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This paper is concerned with the event-triggered distributed state estimation problem for a class
of uncertain stochastic systems with state-dependent noises and randomly occurring uncertain-
ties (ROUs) over sensor networks. An event-triggered communication scheme is proposed in
order to determine whether the measurements on each sensor should be transmitted to the esti-
mators or not. The norm-bounded uncertainty enters into thesystem in a random way. Through
available output measurements from not only the individualsensor but also its neighboring sen-
sors, a sufficient condition is established for the desired distributedestimator to ensure that the
estimation error dynamics is exponentially mean-square stable. These conditions are character-
ized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expres-
sion are given for the distributed estimator gains. Finally, a simulation example is provided to
show the effectiveness of the proposed event-triggered distributed state estimation scheme.

Keywords: Distributed state estimation; Randomly occurring uncertainties; State-dependent
noises; Sensor networks.

1. Introduction

In the past decade, wireless sensor networks have attractedan increasing research atten-
tion for their successful applications in a variety of areasincluding environment moni-
toring, interactive virtual worlds, health care, information collection and warehouse in-
ventory (Bertrand and Moonen, 2010; Cattivelli and Sayed, 2008, 2010). A fundamental
collaborative information processing problem with the wireless sensor networks is how
to find distributed estimators or filters to obtain the information about the state vectors
of the target plants from observations contaminated with external disturbances. Conse-
quently, considerable research attention has been devotedto the theoretical research on
the distributed estimation or filtering algorithms that arecapable of estimating stationary
signals with low-cost and tracking nonstationary processes with reduced-complexity, and
a wealth of literature have appeared on this topic, see, e.g., (Ding et al, 2008; Ding et al.,
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2012, 2014; Dong et al., 2012, 2013; Huang et al., 2012; Lianget al., 2012; Shen et al.,
2010, 2011; Speranzon et al., 2008; Zhang and Yang , 2014) andthe references therein.
Different from the traditional single node, in the distributed estimation schemes, the local
estimators estimate the system state based on the information not only from itself but also
from its neighboring sensors according to the given topology. As such, the essential diffi-
culty in designing distributed estimators depends upon howto deal with the complicated
coupling issues between one sensor and its neighboring sensors and how to reflect such
couplings in the estimator structure specification.

In sensor networks, the limited battery energy, computational power and memory of
the sensor nodes are all changeable in a dynamical way. Therefore, parameter uncertain-
ties are ubiquitous when modeling the target plant and the sensor networks. With rapid
development of network technologies, the parameter uncertainties may be subject to ran-
dom changes and may occur in a probabilistic way, for instance, random network-induced
structural changes, repairs of components, changing subsystem interconnections or sud-
den environment changes, etc. In this sense, it would make practical sense to consider
the randomly occurring uncertainties when designing the desired distributed estimation
algorithm. Very recently, some pioneering work has appeared in the literature concern-
ing the state estimation problem for a class of discrete nonlinear systems with randomly
occurring uncertainties (ROUs), see (Hu et al., 2014). On the other hand, the stochas-
tic disturbances are usually encountered in sensor networks within a noisy environment.
Note that many plants may be modeled by systems with state-dependent noises and some
characteristics of nonlinear systems can be closely approximated by models with state-
dependent noises rather than by linearized models (Ding, 2013; Hu et al., 2013; Wang et
al., 2010, 2013). Unfortunately, up to now, very little research effort has been paid to the
robust distributed estimation issue with simultaneous presence of parameter uncertainties
and state-dependent noises.

In the past decades, the event-triggered communication mechanism has received much
research attention due to the rapid development of digital microprocessor and computer
science. In comparison with conventional time-triggered communication, event-triggering
allows a considerable reduction of the network resource occupancy while maintaining the
guaranteed filtering performance, avoids some injurious transmission phenomena such as
data dropouts and time delay, etc, and extends the lifetime of the services. Therefore, the
event-triggered communication mechanism is particularlysignificant in sensor networks
due to its capability of decreasing the unnecessary executions of the systems and saving
energy. In the past few years, the event-based strategies have been extensively studied for
various engineering systems such as networked control systems (Donkers and Heemels,
2012; Hu and Yue, 2012; Liu et al., 2014; Peng and Yang , 2013),sensor networks (Lee
and Choi, 2013; Tseng, 2005), multi-agent systems (Tabuada, 2007; Zhu et al., 2014) and
neural networks (Li, 2012; Sahoo et al., 2013), etc. However, the available results in the
literature have been scattered for the filtering or state estimation problems, most of which
have been concerned with the implementation problems rather than the system analysis
and synthesis issues.

Summarizing the above discussion, in this paper, we are motivated to study the robust
distributed state estimation problem for a class of uncertain stochastic systems with state-
dependent noises and randomly occurring uncertainties over the sensor network charac-
terized by a directed graph. By augmenting the state of the original system and the esti-
mation errors on all sensor nodes, sufficient conditions are established for the existence
of the desired estimators and then a parameterization of theestimator gains is derived. A
simulation example is provided to show the effectiveness of the proposed distributed state
estimation scheme.The main contribution of this paper is twofold. 1) A comprehensive
model is established over the sensor network which covers event-triggered measurement
transmissions, randomly occurring uncertainties (ROUs) and state-dependent noises. 2)
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Intensive stochastic analysis and Kronecker product are conducted to ensure the stability
requirement for the addressed “complex” systems.

The rest of this paper is outlined as follows. In Section 2, the discrete-time dynamic
plant with a network ofn sensors is introduced and the problem under consideration is
formulated. In Section 3, the distributed estimator designproblem is solved by employ-
ing the semi-definite programme method. A simulation example is given in Section 4 to
demonstrate the main results obtained. Finally, we conclude the paper in Section 5.

Notation. The notation used here is standard except where otherwise stated.Rn and
R

n×m denote, respectively, then-dimensional Euclidean space and the set of alln×m real
matrices.N0 is used to be describe the set{0,1, . . .}. The set of all positive integers is
denoted byI+. l2[0,∞) is the space of square summable sequences. The notationX ≥ Y
(respectively,X > Y), whereX andY are real symmetric matrices, means thatX − Y is
positive semi-definite (respectively, positive definite).MT represents the transpose of the
matrix M. 0 represents zero matrix of compatible dimensions. Then-dimensional identity
matrix is denoted asIn or simplyI , if no confusion is caused. diag{· · · } stands for a block-
diagonal matrix. (Ω,F ,Prob) is a complete probability space with the probability mea-
sure Prob having total mass 1. Prob{β} stands for the occurrence probability of the event
β andE{α1}, E{α1|α2} mean, respectively, the mathematical expectation of the stochastic
variableα1 and the expectation ofα1 conditional onα2 with respect to the given probabil-
ity measure Prob. In symmetric block matrices, “∗” is used as an ellipsis for terms induced
by symmetry. The symbol⊗ denotes the Kronecker product.1n := [1,1, . . . ,1]T ∈ Rn.
Matrices, if they are not explicitly specified, are assumed to have compatible dimensions.

2. Problem Formulation

In this paper, we assume that then sensor nodes are distributed in space according to a
fixed network topology represented by a directed graphG = (V,E,Q) of ordern with the
set of nodesV =1,2, . . . ,n, the set of edgesE ∈ V × V, and the weighted adjacency
matrix Q = [ai j ] with nonnegative adjacency elementai j . An edge ofG is denoted by
ordered pair (i, j). The adjacency elements associated with the edges of the graph are
positive, i.e.,ai j > 0 ⇐⇒ (i, j) ∈ E which means that sensori can obtain information
from sensorj. Also, we assume thataii = 1 for all i ∈ V, and therefore (i, i) can be
regarded as an additional edge. The set of neighbors of nodei ∈ V plus the node itself are
denoted byNi = { j ∈ V : (i, j) ∈ E}.

Consider the following class of discrete-time stochastic uncertain systems defined on
the complete probability space (Ω,F ,Prob):

x(k+ 1) = (A+ α(k)∆A+ Aξξ(k))x(k) + Ew(k) (1)

wherex(k) ∈ Rnx is the system state;w(k) ∈ Rnv is the disturbance input belonging to
l2[0,∞); ξ(k) ∈ R is a zero mean Gaussian white noise sequence withE{ξT(k)ξ(k)} = 1.

The real-valued matrix∆A represents the norm-bounded parameter uncertainty of the
following structure

∆A = HaF(k)N, (2)

whereHa andN are known real constant matrices andF(k) is an unknown matrix function
satisfying the following condition

FT(k)F(k) ≤ I . (3)
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The stochastic variableα(k) ∈ R in (1), which characterizes the phenomenon of ran-
domly occurring uncertainties, is a Bernoulli distributedwhite sequence taking values on
either 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1− ᾱ, (4)

whereᾱ ∈ [0,1] is a known constant, the variablesξ(k) andα(k) are mutually independent.
For theith sensor, the measurement output is described by

yi(k) = Ci x(k) + Div(k), i = 1,2, . . . ,n (5)

andyi(k) ∈ Rny is the output measured by sensori from the plant, andv(k) ∈ l2[0,∞) is
an external disturbance. Moreover, all the matrices mentioned above, i.e.,A,Aξ,E,Ci and
Di , are known matrices with appropriate dimensions.

For the purpose of reducing data communication frequency, the event generator function
fi(·, ·) (i = 1,2, . . . ,n) is constructed as follows:

fi(ϕi(k), δi) = ϕ
T
i (k)Ωiϕi(k) − δirT

i (k)Ωir i(k) (6)

wherer i(k) = yi(k)−Ci x̂i(k) is the innovation sequence exchanged via the network, ˆxi(k) ∈
R

nx is the estimation of the plant state in theith sensor node.ϕi(k) = r i(k
j
k) − r i(k), r i(k

j
k)

is the broadcast innovation at latest event time,Ωi (i = 1,2, . . . ,n) are symmetric positive
definite matrices, andδi ∈ [0, 1).

The execution is triggered as long as the condition

fi(ϕi(k), δi) > 0 (7)

is satisfied. Therefore, the sequence of event-triggered instants 0≤ ki
0 ≤ ki

1 ≤ · · · ≤ ki
k ≤

· · · is determined iteratively by

ki
k+1 = inf {k ∈ N0|k > ki

k, fi(ϕi(k), δi) > 0}. (8)

In this paper, the following event-triggered distributed state estimator structure is
adopted on sensor nodei:

x̂i(k+ 1) = Ax̂i(k) +
∑

j∈Ni

ai j Ki j r j(k
j
k) (9)

whereKi j are the estimator gain matrices on nodei to be designed.
For convenience of later analysis, we denote

ei(k) = x(k) − x̂i(k), Ψ(k) =
[

ϕT
1 (k) ϕT

2 (k) · · · ϕT
n (k)
]T
,

e(k) =
[

eT
1 (k) eT

2 (k) · · · eT
n (k)
]T
, x̄(k) = 1n ⊗ x(k),

C̄ = diag{C1,C2, . . . ,Cn}, D̄ =
[

DT
1 DT

2 · · · DT
n

]T
,

Ā = In ⊗ A, ∆Ā = In ⊗ ∆A, Θ = diag{δ1I , δ2I , . . . , δnI },
Ē = 1n ⊗ E, α̃(k) = α(k) − ᾱ, Ω = diag{Ω1I ,Ω2I , . . . ,ΩnI },
Āξ = In ⊗ Aξ

(10)
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where

K̄ = [K̄i j ]n×n with K̄i j =

{

ai j Ki j , i = 1,2, . . . ,n; j ∈ Ni

0, i = 1,2, . . . ,n; j < Ni
(11)

Obviously, sinceai j = 0 when j < Ni , K̄ is a matrix that can be expressed as

K̄ ∈ Tnx×ny (12)

whereTp×q =
{

Ū = [Ui j ] ∈ Rnp×nq | Ui j ∈ Rp×q, Ui j = 0 if j < Ni

}

.

Letting η(k) =
[

x̄T(k) eT(k)
]T and̟(k) =

[

wT(k) vT(k)
]T , the following system is

obtained that governs the estimator dynamics for the sensornetwork:

η(k+ 1) = (A + ᾱ∆A)η(k) +
(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k) +D̟(k) (13)

where

A =
[

Ā 0
0 Ā− K̄C̄

]

, ∆A =
[

∆Ā 0
∆Ā 0

]

, Aξ =
[

Āξ 0
Āξ 0

]

,

D =
[

Ē 0
Ē −K̄D̄

]

, H =
[

0 I
]T
, K̃ = I2 ⊗ K̄.

(14)

Before proceeding further, we introduce the following definition.

Definition 1. The augmented system in (13) is said to be exponentially mean-square stable
if, with ̟(k) = 0, there exist constantsς > 0 and0 < κ < 1 such that

E

{

‖η(k)‖2
}

≤ ςκkE
{

‖η(0)‖2
}

, ∀ η(0) ∈ Rn, k ∈ I+.

Our aim in this paper is to design event-triggered distributed state estimators of the
form in (9) on each nodei of the sensor network for system (1). In other words, we are
going to find the distributed state estimator parametersKi j such that the estimation error
systems (13) to be exponentially mean-square stable for allrandomly occurring parameter
uncertainties and state-dependent noises.

3. Main Results

In this section, let us investigate the distributed state estimation for system (1) withn
sensors whose topology is determined by the given graphG = (V,E,Q). The following
lemmas will be needed in establishing our main results.

Lemma 1. (Shen et al., 2010) Let P= diag{P1,P2, . . . ,Pn} with Pi ∈ Rp×p (1 ≤ i ≤ n)
being invertible matrices. If X= PW for W∈ Rnp×nq, then we have W∈ Tp×q ⇐⇒ X ∈
Tp×q.

Lemma 2. (S-procedure) Let L= LT and H and E be real matrices of appropriate di-
mensions with F satisfying FFT ≤ I, then L+ HFE + ETFTHT < 0, if and only if there
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exists a positive scalarε > 0 such that L+ ε−1HHT + εETE < 0 or equivalently,



















L H εET

HT −εI 0
εE 0 −εI



















< 0. (15)

The following theorem gives a sufficient condition under which the augmented error
system in (13) is exponentially mean-square stable in the sense of Definition 1.

Theorem 1. Consider the discrete-time stochastic uncertain system (1) and sensors (5)
with event generator function (6). For the given estimator parameterK̄, the augmented
estimation error system in (13) is exponentially mean-square stable if there exist a positive
definite matrix P> 0 and a scalarλ > 0 satisfying

Γ̄ =

[

Ῡ11 ∗
−(K̃H)T P(A + ᾱ∆A) (K̃H)T P(K̃H) − λΩ

]

< 0, (16)

where

Ῡ11 = (A + ᾱ∆A)T P(A + ᾱ∆A) + g∆ATP∆A− P+ λCTΘΩC +AT
ξ PAξ,

g = ᾱ(1− ᾱ), C =
[

0 C̄
]

(17)

Proof. Choose the following Lyapunov function for system (13):

V(η(k)) := ηT(k)Pη(k) (18)

The difference of the Lyapunov function is given as follows:

∆V(η(k)) = E{V(η(k+ 1))|η(k)} − V(η(k)).

Calculating the difference ofV(η(k)) along the trajectory of system (13) with̟(k) = 0
and taking the mathematical expectation, we have

E{∆V(η(k))} := E
{

ηT(k+ 1)Pη(k+ 1)− ηT(k)Pη(k)
}

= E

{

(

(A + ᾱ∆A)η(k) +
(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)
)T

P
(

(A + ᾱ

×∆A)η(k) +
(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)
)

− ηT(k)Pη(k)

}

(19)

In addition, it follows from the event-triggering condition (7) that

ΨT(k)ΩΨ(k) − ηT(k)CTΘΩCη(k) ≤ 0 (20)
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which results in

E{∆V(η(k))} ≤ E
{

(

(A + ᾱ∆A)η(k) +
(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)
)T

P
(

(A + ᾱ

×∆A)η(k) +
(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)
)

− ηT(k)Pη(k)

−λΨT(k)ΩΨ(k) + ληT(k)CTΘΩCη(k)

}

= E{η∗T(k)Γ̄η∗(k)}

where

η∗(k) :=
[

ηT(k) ΨT(k)
]T

(21)

It follows from Theorem 1 that

E{∆V(η(k)} ≤ −λmin(−Γ̄)‖η∗(k)‖2.

Finally, we can confirm from Lemma 1 of (Wang et al., 2006) thatthe augmented esti-
mation error system (13) is exponentially mean-square stable, and the proof is now com-
plete. �

After conducting the dynamic analysis in Theorem 1 for the augmented estimation error
system (13), we are now in a position to deal with the problem of designing distributed
state estimator (9). The solution to the distributed state estimating problem with both
randomly occurring uncertainties and state-dependent noises is obtained by the following
theorem.

Theorem 2. For the discrete-time stochastic uncertain system (1) and sensors (5) with
event generator function (6), the dynamics of estimation error (13) is exponentially mean-
square stable if there exist positive constant scalarsλ and ε, a positive definite matrix
P > 0 and the matrixK ∈ T2nx×ny satisfying

P = diag{P1,P2, . . . ,Pn} > 0,


















Π11 ∗ ∗
Π21 −P̄ ∗
Π31 Π32 Π33



















< 0, (22)

where

Π11 = diag{λCTΘΩC − P,−λΩ}, P̄ = diag{P,P,P},

Π21 =





















PÂ0 +KĈ0 −K
0 0

PAξ 0





















, Π31 =

[

0 0
εN̂a 0

]

,

Π32 =

[

ᾱĤT
a P
√

gĤT
a P 0

0 0 0

]

, Π33 = −I2 ⊗ εI , Â0 = I2 ⊗ Ā,

Ĉ0 =
[

0 −C̄
]

, Ĥa = 12 ⊗
[

In ⊗ Ha 0
]

, N̂a = 12 ⊗
[

In ⊗ N 0
]

(23)
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and the other parameters are defined in (10). Moreover, if theabove inequalities are fea-
sible, then the matrix̄K is given as follows:

K̄ = (HT PH)−1HTK (24)

Accordingly, the desired estimator gain parameter Ki j (i = 1,2, . . . ,n, j ∈ Ni) can be
obtained from (11).

Proof. It is observed that

A = Â0 + K̃HĈ0, ∆A = ĤaF̂(k)N̂a. (25)

where

F̂(k) = I2n ⊗ F(k). (26)

By applying the Schur Complement Lemma (Boyd et al., 1994) and notingPK̃H = K ,
(16) can be rewritten as

Π̄ =

[

Π11 ∗
Π̄21 −P̄

]

< 0, (27)

where

Π̄21 =





















PÂ0 +KĈ0 + ᾱPĤaF̂(k)N̂a −K√
gPĤaF̂(k)N̂a 0

PAξ 0





















. (28)

Furthermore, considering the uncertain parameter∆A, we reorganize (27) in terms of
Lemma 2 as follows:

Π̄ =

[

Π11 ∗
Π21 −P̄

]

+ H̄aF̂(k)N̄a + N̄T
a F̂T(k)H̄T

a < 0, (29)

where

H̄a =
[

0 0 ᾱĤT
a P
√

gĤT
a P 0
]T
, N̄a =

[

N̂a 0 0 0 0
]

. (30)

From Lemma 2, we can easily obtain (22). In addition, notingP(k) =

diag{P1(k),P2(k), . . . ,Pn(k)}, from Lemma 1, it is easy to verify that the condition̄K ∈
Tnx×ny is satisfied. The proof of this theorem is now complete. �

Remark 1. It is well known that the main difficulties in designing distributed estimators
in sensor networks lie in the tight coupling among sensors interms of both time and space.
In this paper, the estimator parameters Ki j (i = 1,2, . . . ,n, j ∈ Ni) are “assembled” to
matrix K̄ which should meet the constraint (11). Then, by Lemma 1, we can derive the
condition thatK̄ ∈ Tnx×ny is required to satisfy. Consequently, the distributed estimators
can be designed effectively.
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4. An Illustrative Example

In this section, we present a simulation example to illustrate the effectiveness of the pro-
posed robust event-triggered distributed estimator design scheme for the discrete-time
stochastic system with state-dependent noises and randomly occurring uncertainties over
sensor networks.

The sensor network is represented by a directed graphG =

(V,E,Q) with the set of nodesV = {1,2,3,4}, set of edgesE =

{(1,1), (1,2), (2,2), (2,3), (3,2), (3,3), (3,4), (4,1), (4,4)} and the following adjacency
matrix:

A =





























1 1 0 0
0 1 1 0
0 1 1 1
1 0 0 1





























.

The system data are given as follows:

A =



















0.4 0.1 0
0 −0.8 −0.6

0.1 0.2 −0.5



















, Aξ =



















0.1 0.1 0
0 −0.1 0
0 0.2 −0.1



















E =
[

0.5 1 0.1
]T
, F(k) = sin(0.6k),

Ha =
[

0.1 0.2 0.1
]T
, N =

[

0.2 0.1 0.2
]

, C1 =
[

0.1 0 0.1
]

, C2 =
[

0.2 0.1 0.2
]

,

C3 =
[

0.5 0.7 0.2
]

, C4 =
[

0.1 0.2 0.1
]

, D1 = 0.1, D2 = 0.1, D3 = 0.2, D4 = 0.2.

In this example, the probability of the randomly occurring uncertainty is taken as ¯α =
0.8. Choose event weighted matrixΩ1 = Ω2 = Ω3 = Ω4 = I and the thresholdδ1 = δ2 =
δ3 = δ4 = 0.7. By solving (22) in Theorem 2, we can obtain the following parameters of
the desired distributed estimators:

K11 =
[

0 0 0
]T
, K12 =

[

0.0613−0.0222 0.0285
]T
,

K22 =
[

0.1632−0.1929 0.0784
]T
, K23 =

[

0.0764 0.0543 0.0034
]T
,

K32 =
[

0 0 0
]T
, K33 =

[

0 0 0
]T
, K34 =

[

0.2652−0.1866 0.1991
]T
,

K41 =
[

0.1878−0.0751 0.1736
]T
, K44 =

[

0.1330−0.1307 0.1382
]T

In the simulation, the exogenous disturbance inputs are selected as w(k) =

exp(−0.2k)sin(k) andv(k) = sin(10k+1)
3k+1 . The initial conditions arex(0) = [0.4 0.2 0.4]T and

x̂i(0) = [0 0 0]T (i = 1,2,3,4). Figures 1–3 plot the state estimation errorsx j(k) − x̂i j (k)
(i = 1,2,3,4, j = 1,2,3). The simulation result has confirmed the effectiveness of the
distributed estimation scheme presented in this paper.

5. Conclusions

In this paper, we have dealt with the robust event-triggereddistributed state estimation
problem for a class of stochastic systems with randomly occurring uncertainties and state-
dependent noises over sensor networks. The randomly occurring uncertainties have been

9



August 15, 2014 International Journal of General Systems Dong˙Wang˙IJGS

0 5 10 15 20 25 30
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of sples (k)

T
he

 e
st

im
at

io
n 

er
ro

rs
 o

f t
he

 fi
rs

t e
le

m
en

t x
1(k

)

 

 
Node 1
Node 2
Node 3
Node 4

Figure 1. The estimation errors of the first elementx1(k).
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Figure 2. The estimation errors of the second elementx2(k)

modeled by the Bernoulli distributed white sequences with known conditional proba-
bilities. An event indicator variable has been constructedand the corresponding event-
triggered scheme has been proposed to determine whether theinnovation on each sensor
is transmitted to the estimator or not. By employing the Lyapunov stability theorem, the
distributed estimators have been designed for the dynamicsof the estimation error to be
exponentially mean-square stable. Finally, an illustrative example has been provided to
highlight the effectiveness of the developed state estimation approach.
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Figure 3. The estimation errors of the third elementx3(k)
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