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This paper is concerned with the event-triggered disteithstate estimation problem for a class
of uncertain stochastic systems with state-dependenesiaisd randomly occurring uncertain-

ties (ROUs) over sensor networks. An event-triggered comcation scheme is proposed in

order to determine whether the measurements on each sésdd ®e transmitted to the esti-

mators or not. The norm-bounded uncertainty enters inteystem in a random way. Through

available output measurements from not only the indivicealsor but also its neighboring sen-
sors, a sfficient condition is established for the desired distribigetimator to ensure that the

estimation error dynamics is exponentially mean-squaelest These conditions are character-
ized in terms of the feasibility of a set of linear matrix inedjties, and then the explicit expres-

sion are given for the distributed estimator gains. Finallgimulation example is provided to

show the &ectiveness of the proposed event-triggered distributae sistimation scheme.

Keywords: Distributed state estimation; Randomly occurring undsties; State-dependent
noises; Sensor networks.

1. Introduction

In the past decade, wireless sensor networks have attractettreasing research atten-
tion for their successful applications in a variety of aregasuding environment moni-

toring, interactive virtual worlds, health care, inforroat collection and warehouse in-
ventory (Bertrand and Moonen, 2010; Cattivelli and Say@d8& 2010). A fundamental

collaborative information processing problem with theelgéss sensor networks is how
to find distributed estimators or filters to obtain the infatran about the state vectors
of the target plants from observations contaminated witlereal disturbances. Conse-
quently, considerable research attention has been detmtbe theoretical research on
the distributed estimation or filtering algorithms that eagpable of estimating stationary
signals with low-cost and tracking nonstationary procesgéh reduced-complexity, and
a wealth of literature have appeared on this topic, see,(®ing et al, 2008; Ding et al.,
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2012, 2014; Dong et al., 2012, 2013; Huang et al., 2012; Litrg., 2012; Shen et al.,
2010, 2011; Speranzon et al., 2008; Zhang and Yang , 2014thaneferences therein.
Different from the traditional single node, in the distributetireation schemes, the local
estimators estimate the system state based on the informradt only from itself but also
from its neighboring sensors according to the given topplég such, the essentialfi}
culty in designing distributed estimators depends upon twogkeal with the complicated
coupling issues between one sensor and its neighboringiseaisd how to reflect such
couplings in the estimator structure specification.

In sensor networks, the limited battery energy, computalipower and memory of
the sensor nodes are all changeable in a dynamical way. foherparameter uncertain-
ties are ubiquitous when modeling the target plant and theaenetworks. With rapid
development of network technologies, the parameter usioéids may be subject to ran-
dom changes and may occur in a probabilistic way, for ingaramdom network-induced
structural changes, repairs of components, changing stdrsyinterconnections or sud-
den environment changes, etc. In this sense, it would maketipal sense to consider
the randomly occurring uncertainties when designing tteirde distributed estimation
algorithm. Very recently, some pioneering work has appekarahe literature concern-
ing the state estimation problem for a class of discreteineat systems with randomly
occurring uncertainties (ROUs), see (Hu et al., 2014). @nadther hand, the stochas-
tic disturbances are usually encountered in sensor nesweitkin a noisy environment.
Note that many plants may be modeled by systems with stggerdient noises and some
characteristics of nonlinear systems can be closely appeigd by models with state-
dependent noises rather than by linearized models (Dinb3;28u et al., 2013; Wang et
al., 2010, 2013). Unfortunately, up to now, very little raseh dfort has been paid to the
robust distributed estimation issue with simultaneousgmee of parameter uncertainties
and state-dependent noises.

In the past decades, the event-triggered communicatiohamém has received much
research attention due to the rapid development of digitataprocessor and computer
science. In comparison with conventional time-triggerechmunication, event-triggering
allows a considerable reduction of the network resourcegaecy while maintaining the
guaranteed filtering performance, avoids some injuricsstmission phenomena such as
data dropouts and time delay, etc, and extends the lifetirttgecservices. Therefore, the
event-triggered communication mechanism is particulsigyificant in sensor networks
due to its capability of decreasing the unnecessary exawitf the systems and saving
energy. In the past few years, the event-based strategiedlean extensively studied for
various engineering systems such as networked contra@rmegstDonkers and Heemels,
2012; Hu and Yue, 2012; Liu et al., 2014; Peng and Yang , 2GE3)sor networks (Lee
and Choi, 2013; Tseng, 2005), multi-agent systems (Tab2ady; Zhu et al., 2014) and
neural networks (Li, 2012; Sahoo et al., 2013), etc. Howetheravailable results in the
literature have been scattered for the filtering or staieesibn problems, most of which
have been concerned with the implementation problemsrr#tha the system analysis
and synthesis issues.

Summarizing the above discussion, in this paper, we arevatet to study the robust
distributed state estimation problem for a class of ungesgichastic systems with state-
dependent noises and randomly occurring uncertaintiestbeesensor network charac-
terized by a directed graph. By augmenting the state of tiggnait system and the esti-
mation errors on all sensor nodesfisient conditions are established for the existence
of the desired estimators and then a parameterization efstimator gains is derived. A
simulation example is provided to show théegtiveness of the proposed distributed state
estimation schemd&he main contribution of this paper is twofold. 1) A compresiee
model is established over the sensor network which coverst¢xiggered measurement
transmissions, randomly occurring uncertainties (ROUs)l atate-dependent noises. 2)
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Intensive stochastic analysis and Kronecker product arelocted to ensure the stability
requirement for the addressed “complex” systems

The rest of this paper is outlined as follows. In Section 2, discrete-time dynamic
plant with a network oh sensors is introduced and the problem under consideration i
formulated. In Section 3, the distributed estimator degigrblem is solved by employ-
ing the semi-definite programme method. A simulation exangpbiven in Section 4 to
demonstrate the main results obtained. Finally, we cordld paper in Section 5.

Notation. The notation used here is standard except where othertatdR" and
R™M denote, respectively, thredimensional Euclidean space and the set ofi alimreal
matrices.N? is used to be describe the g6t1,...}. The set of all positive integers is
denoted byi*. |50, =) is the space of square summable sequences. The no¥atiol
(respectivelyX > Y), whereX andY are real symmetric matrices, means tKat Y is
positive semi-definite (respectively, positive definite))l represents the transpose of the
matrix M. O represents zero matrix of compatible dimensions.fFdenensional identity
matrix is denoted ak, or simplyl, if no confusion is caused. digg- } stands for a block-
diagonal matrix. @, .#, Prob) is a complete probability space with the probabiligyam
sure Prob having total mass 1. Pg®jstands for the occurrence probability of the event
B andE{a1}, E{ai]az} mean, respectively, the mathematical expectation of thehsistic
variablea; and the expectation ef; conditional one, with respect to the given probabil-
ity measure Prob. In symmetric block matrices, i used as an ellipsis for terms induced
by symmetry. The symbab denotes the Kronecker produdt, := [1,1,...,1]" € R".
Matrices, if they are not explicitly specified, are assuntelkgve compatible dimensions.

2. Problem Formulation

In this paper, we assume that thesensor nodes are distributed in space according to a
fixed network topology represented by a directed gi@ph (V, &€, Q) of ordern with the
set of nodesVy =1,2,...,n, the set of edge& € V x V, and the weighted adjacency
matrix @ = [&;] with nonnegative adjacency elemesf. An edge ofG is denoted by
ordered pairi( j). The adjacency elements associated with the edges of thé grap
positive, i.e.,a;; > 0 < (i, ]) € & which means that sensorcan obtain information
from sensorj. Also, we assume that; = 1 for alli € <V, and thereforei(i) can be
regarded as an additional edge. The set of neighbors ofinrodéplus the node itself are
denoted byV; = {j e V : (i, ]) € &E}.

Consider the following class of discrete-time stochasticastain systems defined on
the complete probability spac@(.#, Prob):

X(k+1) = (A+ a(kAA + A£(K)X(K) + EWK) (1)
wherex(k) € R™ is the system statey(k) € R™ is the disturbance input belonging to
5[0, c0); £(K) € R is a zero mean Gaussian white noise sequenceBigthk)&(k)} = 1.

The real-valued matriAA represents the norm-bounded parameter uncertainty of the
following structure

AA = HaF (KN, )

whereH, andN are known real constant matrices &) is an unknown matrix function
satisfying the following condition

FT(KFK) < 1. (3)
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The stochastic variable(k) € R in (1), which characterizes the phenomenon of ran-
domly occurring uncertainties, is a Bernoulli distributeldite sequence taking values on
either O or 1 with

Proja(k) =1} =a, Probda(k)=0}=1-a, 4

wherea € [0, 1] is a known constant, the variablg®) anda(k) are mutually independent.
For theith sensor, the measurement output is described by

yi(k) = Cix(K) + Div(K), i=1,2...,n (5)

andy;(k) € R"™ is the output measured by sensdrom the plant, and/(k) € 1,[0, ) is
an external disturbance. Moreover, all the matrices meatimbove, i.e A, A, E,C; and
Dj, are known matrices with appropriate dimensions.

For the purpose of reducing data communication frequeheyevtent generator function
fi(,)) (i =1,2,...,n)is constructed as follows:

fi(@i(K), 61) = ¢ (KQigi(K) — dir{ (KQiri(K) (6)

wherer;(k) = yi(k)— Ci%i(K) is the innovation sequence exchanged via the netwg(i), €
R"™ is the estimation of the plant state in thile sensor nodey;(k) = ri(kl‘() - ri(K), ri(kl‘()
is the broadcast innovation at latest event tie(i = 1,2, ..., n) are symmetric positive
definite matrices, and € [0, 1).

The execution is triggered as long as the condition

fi(¢i(k),61) > 0 (7)

is satisfied. Therefore, the sequence of event-triggersrits 0< ki < ki <--- < ki <
.-+ is determined iteratively by

K., = inf{k € Nk > K|, fi(¢i(K), ) > O (8)

In this paper, the following event-triggered distributetdte estimator structure is
adopted on sensor nodte

fi(k+1) = AK(K) + ) aKijri() )
JEN:

whereK;; are the estimator gain matrices on node be designed.
For convenience of later analysis, we denote

() = x(0 - %9, P =[]0 eI K0 - T K]

ek = [0 K - K] . KK = 1o ® x(K).

C = diadC1.Cz,....Ca), D=[DI D] - DI|, (10)
A=1,8A AA=I1,®AA 0O =diagdil,dl,...,onl},

E=1,0E &K =aKk -a, Q=diagQil,Ql,...,Ql),

A =In® A
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where
v v . v aijij, i:1,2,...,n; jEM
K=Kl with Ky = {00 {25500 L9% (1)
Obviously, sinces;; = 0 whenj ¢ N, K is a matrix that can be expressed as
K € Fhxn, (12)

where Zp.q = U = [U;j] € R"M | Uj; € RP9, Uy =0 if j ¢ i

Letting (k) = [X"(K) €"(K)]" andm(k) = [w'(K) v'(K)]", the following system is
obtained that governs the estimator dynamics for the seretaork:

n(k+ 1) = (A + @AAK) + (&(k)m + f(k)ﬂf)n(k) _RHPK) + Do) (13)

where
TR - AR
E O ] k!

W:[OI]T, K=K

D= [E_—K_I5 ’

Before proceeding further, we introduce the following digifom.

Definition 1. The augmented systemin (13) is said to be exponentiallyseaare stable
if, with @(k) = 0O, there exist constants> 0 andO0 < x < 1 such that

E {7} < ck*E{In(O)I?}, ¥ n(0) e R, keT*.

Our aim in this paper is to design event-triggered distadustate estimators of the
form in (9) on each nodeof the sensor network for system (1). In other words, we are
going to find the distributed state estimator parameigrsuch that the estimation error
systems (13) to be exponentially mean-square stable faradomly occurring parameter
uncertainties and state-dependent noises.

3. Main Results

In this section, let us investigate the distributed statenegion for system (1) witm
sensors whose topology is determined by the given g&@ph(V, &, Q). The following
lemmas will be needed in establishing our main results.

Lemma 1. (Shen et al., 2010) Let P diag{P;, P», ..., Py} with P, € RP*P (1 <i < n)
being invertible matrices. If X2 PW for We R"P"9, then we have W 7, <= X €
ypxq-

Lemma 2. (S-procedure) Let L= LT and H and E be real matrices of appropriate di-
mensions with F satisfying FF< |, then L+ HFE + ETFTHT < 0, if and only if there
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exists a positive scalar > 0 such that L+ e *HHT + ¢ETE < 0 or equivalently,

L H ¢ET
HT -l 0 |<O. (15)
cE 0 -—&l

The following theorem gives a fiicient condition under which the augmented error
system in (13) is exponentially mean-square stable in theesef Definition 1.

Theorem 1. Consider the discrete-time stochastic uncertain systgrarfdl sensors (5)
with event generator function (6). For the given estimatargmeterK, the augmented
estimation error system in (13) is exponentially mean-sejgtable if there exist a positive
definite matrix P> 0 and a scalart > 0 satisfying

¥ [ T1s - 0, (16)

U= _RyTP( + an) (RH)TPRH) - 10| <
where

T11= (A + aAA) P(A + @AA) + GAA PAA - P + AIC'OQC + A PA;,
g=a(l-a). C=|0C] 17)

Proof. Choose the following Lyapunov function for system (13):
V(n(K) = 1" (K)Pr(k) (18)
The diference of the Lyapunov function is given as follows:
AV(n(K) = EV(n(k + 1))in(k)} - V(n(k)).

Calculating the dterence ofV(5n(k)) along the trajectory of system (13) with(k) = O
and taking the mathematical expectation, we have

E{AV(n(K))} := E{n" (k + 1)Py(k + 1) = n" (YPn(K)}

- E{((ﬂ + aAAYK) + (&(k)Aﬂ N g(k)ﬂg)n(k) - RW‘I’(k))T P((ff’{ ‘a
<A + (#0980 + £RALNK) - RH¥R) T 0PIW} (19

In addition, it follows from the event-triggering conditiq7) that

T KQP(K) — " (KCTOQCH(K) < 0 (20)
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which results in
E{AV(7(K))} < E{((ﬂ + aAA(K) + (&(k)m N §(k)ﬂ§)n(k) - KW‘I’(k))T P((ﬂ ra
XA + (FAA + ERTAE 09 ~ RHE()) = 17 (P19
~2PT (KQP(K) + A" (K)CT @an(k)}

= Bl (T (k)
where
7 () = [ () ¥R (21)
It follows from Theorem 1 that
E{AV((K)} < =Amin(-D)ll7* ()I.

Finally, we can confirm from Lemma 1 of (Wang et al., 2006) titegt augmented esti-
mation error system (13) is exponentially mean-squardestabd the proof is now com-
plete. m]

After conducting the dynamic analysis in Theorem 1 for thgraented estimation error
system (13), we are now in a position to deal with the problémesigning distributed
state estimator (9). The solution to the distributed statémating problem with both
randomly occurring uncertainties and state-dependesesas obtained by the following
theorem.

Theorem 2. For the discrete-time stochastic uncertain system (1) abasrs (5) with

event generator function (6), the dynamics of estimatiooréfL3) is exponentially mean-
square stable if there exist positive constant scalaend &, a positive definite matrix
P > 0 and the matrixk € Jn«n, satisfying

P =diagP1,P>,...,Pn} > 0,
IM; = =
H21 —P k
131 T35 133

<0, (22)

where

L1 = diagACT@QC - P,-1Q}, P = diagP,P,P},
[PAy + KCo —K

I = 0 01, HSl:[sON 8],
| PA; 0 a
T T . _
I3z = QHSP\/QEE‘P%], Maz=-l2®el, Ag=12®A,
Co=[0-C|, Ha=18[lh®Ha0|, Na=1,0[l,®N 0| (23)
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and the other parameters are defined in (10). Moreover, ithave inequalities are fea-
sible, then the matriX is given as follows:

K = (H"PH) 'H K (24)

Accordingly, the desired estimator gain parametgy €K = 1,2,...,n,j € Nj) can be
obtained from (11).

Proof. It is observed that
A=Ay + KHCo, AA = HaF(K)N,. (25)
where
F(K) = lon ® F(K). (26)

By applying the Schur Complement Lemma (Boyd et al., 1994)moting PKH = %,
(16) can be rewritten as

= (a1 =
M= [H21—P] <0, (27)
where
_ [PAo + KCo + aPHF (YN, —K
Iy, = \/GPHaF(k)Na1 0 (28)
PA, 0

Furthermore, considering the uncertain paramatét, we reorganize (27) in terms of
Lemma 2 as follows:

_ M _ . . _

I = [Hi 5|+ HaF(Na + NZFT (KHZ <0, (29)
where

Ha=[00aHIP vgHIP O], Na=[R.0000. (30)

From Lemma 2, we can easily obtain (22). In addition, notiffk) =
diagP1(k), P2(K), ..., Pa(K)}, from Lemma 1, it is easy to verify that the conditine
Ihnxn, 1S satisfied. The proof of this theorem is now complete. O

Remark 1. It is well known that the main fliculties in designing distributed estimators
in sensor networks lie in the tight coupling among sensotarims of both time and space.
In this paper, the estimator parameterg i = 1,2,...,n, j € N;) are “assembled” to
matrix K which should meet the constraint (11). Then, by Lemma 1,anederive the
condition thatk € .7, «n, is required to satisfy. Consequently, the distributedneators
can be designedjectively.
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4. An lllustrative Example

In this section, we present a simulation example to illustthe dfectiveness of the pro-
posed robust event-triggered distributed estimator desapeme for the discrete-time
stochastic system with state-dependent noises and rapdaeilirring uncertainties over
sensor networks.

The sensor network is represented by a directed gragh

(v,8,Q with the set of nodesV = {1,2,3,4}, set of edges& =
{(1,1).(1,2).(2.2),(2.3).(3.2).(3.3).(3.4).(4,1),(4,4)} and the following adjacency
matrix:
110
011
A=lo111]
1001

The system data are given as follows:

04 01 0 0101 O .
A=|0 -08-06|,A:=|0 -01 0 |E=[05101] , F(K) = sin(Q6k),
0.1 02 -05 0 02 -01

Ha = [0.1 0.2 0.1]T , N = [0.2 01 0.2], Cy= [0.1 0 01] ,Cp = [0.2 01 0.2],

Cs= [0.5 0.7 0.2], Cy= [0.1 0.2 0.1], D; =01, D, = 0.1, D3 =0.2, D4 = 0.2.

In this example, the probability of the randomly occurrimgartainty is taken ag =
0.8. Choose event weighted matti¥ = Q, = Q3 = Q4 = | and the threshold; = §, =
03 = 64 = 0.7. By solving (22) in Theorem 2, we can obtain the followinggraeters of
the desired distributed estimators:

Ku=[000", Ki2 = [0.0613-0.0222 00284,
Kz, = [0.1632-0.1929 0078A]T . Kqg=[0.0764 00543 0003A]T :
Ks2=[000", Ks=[000]", Kaq=[0.2652-0.1866 01991 ,
Kay = [0.1878-0.0751 0173@T . Kas=[0.1330-0.1307 01384T

In the simulation, the exogenous disturbance inputs arectsl aswk) =
exp(-0.2k)sin(k) andv(k) = X The initial conditions arex(0) = [0.4 0.2 0.4]" and
%(0)=[000]" (i = 1,2,3,4). Figures 1-3 plot the state estimation erngi) — %i,(K)
(i=121234, j=1273). The simulation result has confirmed theetiveness of the
distributed estimation scheme presented in this paper.

5. Conclusions
In this paper, we have dealt with the robust event-triggelisttibuted state estimation

problem for a class of stochastic systems with randomly wowyuncertainties and state-
dependent noises over sensor networks. The randomly aogumcertainties have been
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Figure 2. The estimation errors of the second elermgfk)

modeled by the Bernoulli distributed white sequences witbvin conditional proba-
bilities. An event indicator variable has been construeted the corresponding event-
triggered scheme has been proposed to determine whethenthation on each sensor
is transmitted to the estimator or not. By employing the Lyagy stability theorem, the
distributed estimators have been designed for the dynaohittee estimation error to be
exponentially mean-square stable. Finally, an illusteaxample has been provided to
highlight the dfectiveness of the developed state estimation approach.

10
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