
1  08/02/07            

A golden template self-generating method  

for patterned wafer inspection 

 

Pin Xie and Sheng-Uei Guan 

Department of Electrical Engineering, National University of Singapore 

10 Kent Ridge Crescent, Singapore 119260 

E-mail: eleguans@nus.edu.sg 

 

 

Abstract 

 This paper presents a novel golden template self-generating technique for 

detecting possible defects in periodic two-dimensional wafer images. A golden 

template of the patterned wafer image under inspection can be obtained from the 

wafer image itself and no other prior knowledge is needed. It is a bridge between the 

existing self-reference methods and image-to-image reference methods.  

Spectral estimation is used in the first step to derive the periods of repeating 

patterns in both directions. Then a building block representing the structure of the 

patterns is extracted using interpolation to obtain sub-pixel resolution. After that, a 

new defect-free golden template is built based on the extracted building block. 

Finally, a pixel-to-pixel comparison is all we need to find out possible defects. 

 A comparison between the results of the proposed method and those of the 

previously published methods is presented. 

 

Key words: Wafer inspection - Golden template - Spectral estimation – PDI - Image-

to-image reference method 

 

 

 



2  08/02/07            

1. Introduction 

The phases of wafer inspection should include image acquisition, defect 

detection, and defect classification. The phase of image acquisition is described in 

Section 3. This paper focuses on the detection of defects in patterned wafers. Defect 

classification is an area that more issues are involved (Chou et al. 1997), which is not 

the focus of this paper. 

1.1 Backgrounds 

Most automatic inspection systems use one or a combination of two 

approaches: design-rule checking or image-to-image reference (Dom and Brecher, 

1995). A pure design-rule system checks for the violation of a set of generic rules 

everywhere on the IC part. A design-rule-based PDI prototype system has been 

developed by NanYang Technical University, Singapore (Meisburger et al. 1992; 

Mital and Khwang, 1991). Most PDI systems use the image-to-image-reference 

approach. A pure reference system compares every pixel in the digital image under 

inspection with the corresponding pixel in the reference image, which is assumed to 

be perfectly registered with the image being analyzed. With this approach, image 

registration is a major problem.  

Optical spatial filtering (Chin, 1988) can also be used in defect detection on 

masks and patterns. This method is very fast but a major disadvantage is that small 

defects cannot be recognised.  Wavelet technique (Chen et al. 1998) has also been 

involved in wafer inspection. A fairly complete review of the related literature may be 

found in Babian (1986), Newman et al. (1995), Moganti et al. (1996, 1998a, 1998b). 

1.2 Related work 

All the above methods need a database of images or some prior knowledge. 

But in some cases, we have only a single image. A self-reference technique that 
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avoids the mentioned difficulties was developed by Dom et al.(1988), in which the 

comparison is made using the repeating cells in the image. This method was further 

developed by Khalaj et al.(1993) by proposing a technique to extract the building 

block of repeating patterns from the acquired image, and then detecting the defects by 

comparing the resulting building block with the image. In the first step of this method, 

the ESPRIT algorithm (Paulraj et al. 1985; Roy et al. 1989; Khalaj et al. 1994) is used 

in estimating the frequency components. Then a building block representing the 

constructive structure of the patterns is extracted using Eq. 1 to obtain sub-pixel 

resolution. Please note that the size of the building block extracted from this approach 

is )1)(int(*)1)(int( ++ yx TT , not the exact size of the repeating pattern.  

Eq. 1:  

 

Assume ),( lkF is the value of the NN *  image at location ),( lk , ),( lkB  is 

the value of the yx TT *  building block at location ),( lk , xT  and yT  are horizontal and 

vertical periods of the image respectively. 

1)int(1 +≤≤ xTk , 1)int(1 +≤≤ yTl  

)/int(1 xTNn = , )/int(2 yTNn =  

)*int( iTk xi = , )*int( jTl yj =  

ixi kiTr −= * ,  jyj ljTs −= *   

By averaging among all of the blocks in the image, a good estimate of the 

building block is obtained in this way. 
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In the final step, each point in the original image is compared with the 

corresponding point in the building block. If the difference is larger than a threshold, 

then the point may be a possible defect. Because of the quantization effects at the 

edges of the image, each point is also compared with the eight neighboring points of 

its corresponding point in the building block. Among the nine absolute values of 

difference, the smallest one is kept which gives a measure of the probability that the 

point is a defect. This procedure can be stated by Eq. 2. 

Eq. 2: 

 ),(),(
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 where  xx TTmmk *)/int(−= , yy TTnnl *)/int(−=  

In this paper, we propose a novel golden template self-generating method that 

yields better results than the method described above with more accuracy and less 

computation. The main differences between the two algorithms are described in detail 

in Section 4. Preliminary reports were presented in the previous paper (Guan et al. 

1999). 

1.3 The structure of this paper 

The algorithm is described in Section 2. In Section 3, we apply the developed 

techniques to some sample images that have repeating patterns and show the results. 

Finally, in Section 4 we compare and contrast our approach with the approach 

described in Section 1.2. Possible applications of our approach are also covered. 

2. Golden template self-generating method 

This algorithm includes four steps. An important point that must be mentioned here is 

that all the images start from pixel )1,1(  instead of )0,0( in this paper. 
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2.1 Estimating the periods of repetition 

Spectral analysis is used to estimate the periods of a periodic image in the 

horizontal and vertical directions. Since the computations in two directions are quite 

similar, only the procedure used in the horizontal direction is illustrated.  

The spatial projection in the horizontal direction is obtained by 

∑
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)( . The resolution of frequency domain is not high enough to 

estimate the period of the projection vector at the order of sub-pixel accuracy, because 

it is determined by the number of points in the spatial domain. In order to improve the 

resolution in the frequency domain, the vector obtained from spatial projection is 

extended to length of 5000  (more than 10 times of the dimension of the spatial 

projection) by zero padding (Porat, 1997). The spectral profile of this 5000-element 

vector remains the same as the one in the original projection, while the normalized 

frequency unit is refined from 0.003 or above (the image size is assumed to be smaller 

than 300300× ) to 0002.0 , which allows us to find the frequency of the repeating 

pattern more accurately.  

 

 

 

 

 

 

      Fig. 1a Horizontal projection Fig. 1b Power spectrum of the projection 

The above two figures are the horizontal projection of the image shown in Fig. 

6a and its spectrum respectively. (The diagrammatic curve in Fig. 1a slants to the 
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upper-right because of the illumination non-uniformity in Fig. 6a. It has no effect on 

the calculation of the frequency.) 

           Fig. 1c Filtered spectrum 

With respect to the normal size of the pattern periods (4 to 25 pixels), a 

reasonable band-pass filter (0.04-0.25) is used so that the frequencies of the repeating 

pattern could be found more accurately. Referring to Fig. 1c, the frequency of the 

repeating pattern in the horizontal direction corresponds to the main frequency 

component in the filtered spectrum. The most prominent peak in the concerned 

frequency range is located at 232.0  (normalized frequency), which means that the 

horizontal period of the repeating pattern is 314.4=xT  (pixel). Following the same 

procedure, we can derive the vertical period yT  of the pattern under interest. 

2.2 Extracting the building block 

In the self-reference method described in Section 1.2, the building block is 

constructed by shifting a window of a proper size throughout the image and adding 

the corresponding pixel values together. Since the periods of the repeating patterns are 

not integer numbers in pixels under most cases, the size of the building block defined 

in Section 1.2 is not the actual size of the repeating patterns. In this paper, we define a 

simulated building block whose size is exactly yx TT * . The values of ),( lkB , where 
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1)int(1 +≤≤ xTk  and 1)int(1 +≤≤ yTl , are obtained by linear interpolation. Eq. 1 is 

used to calculate the values of the integer points in the building block.  

The noise and defects in the building block have been reduced significantly 

because the above equation is actually an averaging process. As mentioned, we 

imagine that the building block is exactly yx TT *  in size. The values of those integer 

points in the building block have been calculated. The role the fractional part plays in 

detecting defects will be explained in details in Section 2.3 (and the Appendix). 

2.3 Building a defect-free image  

  Fig. 2 The structure of a defect-free image 
'F  with 7.6=xT , 4.5=yT  

A defect-free image 'F  can be built based on the building block extracted. 

Looking at Fig. 2 above, assume 7.6=xT , 4.5=yT  and imagine that the defect-free 

image in the same size as the original one is built up by building blocks of the size 

4.5*7.6 . Here we assume each building block has its own coordinate system XOY  

and ),( yx  is relative to the local origin )1,1(  (see Fig. 2). The gray level value of each 

point ),( yx  within the ),( ji th building block is denoted by ),(, yxB ji . The 

corresponding coordinates ),( lk  in 'F  for any ),(, yxB ji  can be obtained from Eq. 3. 
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Eq. 3:  

xTik x +−= *)1( ,   yTjl y +−= *)1(  

 
Fig. 3 Constructing a M * N defect-free image from building blocks  

                          for an image with Tx = 6.7, Ty = 5.4  

Let us have a look at Fig. 3 that tells us how to calculate the gray level value 

of pixel )8,10(  in the defect-free image. )8,10(  is located in building block 2,2B . It is 

horizontally 0.6 pixel away from )4,3( )2,(2,2 =iiB , 0.4 pixel away from 

)4,3( )3,(2,2 =iiB , and vertically 0.3 pixel away from )3,2( ),3(2,2 =jjB , 0.7 pixel 

away form )3,2( ),4(2,2 =jjB . Its gray level value can be obtained from the values of 

)2,3(2,2B , )3,3(2,2B , )2,4(2,2B  and )3,4(2,2B  using linear interpolation.         

To sum up, the gray level value of a pixel in the new image 'F  is calculated 

with the following equations, which can be easily obtained from basic geometric 

deduction.  

Eq. 4: 

 
),(),()1(),()1(),()1)(1(),( 22,21,12,111,

'

2221121
yxrsByxBrsyxBsryxBsrlkF jijijiji +−+−+−−=
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B2,2

B2,2(3,2) refers to F'(9.7,7.4);

B2,2(3,3) refers to F'(9.7,8.4);

B2,2(4,2) refers to F'(10.7,7,4);

B2,2(4,3) refers to F' (10.7,8.4).
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Assume ),(' lkF  is the value of the NM *  new image at location ),( lk . When 

the four interpolating pixels of ),(' lkF  sit within the same building block, we have: 

1)/int(21 +== xTkii , 1)/int(21 +== yTljj  

)*)/int(int(1 xx TTkkx −= , 112 += xx  

)*)/int(int(1 yy TTlly −= , 112 += yy  

1

12

1 *)/int( xTTkk
kk

kk
r xx −−=

−

−
= ,  1

12

1 *)/int( yTTll
ll

ll
s yy −−=

−

−
=   

1k , 2k , 1l  and 2l  are calculated from 1x , 2x , 1y , and 2y  using Eq. 3. 

Note that Eq. 4 and Eq. 1 in Section 1.2 are symmetric as they represent 

reverse procedures relating ),( yxB  to ),( lkF  and ),(' lkF . 

It should be mentioned that there are special cases arising when using Eq. 4. 

They occur only when any of the four interpolating points of a pixel in 'F are sitting 

on the borders of two or four adjacent building blocks. Eq. 4 needs to be modified 

under such special cases. We explain these special cases in the Appendix. 

2.4 Detecting the possible defects 

Once the defect-free image is constructed, we simply compare each pixel in 

the original image with the corresponding pixel in the new image. If the difference is 

larger than a pre-chosen threshold, the pixel may be involved in a possible defect. We 

group the connected defect pixels together and get the resulting defect image by 

thresholding the size of each possible defect. 

Finally, if the sizes of the defects in the original image are so large that the 

defect-free image obtained is not a good estimation of a golden template, we will 

receive many false alarms in the final results. The real defects might not be located 

accurately, but we will still be warned that this is a defective product anyway. 
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3. Results of the algorithm running over some samples 

A Leitz Metallux 3 Microscope is used to magnify the IC chip, and an image grabber 

card with a PC (Pentium II 266) to catch the magnified IC images. With a 5 objective 

rate, the IC images is digitized into 9*4 pictures (640 pixels *480 pixels), and the 

resolution is about 8 micrometers per pixel. After adjustment, the uniformity of the 

illumination tested on a piece of uniform silicon substrate material is within ± 5 levels 

(out of 256 levels). (Note that our 8-bit gray-level, two dimensional sample images, 

which have repeating patterns, are only part of the digitized images of the whole IC 

chips, so their sizes are not 640 *480 pixels but smaller.) 

The algorithm proposed in this paper is used to analyze the following sample images. 

The original image, defect-free image and the resulting defect image of each sample 

are shown. 

• Sample 1 (size: 125210 × ) 

 

    

 

 

        Fig. 4a Image from a chip with defects                     Fig. 4b Defect-free image 

        Fig. 4c Resulting defect image 
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• Sample 2 (size: 199120 × ) 

 

 

 

 

 

From left to right:  

Fig. 5a Image from a chip with different repeating patterns in rows and columns 

        Fig. 5b Defect-free image   Fig. 5c Resulting defect image 

• Sample 3 (size: 111152 × ) 

 

  

 

 

Fig. 6a Image from a chip with similar repeating   Fig. 6b Defect-free image  

            Patterns in rows and columns            

 

 

 

       

        Fig. 6c Resulting defect image  

• Sample 4 (size: 153247 × ) 

 

 

 

 

      Fig. 7a Yet another image with defects           Fig. 7b Defect-free image 

 

 



12  08/02/07            

    Fig. 7c Resulting defect image 

4 Discussions and conclusions 

The proposed golden template self-generating method shows better results than 

Khalaj’s algorithm because of the following improvements we have made.   

• The definition of the size of building block has been made precise. 

Instead of defining an nm *  building block ( 1)int( += xTm , 1)int( += yTn ) 

with integer dimensions, we define a simulated building block whose size is 

yx TT * , which is the exact size of the repeating pattern.  

• A defect-free image is generated using Eq. 4, which is consistent with the one 

(Eq. 1) through which we derive the values of the integer points in the 

simulated building block. 

• Since the periods can be resolved with an accuracy at the order of 0.01 pixels 

and the size of the sample images in this paper are all smaller than 300300× , 

any small-scale shifting of the defect-free image compared to the original 

image can be ignored. 

• In the final step of the algorithm described in Section 1.2, each pixel in the 

original image is compared with the corresponding point in the building block 

and its eight neighbors to relieve from the quantization effects at the edges of 

the image (see Eq. 2). Choosing the right point from those nine neighboring 

points in the building block is actually a procedure of mapping one pixel in the 
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original image to one point in the building block, which is quite time-

consuming because it repeats for every point in the original image.  

• One questionable point in this procedure is that it may result in errors such as 

two connected pixels in the original image are often not mapped to adjacent 

points in the building block as they are supposed to be. We can see this in 

Table 1 by listing those points in the building block mapped from the pixels 

from )1,1(  to )15,15(  in the original image (Fig. 6a) using the approach in 

Section 1.2. This happens because of those approximate calculations in Eq. 1. 

The questionable point does not happen in our method, because a defect image 

'F  is built from the building block using interpolation and the values of 

),(
11 , yxB ji  and ),(

22 , yxB ji  ( 2121 or  jjii ≠≠ ) are different in most cases. 

In this paper, a defect-free image is generated using the simulated 

building block. The way we define the simulated building block is consistent 

with the way we build the defect-free image. In the final step, each pixel in the 

original image is directly compared with the corresponding pixel in the defect-

free image. This method avoids the possible errors incurred from the above-

mentioned algorithm in Section 1.2 and the computation time is greatly saved.  

The resolution of all the samples in our experiments is 8 micrometers 

per pixel. We have conducted experiments contrasting our throughput with 

that of the scheme in Section 1.2. The throughput of the self-reference 

methods described in Section 1.2 is about min/85.2 2
cm . The throughput of 

the algorithm proposed in this paper is about min/3.6 2
cm (This is an average 

value obtained from our samples), with a defect rate of 98% and a false alarm 

rate of 0.3/image on the defects whose size is larger than 
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15

block building of size
. The performance of our approach is more than two 

times better, and the defect-free image in our approach once generated can be 

repeatedly used in future inspections while the approach in Section 1.2 needs 

to recalculate almost everything in each inspection.  

• Since a defect-free image can be obtained, this algorithm acts as a bridge 

between self-reference methods and image-to-image reference methods. That 

is, the simulated building block for each self-repeating pattern can be stored in 

a database. In the later inspection for the same repeating pattern, we can use 

image-to-image reference methods. 

Table 1: Points in the building block corresponding to the pixels from )1,1(  to )15,15(  in  

   the original image (Fig. 6a) based on the technique in Section 1.2 

 
(2,2)  (2,3)  (1,2)  (2,4)  (2,1)  (2,3)  (1,2)  (2,4)  (2,1)  (1,1)  (1,2)  (2,4)  (1,1)  (1,1)  (2,3) 

(2,2)  (2,3)  (1,3)  (3,4)  (3,2)  (2,3)  (1,3)  (2,4)  (3,2)  (2,3)  (1,3)  (2,3)  (2,1)  (2,2)  (2,3) 

(4,1)  (4,3)  (4,3)  (4,4)  (2,1)  (4,1)  (4,3)  (4,4)  (2,1)  (4,1)  (4,3)  (4,3)  (4,1)  (2,1)  (4,3) 

(4,1)  (4,3)  (4,3)  (4,4)  (3,1)  (4,1)  (4,3)  (4,4)  (3,1)  (4,1)  (4,3)  (4,4)  (3,1)  (3,1)  (4,3) 

(2,1)  (2,3)  (2,4)  (2,4)  (2,1)  (1,1)  (2,3)  (2,4)  (2,1)  (2,1)  (2,4)  (2,4)  (1,1)  (2,1)  (2,1) 

(2,2)  (2,3)  (1,3)  (3,4)  (3,2)  (2,3)  (1,3)  (3,4)  (3,2)  (1,1)  (1,3)  (2,3)  (3,1)  (3,2)  (3,3) 

(4,2)  (4,3)  (4,3)  (4,4)  (3,1)  (4,3)  (4,3)  (4,4)  (3,1)  (2,1)  (4,3)  (4,3)  (4,1)  (3,1)  (3,1) 

(3,1)  (4,3)  (4,3)  (4,4)  (3,1)  (4,3)  (4,3)  (4,4)  (3,1)  (2,1)  (4,3)  (4,4)  (3,1)  (3,1)  (3,1) 

(1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,1) 

(2,2)  (2,3)  (1,3)  (2,4)  (2,1)  (2,3)  (1,3)  (2,4)  (2,1)  (2,3)  (1,3)  (1,3)  (1,1)  (2,2)  (2,3) 

(1,1)  (2,3)  (1,3)  (3,4)  (3,2)  (2,3)  (1,3)  (3,3)  (3,2)  (1,1)  (1,2)  (3,3)  (3,1)  (1,1)  (2,3) 

(4,1)  (3,1)  (4,4)  (4,4)  (3,1)  (3,1)  (4,4)  (4,4)  (3,1)  (3,1)  (4,4)  (4,4)  (3,1)  (3,1)  (3,1) 

(1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,4)  (1,4)  (1,1)  (1,1)  (1,1) 

(1,1)  (2,3)  (1,3)  (2,4)  (2,1)  (2,3)  (1,3)  (2,4)  (2,1)  (2,3)  (1,3)  (2,4)  (1,1)  (1,1)  (2,3) 

(2,2)  (2,3)  (1,3)  (3,4)  (3,2)  (2,3)  (1,3)  (2,4)  (3,2)  (2,2)  (1,3)  (2,3)  (3,1)  (2,2)  (2,3) 
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Appendix: Special cases in building a defect-free image (see Chapter 2.3) 

The special cases occur only when any of the four interpolating points of a 

pixel in 'F are sitting on the borders of two or four adjacent building blocks. Eq. 4 

needs to be modified under such special case. We will explain with two examples 

(Fig. 8a and Fig. 8b) in the following. 

Let’s look at )9,14('F  in Fig. 8a. It falls on the borders of 2,2B  and 2,3B . 

Substituting 14=k  and 9=l  into Eq. 3, we know that its value should be obtained 

from the values of )3,0(2,3B , )3,1(2,3B , )4,0(2,3B , and )4,1(2,3B  using linear 

interpolation. But )3,0(2,3B  and )4,0(2,3B  don’t exist, they actually represent points 
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sitting in an adjacent building block, i.e. 2,2B . We should use )3,7(2,2B , )3,1(2,3B , 

)4,7(2,2B , and )4,1(2,3B  to calculate the value of )9,14('F . We know from Eq. 3 that 

)3,7(2,2B and )3,1(2,3B  correspond to coordinates )4.8,7.13(  and )4.8,4.14(  in 'F  

respectively. So in Fig. 4a the distance from point (1) to point (3) is 0.7 pixel instead 

of 1 pixel in normal situations.  

 

Fig. 8a A special case when two building blocks 

            are involved in interpolation  

Fig. 8b Another special case of Eq. 4 when four building blocks 

                       are involved in interpolation  

)17,21('F  is another special case (See Fig. 8b). From Eq. 4, we know that it 

falls on the borders of four adjacent building blocks 3,3B , 4,3B , 3,4B  and 4,4B . As 

described above, its value comes from )6,7(3,3B , )1,7(4,3B , )6,1(3,4B , and )1,1(4,4B . 

We know from Eq. 3 that )6,7(3,3B , )1,7(4,3B  and )6,1(3,4B  correspond to coordinates 

(1)  Point in the last integer row in B2,2: B(x1, y1)

      where x1 = int(Tx)+1 = 7, y1 = 3 (from Eq. 3);

(2) Point in the last integer row in B2,2: B(x1, y2) 

      where x1 = 7, y2 = 4;

(3) Point in the first integer row in B3,2: B(x2, y1)

     where x2 = 1, y1 = 3;

(4) First integer point in B i+1,j+1: B(x2, y2)

     where x2 = 1, y2 = 4.

(5) F'(14,9)

r = 3/7 and s = 3/5 respectively.
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(1) Last integer point in B3,3: B(x1, y1)

      where x1 = int(Tx)+1 = 7, 

                     y1 = int(Ty)+1 = 6;

(2) First integer point in B3,4: B(x1, y2)

     where x1 = 7, 

                     y2 = 1;

(3) First integer point in B4,3: B(x2, y1)

     where x2 = 1, y1 = 6;

(4) First integer point in B4,4: B(x2, y2)

     where x2 = 1, 

                    y2 = 1.

(5) F'(21,17)

r = 6/7 and s = 1/2 respectively.
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)8.16,4.20( , )2.17,4.20(  and )8.16,1.21(  in 'F  respectively. So in Fig. 4b the distance 

from point (1) to point (2) is 0.4 pixel and the distance from point (1) to point (3) is 

0.7 pixel.   

In summary, when we have any one of 1x  and 1y  in zero, or both 1x  and 1y  

are zeroes, we should replace the corresponding parts of Eq. 4 with the following 

respectively. 

if 0)*)/int(int( =− xx TTkk , then 

)/int(1 xTki = , 112 += ii , 1)int(1 += xTx , 12 =x  

{ } ))int(/(*]1)/[int( 1

12

1

xxxx TTxTTkk
kk

kk
r −−−−=

−

−
=  

if 0)*)/int(int( =− yy TTll , then 

)/int(1 yTlj = , 112 += jj , 1)int(1 += yTy , 12 =y  

{ } ))int(/(]*]1)/[int( 1

12

1

yyyy TTyTTll
ll

ll
s −−−−=

−

−
=  
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