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ABSTRACT

We propose a particle filter for the estimation of a partially
observed Markov chain that has a non dynamic component.
Such systems arise when we include unknown parameters or
when we decompose non ergodic systems to their ergodic
classes. Our main assumption is that the value of the non dy-
namic component determines the limiting distribution of the
observation process. In such cases, we do not want to resam-
ple the particles that correspond to the non dynamic compo-
nent of the Markov chain. Instead, we take a weighted aver-
age of particle filters corresponding to different values of the
non dynamic component. The computation of the weights is
based on entropy and the number of particles corresponding
to each particle filter is proportional to the weights.

1. SETTING

We are interested in systems of the following form:

{Xn+ I Ko, (Xn, 1

{ n+1 On

that have been partially observed through

Yn= h(Xn) + Vn, (2)

where Xn and Yn take values in Euclidean spaces RP and Rq
and On takes values in a compact subset of a Euclidean space
9 C R'. The Markov chain (Xn, On) is clearly not ergodic,
but if we fix the value of the non dynamic component to some
a C 9, Xn becomes a Markov chain with transition kernel
K,i which we assume to be mixing.

The motivation for looking at these type of systems comes
from adaptive estimation: the non dynamic component On
corresponds to unknown parameters (see [1]). However, such
systems can also arise by decomposing a non ergodic system
to its ergodic classes, in which case each value of the non
dynamic component corresponds to a different ergodic class.

Our goal is to estimate the random variable Xn, given
all the information up to time n. Since the system could be
nonlinear, we would like to apply particle filters. However,
we want to avoid resampling the non-dynamic component of

the Markov chain because this could lead to divergence of the
particle filter.

Note that we are not interested in estimating the parame-
ter, but rather in computing the marginal of the posterior dis-
tribution corresponding to the state variable Xn. Thus, we
take a different approach to that of [2, 3], where the authors
develop an algorithm for estimating the parameters and, more
generally, computing the derivatives of the optimal filter. Our
approach is also applicable to the case where the system is not
ergodic and we do not know the initial conditions which, in
this case, play the role of the parameter 0.

This is particularly true in the case when we don't know
the exact initial conditions of the Markov chain. Suppose,
for example, that the correct initial distribution of 00 is 6,
i.e. 0 is really a constant equal to a. Then, if we initial-
ize 00 according to some prior u, the corresponding optimal
filter will eventually converge to the optimal filter that has
been correctly initialized according to 6, provided that u is
a 'good' prior and certain identifiability conditions hold (see
[4]). In this case, the particle filter needs to approximate the
optimal filter corresponding to prior u uniformly in time so
that it stays close to the true optimal filter.

In order to avoid resampling and construct a particle filter
that will converge uniformly in time, we can take a weighted
average of particle filters corresponding to different values of
0 (treating 0 as a constant), picked from 9 according to the
prior distribution u: we define the particle filter

M
.MN(a) ZW=W (Oj)N(,1 0 0j)

j=l

where {Oj }I 1 are independent samples from the prior distri-
bution u, JN (u 0 6oj ) is the interacting particle filter where
the non dynamic component has been fixed to Oj and Wn(0j)
is computed in such a way that it approximates the likelihood
of 0 being equal to Oj:

Wn(Oj) P (OjYn ...Yi). (4)

In this computation of the weights, the particle filters 1N(Po
o0j) are used in a crucial way: see [5] and [6], where the uni-
form convergence of this particle filter is shown. As a result,
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even if the weight corresponding to a particular value of 0 is
very small, we still need a good approximation of the corre-
sponding particle filter D<N(,u do), which makes this algo-
rithm computationally very expensive. However, if there was
a way to compute the weights that did not involve the interact-
ing particle filters, instead of using the same number of par-
ticles N to approximate the optimal filters corresponding to
each value Oj we could use a number proportional to Wn(0j),
thus spending most of the computational effort on the particle
filters with the higher weight.

In the following section, we suggest a way of computing
the weights that depends on entropy and does not involve the
interacting particle filters.

2. PARTICLE FILTER

Our main assumptions are that the values of 0 are in one-
to-one correspondence with the limiting distributions of the
observation process vo and that for each 0 the observation
process satisfies the large deviation principle. This means that
if we had infinitely many observations, we would know the
limiting distribution vo and consequently we would know 0.
So, the likelihood of Oj should be approximately proportional
to the distance of voj from va, where a is the true value 0 in
the sense that

n

Z 6yk 4 vo, as n -*> oc.
k=1

Based on the above observations, we make the following
approximations:

P (Yn~.. ) Y, 0) r-. P (Ln (Y) C B(o )10)

where we set Ln(y) = 1 En= 1yk and B(v,, e) is the ball
of radius e around the distribution v, with respect to the Levy-
Prohorov metric that metrizes the weak convergence of mea-
sures. Then, since the observation process satisfies the large
deviation principle, we can say that for large n

P (Ln(Y) C B(va, 0) e-n

where 1o is the appropriate rate function. If the observations
were an i.i.d. sequence, the rate function would have been the
entropy distance between vo and v. This is our next approx-
imation:

Io ~ / log (d (Y)) vc(dy).
Since we do not know a and consequently va, we replace it
by

n k kyk which converges to vo. Then, the right hand
side becomes

n

Jn (09) := log (nvo (Ykc)).
k=1

If an analytic expression for vo is not available, we can also
approximate is by E=l yo, where {Y}YI is a simu-
lation of the observation process corresponding to parameter
value 0.

Based on the above approximations, we define the weights
to be

Wn(Oi)
eZk1= log(nvo, (Yk))

zM eZn 1 log(nvoj (Yi))

1

(5)

EM eE=l( k( ( YO

The second formula is better in practice because it avoids
dealing with large numbers.

So, we have achieved to define the weights in a way that
does not involve the particle filters.

Note that as n goes to infinity, we expect that all the mass
will be concentrated on one 0 C {01, . .., OM }, which is the
one that minimizes the entropy distance between vo and v.
Then, as M goes to infinity, we expect all the mass to be
concentrated on a, which is exactly what we want.

The algorithm takes the following form:

At time n=O (Initialization):

We sample M particles {Oj }j=l,....M from distribution u
and N M particles {fC(0j) i=1,...,N;j=1,...,M from distrib-
ution ,u. The weights of the parameters and the number of
particles corresponding to each interacting particle filter are
set to be equal, i.e. Wo(0j) = M and Noj = N. Then,

M
0M'Nq(, (8 U) := EM W (0j). ° (9

j=l
c0j )

N,M

NM E °(9)i,j=1
where ° (,u

3

oj) is the interacting particle filter at time
n = 0, corresponding to parameter value Osj.

For n > 0 (Evolution):

1. We compute the new weights W (0j) according to (5)
and we sample the Nn3 according to these weights, so
that they sum up to NM.

Alternatively, we can set Nn = FWn(0j) NM] to
simplify the algorithm, i.e. set the number of parti-
cles equal to the rounded-up corresponding proportion
of the total number of particles. In this case, the total
number to particles may vary but will never be higher
than (N + 1)M.



Fig. 1. Estimation of the state process X, using the Kalman
filter and the entropy based particle filter.

2. For each Oj, we evolve the interacting particle filter as

usual except that at the resampling stage, we start with
Nn- 1 particles and we end with Nn particles.
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Fig. 2. Ll-distance from the Kalman filter when the para-

meter 0 is unknown and known. When the parameter is un-

known, the average error is 0.0912, whilst when the parameter
is known, the average error is 0.0871.

Then, the particle filter is defined by

M

n (1 (8 ):=) E n n

j=l
c0oj). (6)

In the following section, we apply this algorithm to a toy
example.

3. EXPERIMENT

Let us consider the model

Xn

Yn

Xn-1 +En 0 C (01,1)

Xn +qtn n = 1, 2, .. .

(7)

(8)

where E, and rjn are standard Gaussian and uncorrelated ran-

dom variables and the parameter 0 is unknown. The values of
Y, are observed and we aim to estimate the values X,. Note
that for this model, the limiting distribution of the observation
process is a Gaussian with mean zero and variance 1-02 , SO

it is in one-to-one correspondence with the parameter space

(0, 1) as required.
According to the algorithm introduced in the previous sec-

tions, we initially sampled M = 100 parameters from an

uniform distribution over (0,1) and N = 100 particles for
each parameter. The evolution of the algorithm follows as

explained in the previous sections. The real value of the para-

meter is 0 = 0.7.
The graph in Fig. 1 shows the estimation of the state process

using the method presented here (solid line) compared to the
Kalman filter estimation (dotted line) for 50 time points.

We now look at the Ll-error of the particle filter com-

pared to the Kalman filter. Let us assume that we have 1000
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Fig. 3. Weighted mean of the weights W,, (Ojf at each time
point.

observations of Y,. The graphs in Fig.2 show the error for the
entropy based particle filter and the interacting particle filter
with known parameter 0. In the first case, we see that the
size of the error decreases quickly to become comparable to
that of the interacting particle filter for the correct parame-
ter. The interacting particle filter has been computed using
N M =10000 particles.

Finally, the graph in Fig.3 shows the weighted mean of the
weights W,, (Ojf of the particle filter at each time point. As n
increases they converge to the true value of the parameter, as

expected. Note that the particle filter converges to the state
process much earlier than the parameters converge to the true
value of the parameter, due to the robustness of the optimal
filter with respect to 0.



4. CONCLUSIONS

From the above example, we see that this method can give
comparable errors to those of the particle filter with N M pa-
rameters that has been initialized correctly, i.e. it corresponds
to the correct value of the parameter.

If the goal is to compute the complete posterior distrib-
ution of (1) rather than the marginal, one can combine the
method presented here with that in [6] as follows: the weights
can be computed so as to approximate the posterior distrib-
ution of the parameter, as in [6], while the number of parti-
cles of the corresponding particle filters can be computed as
above, so as not to depend on the previous estimation of the
particle filters.
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