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Abstract

This paper deals with the finite-horizon reliable H∞ output feedback control problem for a class of discrete time-varying
systems with randomly occurring uncertainties (ROUs), randomly occurring nonlinearities (RONs) as well as measurement
quantizations. Both the deterministic actuator failures and probabilistic sensor failures are considered in order to reflect the
reality. The actuator failure is quantified by a deterministic variable varying in a given interval and the sensor failure is
governed by an individual random variable taking value on

[

0, 1
]

. Both the nonlinearities and the uncertainties enter into the
system in random ways according to Bernoulli distributed white sequences with known conditional probabilities. The main
purpose of the problem addressed is to design a time-varying output feedback controller over a given finite horizon such that,
in the simultaneous presence of ROUs, RONs, actuator and sensor failures as well as measurement quantizations, the closed-
loop system achieves a prescribed performance level in terms of the H∞-norm. Sufficient conditions are first established for
the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality approach is
employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. A numerical
example is given to demonstrate the effectiveness of the proposed design scheme.

Key words: Finite-horizon reliable control; Time-varying systems; Actuator and sensor failure; Randomly occurring
uncertainties; Randomly occurring nonlinearities.

1 Introduction

For several decades, stochastic control and nonlinear
control serve as two of the most active research areas in
systems and control that have found successful applica-
tions in a variety of engineering systems such as automo-
tive engines, robot manipulators, aircraft and electrical
motors. So far, considerable research attention has been
devoted to the theoretical research on control problems
for nonlinear stochastic systems, see [1, 3, 5, 6, 9, 11, 20,
22, 24, 30] and the references therein. For example, for
different kinds of nonlinear stochastic systems, the H∞

output feedback control problem has been investigated
in [24], the adaptive fuzzy control problem has been pro-
posed in [22], the neural-network-based controller de-
sign has been addressed in [23], the adaptive sliding
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mode controller has been designed in [4, 10, 17, 18] and
the observer-based control problems have been solved
in [25], respectively. Among various descriptions of non-
linearities, the so-called randomly occurring nonlinear-
ities (RONs) [26] cater for those randomly changeable
nonlinearities in terms of their types and/or intensi-
ties governed by stochastic variables. RONs, which typ-
ically occur in networked environments, encompass sev-
eral well-studied nonlinearities in stochastic systems and
have thus stirred particular research interests in the past
few years.

It is noticeable that, in almost all the aforementioned lit-
erature, the components of the control systems have been
implicitly assumed to be fully reliable. This assumption
is, unfortunately, not always true since the failures of
control components (e.g. sensors and actuators) often oc-
cur in practical applications due to a variety of reasons,
for example, the abrupt changes of working conditions,
the erosion caused by sever circumstance, the internal
component constraints, the intense external disturbance
and the aging of sensors or actuators, etc. Therefore, it is
of both practical significance and theoretical importance
to design a reliable controller against possible actuator
and sensor failures such that the essential performance
of the controlled system can be guaranteed [13, 19]. In
fact, in the past two decades, the problem of reliable con-
troller design has attracted much research attention and
many approaches have been proposed in the literature
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including Hamilton-Jacobi equation approach [14, 15],
robust pole region assignment technique [8], algebraic
Riccati equation approach [21, 29] and linear matrix in-
equality approach [12,16,27]. Despite the fruitful results
on time-invariant systems over an infinite horizon, it is
worth pointing out that the finite-horizon reliable con-
trol problem for time-varying systems has not been thor-
oughly investigated yet, not to mention the case compli-
cated further by nonlinearity and stochasticity.

As is well known, modeling errors (usually parameter
uncertainties) constitute an important kind of complex-
ities for system modeling that has a great impact on the
subsequent system analysis and design [28]. In today’s
networked systems, it is quite common that the network
load is randomly fluctuated and the signal transmission
suffers from unpredictable networked-induced phenom-
ena owing to limited bandwidth. As such, the occurrence
of the parameter uncertainties in a networked environ-
ment is often of random nature resulting from abrupt
phenomena such as modification of the operating point
of a linearized model of nonlinear systems, random fail-
ures and repairs of the components, changes in the inter-
connections of subsystems and sudden environment dis-
turbances, etc. Very recently, in [10], the concept of ran-
domly occurring uncertainties (ROUs) has been intro-
duced to reflect the probabilistic fashion of the network-
induced modeling error and the corresponding sliding
mode control problem has been considered. However,
when it comes to the finite-horizon reliable H∞ con-
trol problem involving ROUs for nonlinear time-varying
stochastic systems, the related results are very few and
the situation is even worse when measurement quanti-
zations, actuator and sensor failures are also taken into
account. It is, therefore, the aim of this paper to shorten
such a gap by addressing the finite-horizon reliable H∞

control problem with presence of ROUs, RONs as well
as measurement quantizations.

Motivated by the above discussion, in this paper, we
launch a major study on the finite-horizon reliable H∞

output-feedback control problem for a class of discrete
time-varying stochastic systems with simultaneous pres-
ence of actuator and sensor failures, ROUs, RONs and
measurement quantizations. Some sufficient conditions
are established, via intensive stochastic analysis, to guar-
antee the existence of the desired time-varying output
feedback controller gains, and then such controller gains
are characterized by solving a set of recursive matrix in-
equalities. A simulation example is finally presented to il-
lustrate the effectiveness of the proposed design scheme.
The main contributions of this paper are highlighted as
follows. 1) The problem addressed is new in the sense
that this paper represents the first of few attempts to deal
with the finite-horizon reliable H∞ output feedback con-
trol problem against actuator and sensor failures for a
class of discrete time-varying stochastic systems. 2) The
system under consideration is comprehensive to cover
time-varying parameters, actuator and sensor failures,
ROUs, RONs and measurement quantizations, hence re-
flecting the reality more closely. 3) The algorithm devel-
oped is computationally appealing in terms of its recur-
sive nature suitable for online application.

The rest of this paper is outlined as follows. In Section
2, a class of discrete time-varying stochastic systems
is presented with actuator and sensor failures, ROUs,

RONs andmeasurement quantizations. The problem un-
der consideration is formulated. In Section 3, by em-
ploying the stochastic analysis techniques, some suffi-
cient conditions are established to guarantee the desired
output feedback controller performances and then the
controller gains are obtained by solving a set of recur-
sive matrix inequalities. A simulation example is given
in Section 4 to demonstrate the main results obtained.
Finally, we conclude the paper in Section 5.

Notation. The notation used here is standard except
where otherwise stated. Rn and R

n×m denote, respec-
tively, the n-dimensional Euclidean space and the set
of all n×m real matrices. l[0, N ] is the space of vector
functions over [0, N ]. The notationX ≥ Y (respectively,
X > Y ), where X and Y are real symmetric matrices,
means that X−Y is positive semi-definite (respectively,
positive definite). MT represents the transpose of the
matrix M . 0 represents zero matrix of compatible di-
mensions. The n-dimensional identity matrix is denoted
as In or simply I, if no confusion is caused. diag{· · · }
stands for a block-diagonal matrix. E{x} and E{x| y}
will, respectively, denote expectation of the stochastic
variable x and expectation of x conditional on y. Prob{·}
means the occurrence probability of the event “·”. In
symmetric block matrices, “∗” is used as an ellipsis for
terms induced by symmetry. The symbol ⊗ denotes the
Kronecker product. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

2 Problem Formulation

Consider the following uncertain discrete time-varying
nonlinear stochastic system defined on k ∈ [0, N ]:






x(k + 1) = (A(k) + α(k)∆A(k))x(k)

+B1(k)u(k) + β(k)g(k, x(k))

+D(k)w(k)

z(k) =M(k)x(k) +B2(k)u(k)

x(0) = ϕ0

(1)

where x(k) ∈ R
nx represents the state vector; u(k) ∈

R
nu is the control input; z(k) ∈ R

nz is the controlled
output; w(k) ∈ R

nw is the disturbance input which be-
longs to l[0, N ]; and ϕ0 is a given real initial value. A(k),
B1(k), B2(k), D(k) and M(k) are known, real, time-
varying matrices with appropriate dimensions.

The nonlinear function g(k, x(k)) satisfies the following
condition:

‖g(k, x(k))‖2 ≤ ε(k)‖E(k)x(k)‖2 (2)

where ε(k) > 0 is a known positive scalar and E(k) is a
known time-varying matrix.

The real-valued matrix ∆A(k) represents the norm-
bounded parameter uncertainties of the following struc-
ture

∆A(k) = Ha(k)F (k)N(k), (3)
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whereHa(k) andN(k) are known time-varyingmatrices,
while F (k) is an unknown time-varying matrix function
satisfying the following condition

FT (k)F (k) ≤ I. (4)

The stochastic variables α(k) ∈ R and β(k) ∈ R are
Bernoulli distributed white sequences taking values on
either 0 or 1 with

Prob{α(k) = 1}= ᾱ, Prob{α(k) = 0} = 1− ᾱ,

Prob{β(k) = 1}= β̄, Prob{β(k) = 0} = 1− β̄, (5)

where ᾱ ∈ [0, 1] and β̄ ∈ [0, 1] are known constants.

Remark 1 The random variables α(k) and β(k) are in-
troduced to characterize the phenomena of the ROUs and
the RONs, respectively. The uncertainty∆A and the non-
linearity g enter into the system in random ways accord-
ing to individual Bernoulli distributions. Such a statis-
tics description is particularly suitable for reflecting pa-
rameter/nonlinear variations that are unpredictable but
appear in a random way with known probability laws.

In this paper, the measurement ȳ(k) with probabilistic
sensor failures is described by

ȳ(k) = Ξ(k)C(k)x(k) + Ē(k)v(k)

=

ny∑

j=1

ρj(k)Cj(k)x(k) + Ē(k)v(k) (6)

where v(k) ∈ R
nv is the measure noise belonging to

l[0, N ]. Ξ(k) is defined as Ξ(k) := diag{ρ1(k), . . . , ρny
(k)}

where ρj(k) has the probability density function ζj(s)
(j = 1, . . . , ny) on the interval [0, 1] with mathematical
expectation µ̄j and variance χ2

j . Cj(k) is defined by

Cj(k) := diag{0, · · · , 0︸ ︷︷ ︸
j−1

, 1, 0, · · · , 0︸ ︷︷ ︸
ny−j

}C(k).

In the sequel, we denote Ξ̄ = E{Ξ(k)} = diag{µ̄1, µ̄2, . . . ,
µ̄ny

}. Throughout the paper, we assume that α(k), β(k)
and ρj(k) (j = 1, ..., ny) are unrelated random variables.

In a networked environment, it is often the case
that ȳ(k) is quantized before being transmitted
to the controller. Let us denote the quantizer as

q(·) =
[
q1(·) q2(·) · · · qny

(·)
]T

which is symmetric,

i.e., qj(−v) = −qj(v) (j = 1, . . . , ny). The map of the
quantization process is

y(k) =
[
q1(ȳ

(1)(k)) q2(ȳ
(2)(k)) · · · qny

(ȳ(ny)(k))
]T

where y(k) ∈ R
ny and ȳ(i)(k) (i = 1, . . . , ny) denotes

the ith element of ȳ(k). For each qj(·) (1 ≤ j ≤ m), the

set of quantization levels is described by

Uj = {±µ̂
(j)
i , µ̂

(j)
i = χ̄i

j µ̂
(j)
0 , i = 0,±1,±2, · · · } ∪ {0},

0 < χ̄j < 1, µ̂
(j)
0 > 0

and each of the quantization level corresponds to a seg-
ment such that the quantizer maps the whole segment
to this quantization level.

According to [7], the logarithmic quantizer is given by

qj(ȳ
(j)(k)) =






µ̂
(j)
i , 1

1+δj
µ̂
(j)
i ≤ ȳ(j)(k) ≤ 1

1−δj
µ̂
(j)
i

0, ȳ(j)(k) = 0

−hj(−ȳ(j)(k)), ȳ(j)(k) < 0

where δj = (1− χ̄j)/(1+ χ̄j). It can be easily seen from

the above definition that qj(ȳ
(j)(k)) = (1+∆

(j)
k )ȳ(j)(k)

with |∆
(j)
k | ≤ δj .

Defining ∆k := diag{∆
(1)
k , . . . ,∆

(ny)
k }, the measure-

ments with quantization effect and sensor failures can
be expressed as

y(k) = (I +∆k)ȳ(k). (7)

Furthermore, by defining ∆̄ := diag{δ1, · · · , δny
} and

F̄ (k) := ∆k∆̄
−1, we can see that F̄ (k) is an unknown

real-valued time-varyingmatrix satisfying F̄ (k)F̄T (k) ≤
I.

When the actuators experience failures, we use uF (k) to
describe the control signal sent from actuators and the
control input of actuator fault can therefore be described
as follows:

uF (k) = G(k)u(k) (8)

where G(k) is the actuator fault matrix with






G(k) = diag{g1(k), . . . , gnu
(k)}

G(k) ≤ G(k) ≤ Ḡ(k)

G(k) = diag{g
1
(k), . . . , g

nu
(k)} ≥ 0

Ḡ(k) = diag{ḡ1(k), . . . , ḡnu
(k)} ≤ I

(9)

and the variables gi(k) (i = 1, 2, . . . , nu) quantify the
failures of the actuators. g

i
(k) and ḡi(k) serve as the

lower and the upper bounds on gi(k), respectively.
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Defining

G0(k)=diag{ĝ1(k), . . . , ĝnu
} :=

G(k) + Ḡ(k)

2

=diag

{
g
1
(k) + ḡ1(k)

2
, . . . ,

g
nu

(k) + ḡnu
(k)

2

}
(10)

G̃(k)=diag{g̃1(k), . . . , g̃nu
(k)} :=

Ḡ(k)−G(k)

2

=diag

{
ḡ1(k)− g

1
(k)

2
, . . . ,

ḡnu
(k)− g

nu
(k)

2

}
(11)

the matrix G(k) can be rewritten as

G(k) =G0(k) + ∆G(k)

=G0(k) + diag{τ1(k), . . . , τnu
(k)} (12)

where τi(k) (i = 1, 2, . . . , nu) are certain scalars satisfy-
ing |τi(k)| ≤ g̃i(k).

In this paper, we adopt the following time-varying
output-feedback controller for system (1):

{
xc(k + 1) = Ac(k)xc(k) +Bc(k)y(k)

u(k) = Cc(k)xc(k)
(13)

where xc(k) ∈ R
nc is the controller state, Ac(k), Bc(k)

and Cc(k) are the controller parameters to be designed.

Letting η(k) =
[
xT (k) xTc (k)

]T
and ̟(k) =

[
wT (k)

vT (k)
]T

, we have the following closed-loop system to be
investigated:





η(k + 1) = (A(k) + α̃(k)∆A(k) + B̃c(k))η(k)

+ (β̄ + β̃(k))G(k, x(k)) +D(k)̟(k)

z(k) = M(k)η(k)

(14)

where

A(k) = Ā(k) + ∆Ā(k) + ᾱ∆A(k),

∆Ā(k) = H̄a(k)F̄ (k)Ēc(k), α̃(k) = α(k)− ᾱ,

∆A(k) =Ha(k)F (k)N (k), β̃(k) = β(k)− β̄,

Ā(k) =

[
A(k) B1(k)G(k)Cc(k)

Bc(k)Ξ̄C(k) Ac(k)

]
,

Ēc(k) =
[
∆̄Ξ̄C(k) 0

]
, H̄a(k) =

[
0 BT

c (k)
]T
,

Ha(k) =
[
HT

a (k) 0
]T
, B̃c(k) = B̃c0(k) + ∆B̃c0(k),

D(k) = D̄(k) + ∆D̄(k), Ξ̃(k) = Ξ(k)− Ξ̄,

∆B̃c0(k) = H̄a(k)F̄ (k)Ẽc(k), ĒE(k) =
[
0 ∆̄Ē(k)

]
,

B̃c0(k) =

[
0 0

Bc(k)Ξ̃(k)C(k) 0

]
,N (k) =

[
N(k) 0

]
,

Ẽc(k) =
[
∆̄Ξ̃(k)C(k) 0

]
,

D̄(k) = diag
{
D(k), Bc(k)Ē(k)

}
,

∆D̄(k) = H̄a(k)F̄ (k)ĒE(k),

M(k) =
[
M(k) B2(k)G(k)Cc(k)

]
,

G(k, x(k)) =
[
gT (k, x(k)) 0

]T
.

The objective of this paper is to find a sequence of reli-
able controller parameters Ac(k), Bc(k) and Cc(k) such
that the closed-loop system (14) satisfies the following
performance requirement:

J:=E

{
N−1∑

k=0

(
‖z(k)‖2 − γ2‖̟(k)‖2R

)
− γ2ηT (0)Sη(0)

}

<0 (15)

where ‖̟(k)‖2R = ̟T (k)R̟(k), andR and S are known
positive definite weighted matrices.

3 Main results

In this section, we investigate both the controller analy-
sis and controller design problems for the discrete time-
varying nonlinear stochastic system (1) with randomly
occurring uncertainties, nonlinearities, actuator and sen-
sor failures subject to output quantization. In the fol-
lowing theorem, we present the following analysis results
with known parameter matrix describing the actuator
failures.

Theorem 1 Consider the closed-loop system (14) with
known actuator failure parameter matrix G(k). Let the
disturbance attenuation level γ > 0, families of posi-
tive scalars {ε(k)}0≤k≤N−1 > 0, the positive definite
matrices R > 0, S > 0 and the controller feedback
gain matrices {Ac(k)}0≤k≤N−1, {Bc(k)}0≤k≤N−1 and

4



{Cc(k)}0≤k≤N−1 be given. The H∞ performance re-

quirement defined in (15) is achieved for all nonzero
̟(k) if, with the initial condition P (0) ≤ γ2S, there exist
families of positive definite matrices {P (k)}0≤k≤N > 0,

{Q(k)}0≤k≤N > 0 and families of positive scalars

{λ(k) > 0}0≤k≤N−1 satisfying the following recursive
matrix inequalities

Ω(k) =



Ω11(k) ∗ ∗

0 Ω22(k) ∗

Ω31(k) Ω32(k) Ω33(k)


 < 0 (16)

with the parameters updated by

P (k + 1) = Q−1(k + 1) (17)

where

Ω11(k) =−P (k) + λ(k)ε(k)HTET (k)E(k)H,

Ω22(k) = diag{−λ(k)HT
I HI ,−γ

2R}, H =
[
I 0

]
,

Ω31(k) =
[
AT (k) BT

c (k) MT (k) Λα∆AT (k) 0
]T
,

Ēci(k) =
[
∆̄Ci(k) 0

]
,Ω32(k) =

[
Ω321(k) Ω322(k)

]
,

Ω321(k) =
[
β̄I 0 0 0

√
β̄(1− β̄)I

]T
, HI =

[
I I

]
,

∆B̄ci(k) = H̄a(k)F̄ (k)Ēci(k), Λα =
√
ᾱ(1− ᾱ),

Ω322(k) =
[
DT (k) 0 0 0 0

]T
,

Ω33(k) =−diag
{
Q(k + 1), Q̂(k + 1), I, Q̃(k + 1)

}
,

Q(k + 1)= P−1(k + 1), Q̂(k + 1) = Iny
⊗Q(k + 1),

B̂ci(k) =
[
χ1B̄T

c1
(k) χ2B̄T

c2
(k) · · ·χny

B̄T
cny

(k)
]T
,

∆B̂ci(k) =
[
χ1∆B̄T

c1
(k) · · · χny

∆B̄T
cny

(k)
]T
,

B̄ci(k) =

[
0 0

Bc(k)Ci(k) 0

]
, Q̃(k + 1) = I2 ⊗Q(k + 1),

Bc(k) = B̂ci(k) + ∆B̂ci(k).

Proof : Defining

J(k) = ηT (k + 1)P (k + 1)η(k + 1)− ηT (k)P (k)η(k),

we obtain that

E {J(k)}

=E
{
ξT (k)Ω̄(k)ξ(k) − zT (k)z(k) + γ2̟T (k)R̟(k)

}

where

Ω̄(k) =




Ω̄11(k) ∗ ∗

β̄P (k + 1)A(k) Ω̄22(k) ∗

Ω̄31(k) Ω̄32(k) Ω̄33(k)


 ,

ξ(k) =
[
ηT (k) GT (k, x(k)) ̟T (k)

]T
,

Ω̄22(k) = β̄2P (k + 1) + β̄(1− β̄)P (k + 1),

Ω̄11(k) =AT (k)P (k + 1)A(k) + ᾱ(1− ᾱ)∆AT (k)

×P (k + 1)∆A(k) +
(
B̂ci(k) + ∆B̂ci(k)

)T

×(Iny
⊗ P (k + 1))

(
B̂ci(k) + ∆B̂ci(k)

)

+MT (k)M(k)− P (k),

Ω̄31(k) =DT (k)P (k + 1)A(k),

Ω̄32(k) = β̄DT (k)P (k + 1),

Ω̄33(k) =DT (k)P (k + 1)D(k)− γ2R.

It follows from the constraint (2) that

‖HIG(k, x(k))‖
2 ≤ ε(k)‖E(k)Hη(k)‖2 (18)

and therefore we have

E {J(k)} ≤E

{
ξT (k)Ω̄(k)ξ(k) − λ(k)(‖HIG(k, x(k))‖

2

−ε(k)‖E(k)Hη(k)‖2)
}
− E

{
zT (k)z(k)

−γ2̟T (k)R̟(k)
}

=E

{
ξT (k)Ω̃(k)ξ(k)

}
− E

{
zT (k)z(k)

−γ2̟T (k)R̟(k)
}

(19)

where

Ω̃(k) = Ω̄(k) + diag{λ(k)ε(k)HE ,−λ(k)H
T
I HI , 0},

HE =HTET (k)E(k)H. (20)

It follows from (16) that Ω̃(k) < 0. Summing up (19) on
both sides from 0 to N − 1 with respect to k, we obtain

N−1∑

k=0

E {J(k)}

=E
{
ηT (N)P (N)η(N)

}
− ηT (0)P (0)η(0)

≤E

{
N−1∑

k=0

ξT (k)Ω̃(k)ξ(k)

}
− E

{
N−1∑

k=0

(
zT (k)z(k)

−γ2̟T (k)R̟(k)
)}

. (21)
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Hence, the H∞ performance index defined in (15) satis-
fies

J ≤ E

{
N−1∑

k=0

ξT (k)Ω̃(k)ξ(k)

}
− E

{
ηT (N)P (N)η(N)

−ηT (0)(P (0)− γ2S)η(0)

}
. (22)

Noting that P (N) > 0, Ω̃(k) < 0 and the initial condi-
tion P (0) ≤ γ2S, it can be obtained that J < 0 and the
proof is now complete.

Based on the analysis results with the desired output
feedback controllers, we are now ready to solve the con-
troller design problem for system (1) in the following
theorem. For convenience of later analysis, we denote

Γ11(k)=diag{−P (k) + λ(k)ε(k)HE ,−λ(k)H
T
I HI ,−γ

2R},

D̄0(k)=diag {D(k), 0} , DR(k) = EIK(k)R3(k) + D̄0(k),

GR(k)=EIK(k)R1(k) +R2(k)G(k)C̄c(k), EI =
[
0 I

]T
,

Γ21(k)=

[
Ā0(k) +GR(k) β̄I DR(k)

(Iny
⊗ EIK(k))R5(k) 0 0

]
,

Γ22(k)=diag
{
−Q(k + 1),−Q̂(k + 1)

}
, R2(k) =

[
B1(k)

0

]
,

Γ31(k)=diag

{
B2(k)G(k)C̄c(k) +M0(k),

√
β̄(1− β̄)I, 0

}
,

Γ33(k)=diag {−I,−Q(k + 1),−Q(k + 1)} ,

Γ42(k)=diag
{
(EIK(k)EI)

T , (Iny
⊗ EIK(k)EI)

T
}
,

Γ44(k)=diag {−ψ1(k)I,−ψ1(k)I} , M0(k) =
[
M(k) 0

]
,

Γ51(k)=
[
Êa(k) 0 Êb(k)

]
, Γ52(k) =

[
Êc(k) 0

]
,

Êa(k)=
[
ψ1(k)Ē

T
c (k) ψ1(k)Ẽ

T
ci(k) 0 ψ2(k)N

T (k)
]T
,

Êb(k)=
[
ψ1(k)Ē

T
E(k) 0 0 0

]T
, Êc(k) =

[
0 0 ᾱHa(k) 0

]T
,

Γ55(k)=diag {I2 ⊗ (−ψ1(k)I), I2 ⊗ (−ψ2(k)I)} ,

Γ53(k)=
[
0 0 Êd(k)

]
, Êd(k) =

[
0 0 ΛαHa(k) 0

]T
,

Ā0(k)=diag {A(k), 0} , R3(k) = diag
{
0, Ē(k)

}
,

Ẽci(k)=
[
χ1Ē

T
c1
(k) χ2Ē

T
c2
(k) · · · χny

ĒT
cny

(k)
]T
,

R1(k)=

[
0 I

Ξ̄C(k) 0

]
, R4i(k) =

[
0 0

Ci(k) 0

]
,

R5(k)=
[
χ1R

T
41(k) χ2R

T
42(k) · · ·χny

RT
4ny

(k)
]T
. (23)

Theorem 2 Consider the closed-loop system (14) with
known actuator failure parameter matrix G(k). Let the

disturbance attenuation level γ > 0, families of positive
scalars {ε(k)}0≤k≤N−1 > 0, the positive definite matri-
ces R > 0 and S > 0 be given. The H∞ performance
requirement defined in (15) is achieved for all nonzero
̟(k) if, with the initial condition P (0) ≤ γ2S, there exist
families of positive definite matrices {P (k)}0≤k≤N > 0,

{Q(k)}0≤k≤N > 0, families of real-valued matrices

{K(k)}0≤k≤N−1,
{
C̄c(k)

}
0≤k≤N−1

, families of positive

scalars {λ(k) > 0}0≤k≤N−1, {ψ1(k)(k) > 0}0≤k≤N−1

and {ψ2(k) > 0}0≤k≤N−1 satisfying the following recur-
sive matrix inequalities

Γ(k) =




Γ11(k) ∗ ∗ ∗ ∗

Γ21(k) Γ22(k) ∗ ∗ ∗

Γ31(k) 0 Γ33(k) ∗ ∗

0 Γ42(k) 0 Γ44(k) ∗

Γ51(k) Γ52(k) Γ53(k) 0 Γ55(k)



< 0

(24)
with the parameters updated by

P (k + 1) = Q−1(k + 1) (25)

where the other parameters are defined in (23) and The-
orem 1. Furthermore, if (P (k), Q(k + 1),K(k), C̄c(k))
is the feasible solution of (24), then the output feedback
controller parameters in the form of (13) are given as
follows:

[
Ac(k) Bc(k)

]
= K(k), Cc(k) = C̄c(k)EI . (26)

Proof : To deal with the parameter uncertainties in (14),
we rewrite (16) in the following form:

Ω̂(k) + M̃1(k)F̃(k)Ñ1(k) + Ñ T
1 (k)F̃T (k)M̃T

1 (k)

+M̃2(k)F (k)Ñ2(k) + Ñ T
2 (k)FT (k)M̃T

2 (k)

< 0 (27)
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where

Ω̂(k) =



Ω11(k) ∗ ∗

0 Ω22(k) ∗

Ω̂31(k) Ω̂32(k) Ω33(k)


 ,

M̃1(k) =

[
0 0 0 H̄T

a (k) 0 0 0 0

0 0 0 0 (Iny
⊗ H̄a(k))

T 0 0 0

]T

,

Ω̂32(k) =
[
Ω321(k) Ω̂322(k)

]
,

Ω̂322(k) =
[
D̄T (k) 0 0 0 0

]T
,

F̃(k) =diag{F̄ (k), Iny
⊗ F̄ (k)},

Ñ1(k) =

[
Ēc(k) 0 ĒE(k) 0 0 0 0 0

Ẽci(k) 0 0 0 0 0 0 0

]
,

Ω̂31(k) =
[
ĀT (k) B̂T

ci(k) MT (k) 0 0
]T
,

Ñ2(k) =
[
N (k) 0 0 0 0 0 0 0

]
,

M̃2(k) =
[
0 0 0 ᾱHT

a (k) 0 0
√
ᾱ(1− ᾱ)HT

a (k) 0
]T
.

It is observed that the following inequality holds:




Ω̂(k) ∗ ∗ ∗ ∗

M̃T
1 (k) −ψ1(k)I ∗ ∗ ∗

ψ1(k)Ñ1(k) 0 −ψ1(k)I ∗ ∗

M̃T
2 (k) 0 0 −ψ2(k)I 0

ψ2(k)Ñ2(k) 0 0 0 −ψ2(k)I




< 0 (28)

In order to avoid partitioning the positive definematrices
P (k) and Q(k), the parameters in (28) are expressed as
follows:

Ā(k) = Ā0(k) + EIK(k)R1(k) +R2(k)G(k)C̄c(k),

D̄(k) = D̄0(k) + EIK(k)R3(k), H̄a(k) = EIK(k)EI ,

B̂ci(k) = (Iny
⊗ EIK(k))R5(k), B̄ci(k) = EIK(k)R4i(k)

M(k) = M0(k) +B2(k)G(k)C̄c(k) (29)

where

K(k) =
[
Ac(k) Bc(k)

]
, C̄c(k) =

[
0 Cc(k)

]
. (30)

Noticing (29) and (30), (24) is obtained by (28) after
applying some straightforward algebraic manipulations,
and the proof of this theorem is then complete.

In Theorem 2, with known actuator failure parameter,
the H∞ performance requirement defined in (15) is ob-
tained for the closed-loop system (14) and the output
feedback controller is designed based on the recursive

matrix inequalities approach. In the following theorem,
a design procedure for the desired controller parameters
is given in the case that the failure parameter matrix
G(k) is unknown but satisfies the constraints (9)–(12).

Theorem 3 Consider the closed-loop system (14). Let
the disturbance attenuation level γ > 0, families of pos-
itive scalars {ε(k)}0≤k≤N−1 > 0, {µ(k)}0≤k≤N−1 > 0,
the positive definite matrices R > 0 and S > 0
be given. The H∞ performance requirement defined
in (15) is achieved for all nonzero ̟(k) if, with
the initial condition P (0) ≤ γ2S, there exist fami-
lies of positive definite matrices {P (k)}0≤k≤N > 0,

{Q(k)}0≤k≤N > 0, families of real-valued matrices

{K(k)}0≤k≤N−1,
{
C̄c(k)

}
0≤k≤N−1

, families of positive

scalars {λ(k) > 0}0≤k≤N−1, {ψ1(k)(k) > 0}0≤k≤N−1

and {ψ2(k) > 0}0≤k≤N−1 satisfying the following recur-
sive matrix inequalities

Γ̃(k) =




Γ̂(k) ∗ ∗

µ(k)B̂(k) −µ(k)I ∗

Ĉc(k) 0 −µ(k)(G̃T (k)G̃(k))−1




< 0 (31)

with the parameters updated by

P (k + 1) = Q−1(k + 1) (32)

where

B̂(k) =
[
0 0 0 RT

2 (k) 0 BT
2 (k) 0 0 0 0 0 0 0 0

]
,

Ĉc(k) =
[
C̄c(k) 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

Γ̂(k) =




Γ11(k) ∗ ∗ ∗ ∗

Γ̂21(k) Γ22(k) ∗ ∗ ∗

Γ̂31(k) 0 Γ33(k) ∗ ∗

0 Γ42(k) 0 Γ44(k) ∗

Γ51(k) Γ52(k) Γ53(k) 0 Γ55(k)



,

Γ̂21(k) =

[
Ā0(k) +G0R(k) β̄I DR(k)

(Iny
⊗ EIK(k))R5(k) 0 0

]
,

Γ̂31(k) = diag

{
BG(k),

√
β̄(1− β̄)I, 0

}
,

BG(k) =B2(k)G0(k)C̄c(k) +M0(k),

G0R(k) =EIK(k)R1(k) +R2(k)G0(k)C̄c(k). (33)

Furthermore, if (P (k), Q(k+1),K(k), C̄c(k)) is the fea-
sible solution of (31), then the output feedback controller
parameters in the form of (13) are given as follows:

[
Ac(k) Bc(k)

]
= K(k), Cc(k) = C̄c(k)EI . (34)
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Table 1
The Reliable Controller Design Algorithm

Step 1. Give the H∞ performance index γ, the positive definite matrices R, S and the state initial
condition η(0). Select the initial value for matrix P (0) which satisfy the condition P (0) ≤ γ2S
and set k = 0.

Step 2. For the sampling instant k, solving the recursive matrix inequality (31) to obtain the values
of matrix Q(k + 1) as well as the desired controller parameters {Ac(k), Bc(k), Cc(k)}.

Step 3. Set k = k + 1 and obtain P (k + 1) by the parameter update formula (32).

Step 4. If k < N , where N is the maximum number of iterations allowed, then go to Step 2, else go to
Step 5.

Step 5. Stop.

Table 2
Recursive process

k 0 1 2 3 · · ·

Ac(k)

[

0.5314 0.5314

0.5314 0.5314

] [

0.0141 0.0141

0.0141 0.0141

] [

0.0791 0.0110

0.0241 0.0698

] [

0.3136 0.3136

0.3136 0.3136

]

· · ·

Bc(k)

[

−2.0606 10.4288

−2.0606 10.4288

] [

−0.0785 1.0544

−0.0785 1.0544

] [

−0.0414 0.5060

−0.0414 0.5060

] [

−0.3578 6.4767

−0.3578 6.4767

]

· · ·

Cc(k)
[

1.8772 1.8772
] [

0.5637 0.5637
] [

2.2341 2.2341
] [

5.2543 5.2543
]

· · ·

Proof : From (12), we know that Γ(k) in Theorem 2 can
be rewritten as

Γ(k)=Γ̂(k) + B̂T (k)∆G(k)Ĉc(k) + ĈT
c (k)∆G(k)B̂(k).(35)

Noticing inequality (12), it is obtained that

Γ(k)≤ Γ̂(k) + µ(k)B̂T (k)B̂(k) + µ−1(k)ĈT
c (k)G̃

T (k)

×G̃(k)Ĉc(k) = Ψ̃(k). (36)

It can be seen that (31) in Theorem 3 implies that Γ(k) ≤
Ψ̃(k) < 0. This completes the proof.

By means of Theorem 3, the algorithm for designing the
reliable robust controller can be outlined as Table 1.

Remark 2 In the system model under investigation in
this paper, there are mainly six factors that constitute
the complexity and complicate the design of reliable con-
troller, which are ROUs, RONs, actuator failure, sensor
failures, quantization and time-varying parameters. It
can be seen that all these six factors are explicitly reflected
in our main results. In Theorem 3, the finite-horizon reli-
able controller is designed by solving a series of recursive
linear matrix inequalities under which both the current
system measurement and previous system states are em-
ployed to control the current system state. Such a recur-
sive control process is particularly suitable for real-time
implementation such as online process control.

4 An Illustrative Example

In this section, we present a simulation example to il-
lustrate the effectiveness of the proposed reliable con-
troller design scheme for discrete time-varying stochastic

systems with randomly occurring uncertainties, nonlin-
earities, actuator and sensor failures subject to output
quantization. The system data are given as follows:

A(k) =

[
−0.6 0.2

1.1 sin(5k) 0.5

]
, Ha(k) =

[
0.1 0.3

]T
,

N(k) =
[
0.2 0

]
, F (k) = sin(k), B2(k) = 0.2,

B1(k) =

[
−2

3 sin(5k)

]
, D(k) =

[
0.1 sin(3k)

−0.3

]
,

M(k) =
[
−0.4 0.5 sin(5k)

]
, Ē(k) =

[
0.1 sin(3k)

0.2

]
,

C(k) =

[
−2 + 0.3 sin(5k) 0.5

0 1

]
.

The nonlinear function g(k, x(k)) is selected as
g(k, x(k)) = 0.5x1(k)sin(x2(k)). It is easy to see
that the constraint (2) is met with ε(k) = 1 and
E(k) = diag{0.2, 0.15}. The parameters of the loga-
rithmic quantizer are chosen as µ̂0 = 2, χ̄1 = 0.8 and
χ̄2 = 0.5.

Let ᾱ = 0.9 and β̄ = 0.8. Assume that the probability
density functions of ρ1(k) and ρ2(k) in [0, 1] are described
by

ζ1(s1) =





0 s1 = 0

0.1 s1 = 0.5

0.9 s1 = 1

, ζ2(s2) =





0 s2 = 0

0.2 s2 = 0.5

0.8 s2 = 1

,

(37)

8



0 2 4 6 8 10 12
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time(k)

T
he

 s
ta

te
 e

vo
lu

tio
n 

x(
k)

 o
f t

he
 c

on
tr

ol
le

d 
sy

st
em

 

 
x

1
(k)

x
2
(k)

Fig. 1. The state responses of the controlled system
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Fig. 2. The controller output u(k)

from which the expectations and variances can be easily
calculated as µ̄1 = 0.95, µ̄2 = 0.9, χ2

1 = 0.152 and χ2
2 =

0.04.

The actuator fault matrix G(k) is assumed to satisfy
0.85 ≤ G(k) ≤ 0.9. Then, we can obtain that G0(k) =

0.875 and G̃(k) = 0.025. In the simulation, let µ(k) = 1.
The H∞ performance level is chosen as γ = 1, the

initial values of the states are x0 =
[
0.26 −0.2

]T
,

x̂0 =
[
0.2 −0.16

]T
and the positive definite matrices

R = diag{2, 2} and S = diag{2, 2, 2, 2}. The exogenous
disturbance input is selected as w(k) = 0.5 sin(4k) and
v(k) = 0.2 cos(4k). According to reliable controller de-
sign algorithm, the desired controller parameters in The-
orem 3 can be solved recursively subject to given initial
conditions and prespecified performance index. Table 2
lists the desired parameters of reliable controller Ac(k),
Bc(k) and Cc(k) from the time k = 0 to k = 3.

The simulation results are shown in Figs. 1-2, where
Fig. 1 plots the state simulation results of the closed-
loop system (14) and Fig. 2 depicts the controller output.
The simulation results confirm that the desired finite-
horizon performance is well achieved and the proposed
reliable controller design algorithm is indeed effective.

5 Conclusion

In this paper, the finite-horizon reliable H∞ output-
feedback control problem has been investigated for a
class of discrete time-varying systems with ROUs, RONs
as well as measurement quantizations. The actuator fail-
ures have been quantified by a variable varying in a given
interval and the sensor failures have been governed by an
individual random variable satisfying a certain proba-
bilistic distribution in the interval [0, 1]. Both the RONs
and the ROUs have been modeled by the Bernoulli dis-
tributed white sequences with known conditional prob-
abilities. In the presence of output quantization, a time-
varying output feedback controller has been designed to
preserve a guaranteed H∞ performance. A simulation
example has been utilized to demonstrate the effective-
ness of the finite-horizon reliable control techniques pre-
sented in this paper. Other possible future research di-
rections include real-time applications of the proposed
reliable control theory in telecommunications, and fur-
ther extensions of the present results to more complex
systems with unreliable communication links, such as
sampled data systems, bilinear systems, and a more gen-
eral class of nonlinear stochastic systems.
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