
1

Parallel Detrended Fluctuation Analysis for Fast
Event Detection on Massive PMU Data

Mukhtaj Khan, Phillip M. Ashton, Student Member, IEEE, Maozhen Li, Gareth A. Taylor, Senior Member, IEEE,
Ioana Pisica, Member, IEEE, and Junyong Liu

Abstract—Phasor Measurement Units (PMUs) are being
rapidly deployed in power grids due to their high sampling
rates and synchronised measurements. The devices high data
reporting rates present major computational challenges, in the
requirement to process potentially massive volumes of data, in
addition to new issues surrounding data storage. Fast algorithms
capable of processing massive volumes of data are now required
in the field of power systems. This paper presents PDFA, a
parallel detrended fluctuation analysis approach for fast event
detection on massive volumes of PMU data, taking advantage of
a cluster computing platform. The PDFA algorithm is evaluated
using data from installed PMUs on the transmission system
of Great Britain, from the aspects of speedup, scalability and
accuracy. The speedup of the PDFA in computation is initially
analysed through Amdahl’s Law, a revision to the law is then
proposed, suggesting enhancements to its capability to analyse
the performance gain in computation when parallelizing data
intensive applications in a cluster computing environment.

Index Terms—Amdahl’s law, Detrended fluctuation analysis
(DFA), event detection, Hadoop, MapReduce, openPDC, parallel
computing, PMU, WAMS.

I. INTRODUCTION

SECURITY in power systems is so vital that major efforts
must be taken in order to avert potential power system

blackout scenarios. The blackout in North East America on
the 14th August 2003 and other critical grid events all over
the world are driving the industry to develop more automatic,
adaptive and efficient computational tools for power system
monitoring and stability analysis. It is becoming highly im-
practical for traditional supervisory control and data acquisi-
tion (SCADA) systems to predict or avert eventualities in a
timely manner that may lead to power system catastrophes
[1]–[3].

One solution to these challenges is presented in the ongoing
development of Wide Area Monitoring Systems (WAMS).
WAMS comprise a network of synchronized PMUs [1], [4],
which provide data at sampling rates typically equivalent to

This research was supported by the UK EPSRC under grant EP/K006487/1
and National Grid, UK.

Mukhtaj Khan is a PhD student in the School of Engineering and Design,
Brunel University, London, UK. (E-mail: mukhtaj.khan@brunel.ac.uk)

Phillip Ashton is with National Grid, Market Operation, Wokingham and
Brunel Institute of Power Systems (BIPS), Brunel University, London, UK.
(E-mail: phillip.ashton@brunel.ac.uk)

Maozhen Li is with School of Engineering and Design, Brunel University,
London, UK. (E-mail:maozhen.li@brunel.ac.uk)

Ioana Pisica and Gareth Taylor are with the Brunel Institute of Power Sys-
tems, Brunel University, London, UK. (E-mail: gareth.taylor@brunel.ac.uk)

Junyong Liu is with the School of Electric Engineering and Information
Technology, Sichuan University, China. (Email: liujy@scu.edu.cn)

one cycle of the power systems fundamental frequency (50Hz
on the GB system). This data, if efficiently managed and
processed, can be used to enhance the reliability, stability
and security of power systems. For this reason PMUs are
being deployed in power systems globally, resulting in rapidly
growing volumes of data, posing network operators with new
challenges in terms of data storage and timely analysis of the
potentially massive datasets.

As a result of the growing complexities in power systems
from the increased integration of renewable generation sources
and the networks ongoing expansions, it is now vital that data
surrounding power system events, such as generation losses,
are accurately captured. These events provide the only reliable
source of information on the true power system dynamics,
providing greater understanding of system inertia, something
that is of growing concern on the power system of Great
Britain (GB). Timely analysis of these events is critical to
understanding the necessary generation response and reserve
requirements for a secure network [5]. They also permit the
analysis of any trends in the behaviour of the power system
under different operating conditions and provide means to
validate or improve offline system modelling tools.

In this paper the design and implementation of a parallel
detrended fluctuation analysis (PDFA) algorithm, for fast event
detection on massive volumes of PMU data, is presented.
The approach is implemented in the MapReduce programming
model [6], which has become a major software technology
in the support of data intensive applications, making use of
a cluster of inexpensive commodity computers. The work
develops some of the authors’ previous studies [7], on the
use of detrended fluctuation analysis (DFA) for the detection
of power system events on small datasets, more specifically
for the detection of instantaneous generation losses, as a
requirement for power system inertia estimation [5].

The PDFA is tested and demonstrated in two stages, the first
providing details of a laboratory based online setup, using a
PMU installed at the domestic supply and the openPDC plat-
form [8] with a localised Data Historian (DH) to collect and
store 50Hz resolution data. The second, details the application
to the WAMS installed on the transmission system of GB,
whereby an offline Data Mining approach is demonstrated.
The performance of the PDFA is compared with the original
sequential DFA in terms of efficiency and accuracy, using
PMU data from the GB WAMS. The speedup of the PDFA
in computation is analysed with Amdahls Law, and based on
this analysis, a revision to Amdahls Law is then proposed.
The revision aims to enhance the capability of analysing



2

the performance gain in computation when parallelizing data
intensive applications in cluster computing environments.

The remainder of this paper is organized as follows. Section
II provides an overview of high performance computing and
big data analytics. Section III presents the WAMS deploy-
ment on the GB system. Section IV details the design and
implementation of the PDFA method based on the MapReduce
model and Section V evaluates the performance of the PDFA,
analysing its speedup in computation. Finally concluding
remarks and further work are presented in Section VI.

II. OVERVIEW OF HPC AND BIG DATA ANALYTICS

With the advent of the smart grid the power system is
becoming increasingly complex and computationally intensive.
The power systems community faces the challenge of finding
suitable methods to solve growing computational issues, for
instance, processing massive volumes of PMU data. Such
methods can be found in the field of high performance
computing (HPC) through parallel processing.

The message passing interface (MPI) is a parallel program-
ming model used to parallelize computation across multiple
processors or computers. The MPI model has been used to
distribute computation tasks over grid computing nodes [9] and
in [10] it was deployed in the HPC environment to parallelize a
contingency analysis algorithm. However, the MPI model still
requires improvement in areas such as parallel I/O, scalability
and topology awareness.

An alternative approach can be found in cluster computing.
In [11] a High-Performance Hybrid Computing approach was
applied to reduce the execution time of massive contingency
analysis algorithms. In this work the algorithm was paral-
lelized using a XMT multithread C/C++ compiler on Gray
XMT (multithread HPC computing platform) and conventional
cluster computers. In addition, the work in [12] proposed a
large scale smart grid stability monitoring application using
a conventional cluster of computers to speed up the analysis
of PMU measurements. These two separate approaches can
increase the speed of program execution by adding more pro-
cessing nodes however, they rely on centralized management,
which can be vulnerable to node failure.

Gao et al. [13] used the parallel computing toolbox within
MATLABs Distributed Computer Server (MDCS) to paral-
lelize their contingency analysis algorithm on multiple pro-
cessors, whilst in [14] a parallel processing method for two
monitoring techniques in Prony analysis and an extended
complex Kalman filter on multicore systems is explored. Sim-
ilarly in [15] a genetic algorithm was parallelized. However,
these approaches are not resilient and fault-tolerant. The afore-
mentioned approaches can significantly reduce the execution
time of large complex computation however, applying these
approaches in power system applications is not simply a case
of adding more processing units, they require careful design of
programs and middleware to make the applications compatible
with underlying hardware and software. Furthermore, these
approaches (cluster and MPI based) can be scaled by adding
more processing nodes. However, they lack the ability to
respond to node failures. For example, if any processing node

fails as a result of a hardware or software problem, they do
not have any remedy to migrate the running tasks to another
available node.

Alternatively the work in [14], [16] proposes the cloud
computing platform for smart grid data storage and real-time
analysis. They parallelize the processing in cloud computing
environments to achieve faster computation. To reduce the risk
of data accessibility during node failures, data is replicated on
multiple machines however, in the instance of node failures
no solution is provided to gracefully assign the running
computation to another node.

A solution to these issues can be found in the Hadoop
MapReduce framework, proposed in a number of areas [17]–
[20], offering a reliable, fault-tolerant, scalable and resilient
framework for storing and processing massive datasets. In [17]
a machine learning technique is applied whilst in [18] simple
statistic calculations (maximum, minimum and average) are
used to process PMU datasets. However, both of these works
leave out the implementation details and provide no evalu-
ation of their methodology or results. The work [19], [20]
uses the Hadoop HDFS (Hadoop distributed file system) for
storing data and Pig scripting language for simple statistical
calculations. The main focus of both works is to compare the
performance of the Hadoop distributed processing with the
Multi Core system.

III. WIDE AREA MONITORING GB SYSTEM

The WAMS running on the GB National Grid is in the early
stages of its deployment. Around 40 PMUs have been installed
on the transmission system of England and Wales through a
series of upgrades to digital fault recorders (DFRs) and the
installation of 4 dedicated PMUs, the majority of which are
configured to report back to a central Phasor Data Concentrator
(PDC) at the national control centre.

The primary role of the system is to monitor for any
oscillatory behaviour between the generators in Scotland and
those of England and Wales. An inter-area mode had been
previously identified at around 0.5Hz involving all of the GB
system and remains a cause for concern across a major system
constraint boundary; in the two 120km 400kV double circuits
that connect the Scottish Network with the North of England.
Alarms are sent from this system in real-time to the energy
management system (EMS), to alert the network operators
when the system is believed to be approaching instability.
This constraint is considered to hinder the transfer of future
renewable generation in Scotland to the main demand centres
in England and Wales.

The PDC is configured to store the 50Hz PMU data at
maximum resolution for a rolling one year period, after this
time the data is to be archived off at a reduced resolution
of 10Hz for upto 10 years. With the amount of PMUs set to
increase on the GB system, as additional DFRs are upgraded
and new dedicated PMUs are installed [2], this represents a
growing challenge in terms of data storage. In addition it is
now of vital importance to capture data surrounding system
events as they provide the only reliable source of information
on the response of the power system, these events need to



3

be captured at full resolution to assist in inertia estimation
methods [5] and continuing validation of the offline network
model. Due to the growing volumes of data, importance is
therefore placed on timely analysis through fast algorithms
and identification of such events.

A. University based WAMS

PMUs have also been deployed at the domestic supply
at 4 UK Universities, Brunel, Birmingham, Manchester and
Strathclyde. Synchrophasor data, in voltage (magnitude and
phase), frequency and rate of change of frequency (RoCoF),
is measured locally at 50Hz and sent via the Internet to a
server in Ljubljana, Slovenia hosted by ELPROS. This system
provides good geographical visibility of the GB transmission
system with PMUs well distributed across the network, pro-
viding good visibility over the impact of any system events
through the Anglo-Scottish connection.

In addition, a laboratory setup exists at Brunel Univerisity
where a PMU is configured to communicate data locally
to a PDC. The server is running the openPDC software
[8], designed by the Tennessee Valley Authority (TVA) and
administered by the Grid Protection Alliance (GPA). The
openPDC is used to collect, manage and process real-time
synchrophasor measured values. This system is an example
of a low cost, easy installation alternative to the larger scale
WAMS solutions.

IV. THE DESIGN OF PDFA

A number of research works have been proposed for the
detection of system events with PMU data. The work described
in [21] details an approach based on finite impulse response
(FIR) filtering that is concerned with detecting transient power
system events, as a means of determining steady-state informa-
tion from PMUs to improve situational awareness. Whereas,
the work presented in [22] uses a generator clustering approach
to determine the source of an event based on detecting the
largest initial rotor swing. Other works have dealt with screen-
ing volumes of data for significant events, applying algorithms
based on Fourier transforms and Yule Walker methods [23],
[24].

In contrast the work presented in this paper is focused on
determining the exact instant a specific event starts, so that
the event can be isolated for additional analysis. Flagging the
presence of an event is intended, in the online sense, to act as
a trigger for the running of steady-state estimators [7].

The method works by detrending a dataset of PMU fre-
quency measurements on a sample-by-sample sliding window.
The window is configured to be 50 samples long, this is
to detect for changes over a 1 second period (at 50Hz),
looking for a specific loss shape in frequency, following an
instantaneous loss in generation. The loss shape typically lasts
for 1 second, before primary response services take over and
arrest the drop in frequency [5]. A root mean square (RMS)
value is then taken of the fluctuation, F for every window,
as shown in Equation (1), this value is then compared with a
threshold value, predetermined through a number of previous

baseline studies, F “ 0.2x10´3 to detect for the presence of
an event.

F pnq “

g

f

f

e

1

n

n
ÿ

k“1

repkqs2 (1)

Where n is the size of the window (50 samples), k is the
sample number and epkq is the detrended signal.

Previous works on detrending power system data [25] have
focused on removing trends or denoising power system data
for the purposes of processing transient oscillations, other
work [26] and the original implementation of DFA [27] have
focused on the detection of long-range correlations in data
series. This is all separate from the work described in this
paper. The purpose of detrending the data for this application
is to highlight the specific changes in the PMUs measured
values as a result of captured transients on the network; the
process has the affect of filtering the normal variations in the
signal that are predominantly a feature of the high resolution
measurements, placing the focus on extreme changes over
relatively short time spans.

The PDFA approach is the development of the DFA method
to operate efficiently on massive volumes of PMU data, using
MapReduce cluster computing.

A. MapReduce Programming Model

MapReduce is a parallel and distributed programming
model originally developed by Google for processing massive
amounts of data in a cluster computing environment [6],
[28]. Due to its remarkable features such as fault-tolerance,
simplicity and scalability, MapReduce has become a major
software technology in support of data intensive applications
[29]. MapReduce is a highly scalable model; thousands of
commodity computers can be used as an effective platform
for parallel and distributed computing.

As shown in Fig.1, the MapReduce model divides computa-
tional tasks into Map and Reduce stages. In the Map stage, the
computation is divided into several Map tasks to be executed
in parallel on cluster computing nodes or virtual machines
(VMs). Each Map task (a user-define Map function) processes
a block of the input dataset and produces an intermediate
result (IR) in the form of key/value pairs, which are then
saved in local storage. In the Reduce phase, each Reduce task
(a user-define Reduce function) collects the IR and combines
the values together corresponding to a single key to produce
the final result. It should be noted that the Map and Reduce
functions are executed independently.

B. MapReduce Implementation with Hadoop

The MapReduce programming model has been implemented
in a number of systems such as Mars [30], Phoenix [31],
Dryad [32] and Hadoop [33]. Hadoop is the most popular
implementation of MapReduce and has been widely employed
by the community due to its open source nature. Hadoop was
originally developed by Yahoo to process huge amounts of
data (over 300TB) across a cluster of low-cost commodity



4

1

2

3

4

5

6

Map

Map

Map

Input

Files

Map

Stage (M)

Reduce

Reduce

Intermediate

Result (IR)

<key, value> pairs

Reduce

Stage (R)

Final

Output file

<key, value> pairs

HDFS

Fig. 1. The MapReduce model.

computers [34]. It is worth noting that Hadoop not only
works in cluster computing environments, but also in cloud
computing systems such as the Amazon EC2 Cloud [35].

The architecture of the Hadoop framework, as shown in
Fig. 2, comprises its own file system, Hadoop Distributed
File System (HDFS) [36]. HDFS is designed to store massive
amounts of data (terabytes or petabytes) over a large number of
computer clusters and provides fast, scalable access to data.
HDFS follows a client-server architecture, where there is a
NameNode acting as the server and multiple DataNodes that
act as clients. The HDFS has high availability (HA) features by
providing the option to configure two NameNodes in the same
cluster in the form of active NameNode or passive NameNode
(Standby NameNode). This feature is used to reduce the risk
of single points of failure. The passive NameNode deals with
fast failover in case the active NameNode crashes as a result
of software or hardware malfunction [37].

HDFS automatically splits input files into equal size blocks
(64 MB or 128 MB by default) that are distributed across
the DataNodes. Each data block has multiple replicas (3 by
default), which are stored on different data nodes. If the cluster
network topology has more than one rack then the block
replicas will be stored on different rack machines. The purpose
of data replication and distribution on different machines is to
maximise reliability and availability of data.

The NameNode manages the namespace of the file system
and regulates the clients access to files. It does not store data
itself, but rather maintains metadata files that contain informa-
tion such as file name, block id, number of replicas, mapping
between blocks and DataNodes on which the blocks are stored
and the location of each block replica. The DataNodes manage
the storage directly attached to each DataNode and execute
Map and Reduce tasks.

The JobTracker runs on the NameNode and is responsible
for dividing user jobs into multiple tasks, scheduling the tasks
on the DataNodes, monitoring the tasks and re-assigning the
tasks in the instance of a failure. The TaskTracker runs on
DataNodes, receiving the Map and Reduce tasks from the
JobTracker and periodically contacts with the JobTracker to
report the task completion progress and requests for new tasks.

Furthermore, the Hadoop MapReduce cluster has over 180
configuration parameters. The system automatically assigns a
default value for these parameters if the user does not specify
one during a job submission. It has been widely recognized

M IR

Task Trackersplit

split

split

M IR

Task Trackersplit

split

split

M IR

Task Trackersplit

split

split

R IR

Task Tracker

R IR

Task Tracker

HDFS

HDFS

Metadata (FileName, block-id,

NumReplica, location etc

JobTracker

DataNode

DataNode

DataNode

DataNode

DataNode

NameNode

HDFS

Submit job

M = Map, R = Reduce

IR = Intermediate Result

Fig. 2. The Hadoop framework.

that setting an optimum value for these parameters can have
a high impact on the performance of a Hadoop job [38], [39].
Out of all the configuration parameters, precise tuning of the
following can have a significant impact on a jobs performance:

‚ io.sort.mb - Specifies the size of a buffer in memory
(MB) used by a map task when sorting a file. The default
value is 100MB; however, higher values can improve the
performance by reducing the spill to the local disk.

‚ io.sort.spill.percent - Controls when the system will start
the background thread to spill the contents of the memory
buffer to local disk. The default value is 0.8 (80%).

‚ io.sort.factor - Determines the number of spill files to be
merged. The default value is 10 and can be up to 30
depending on the RAM of the system.

‚ mapred.reduce.tasks - This parameter controls the number
of Reduce tasks to be set for a job. The default value
is 1. However, the user can set more Reduce tasks for
a job depending on the structure of the application and
requirements of the user.

‚ dfs.block.size - Controls the size of data block. The
default value is 64MB/128MB however, it can be set to
a larger size for improved performance.

‚ dfs.replication - This parameter controls the number of
replicas for each data block. The default value is 3.
Increasing the number of replicas improves the reliability
however at cost of storage space.

‚ mapred.tasktracker.map.tasks.maximum - This parameter
controls the number of Map tasks executed in parallel on
a DataNode.

‚ mapred.tasktracker.reduce.tasks.maximum - This param-
eter controls the number of Reduce tasks executed in
parallel on a DataNode.

‚ mapred.map.child.java.opts - Specifies the amount of
memory for the TaskTracker to use when launching jvm
(Java Virtual Machine). The default value is Xmx200m.



5

C. PDFA Implementation
The original DFA was implemented in MATLAB specifi-

cally for the offline application of event detection, focusing
on small datasets and the determination of the t “ t0 moment
or exact start time of a specific event.

The PDFA, as described in this paper, is intended for
the analysis of massive volumes of PMU data. It was
implemented in the Hadoop MapReduce framework using the
Python programming language due to its flexibility and open
source. The algorithm was implemented as depicted in Fig.
3, through the following 2 staged approaches:

1) Online Implementation: The laboratory based setup at
Brunel University comprises a domestic supply connected
PMU measuring positive sequence voltage values, frequency
and RoCoF. This data is sent through a local area network
(LAN) to a openPDC historian. The openPDC software is
configured in such a way that when the historian data size
reaches 100MB, a new data storage file is created in .d format
with a corresponding time-stamp.

A data agent has been created in the Java programming
language using a number of Hadoop core libraries and the
Java directory watch service package. The application code is
encapsulated in the while loop statement to execute continu-
ously, monitoring the historian folder to detect for the presence
of new .d files. Once the new file is created in the historian
folder, the data agent application automatically moves it to the
Hadoop cluster HDFS storage.

It should be noted that the HDFS storage system is not
capable of working with the .d file format. At present this
file is manually converted to .csv format using the historian
playback module within the openPDC software. This process
will be automated at a later stage.

2) Offline Implementation - Big Data: Having proven the
online data collection side of the system, the following analysis
can either be performed as a complement to this process or
alternatively it can work in a Data Mining sense where massive
datasets are provided directly to the HDFS storage in the .csv
file format.

The Hadoop MapReduce supports a number of program-
ming languages such as Java, Python, and C++. Java is
the native language of Hadoop and so programs written in
Java can be directly executed. Programs written in any other
language require application program interfaces (APIs) to
execute. For example, programs written in C++ are executed
through the Pipes API and programs written in Python will
execute through the Streaming API [40].

PDFA has been written in Python in the form of Map and
Reduce functions, as Python is open source and unlike Java
contains a large amount of the required mathematical func-
tionality. The PDFA is then executed through the Streaming
API in the Hadoop MapReduce environment.

When a dataset is moved onto a Hadoop cluster, the HDFS
automatically divides it up into blocks B, shown in Fig. 3. The
block size is specified in the cluster configuration file (hdfs-
site.xml), for instance, if a historian dataset is 16MB and the
block size value has been set to 2MB, then the total number of

blocks for that dataset will be 8 (16/2 = 8). The total number
of Map tasks is equal to the total number of blocks.

When the PDFA program is submitted to the Hadoop
framework, the framework automatically divides the PDFA
program into a number of Map and Reduce tasks. A block
of the PMU dataset is assigned to each Map task and the
number of Map tasks executed in parallel to process the dataset
depends upon the number of Map slots specified in the cluster
configuration file (mapred-site.xml). For the PDFA, one slot
was configured on each VM, as a result 8 Map slots were
configured in the cluster and so 8 Map tasks were executed in
parallel to process the historian dataset. The number of Map
slots configured in a VM depends on the processing capacity
(physical memory and number of CPU cores) of the VM.

Each Map task processes the assigned data block on a
sliding window of 50 samples (as per the DFA algorithm) and
calculates the fluctuation value F . The F values are buffered
in memory of size 100MB, which can also be set in the
configuration file. When the content of the buffer memory
reaches a threshold value of 80% (80MB) a background thread
is started to spill the contents of the memory buffer to a local
disk as an intermediate result (IR). The number of IR files is
equal to the number of Reduce tasks.

After completion of the Map phase, the PDFA Reduce
tasks are initiated and collect the calculated F vlaues. The
number of Reduce tasks is also configurable by the user in
the configuration file. The number of Reduce tasks to be
executed in parallel depends on the number of Reduce slots
configured in the configuration file. For the PDFA, 8 Reduce
tasks and 8 Reduce slots were configured, so as to fully utilize
all the available Reduce slots. Each Reduce task compares
every value of F with the threshold value F “ 0.2x10´3,
any value greater than this threshold is flagged as an event for
further analysis.

Most of the conventional cluster-based approaches have
issues of reliability and fault-tolerance. The PDFA is imple-
mented in a Hadoop based cluster computing environment, as
it offers built-in remarkable features such as high availability,
fault-tolerance and scalability. The framework supports multi-
ple replicas of the data blocks and distributes them on different
computers/VMs to overcome any fail situations and delays.
The cluster can easily be scaled by adding more processing
nodes to increase the speedup of computation. During the job
execution, if any processing nodes crash due to software or
hardware failures, the jobTracker will automatically detect it
and assign the running tasks to another available node.

V. EVALUATION AND EXPERIMENTAL RESULTS

We have compared the performance of the PDFA with that
of the sequential DFA from the aspects of both efficiency in
computation and accuracy. The performance was evaluated
using 6000 samples of frequency data (2 minutes at 50Hz),
provided by National Grid. The data contained a known system
event, in the loss of a generator exporting approximately
1000MW. In order to create a Big Data scenario, this dataset
was replicated a number of times to provide a relatively large
dataset with over 32 million samples.



6

B1

Bn

PMU

PMU

PMU

B2

B3

IR

IR

IR

IR

Compute 

Fluctuation (F)

Compute 

Fluctuation (F)

Compute 

Fluctuation (F)

Compute 

Fluctuation (F)

Collecting 

F values

for 

comparison

with 

Threshold

PMU

data file Output

file

openPDC

software

Data Hisotrian

100MB buffer

Data

agent

HDFS

storage

Data blocks
Map tasks and

Intermediate Result (IR)
Reduce

tasks

On-line application

Off-line data mining

Create new file

 (.d format)

Java program to

check for new .d file 

then send to HDFS

Data divided 

into 

data blocks 

size (MB)

Event

Detection

Fig. 3. Architecture of PDFA implementation.

A. Experimental Setup

The experiments were carried out using a high performance
Intel Server machine comprising 4 Intel Nehalem-EX pro-
cessors running at 2.27GHz each with 128GB of physical
memory. Each processor has 10 CPU cores with hyper thread
technology enabled in each core. The specific details of the
hardware and software implementation are displayed below in
Table 1. The analysis of the sequential DFA was carried out
on just one of the VMs, whereas the PDFA was run on upto
8 VMs.

TABLE I
EXPERIMENTAL CONFIGURATION OF HADOOP CLUSTER

CPU 40 Cores
Hardware

Processor 2.27GHz

Storage 2TB and 320GB

Connectivity 100Mbps Ethernet LAN

Operating System Ubuntu 12.04 TLS
Software

Python Version 3.3

JDK Version 1.6

Hadoop CDH 4.5

Oracle Virtual Box Version 4.2.8

openPDC Version 1.5

B. Results

A number of experiments were carried out to evaluate the
efficiency and accuracy of the PDFA method. From Fig. 4 it
can been seen that the PDFA outperforms the sequential DFA
in computation significantly using 8 VMs. The execution time
of the sequential DFA increases with an increasing number of
data samples, while the execution time of the PDFA remains
relatively constant.

0.066 0.072 1.056 1.386 1.716 2.046 2.376 2.706 3.036 3.366 4.026
0

100

200

300

400

500

600

700

Number of data samples in Million

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

 

 

PDFA

DFA

Fig. 4. Analysis of PDFA efficiency.

0.066 0.072 1.056 1.386 1.716 2.046 2.376 2.706 3.036 3.366 4.026
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

−4

Number of data samples in Million

A
v
e

ra
g

e
 f

lu
c
tu

a
ti
o

n
 v

a
lu

e
 

 

 

PDFA

DFA

Fig. 5. The relative accuracy of PDFA compared to DFA.

The DFA algorithm works on a sliding window, so when
comparing the output of the sequential DFA with PDFA it
is important to note the possibility of discrepancies in results
caused by data partioning due to the way in which the datasets
are divided up for parallelization. This does not affect the
PDFAs ability to detect events; it just means that the F values
could differ slightly from the DFA results. The results of the
PDFA are compared with that of the DFA and are displayed in
Fig. 5, the relative accuracy of PDFA is very close to that of
the sequential DFA, especially in the cases of larger datasets,
as the difference converges to zero.

The scalability of the PDFA in terms of a varied number
of both VMs and data samples was evaluated. Fig. 6 shows
the execution times of the PDFA when processing 3 different
sizes of dataset and a varied number of VMs from 1 to 8.
The PDFA clearly performs best in scalability on the largest
dataset with 32 million data samples. It can be observed that
the execution time of the PDFA on each dataset decreases with
an increasing number of VMs employed. When processing
8M data samples, 4 VMs generated 2 times speedup, whereas
8 VMs generated 2.5 times of speedup. However, when the
number of data samples is increased to 32M, 4 VMs generated
3.3 times of speedup whereas 8 VMs generated 5.4 times of



7

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Number of Mapper Nodes

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

 

 

8 Million data samples

16 Million data samples

32 Million data samples

Fig. 6. The Scalability of PDFA, Execution time against number of Mapper
nodes (VMs).

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of Mapper Nodes

S
p

e
e

d
u

p

 

 

8 Million data samples

16 Million data samples

32 Million data samples

Amdahl’s law (ideal)

Fig. 7. Speedup analysis of the PDFA algorithm.

speedup. With increasing numbers of data samples, the times
of speedup will be increased closer to the number of VMs.

Based on the results presented in Fig. 6, the speedup of the
PDFA in terms of computation when processing the 3 different
sized datasets was calculated using Equation (2).

Speedup “
Ts

TN
(2)

Where Ts is the execution time of the PDFA on a single
VM and TN represents the execution time of the PDFA
on N number of VMs. The results of this calculation are
displayed in Fig. 7. Again, the PDFA achieves the best speedup
in computation on the largest dataset with 32 million data
samples. However, as shown in the figure by the dotted line,
the results never achieve that which are to be expected from
Amdahl’s law [41].

C. Speedup Analysis

When paralleizing a sequential program, the speedup in
computation can be calculated using Amdahl’s Law [41],

defined in Equation (3).

Speedup “
1

p1´ P q `
P

N

(3)

Where P , represents the portion of the sequential programme
in percentage that can be parallelized and N represents the
number of computers used in the computation.

Theoretically, in the case when a sequential program can be
fully parallelized (P “ 1), as was the case with PDFA, the
speedup of the parallelized program should be equal to the
number of computers used in the computation N . Therefore,
we have:

Speedup “
1

p1´ P q `
P

N

ď N (4)

However, as shown in Fig. 7, the closest speedup to
Equation (4) that the PDFA achieved in all the computation
scenarios was 3.3 times faster than the sequential DFA when
4 VMs were used in the process. The speedup of the PDFA
never achieved N times in a Hadoop cluster with N computers
even though the sequential DFA was fully parallelized. This
means that Amdahls Law in the form of (4) is not sufficient
in calculating the speedup of a parallelized program that is
executed in a cluster computing environment. This is because
Amdahl’s Law in this form does not consider the commu-
nication overhead of a user job in cluster computing. For
this purpose, a revision to Amdahls Law is proposed in the
form of Equation (5), to better reflect the speedup gain when
parallelizing a sequential program in cluster computing.

Speedup “
1

p1´ P q `
P

N
`R

ă N (5)

Where R, represents the ratio of the communication overhead
to the computation of a user job, and R ą 0.

The revised Amdahl’s Law (5) better explains the speedup
of a parallel program running in cluster computing. The larger
a dataset is, the higher overhead in computation will be
incurred. As a result, the lower the ratio of communication
to computation would be achieved, which leads to a higher
speedup in computation. This well explains the speedup of
the PDFA in computation when processing the 3 datasets with
varied sizes.

To achieve an optimal performance in speedup, the ratio of
communication to the communication of a parallel program
should be minimized. In the case of Hadoop MapReduce
clusters, the size of the segmented data blocks shall be large.
On one hand, a large size of data block will generate a small
number of tasks that incurs a small overhead in communica-
tion. On the other hand, a large size of data block will lead
to a high workload in computation. Therefore, a large size of
data block will lead to a low communication to computation
ratio generating a high speedup.

To evaluate how the size of a data block affects the
computational performance of PDFA, the algorithm was run
on a dataset of 352MB using 8 VMs with varied sizes of
data blocks ranging from 2MB to 32MB. From Fig. 8 it can



8

2 4 8 16 32
100

120

140

160

180

200

220

240

260

Block Size (MB)

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

Fig. 8. Computational overhead of PDFA against data block size.

2 4 8 16 32
1

1.2

1.4

1.6

1.8

2

2.2

Block Size (MB)

S
p

e
e

d
u

p

Fig. 9. The speedup of PDFA against data block size.

be observed that the execution time of PDFA decreases with
an increasing size of data block. The speedup of PDFA in
computation goes up with an increasing size of data block,
as shown in Fig. 9. It can be seen that PDFA is 2.04 times
faster in computation using 32MB data blocks than when using
2MB data blocks, thus confirming a greater improvement in
performance with larger datasets.

VI. CONCLUSIONS

In this paper the PDFA approach, for the detection of
transient events on massive PMU datasets was presented, in
the form of a laboratory based setup for online data collection
and analysis, as well as an offline approach in the context of
data mining. PDFA builds on the MapReduce model for data
partitioning and distribution amongst a cluster of computer
nodes. The experimental results have shown the speedup of
PDFA in computation whilst maintaining relative accuracy in
comparison with the sequential DFA. Based on the analysis
in the speedup of computation, an improvement to Amdahl’s
law is proposed, introducing the ratio of communication
to computation to enhance its capability to analyse the
performance gain in computation when parallelizing data
intensive applications in a cluster computing environment.

Further work is proposed to investigate the methodologies
to automatically optimize the configuration settings of
Hadoop MapReduce parameters. This will further improve
the performance of the PDFA algorithm.

REFERENCES

[1] M. Zima, M. Larson, P. Korba, C. Rehtanz, and G. Andersson, “Design
aspect for wide-area monitoring and control system,” Proceedings of the
IEEE, vol. 93, no. 5, pp. 980–996, May 2005.

[2] P. M. Ashton, G. A. Taylor, M. R. Irving, A. M. Carter, and M. E.
Bradley, “Prospective wide area monitoring of the great britain trans-
mission system using phasor measurement units,” in Proc. IEEE Power
Engineering Society General Meeting, July 2012.

[3] J. F. Hauer, N. B. Bhatt, K. Shah, and S. Kolluri, “Performance of “wams
east” in providing dynamic information for the north east blackout of
august 14, 2003,” in Proc. IEEE Power Engineering Society General
Meeting, July 2004, pp. 1685–1690.

[4] M. Rihan, M. Ahmed, and M. S. Beg, “Phasor measurement units in the
indian smart grid,” in Proc. of IEEE Conference on Innovative Smart
Grid Technologies - India (ISGT India), 2011.

[5] P. M. Ashton, G. A. Taylor, A. Carter, and W. Hung, “Application of
phasor measurement units to estimate power system intertial frequency
response,” in Proc. of IEEE Power Engineering Society General Meet-
ing, July 2013.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large cluster,” Communication of the ACM, vol. 51, no. 1, pp. 107–133,
Jan 2008.

[7] P. M. Ashton, G. A. Taylor, M. R. Irving, I. Pisica, A. Carter, and M. E.
Bradley, “Novel application of detrended fluctuation analysis for state
estimation using synchrophasor measurements,” IEEE Transactions on
Power Systems, vol. 28, no. 2, pp. 1930–1938, May 2013.

[8] OpenPDC. http://openpdc.codeplex.com, [Accessed April 2013].
[9] W. Xingzhi, Y. Zhen, and L. Li, “A grid computing based approach for

the power system dynamic security assessment,” Journal of Computer
and Electrical Engineering, Elsevier, vol. 36, no. 3, pp. 553–564, May
2010.

[10] G. A. Ezhilarasi and K. S. Swarup, “Parallel contingency analysis in
a high performance computing environment,” in Proc. International
Conference Power System (ICPS), July 2009, pp. 1–6.

[11] I. Gorton, Z. Huang, Y. Chen, B. Kalahar, S. Jin, D. Chavarra-Miranda,
and J. Baxter, “A high-performance hybrid computing approach to
massive contingency analysis in the power grid,” in Proc. the 2009 Fifth
IEEE International Conference on e-Science, IEEE Computer Society,
July 2009, pp. 277–283.

[12] J. Interrante and K. S. Aggour, “Applying cluster computing to enable
a large-scale smart grid stability monitoring application,” in Proc. of
IEEE 14th International Conference on High Performance Computing
and Communication, 2012.

[13] W. Gao and X. Chen, “Distributed generation placement design and
contingency analysis with parallel computing technology,” Journal of
Computer and Electrical Engineering, Elsevier, vol. 4, no. 4, pp. 347–
354, April 2009.

[14] J. C. H. Peng, A. Mead, and N. K. C. Nair, “Exploring parallel
processing for wide area measurement data applications,” in Power and
Energy Society General Meeting, 2011 IEEE, July 2011, pp. 1–8.

[15] L. Wang and C. Singh, “Multi-deme parallel genetic algorithm in
reliability analysis of composite power systems,” in Proc. of the 2009
IEEE Bucharest PowerTech Conference, Bucharest Romania, July 2009.

[16] K. Maheshwari, M. Lim, L. Wang, K. Birman, and R. Renesse, “Toward
a reliable, secure and fault tolerant smart grid state estimation in the
cloud,” in Proc. of the IEEE PES Innovative Smart Grid Technologies
(ISGT), Feb 2013, pp. 1–6.

[17] P. Trachian, “Machine learning and windowed subsecond event detection
on pmu data via hadoop and the openpdc,” in Proc. of IEEE Power and
Energy Society General Meeting, TVA, USA, 2010.

[18] M. Edwards, A. Rambani, Y. Zhu, and M. T. Musavi, “Design of hadoop-
based framework for analytics of large sychnrophasor datasets,” Proce-
dia Computer Science, Complex Adaptive Systems, Elsevier, vol. 12, pp.
254–258, 2012.



9

[19] H. Mass, H. K. Camak, F. Bach, and U. G. Kuhnapfel, “One year
high rate low voltage recording device, method and results,” in Proc. of
the IEEE International Workshop on Applied Measurements for Power
Systems (AMPS), Sept 2013, pp. 68–72.

[20] F. Bach, H. K. Cakmak, H. Mass, and U. Kuehnapfel, “Power grid time
series data analysis with pig on a hadoop cluster compared to multi core
system,” in Proc. of IEEE 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), Feb 2013,
pp. 208–212.

[21] J. E. Tate, Event detection and visualization based on phasor measure-
ment units for improved situational awareness. PhD Thesis, University
of Illinois at Urbana-Champaign, 2008.

[22] K. Mei, S. M. Rovnyak, and C. Ong, “Design aspect for wide-area
monitoring and control system,” IEEE Transaction on Power Systems,
vol. 23, no. 2, pp. 673–679, May 2008.

[23] S. Sohn, A. J. Allen, S. Kulkarni, W. M. Grady, and S. Santoso,
“Event detection method for pmus synchnrophasor data,” in Proc. of
IEEE Conference Power Electronics and Machines in Wind Application
(PEMWA), 2012.

[24] A. J. Allen, S. Sohn, S. Santoso, and W. M. Grady, “Algorithm for
screening pmu data for power system events,” in IEEE Int. Conference
on Innovative Smart Grid Technologies, 2012.

[25] A. R. Messina, V. Vittal, G. T. Heydt, and T. J. Browne, “Nonstationary
approaches to trend identification and denoising of measured power
system oscillations,” IEEE Transaction on Power Systems, vol. 24, no. 4,
pp. 1798–1807, Nov 2009.

[26] A. Bashan, R. Bartsch, J. W. Kantelhardt, and S. Havlin, “Comparison
of detrending methods for fluctuation analysis,” Physica A 387, Elsevier,
pp. 5080–5090, April 2008.

[27] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and
A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Physical
Review E, vol. 49, no. 2, pp. 1685–1689, Feb. 1994.

[28] R. Lammel, “Googles mapreduce programming model revisited,” Sci-
ence of Computer Programming, vol. 70, no. 1, pp. 1–30, 2008.

[29] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proc. of the 22nd Symposium on Operating Systems Principles (ACM
SIGOPS), 2009.

[30] B. He, W. Fang, Q. Luo, G. N. K., and T. Wang, “Mars: Mapreduce
framework on graphics processors,” in Proc. of ACM 17th Int. Confer-
ence on Parallel Architectures and Compilation Techniques, 2008.

[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,” in
Proc. of the IEEE 13th Int. Symposium on High Performance Computer
Architecture, Feb 2007.

[32] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proc. of the European Conference on Computer Systems (EuroSys),
2007.

[33] Apache Hadoop. http://hadoop.apache.org, [Accessed on 14 August
2013].

[34] Yahoo!, Yahoo! Launches Worlds Largest Hadoop Production Applica-
tion. http://developer.yahoo.com/blogs/hadoop, [Accessed April 2013].

[35] Amazon Elastic Computer Cloud. http://aws.amazon.com/ec2, [Ac-
cessed April 2013].

[36] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. of 26th IEEE Symposium on Massive
Storage Systems and Technologies (MSST), 2010.

[37] An Introduction to HDFS High Availability. [Avail-
able online] http://www.cloudera.com/content/cloudera-
content/cloudera-docs/CDH4/latest/CDH4-High-Availability-
Guide/cdh4hag topic 2 1.html, Accessed March 2014.

[38] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop
provisioning in the cloud,” in Proc. of the Workshop on Hot Topics
in Cloud Computing, held in conjunction with the USENIX Annual
Technical Conference, 2009.

[39] S. Babu, “Towards automatic optimization of mapreduce programs,” in
Proc. of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[40] Hadoop Streaming. http://hadoop.apache.org/docs/r1.2.1/streaming.html,
April 2013.

[41] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. of AFIPS Spring Joint
Computer Conference, 1967.

Mukhtaj Khan received his MSc in Mobile Computer System from Stafford-
shire University, UK in 2006. He is currently a PhD student in the School of
Engineering and Design at Brunel University, UK. The PhD study is sponsor
by Abdul Wali Khan University Mardan, Pakistan. His research interests are
focused on high performance computing for big data analysis.

Phillip M. Ashton received his MEng degree from the University of
Portsmouth in 2006. He is currently studying an Engineering Doctorate, EngD
with Brunel University, UK based in industry with the electricity transmission
system operator, National Grid. His research interests are focused around
exploiting the use of phasor measurement units for enhanced operation and
control of the GB transmission system.

Maozhen Li received the PhD from Institute of Software, Chinese Academy
of Sciences in 1997. He was a post-doctoral scholar in the School of Computer
Science and Informatics, Cardiff University, UK in 1999-2002. He is currently
a Professor in the School of Engineering and Design at Brunel University, UK.
His research interests are in the areas of high performance computing (grid
and cloud computing) for big data analysis and intelligent systems. He is
on the Editorial Boards of Computing and Informatics journal and journal
of Cloud Computing: Advances, Systems and Applications. He has over 100
research publications in these areas. He is a Fellow of the British Computer
Society.

Gareth. A. Taylor received his BSc degree from the University of London,
UK in 1987 and MSc and PhD from the University of Greenwich, UK in 1992
and 1997, respectively. He was the National Grid UK post-doctoral scholar
at Brunel University, UK from 2000-2003. He is currently a Professor and
Director within the Brunel Institute of Power Systems, Brunel University, UK.
His research interests include smart grids, wide area monitoring of power
systems and network optimization.

Ioana Piscia received degrees from the University Politehnica of Bucharest
and the Academy of Economic Studies from Bucharest, Romania. She is
a Research Fellow within the Brunel Institute of Power Systems at Brunel
University, London, U.K. She is currently working on the EPSRC funded
project ADEPT (Advanced Dynamic Energy Pricing and Tariffs) and her re-
search interests include artificial intelligence techniques, communications and
SCADA systems in electrical power engineering.

Junyong Liu is a Professor in the School of Electrical Engineering and
Information Technology at Sichuan University, China. His research interest
is mainly focused on the areas of intelligent dispatch and operation theory
for smart grids, WAMS integration and PMU applications, and power system
vulnerability assessment. He has led more than 90 research projects funded by
National Natural Science Foundation of China and a large number of electric
power grid companies in China. He has over 150 journal and conference
papers. He was a Distinguished Visiting Fellow of Brunel University, UK
funded by the Royal Academy of Engineering.


