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Abstract —This paper proposes an adaptive neural predictive nonlinear controller to guide a nonholonomic wheeled mobile robot 
during continuous and non-continuous gradients trajectory tracking. The structure of the controller consists of two models that 
describe the kinematics and dynamics of the mobile robot system and a feedforward neural controller. The models are modified 
Elman neural network and feedforward multi-layer perceptron respectively. The modified Elman neural network model is trained 
off-line and on-line stages to guarantee the outputs of the model accurately represent the actual outputs of the mobile robot system. 
The trained neural model acts as the position and orientation identifier. The feedforward neural controller is trained off-line and 
adaptive weights are adapted on-line to find the reference torques, which controls the steady-state outputs of the mobile robot 
system. The feedback neural controller is based on the posture neural identifier and quadratic performance index optimization 
algorithm to find the optimal torque action in the transient state for N-step-ahead prediction. General back propagation algorithm 
is used to learn the feedforward neural controller and the posture neural identifier. Simulation results show the effectiveness of the 
proposed adaptive neural predictive control algorithm; this is demonstrated by the minimised tracking error and the smoothness of 
the torque control signal obtained with bounded external disturbances. 

Keywords - Nonholonomic Mobile Robots, Adaptive Predictive Nonlinear Controller, Neural Networks, Trajectory Tracking. 

 

I. INTRODUCTION  

 In recent years, wheel-based mobile robots have 
attracted considerable attention in various industrial and 
service applications. For example, room cleaning, factory 
automation, transportation, etc. These applications require 
mobile robots to have the ability to track specified path 
stably [1]. In general, nonholonomic behaviour in robotic 
systems is particularly interesting because this mechanism 
can completely be controlled with reduced number of 
actuators. Several controllers were proposed for trajectory 
tracking of mobile robots with nonholonomic constraints. 
The traditional control methods for mobile robot path 
tracking have used linear or non-linear feedback control 
while artificial intelligent controllers were carried out using 
neural networks or fuzzy inference [2]. 
 There are other techniques for trajectory tracking 
controllers such as predictive control technique. Predictive 
approaches to path tracking seem to be very promising 
because the reference trajectory is known beforehand. 
Model predictive trajectory tracking control was applied to a 
mobile robot where linearised tracking error dynamics was 
used to predict future system behaviour and a control law 
was derived from a quadratic cost function penalizing the 
system trucking error and the control effort [3]. 
 In addition, an adaptive trajectory-tracking controller 
based on the robot dynamics was proposed in [4 and 5] and 
its stability property was proved using the Lyapunov theory.  
 
 

An adaptive controller of nonlinear PID-based neural 
networks was developed for the velocity and orientation 
tracking control of a nonholonomic mobile robot [6]. 
 A trajectory tracking control for a nonholonomic 
mobile robot by the integration of a kinematics controller 
and neural dynamic controller based on the sliding mode 
theory was presented in [7]. The adaptive feedforward and 
feedback neural controllers with predictive optimization 
algorithm have minimised the tracking error of the 
nonholonomic wheeled mobile robot as presented in [8]. 
 Two novel dual adaptive neural control schemes were 
proposed for dynamic control of nonholonomic mobile 
robots [9]. The first scheme was based on Gaussian radial 
basis function ANNs and the second on sigmoidal 
multilayer perceptron (MLP) ANNs. ANNs were employed 
for real-time approximation of the robot's nonlinear 
dynamic functions which were assumed to be unknown. 
Integrating the neural networks into back-stepping 
technique has improved learning algorithm of analogue 
compound orthogonal networks and novel tracking control 
approach for nonholonomic mobile robots [10]. A variable 
structure control algorithm was proposed to study the 
trajectory tracking control based on the kinematics model of 
a 2-wheel differentially driven mobile robot by using of the 
back stepping method and virtual feedback parameter with 
the sigmoid function [11]. The trajectory-tracking 
controllers designed by pole-assignment approach for 
mobile robot model were presented in [12].  
 The contribution of the presented approach is the 
analytically derived control law which has significantly high 
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computational accuracy with predictive optimization 
technique to obtain the optimal torques control action and 
lead to minimum tracking error of the mobile robot for 
different types of trajectories with continuous gradients such 
as (lemniscates) or non-continuous gradients (square) with 
bounded external disturbances. 
 The predictive optimization algorithm for N step ahead 
can generate excellent feedback control action in order to 
reduce the effect of external disturbances.  
Simulation results show that the proposed controller is 
robust and effective in terms of fast response and minimum 
tracking error and in generating an optimal torque control 
action despite of the presence of bounded external 
disturbances. 
 The remainder of the paper is organized as follows. 
Section two is a description of the kinematics and dynamics 
model of the nonholonomic wheeled mobile robot. In section 
three, the proposed adaptive neural predictive controller is 
derived. The simulation results of the proposed controller are 
presented in section four and the conclusions are drawn in 
section five. 

II. THE KINEMATICS AND DYNAMICS MODEL OF 

NONHOLONOMIC WHEELED MOBILE ROBOT 

The schematic of the nonholonomic mobile robot, 
shown in figure 1, consists of a cart with two driving wheels 
mounted on the same axis and an omni-directional castor in 
the front of cart. The castor carries the mechanical structure 
and keeps the platform more stable [6 and 8].  Two 
independent analogous DC motors are the actuators of left 
and right wheels for motion and orientation. The two wheels 
have the same radius denoted by r , and L  is the distance 
between the two wheels. The centre of mass of the mobile 
robot is located at point c , centre of axis of wheels.  
 

  
Figure 1. Schematic of the nonholonomic mobile robot. 

 
 The pose of mobile robot in the global coordinate frame 
 YXO ,,  and the pose vector in the surface is defined as:  

Tyxq ),,(                                                                           (1) 
where 13)( tq ,    

x and y are coordinates of point c and   is the robotic 
orientation angle measured with respect to the X-axis. These 
three generalized coordinates can describe the configuration 
of the mobile robot. The mobile robot is subjected to an 
independent velocity constraint that can be expressed in 
matrix form [13]: 

0)( 


qqAT                                                                               (2) 
where  

]0)(cos)(sin[)( ttqAT                                               (3) 
13)( qA  

 
 It is assumed that the mobile robot wheels are ideally 
installed in such a way that they have ideal rolling without 
skidding [14]. 
 Therefore, the kinematics of the robot can be described 
as 
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where )(qS is defining a full rank matrix as 
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where Vl  and Vw, the linear and angular velocities. 
Forces must be applied to the mobile robot to produce 
motion. These forces are modeled by studying the motion of 
the dynamic model of the differential wheeled mobile robot 
shown in figure 1. Mass, forces and speed are associated 
with this motion. The dynamic model can be described by 
the following form of dynamic equations based on Euler 
Lagrange formulation [5, 6, 8 and 9]. 

 )()()(),()( qAqBdqGqqqCqqM T


                        (6) 
33)( qM is a symmetric positive definite inertia matrix, 


 33),( qqC is the centripetal and carioles matrix, 

13)( qG is the gravitational torques vector, 13d  denotes 
bounded unknown disturbances including unstructured and 
unmodeled dynamics, 23)( qB is the input transformation 
matrix, 12 is input torque vector, and 11 is the vector 
of constraint forces. 
 Remark 1: The plane of each wheel is perpendicular to 
the ground and the contact between the wheels and the 
ground is pure rolling and non-slipping, and hence the 
velocity of the centre of the mass of the mobile robot is 
orthogonal to the rear wheels' axis. 
Remark 2: The trajectory of mobile robot base is 
constrained to the horizontal plane, therefore, )(qG is equal 
to zero.  
 Remark 3: In this dynamic model, the passive self-
adjusted supporting wheel influence is not taken into 
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consideration as it is a free wheel. This significantly reduces 
the complexity of the model for the feedback controller 
design. However, the free wheel may be a source of 
substantial distortion, particularly in the case of changing its 
movement direction. This effect is reduced if the small 
velocity of the robot is considered [5 and 6]. Remark 4: The 
centre of mass for mobile robot is located in the middle of 
axis connecting the rear wheels in c point as shown in 

figure 1, therefore, ),(


qqC is equal to zero.  
 The dynamical equation of the differential wheeled 
mobile robot can be expressed as 
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where L and R  are the torques of left and right motors 
respectively. M and I present the mass and inertia of the 
mobile robot respectively. 
 By solving equation (4 and 7) then we can reach the 
normal form, 
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where IV


 and WV


 are the linear and angular acceleration of 

the differential wheeled mobile robot. 
 The dynamics and the kinematics model structure of the 
differential wheeled mobile robot can be shown in figure 2.  

 

 
Figure 2. Dynamics and kinematics model structure of the mobile robot. 

 

III. ADAPTIVE NEURAL PREDICTIVE CONTROL 

METHODOLOGY 

 The control of nonlinear MIMO mobile robot system is 
considered in this section. The approach to control the 
mobile robot depends on the available information of the 
unknown nonlinear system can be known by the input-output 
data only and the control objectives. The first step in the 
procedure of the control structure is the identification of the 
kinematics and dynamics mobile robot from the input-output 
data. Then an adaptive feedforward neural controller is 
designed to find reference torques that control the steady-
state outputs of the mobile robot trajectory. 
 The feedback neural controller is based on the 
minimisation of a quadratic performance index function of 

the error between the desired trajectory input and the posture 
neural identifier output, i.e.  position and orientation of 
mobile robot trajectory, and the feedback neural controller 
itself. The predictive optimization algorithm is used to 
determine the torque control signal for N-steps-ahead and to 
use minimum torque effort. The torque control signal will 
minimise the cost function in order to minimise the tracking 
error as well as reduce the torque control effort in the 
presence of external disturbance. The integrated adaptive 
control structure, which consists of an adaptive feedforward 
neural controller and feedback neural controller with an 
optimization algorithm, brings together the advantages of the 
adaptive neural method with the robustness of feedback for 
N-step-ahead prediction.  
 The proposed structure of the adaptive neural predictive 
controller can be given in the form of block diagram as 
shown in figure 3. It consists of: 
a) Position and Orientation Neural Networks Identifier. 
b) Feedforward Neural Controller. 
c) Feedback Neural Controller. 

 

 
Figure. 3. The proposed structure of the adaptive neural predictive 

controller for the nonholonomic wheeled mobile robot. 
 

A. Position and Orientation Neural Networks Identifier 

 

 
Figure 4 . Elman neural networks acts as the posture 

identifier. 
 Nonlinear MIMO system identification of kinematics 
and dynamics mobile robot, position and orientation, will be 
introduced in this section. The modified Elman recurrent 
neural network model is applied to construct the position 
and orientation neural network identifier as shown in figure 
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4. The nodes of input, context, hidden and output layers are 
highlighted. The network uses two configuration models, 
series-parallel and parallel identification structures, which 
are trained using dynamic back-propagation algorithm. 
 The structure shown in figure 4 is based on the 
following equations [15]: 

}),(),({)( VbbiaskhVCkGVHFkh o                                 (10) 

)),(()( WbbiaskWhkO                                                        (11) 

where VH,VC and W are weight matrices, Vb  and Wb  are 
weight vectors and F is a non-linear vector function. The 
multi-layered modified Elman neural network, shown in 
figure 4, is composed of many interconnected processing 
units called neurons or nodes.  
 The output of the context unit in the modified Elman 
network is given by [15]: 

)1()1()(  khkhkh c
o
c

o
c                                         (12) 

where )(kho
c

 and )(khc
are the outputs of the context and 

hidden units respectively.   is the feedback gain of the 
self-connections and  is the connection weight from the 
hidden units (jth) to the context units (cth) at the context 
layer.  The value of   and   are selected randomly 
between (0 and 1) [15]. 
 The outputs of the identifier are the modelling pose 
vector in the surface and are defined as:  

T
mmmm yxq ),,(  , where 

mx  and 
my  are the modelling 

coordinates and 
m  is the modelling orientation angle. 

The learning algorithm will be used to adjust the weights of 
dynamical recurrent neural network. Dynamic back 
propagation algorithm is used to train the Elman network. 
The sum of the square of the differences between the 
desired outputs Tyxq ),,(  and neural network identifier 
outputs T

mmmm yxq ),,(  is given by equation (13). 
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where np is the number of patterns. 
 The connection matrix between hidden layer and output 
layer is 
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where   is learning rate. 
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 The connection matrix between input layer and hidden 
layer is 
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 The connection matrix between context layer and 
hidden layer is 
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B. Feedforward Neural Controller 

The feedforward neural controller (FFNC) is of prime 
importance in the structure of the controller due to its 
necessity in keeping the steady-state tracking error at zero. 
This means that the actions of the FFNC, )(1 kref  and 

)(2 kref are used as the reference torques of the steady state 

outputs of the mobile robot. Hence, the FFNC is supposed 
to learn the adaptive inverse model of the mobile robot 
system with off-line and on-line stages to calculate mobile 
robot's reference input torques drive. Reference input 
torques will keep the robot on a desired trajectory in the 
presence of any disturbances or initial state errors. To 
achieve FFNC, a multi-layer perceptron model is used as 
shown in figure 5 [16].  
 

 
 

Figure 5. MLP Neural network acts as the feed forward neural controller 

 
 The training of the feedforward neural controller is 
performed off-line as shown in figure 6, which the weights 
adapted on-line. It depends on the posture neural network 
identifier to find the mobile robot Jacobian through the 
neural identifier model. 
 This approach is currently considered as one of the 
better approaches that can be followed to overcome the lack 
of initial knowledge. The dynamic back propagation 
algorithm is employed to realize the training the weights of 
the feedforward neural controller.  
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Figure 6. The feedforward neural controller structure for mobile robot 

model. 
 The sum of the square of the differences between the 
desired posture T

rrrr yxq ),,(  and neural network posture 
T

mmmm yxq ),,(  is: 
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where npc is number of patterns. 
 The connection matrix between hidden layer and output 
layer is 
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 This is achieved in the local coordinates with respect to 
the body of the mobile robot that is the same outputs of the 
position and orientation neural networks identifier. The 
configuration error can be represented by using a 
transformation matrix as: 
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where 
rx , 

ry and 
r are the reference posture of the 

mobile robot. 
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where the outputs of the identifier are T
mmmm yxq ),,(  . 
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Substituting equations (26 and 29) into equation (25), to 
find )1(  kWcontba

, then 

)1()()1(  kWcontkWcontkWcont bababa
           (30) 

 The connection matrix between input layer and hidden 
layer is 
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Substituting equations (26 and 29) into equation (32), to 
find  )1(  kVcontan

, then 

)1()()1(  kVcontkVcontkVcont ananan
                  (33) 

 Once the feedforward neural controller has learned, it 
generates the torque control action to keep the output of the 
mobile robot at the steady state reference value and to 
overcome any external disturbances during trajectory.  
The torques will be known equivalently as 

1ref and
2ref , the 

reference torques of the right and left wheels respectively. 

C. Feedback Neural Controller 

 The feedback neural controller is essential to stabilise 
the tracking error of the mobile robot system when the 
trajectory of the robot is drifted from the reference 
trajectory during transient state. The feedback neural 
controller generates an optimal torque control action that 
minimises the cumulative error between the reference input 
trajectory and the output trajectory of the mobile robot. The 
weighted sum of the torque control signal can be obtained 
by minimising a quadratic performance index. The feedback 
neural controller consists of the adaptive weights of the 
position and orientation neural networks identifier and an 
optimization algorithm. The quadratic performance index 
for multi input /multi output system can be expressed as: 
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(Q, R) are positive weighting factors. 
N is the number of steps ahead. 
 
 The quadratic cost function will not only force the 
mobile robot output to follow the reference trajectory by 
minimising the cumulative error for N steps ahead but also 
forces the torque control actions ( )(1 k  and )(2 k ) in the 
transient period to be as close as possible to the reference  
torque control signals ( )(1 kref  and )(2 kref ). In addition, J 

depends on Q & R factors and chooses a set of values of the 
weighting factors Q and R to determine the optimal control 
action by observing the system behavior [17]. The on-line 
position and orientation neural networks identifier is to be 
used to obtain the predicted values of the outputs of the 
mobile robot system )1( kqm

 for N steps ahead instead of 

running the mobile robot system itself )1( kq  for N steps. 
This is performed to find the optimal torque control actions 
by using the posture identifier weights and optimization 
algorithm depending on the quadratic cost function. 
Therefore, it can be said that: 
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)1()1(  kqkqm
         (39) 

 The performance index of equation (34) can be put as: 





N

k
mrmr kykykxkxQJ

1

22 ))1()1(())1()1(((
2

1  

        )))(())((()))1()1(( 2
2

2
1

2 kkRkk mr        (40) 

To achieve equation (39 and 40), the modified Elman neural 
network will be used as posture identifier. This task is 
carried out using an identification technique based on series-
parallel and parallel configuration with two stages to learn 
the posture identifier. The first stage is an off-line 
identification, while the second stage is an on-line 
modification of the weights of the obtained position and 
orientation neural identifier. The on-line modifications are 
necessary to keep tracking any possible variation in the 
kinematics and dynamics parameters of the mobile robot 
system.  
 Back propagation algorithm (BPA) is used to adjust the 
weights of the posture neural identifier to learn the 
kinematics and dynamics of the mobile robot system, by 
applying a simple gradient decent rule. 
For N steps estimation of the two feedback neural controller 
actions )(&)( 21 kk   the techniques of generalized 
predictive control theory will be used. The N steps 
estimation of )(&)( 21 kk   will be calculated for each 
sample. The position and orientation in the identifier model, 
shown in figure 4, represent the kinematics and dynamics 
model of the mobile robot system and will be controlled 
asymptotically. Therefore, they can be used to predict future 
values of the model outputs for the next N steps and can be 
used to find the optimal value of )(&)( 21 kk   using an 
optimization algorithm.  
 For this purpose, let N be a pre-specified positive 
integer that is denoted such that the future values of the set 
point are: 

)](),...,3(),2(),1([, NtxtxtxtxX rrrrNtr                        (41) 

)](),...,3(),2(),1([, NtytytytyY rrrrNtr                       (42) 

)](),...,3(),2(),1([, Ntttt rrrrNtr                        (43) 

As the future values of set point and (t) represents the time 
instant, and the predicted outputs of the robot model used 
the neural identifier, shown in figure 4, are: 

)](),...,3(),2(),1([, NtxtxtxtxX mmmmNtm                       (44) 

)](),...,3(),2(),1([, NtytytytyY mmmmNtm                       (45) 

)](),...,3(),2(),1([, Ntttt mmmmNtm                        (46) 

The error vector of position and orientation as equations 
(47, 48, and 49) can be calculated by using equation (27).  

]()...,3(),2(),1([,, NtextextextexEX mmmmNtm                       (47) 

]()...,3(),2(),1([,, NteyteyteyteyEY mmmNtm                       (48) 

]()...,3(),2(),1([,, NteteteteE mmmmNtm                         (49) 

Two-feedback control signals can be determined by: 
)]1(),...,2(),1(),([ 1111,1  NttttNt                               (50) 

)]1(),...,2(),1(),([ 2222,2  NttttNt                               (51)         

Assuming the following objective function: 
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NtNtR                              (52) 

then it is aimed to find 1  and 2   such that J1 is 
minimised using the gradient descent rule. The new control 
actions will be given by: 
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,2                                                       (54)         

where k here indicates that calculations are performed at the 
kth sample; and 
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Equations (59 to 64) are the well-known Jacobian vectors. 
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It can be seen that each element in the above vectors can be 
calculated from equation (65 to 74) such that: 

j

C

c

o
cjc

nh

i
ijij VbbiashVCGVHnet  

 11

                       (65) 

where j=c and nh=C are the number of the hidden and 
context nodes respectively and G  is the input vector such as  

T
mmmLR ttytxttG )](),(),(),(),([                                       (66) 

1
1

2



  jnetj

e
h                                                               (67) 

)1(5.0)( 2
jj hnetf                                                            (68) 
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 From figure 4 shows that )(kR is linked to the exciting 

nodes, 1jVH  and )(kL  is linked to the exciting nodes 
2jVH  

then can be calculated Jacobian vectors. 
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 Therefore, recursive methods for calculating the 
Jacobian vectors are developed so that the algorithm can be 
applied to real-time systems. After completing the 
procedure from n=1 to N the new control actions for the 
next sample will be:  

)()1()1( 11 Ntkk K
refR                     (75) 

)()1()1( 22 Ntkk K
refL                            (76) 

where )(&)( 21 NtNt kk    are the final values of the 
feedback-controlling signals calculated by the optimization 
algorithm. This is calculated at each sample time k so that 

)1(&)1(  kk LR  are torque control actions of the right 
and the left wheels respectively. These actions will be 
applied to the mobile robot system and the position and 
orientation identifier model at the next sampling time. The 
application of this procedure will continue at the next 
sampling time (k+1) until the error between the desired 
input and the actual output becomes lower than a pre-
specified value. 

IV. SIMULATION RESULTS 

 The proposed controller is verified by means of 
computer simulation using MATLAB/SIMULINK. The 
kinematics and dynamics model of the nonholonomic 
mobile robot described in section 2 are used. The simulation 
is carried out by tracking a desired position (x, y) and 
orientation angle ( ) with a lemniscates and square 
trajectories in the tracking control of the robot. The 
parameter values of the robot model are taken from [18]: 
M=0.65kg, I=0.36kgm2, L=0.105 m and r=0.033 m. 
 A hybrid excitation signal has been used for the robot 
model. Figure 7 shows the input signals )(kR  and )(kL , 
right and left wheel torques respectively. The training set is 
generated by feeding a PRBS signals, with sampling time of 
0.5 second, to the model and measuring its corresponding 
outputs, position x and y and orientation .  
 The proposed controller is implemented based on the 
structure shown in figure 3.  The fist stage of operation is to 
set the position and orientation neural network identifier. 
This task is performed using series-parallel and parallel 
identification technique configuration with modified Elman 

recurrent neural networks model. The identification scheme 
of the nonlinear MIMO mobile robot system are needed to 
input-output training data pattern to provide enough 
information about the kinematics and dynamics mobile 
robot model to be modelled. This can be achieved by 
injecting a sufficiently rich input signal to excite all process 
modes of interest while also ensuring that the training 
patterns adequately covers the specified operating region. 
Back propagation learning algorithm is used with the 
modified Elman recurrent neural network of the structure 
(5-6-6-3). The number of nodes in the input, hidden, context 
and output layers are 5, 6, 6 and 3 respectively as shown in 
figure 4 
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Figure 7. The PRBS input torque signals used to excite the mobile robot 
model. 

 A training set of 125 patterns has been used with a 
learning rate of 0.1. After 3244 epochs, the identifier 
outputs of the neural network, position x, y and orientation 
, are approximated to the actual outputs of the model 
trajectory as shown in figure 8. 

Parallel configuration is used to guarantee the similarity 
between the outputs of the neural network identifier and the 
actual outputs of the mobile robot model trajectory. At 3538 
the same training set patterns has been achieved with a 
mean square error less than 5.7×10-6. The neural network 
identifier position and orientation outputs and the mobile 
robot model trajectory are shown in figure 9. 
 

A. Case Study-1 

 The desired lemniscates trajectory which has explicitly 
continuous gradient with rotation radius changes, this 
trajectory can be described by the following equations: 
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 The second stage of the proposed controller is 
feedforward neural controller. It uses multi-layer perceptron 
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neural network (8-11-2) as shown in figure 5. The trajectory 
has been learned by the feedforward neural controller with 
off-line and on-line adaptation stages using back 
propagation algorithm as shown in figure 6 to find the 
suitable reference torque control action at steady state.  
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Figure 8. The response of the identifier with the actual mobile robot 

model output: (a) in the X-coordinate; (b) in the Y-coordinate; and (c) in 

the -orientation. 
 

Finally the case of tracking a lemniscates trajectory for 
robot model, as shows in figure 3, is demonstrated with 
optimization algorithm for N-step-ahead prediction. For 
simulation purposes, the desired trajectory is chosen as 
described in equations 77 and 78 and the desired orientation 
angle is taken as expressed in equation 79.  The robot model 

starts from the initial posture ]2/,25.0,75.0[)0( q  as its 

initial conditions. 
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Figure 9. The response of posture identifier with the actual mobile robot 

model outputs for the training patterns. 
 
 A disturbance term  Tttd )2sin(01.0)2sin(01.0 [5, 6 
and 8] is added to the robot system as unmodelled 
kinematics and dynamics disturbances in order to prove the 
adaptation and robustness ability of the proposed controller. 
The feedback neural controller seems to require more tuning 
effort of its two parameters (Q and R). Q is the sensitivity 
weighting matrix to the corresponding error between the 
desired trajectory and identifier trajectory, while the 
weighting matrix R defines the energy of the input torque 
signals of right and left wheels. Investigating the feedback 
control performance of the neural predictive controller can 
easily obtained by changing the ratio of the weighting 
matrices (Q and R) as show in figure 10. This also gives the 
designer the possibility of obtaining more optimized control 
action depending on the MSE of the position and 
orientation, which is more difficult to obtain in other 
controllers. Therefore, the best value of Q parameter is 
equal to 0.01 and best value of R parameter is equal to 1 for 
obtaining more optimized control action as shown in figure 
10.  
 The robot trajectory tracking obtained by the proposed 
adaptive neural predictive controller is shown in figures 11a 
and 11b.These figures demonstrate excellent position and 
orientation tracking performance for five steps ahead 
prediction in comparison with one step ahead prediction. 
In spite of the existence of bounded disturbances the 
adaptive learning and robustness of neural controller with 
optimization algorithm show small effect of these 
disturbances. 
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Figure 10. The MSE of position and orientation with (Q&R) parameters. 
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Figure 11. Simulation results for one and five steps ahead 
predictive: (a) actual and desired lemniscates trajectory; and 

(b) actual and desired orientation. 
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Figure 12a. The torque of the right and left wheel action for 

N=5. 
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Figure 12b. The linear and angular torque action for N=5. 
 

 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

Sampling Time 0.5 Sec

Y
-c

o
o

rd
in

a
te

 e
rr

o
r 

(m
)

N=1, one step ahead
N=5, five step ahead

 

-0.7

-0.35

0

0.35

0.7

0 10 20 30 40 50 60 70 80 90 100

Sampling Time 0.5 Sec

O
ri

en
ta

tio
n

 e
rr

o
r 

(r
a

d
)

N=1, one step ahead
N=5, f ive step ahead

 
Figure 13. Position and orientation tracking error for two cases N=1, 5. 

 
 The simulation results demonstrated the effectiveness 
of the proposed controller by showing its ability to generate 
small smooth valves of the control input torques for right 
and left wheels without sharp spikes. The actions described 
in figures 12a and 12b show that smaller power is required 
to drive the DC motors of the mobile robot model.  
The effectiveness of the proposed adaptive neural predictive 
control with predictive optimization algorithm is clear by 
showing the convergence of the pose trajectory error for the 

robot model motion for N=1 and 5 steps ahead as shown in 
figure 13. 
 The maximum tracking error in the X-coordinate 
trajectory is equal to  0.05m for one-step ahead while for 
the five steps ahead the X- coordinate error is equal 
to 01.0 m. For Y-coordinate tracking error is equal to 
 0.05m for one-step ahead and for the five steps ahead the 
error has declined to less than 0.01m. The maximum 
tracking error in the orientation of the trajectory is equal to 

67.0 radian for one-step ahead but it is equal to  0.34 
radian for five steps ahead. 
 The mean-square error for each component of the state 
error ),,()( eeeqq yxr  , for the five step ahead predictive 

control is )0387.0,0017.0,0012.0()(  qqMSE r
, while for one 

step ahead predictive control is 
)0577.0,0028.0,0021.0()(  qqMSE r
. 

 
 

B. Case Study-2 

 Simulation is also carried out for desired square 
trajectory which has explicitly non-continuous gradient for 
verification the capability of the proposed controller 
performance. The mobile robot model starts from the initial 
position and orientation ]0,1.0,0[)0( q  as its initial posture 
with the same external disturbance are used in case 1 and 
case 2, and used the same stages of the proposed controller.  

 Figure 14a shows that the mobile robot tracks the 
square desired trajectory quite accurately but at the end of 
one side of the square, there is a sudden increase in position 
errors of the mobile robot against the desired trajectory at 
the corners of the square because the desired orientation 
angle changes suddenly at each corner as shown in figure 
14b, therefore, the mobile robot takes a slow turn.  
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Figure 14a. Actual trajectory of mobile robot and desired trajectory for five 

steps ahead predictive. 
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Figure 14b. Actual orientation of mobile robot and desired orientation for 

one and five steps ahead predictive. 
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Figure 15a. The right and left wheels torque action for N=5. 
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Figure 15b. The linear and angular torque action for N=5. 

 
 In figures 15a and 15b, the behaviour of the control 
action torques for right and left wheels is smooth values 
with small sharp spikes, when the desired orientation angle 
changes suddenly at each corner.  
 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Sampling Time 0.5 Sec

X
-c

o
o

rd
in

at
e 

E
rr

o
r 

(m
)

N=5, Five step ahead

N=1, one step ahead

 

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Sampling Time 0.5 Sec

Y
-c

o
o

rd
in

at
e 

E
rr

o
r 

(m
)

N=5, Five step ahead

N=1, one step ahead

 

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Sampling Time 0.5 Sec

O
ri

en
ta

ti
o

n
 E

rr
o

r 
(r

ad
)

N=5, Five step ahead

N=1, one step ahead

 
Figure 16. Position and orientation tracking error for N= 5. 

 
 In addition, the robot tracks the right side of the square 
desired trajectory and the tracking errors sharply drop to 
small values as shown in figure 16.  
 The maximum X coordinate error in the square 
trajectory is equal to 0.03m for one step ahead predication 
while for the five steps ahead prediction the maximum error 
in the X-coordinate is equal to 0.02m. The maximum Y 
coordinate error in the square trajectory is equal to -0.04m 
for one step ahead predication while for the five steps ahead 
prediction the maximum error in the Y-coordinate is equal 
to 0.03m. 
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 Along any one side of the square, the desired 
orientation angle is constant, therefore the orientation error 
is equal to zero, but at the end of one side of the square 
trajectory, the desired orientation angle changes suddenly, 
therefore, the position and orientation errors of the mobile 
robot against the desired trajectory at the corners of the 
square are increasing as shown in figure 16. 
 The mean-square error for each component of the state 
error ),,()( eeeqq yxr  , for five step ahead predictive 

control is )027.0,0018.0,0007.0()(  qqMSE r
. 

While for one step ahead predictive control is 
)0367.0,0020.0,0013.0()(  qqMSE r
. 

 From the simulation results, the five step ahead 
predictive gives better control results, which is expected 
because of the more complex control structure, and taking 
into account future values of the desired, not only the 
current value, as with one step ahead. 

The main advantage of the presented approach is 
the analytically derived control law which has significantly 
high computational accuracy with optimization technique to 
obtain the optimal control action and to minimise tracking 
error of the continuous and non-continuous gradients 
(lemniscates and square) trajectories respectively. 
 

V. CONCLUSIONS  

The adaptive neural predictive trajectory tracking 
control methodology for nonholonomic wheeled mobile 
robot is presented in this paper. The proposed controller 
consists of three parts: position and orientation neural 
network identifier, feedforward neural controller and 
feedback neural controller with optimization algorithm for 
N-step-ahead prediction. The proposed control scheme 
minimises the quadratic cost function consisting of tracking 
errors as well as control effort. It uses two models of neural 
networks in the structure of the controller, multi-layer 
perceptron and modified Elman neural network. They are 
trained off-line and adapted on-line using back propagation 
algorithm with series-parallel and parallel configurations. 
Simulation results illustrated evidently that the proposed 
adaptive neural predictive controller model has the 
capability of generating smooth and suitable torque 

commands, R  and L  without sharp spikes. The proposed 
controller has demonstrated the capability of tracking 
continuous and non-continuous gradients desired 
trajectories and minimises the tracking error approximately 
0.01m for five steps-ahead prediction.  
This was demonstrated when bounded external disturbances 
were added and achieved due to its adaptation ability and 
robustness behaviour. 
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