

possible to improve the computational efficiency to speed the processing if 

developing the programs in C++ for the Central Processing Unit (CPU) as well as for 

the Graphics Processing Unit (GPU). The use of the GPU gives immensely superior 

graphics processing power that allows for fast processing.     

7.3.7 H3DI Quality Matrices  

For the successful penetration of 3D technology to the market, it is essential to ensure 

that the new experience is superior to the currently available technique to the users. 

Therefore, the evaluation of 3D quality is considered as an enormous challenge. Here, 

new investigation techniques are needed to assess this kind of experience. The 

current subjective standards tests are not fully dedicated to the evaluation of 3D 

content quality of H3DI system scenarios. This is due to the non-availability of 

reference/ground truth image from H3DI system. Therefore, more investigation and 

research are necessary for developing a 3D quality measure metric and further 

studies will require for subjective assessment methodologies. 
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Appendix A 

Correct Barrier Distortion 

 The following steps are used to correct barrier distortion caused by the lens: 

1. Right click on the RAW image data and open with Photoshop 

2. Camera Raw window will open as can be seem in Figure A-1.  

3. Click to the lens correction tab that appears on the right hand side in the 

camera Raw window. 

4. Select manual that will give you the option of sitting the parameters manually. 

5. In distortion selection box type +4 to fix the barrel distortion to its minimum. 

6. After correcting the distortion click “open copy” button in the bottom right 

hand side in the window. 

7. Then the image will open in Photoshop’s window for cropping to remove the 

unnecessary borders to align all the micro lenses in vertically and horizontally 

directions as shown in Figure A-1. 

8. After cropping save the image in .jpg or .png. 

 

Figure A-1: Illustration of Photoshop lens correction tool. 

 

Appendices  
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Appendix B 

Correct Scaling Error Distortion 

The block diagram of correction scaling error is presented in Figure B-1. The first 

step is generating the calibration grid from a white background of H3DI Figure B-2(a) 

and then this information is used to detect and eliminate dark borders introduced by 

the micro-lens array in the H3DI. 

 

Figure B-1: Illustrates the block diagram of correction scaling error distortion. 

The calibration grid enables one to accurately eliminate dark borders without 

effecting visual information. The eliminated dark borders of H3DI show in Figure B-2. 

The process does not remove the lens array border completely, but it refines enough 

the dark borders to reduce dark moiré. The reason of that, when removing the 

borders completely, this will also eliminate 3D visual details of EIs, and which should 

be avoided. The process is a self-tuning method, which is valid for all type of 

holoscopic 3D cameras. The resulting H3DI after correction process has refined 

micro-lens array borders shows in Figure B-3.  
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Figure B-2: Illustrates a) Generated calibrated micro-lens grid, b) Original image before correction. 

 

Figure B- 3: Comparison of original OH3DI (a) with the resulting image, (b) after applying correction 
process. 

 

 

 

(a) 

(b) 

(a) (b) 
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Appendix C 

Quality of Experience (QoE) Instructions 

“In this experiment you will see different viewpoint images with different resolutions 

on your right hand side and left hand side. For each image shown you should judge its 

quality and choose a score on the continuous quality scale:”  

Very low: “0-20” score if the image is very blurred with strong artefacts. 

Low: “21-40” score if the image has many noticeable artefacts and very blurred.   

Medium: “41-60” score if the image has some artefacts and medium level of blurring. 

High: “61-80” score if the image is without any noticeable artefacts and there is a low 

level of blurring. 

Very high: “81-100” score if the image is without any noticeable artefacts or blurring.  

“Furthermore, in this experiment also you will see different 3D-interactive maps 

obtained from different 2D foreground object segmentation algorithms of the same 

viewed image on your right hand side screen, and on the left side you will see the 

depth map achieved from manual foreground object segmentation i.e. ground truth 

depth map, that is in front of you. For each display map, you should judge its quality 

and choose a score on the continuous quality scale:” 

Bad: “0-20” score if the map has major boundary differences compared to the ground 

truth that destroy the object structure. 

Poor: “21-40” score if the map has major boundary differences on some parts of the 

object compared to the ground truth. 

Fair: “41-60” score if the map has minor boundary differences on some parts of the 

object compared to the ground truth. 

Good: “61-80” score if the map has minor boundary differences on two parts of the 

object compared to the ground truth. 

Excellent: “81-100” score if the map has minor boundary differences noticeable on 

one part of the object compared to the ground truth. 

Thus, the schedule of the experiment is the following: 

• Subject training phase (approx. 3 min) 

• Break to allow time to answer questions from observers 

• Test phase (approx. 30-35 min) 
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Assessment of results achieved from six holoscopic 3D images for each phase (four 

depth maps + one high resolution VPI). 

 

Questionnaire 

Test user sample characteristics 

 

 

 

 What is your education status?   

 

 

 What is your employment status? 

 

 

 

 

 Have you ever watched 3D movies? 

Yes                                      No 

 When was your first experience with 3D technology? 

 

 

 

 

 Have you got some experience in image processing (films, photos, etc)? 

Yes                                           No 

 

 

 

 PhD Student  

 Master Student  

 Undergraduate  

 Others (Specify)  

Test Number:                                                                                Date: 

 Age:   

 Gender:   

 Academic Staff   

 Researcher  

 Student  

 Others (Specify)  

 

 Years  

 Months   

 Weeks  
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Holoscopic Images 
Bad Poor Fair Good Excellent 

Methods 
0- 20 21- 40 41- 60 61- 80 81-100 

Horseman 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Tank 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Table 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Kidney 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Palm 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Plane 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Box-Tags 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

Airplane-man 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

3DVIVANT 

     1st 3DIM 
     2nd 3DIM 
     3rd 3DIM 
     4th 3DIM 

3D Maps Quality Evaluation Session 1: 
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Holoscopic Images 
Very Low Low Medium High Very High 

Methods 

0- 20 21- 40 41- 60 61- 80 81-100 

Horseman 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Tank 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Table 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Kidney 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Palm 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Plane 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Box-Tags 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

Airplane-man 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

3DVIVANT 

     1st Image 
     2nd Image 
     3rd Image 
     4th Image 

2DVPIs Quality Evaluation Session 2: 
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 What is your level of satisfaction with holoscopic 3D technology? 

 

 

 

   

 What is your general view of 3D technology? 

 

 

 

 

 How you rate our quality of experience (QoE) assessment? 

 

 

 

 

 

  How do you rate the simplicity/difficulty of the methodology of this 
assessment? 

 

 

 

 

 

 

Thanks for your time and participation. Hope you’ve enjoyed it. 

Users Feedback Session 3: 

 Extremely Satisfied  

 Satisfied  

 Dissatisfied  

 Not satisfied  

 

 Extremely Important  

 Important  

 Less Important  

 Not Important  

 

 Extremely Important  

 Important  

 Less Important  

 Not Important  

 

 Very difficult  

 Difficult  

 Simple  

 Very simple  

 



 

 

 


