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Parallel Growing and Training of Neural Networks
Using Output Parallelism

Sheng-Uei Guan and Shanchun Li

Abstract—In order to find an appropriate architecture for a
large-scale real-world application automatically and efficiently,
a natural method is to divide the original problem into a set of
subproblems. In this paper, we propose a simple neural-network
task decomposition method based on output parallelism. By
using this method, a problem can be divided flexibly into several
subproblems as chosen, each of which is composed of the whole
input vector and a fraction of the output vector. Each module (for
one subproblem) is responsible for producing a fraction of the
output vector of the original problem. The hidden structure for the
original problem’s output units are decoupled. These modules can
be grown and trained in parallel on parallel processing elements.
Incorporated with a constructive learning algorithm, our method
does not require excessive computation and any prior knowledge
concerning decomposition. The feasibility of output parallelism
is analyzed and proved. Some benchmarks are implemented
to test the validity of this method. Their results show that this
method can reduce computational time, increase learning speed
and improve generalization accuracy for both classification and
regression problems.

Index Terms—Constructive learning algorithm, multilayered
feedforward networks, output parallelism, parallel growing, task
decomposition.

I. BACKGROUND

M ULTILAYERED feedforward neural networks are
widely used for classification, regression, and other

applications. However, when applied to larger scale real-world
tasks (problems), they are still suffering some drawbacks, such
as, the inefficiency in utilizing the network resources as the task
(and the network) gets larger, and the inability of the current
learning schemes to cope with high-complexity tasks [14].
Large networks tend to introduce high internal interference be-
cause of the strong coupling among their hidden-layer weights
[15]. Internal interference exists during the training process,
whenever updating the weights of hidden units the influence
(desired outputs) from two or more output units cause the
weights to compromise to nonoptimal values due to the clash in
their weight update directions. A natural approach to overcome
these drawbacks is to decompose the original task into several
subtasks based on the “divide-and-conquer” technique. For
task decomposition methods, the most important issues are:
how to divide a task into smaller and simpler subtasks, how
to assign a network module to learn each of the subtasks, and
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how to recombine the individual modules into a solution to the
original task. Up to now, various task decomposition methods
have been proposed [15]–[18], [27]–[29], [31], [32]. These
methods can be roughly classified into the following classes.

• Functional Modularity: Different functional aspects in a
task are modeled independently and the complete system
functionality is obtained by the combination of these indi-
vidual functional models [24].

• Domain Decomposition: The original input data space
is partitioned into several subspaces and each module
(for each subproblem) is learned to fit the local data
on each subspace. Such data partitioning is often more
effective than training on the whole input data space
[18]. In the mixture of experts architecture [15], expert
networks learn to specialize on subtasks, or subspaces,
and cooperate via a gating network. The hierarchical
mixtures of experts architecture [32] and neural trees [26]
partition the input space recursively. In the multisieving
neural network [31], patterns are classified by a rough
sieve at the beginning and they are reclassified further by
finer ones in subsequent stages. [16] describes a method
for dividing the training set into subsets recursively using
hyperplanes until all the subsets become linearly sepa-
rable. [17] constructs neural networks where the first unit
introduced on each hidden layer is trained on all patterns
and further units on the layer are trained primarily on
patterns not already correctly classified.

• Class Decomposition: A problem is broken down into a set
of subproblems according to the inherent class relations
among training data [23], [25]. A -class problem can be

divided into or two-class subproblems by using

the class relations.
• State Decomposition: Different modules are learned to

deal with different states in which the system can be at
any time [29].

Class decomposition method is proposed for solving-class
problems. The method proposed in [25] is to split a-class
problem into two-class subproblems and each module
is trained to learn a two-class subproblem. Therefore, each
module is a single-output feedforward network which is used
to discriminate one class of patterns from patterns belonging
to the remaining classes. The method proposed in [23] divides

a -class problem into two-class subproblems. Each

of the two-class subproblems is learned independently while
the existence of the training data belonging to the other
classes is ignored. The final overall solution is obtained by
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integrating all of the trained modules into a min–max modular
network.

There are still some shortcomings to these proposed class
decomposition methods. Firstly, these algorithms use the pre-
defined network architecture for each module to learn each
subproblem. Secondly, these methods are only applied to clas-
sification problems. A more general approach applicable to
not only classification problems but also other applications,
such as regression, should be explored. Thirdly, they usually
divide the problem into a set of two-class subproblems. This
will be an obvious limitation: when they are applied to a
large-scale and complex -class problem where is large, a
very large number of two-class subproblems will have to be
learned.

In this paper, we propose a simple neural network task de-
composition method based on output parallelism to overcome
these shortcomings mentioned above. Using output parallelism,
a complex problem can be divided into several subproblems as
chosen, each of which is composed of the whole input vector
and a fraction of the output vector. Each module (for one sub-
problem) is responsible for producing a fraction of the output
vector of the original problem. These modules can be grown
and trained in parallel. This method reduces the internal inter-
ference of hidden layers, consequently, reduces computational
time and improves performance and accuracy. Our approach is
general in the sense that it is not application-dependent, i.e., it is
applicable without using application-specific knowledge in task
decomposition. Furthermore, by using a constructive approach,
our approach overcomes the shortcoming of using a predefined
structure as seen in most existing decomposition methods [1],
[2]. This method can be effectively applied to classification
and regression problems. In Section II, we will briefly recall
the constructive learning algorithm especially the CBP algo-
rithm. Then, output parallelism will be depicted in Section III.
The experiments based on output parallelism are implemented
and analyzed in Section IV. The conclusions are presented in
Section V.

II. CONSTRUCTIVE BACKPROPAGATION (CBP)
LEARNING ALGORITHM

The constructive learning algorithms include the dynamic
node creation (DNC) method [6], cascade-correlation (CC)
algorithm [8] and its variations [7], [11], [31], constructive
single-hidden-layer network [9], and constructive backpropa-
gation (CBP) algorithm [10], etc. In this paper, we adopt the
CBP algorithm. The reason why CBP is selected is that the
implementation of CBP is simple and we do not need to switch
between two different cost functions like in the CC algorithm.
And we only need to backpropagate the output error through
one and only one hidden layer. This way the CBP algorithm is
computationally as efficient as the CC algorithm [8].

The CBP learning algorithm can be depicted briefly as
follows [10].

Fig. 1. Training a new hidden unit in CBP learning.

1) Initialization: The network has no hidden units. Only bias
weights and shortcut connections from the input units to
the output units feed the output units. Train the weights
of this initial configuration by minimizing the sum of
squared errors

(1)

where is the number of training patterns, is the
number of output units, is the actual output value of
the th output unit for the th training pattern and is
the desired output value of theth output unit for the th
training pattern.

2) Training a new hidden unit: Connect inputs to the new
unit (let the new unit be theth hidden unit, ) and
connect its output to the output units as shown in Fig. 1.
Adjust all the weights connected to the new unit (both
input and output connections) by minimizing the modi-
fied sum of squared errors

(2)

where is the connection from theth hidden unit to
the th output unit ( represents a set of weights which
are the bias weights and shortcut connections trained in
step 1), is the connection from theth hidden unit to
the th output unit, is the output of theth hidden unit
for the th training pattern ( represent inputs to bias
weights and shortcut connections), and is the activa-
tion function. Note that in the newth unit perspective,
the previous units are fixed. In other words, we are only
training the weights connected to the new unit (both input
and output connections).

3) Freezing a new hidden unit: Fix the weights connected to
the unit permanently.

4) Testing for convergence: If the current number of hidden
units yields an acceptable solution, then stop the training.
Otherwise go back to step 2.
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III. M ETHOD FORPARALLEL GROWING AND TRAINING OF

NEURAL NETWORKSUSING OUTPUT PARALLELISM

A. Design Goals

In order to reduce excessive computation, increase learning
speed, improve generalization accuracy, and enhance flexibility,
the proposed method should meet the following design goals.

Design goal 1: Instead of using predefined network struc-
ture, the neural network must automatically grow to an ap-
propriate size without excessive computation.

It is widely known that network architecture is of cru-
cial importance for neural networks. Too small a network
cannot learn the problem well [1], while a size too large
will lead to overfitting and thus poor generalization [2]. So
it is a key issue in neural-network design to find appropriate
network architecture automatically for a given application
and optimize the set of weights for the architecture.

There are mainly three approaches to tackle this
problem:pruning, regularization, andconstructive algo-
rithms. In pruning [3], some hidden units or weights are
removed during training if they are no longer actively
used. Regularization uses some penalty terms in the cost
function to force the weights to yield smooth approxi-
mations [4]. Constructive algorithms start with a small
network and then grow additional hidden units and weights
until a satisfactory solution is found. The constructive
algorithms have a number of advantages over pruning and
regularization approaches. Detailed descriptions can be
found in [5]. As introduced in Section II, we adopt CBP
in this paper.
Design goal 2: Flexible decomposition method. We can de-
compose the original problem into a random number of
subproblems as chosen (less than the number of output
units).

For a problem that has a high-dimensional output space,
if we always split it into a set of single output subprob-
lems, the number of obtained modules will be very large.
Instead, we can split it into a small number of modules each
of which contains several output units. Another advantage
of flexible decomposition is that sometimes we only want
to know some portions of results in the application. For
example, for classification problems, there are some situ-
ations where we only want to find out whether the current
pattern lies in some particular class or not.
Design goal 3: A general decomposition method. The pro-
posed method can be applied to not only classification
problems but also regression problems.

B. Task Decomposition

The decomposition of a large-scale and complex problem into
a set of smaller and simpler subproblems is the first step to im-
plement modular neural network learning. Our approach is to
split this complex problem with high-dimensional output space
into a set of subproblems with low-dimensional output spaces.
Let be the training set for a problem with -dimensional
output space

(3)

Fig. 2. Problem decomposition based on output parallelism.

where is the input vector of theth training pattern,
is the desired output vector of theth training pattern,

and is the number of training patterns.
Suppose we divide the original problem intosubproblems

each of which has a -dimensional output
space

(4)

where is the desired output vector of theth training
pattern for theth subproblem, as shown in Fig. 2.

Each subproblem is solved by growing and training a feedfor-
ward neural network (module). A collection of such modules is
the overall solution of the original problem. In the following, we
present why this method does work.

Many different cost functions (also called error measures) can
be used for network training. The most commonly used one is
the sum of squared errors and its variations

(5)

where is the actual output value of theth output unit for
the th training pattern and is the desired output value of the

th output unit for the th training pattern.
If we divide the output vector into sections, each of which

contains output unit(s), then (5) can be transformed into

(6)
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where , and .
We can see is independent of each other

and the only constraint among them is their sumshould be
small enough (acceptable). We can make each module’s error
small enough to gurantee the overall error small enough. We
can divide the original problem intosubproblems. Each sub-
problem is composed of the whole input vector and a fraction
of the output vector to produce the corresponding fraction
of the output vector for the original problem. Obviously, the
collection of modules (for subproblems) is equivalent to the
nonmodular network. Furthermore, the hidden structures for
the original problem’s output units are decoupled. This allows
the hidden units in modular to act more as feature detectors
for the output units than in a classic nonmodular network.
Consequently, weight modification in each module is guided
by only one portion of output units and learning is likely to be
more efficient and the error to be smaller.

Output parallelism to its extreme can be free from internal
interference caused from output clash as each output is derived
independently so that there is no way for the hidden units to
receive contradictory signals from two or more output units.
Output parallelism partitioning the output units into subsets can
still reduce internal interference caused from output clash as
each output subset is a portion of the original output units, which
means any internal interference within the subset will be less
likely and will be a subset of the internal interference in the orig-
inal network. The internal interference from each subset com-
bined will be less than the internal interference from the full set
of original output units.

C. Parallel Growing and Results Merging

After problem decomposition, the original problem is divided
into subproblems. Each subproblem is solved by growing and
training a module. So the original neural network (nonmodular
network) for the original problem is replaced by the modular
network, as shown in Fig. 3. In the modular network architec-
ture, each module can grow and be trained in parallel, in dif-
ferent processing elements. When we apply the modules for
new input data, each module is responsible for calculating a
fraction of the output and their results are merged to generate
the final output for the given data. The procedure for parallel
growing and training modules to solve the original problem is
shown in Fig. 4. First, divide the original problem intosub-
problems. Then constructmodules for the subproblems. The
procedure for growing and training each module will be de-
scribed in Section III-D. Last, merge the results of subproblems
to form the solution for the original problem.

In our method, communication overhead is very little since
each module is constructed independently. Before learning, we
need to deliver a copy of the training patterns for each module.
However, during the learning process, no communication is
needed among the modules. In the recall phase, to obtain the
results for the incoming patterns, we only need to merge the
collection of modules to form a modular network, as shown in
Fig. 3(b).

Fig. 3. Nonmodular and modular network architecture.

Fig. 4. The parallel growing and training procedure.

D. Some Definitions and the Stopping Criteria for Growing
and Training Modules

As mentioned in Section II, Sections III-A–C, the reason why
CBP is selected is that the implementation of CBP is simple and
we do not need to switch between two different cost functions
like in the CC algorithm. And we only need to backpropagate
the output error through one and only one hidden layer. This
way the CBP algorithm is computationally as efficient as the
CC algorithm [8].

Although constructive learning algorithms have many advan-
tages [1], [12], they are very sensitive to changes in the stopping
criteria. If training is too short, the components of the network
will not work well to generate good results. If training is too
long, it costs much computation time and may result in overfit-
ting and poor generalization. Referring to [13], [14], we adopted
the method ofearly stoppingusing a validation set to prevent
overfitting.

The set of available patterns is divided into three sets: a
training setis used to train the network, avalidation setis used
to evaluate the quality of the network during training and to
measure overfitting, and atest setis used at the end of training
to evaluate the resultant network. The size of the training,
validation, and test set is 50%, 25%, and 25% of the problem’s
total available patterns.

The error measure used isthe squared error percentage
[13], derived from the normalization of the mean squared error
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to reduce the dependency on the number of coefficients in the
problem representation and on the range of output values used

(7)

where and are the maximum and minimum values of
output coefficients in the problem representation.

is the average error per pattern of the network over
the training set, measured after epoch. The value is
the corresponding error on the validation set after epochand
is used by the stopping criterion. is the corresponding
error on the test set; it is not known to the training algorithm but
characterizes the quality of the network resulting from training.

The value is defined to be the lowest validation set
error obtained in epochs up to epoch:

(8)

The generalization loss[13] at epoch is defined as the rela-
tive increase of the validation error over the minimum so far
(in percent)

(9)

A high generalization loss is one candidate reason to stop
training because it directly indicates overfitting.

To formalize the notion of training progress, atraining strip of
length [13] is defined to be a sequence ofepochs numbered

where is divisible by . The training progress
measured after a training strip is

(10)

It is used to measure how much larger the average training error
is than the minimum training error during the training strip.

During the process of growing and training individual mod-
ules, we adopted the following heuristic overall stopping cri-
teria: OR (Reduction of training set error due to
the last new hidden unit is less than 0.01%AND Validation set
error increased due to the last new hidden unit). The first part

means that the optimal validation set error is
below the threshold and the result has been acceptable.
The other part means the last insertion of a hidden unit resulted
in hardly any progress. The criteria for adding a new hidden unit
are as follows: At least 25 epochs reached for the current net-
work AND (Generalization loss ORTraining progress

0.1). The first part means that the current network
should be trained for at least a certain number of epochs before
a new hidden unit is installed because the error curves may be
turbulent at the beginning. The second part means that the cur-
rent network has been overfitted or training has little progress.
It is a bit unsatisfactory that all of these criteria are heuristic.
However, as mentioned by Prechelt [7], there is no theory that
would allow the derivation of criteria that are both efficient and
effective.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. The Experiment Scheme

Five benchmark problems, namely, theBuilding1, Flare1, Di-
abetes1, Glass1, andVowelproblem, are used to evaluate the
effectiveness of parallel constructing neural networks based on
output parallelism. The first four problems are all taken from the
PROBEN1 benchmark collection [22] and the vowel problem is
taken from University of California at Irvine (UCI) repository
of machine learning databases. Building1 and Flare1 are two re-
gression problems and the others are classification problems.

We used the RPROP algorithm [20] to minimize the cost
functions. In the set of experiments undertaken, each problem
was conducted 20 runs. The RPROP algorithm used the fol-
lowing parameters: , , ,

, with initial weights from 0.25 0.25
randomly. In all experiments, the hidden units and output units
all use sigmoid activation function and is set to 0.1. When a
hidden unit needs to be added, eight candidates are trained and
the best one is selected. All the experiments are simulated on a
Pentium III–650 PC. The subproblems are solved sequentially
and their CPU times expended are recorded, respectively.

B. Results and Analysis

Several issues are of particular importance: generalization
accuracy, learning speed, and network complexity. As to gen-
eralization accuracy, for classification problems, we pay more
attention to classification error than test error; for regression
problems, we pay attention only to test error. It should be
noted that each module might have different number of output
units and the nonmodular network has more output units than
a module. Therefore, the computational cost of one epoch
can differ significantly among the modules and nonmodular
network. Comparing the number of epochs solely will be
misleading. So for learning speed, we place the emphasis on
training time instead of epochs. As far as network complexity is
concerned, the number of independent parameters (the number
of weights and biases in the net) is more significant than the
number of hidden units due to the same reason.

1) Building1: The Building1 problem predicts the energy
consumption in a building. It tries to predict the hourly con-
sumption of electrical energy, hot water, and cold water, based
on the date, time of day, outside temperature, outside air hu-
midity, solar radiation, and wind speed. It has 14 inputs, three
outputs, and 4208 patterns.

Building1 is divided into three subproblems and each has only
one output unit. Each subproblem is solved by growing and
training one module. From Table I, we can see that test error
obtained by the modular network (0.483) is much smaller than
that obtained by the nonmodular network (0.612). The max-
imum training time consumed for the three modules is 79.80 s,
much less than that for the nonmodular network (122.50 s). To
obtain this performance figure, a parallel computer is required
with each processing element (PE) being a Pentium III–650 PC
for each module. It is noted that the amount of time expended
for merging the modules to form the modular network and deliv-
ering the test patterns for obtaining the overall solution is very
little, about only 0.35 s (80.15 s–79.80 s). It is also noted that
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TABLE I
RESULTS FORBUILDING1

*Percentage of test error reduction by modular network (0.483) versus non-
modular network (0.612): 21.8%.

Note: 1. In the Problem column, “modular” stands for modular network,
i.e., the collection of all the modules. It is the overall solution for the original
problem based on output parallelism. “Nonmodular” stands for nonmodular
network. It is the solution for the original problem using the conventional
method. 2. “T.Time” stands for training time, the CPU time taken by growing
and training each module or nonmodular network. For the modular network,
“T. Time” equals to the maximum “T. Time” of the modules plus the time
expended for merging the modules to form the modular network and delivering
the test patterns to obtain the overall solution. 3. “Ind. Param.” stands for the
number of independent parameters (the number of weights and biases in the
net. 4. “Ete” stands for the test error and “C. Error” stands for classification
error. For regression problems (Building 1 and Flare1), we consider test error
only. 5. For the date, the first row is the average and the second row is its
standard deviation.

the experiment results show that our approach improves gen-
eralization accuracy, regardless whether training time is saved
or not (i.e., if there is no parallel computer to run our proposed
method).

As to network complexity, the maximum number of inde-
pendent parameters among the three modules is 138 while the
nonmodular network has 167 independent parameters. It is un-
fair to compare the total number of independent parameters of
the modular network with that of the nonmodular network. As
we anticipated that the former would usually be larger than the
latter. However, each module has a distinctly different number of
independent parameters, which explains why we should adopt a
constructive learning algorithm instead of a predefined network
architecture.

2) Flare1: Flare1 is a regression problem. It predicts solar
flares by trying to guess the number of solar flares of small,
medium, and large sizes that will happen during the next
24-hour period in a fixed active region of the Sun surface. Its
input values describe previous flare activity and the type and
history of the active region. Flare1 has 24 inputs, three outputs,
and 1066 patterns.

The Flare1 problem is divided into two subproblems. The first
one (module 1) has one output unit and the second one (module
2) has two output units. From Table II, we can see the modular
network spends only about half the training time of the nonmod-
ular network. And the former obtains smaller test error as well.

3) Diabetes1: The Diabetes1 problem diagnoses diabetes of
Pima Indians. It has eight inputs, two outputs, and 768 patterns.

TABLE II
RESULTS FORFLARE1

*Percentage of test error reduction by modular network (0.542) versus non-
modular network (0.555): 2.34%.

TABLE III
RESULTS FORDIABETES1

*Percentage of test error reduction by modular network (16.047) versus non-
modular network (16.115): 0.42%.

**Percentage of classification error reduction by modular network (23.359)
versus nonmodular network (23.932): 2.39%.

All inputs are continuous. Its attributes are: number of times
pregnant, plasma glucose concentration, diastolic blood pres-
sure, triceps skin fold thickness, 2-h serum insulin, body mass
index, diabetes pedigree function, and age.

We divide the Diabetes1 problem into two subproblems each
of which has one output unit. As shown in Table III, each module
spends much less training time and has simpler network than the
nonmodular network. The modular network obtained smaller
classification error and test error also compared with the non-
modular network.

4) Glass1: This data set is used to classify glass types. The
results of a chemical analysis of glass splinters (percentage of
eight different constituent elements) plus the refractive index
are used to classify a sample to be either float processed or non-
float processed building windows, vehicle windows, containers,
tableware, or head lamps. This task is motivated by forensic
needs in criminal investigation. This data set consists of nine
inputs, six outputs, and 214 patterns.

The Glass1 problem is divided into two subproblems each of
which has three output units. The classification error is signifi-
cantly reduced from 40.236% to 34.906% as we use the modular
network instead of the nonmodular network.
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TABLE IV
RESULTS FORGLASS1

*Percentage of test error reduction by modular network (9.233) versus non-
modular network (9.881): 6.56%.

**Percentage of classification error reduction by modular network (34.906)
versus nonmodular network (40.236): 13.25%.

5) Vowel: The data set used in this example were obtained
from the University of California at Irvine (UCI) repository of
machine learning databases. The input patterns are ten element
real vectors representing vowel sounds which belong to one
of 11 classes. It has 990 patterns in total. The patterns were
normalized and scaled so that each components lies within

.
We divide the Vowel problem into 11 subproblems and each

has one output unit. From Table V, we can see that training
time for the modular network is 184.63 s, less than one third of
that for the nonmodular network, 622.55 s. At the same time,
the classification error obtained by the modular network is
24.355%, much smaller than that of the nonmodular network,
34.737%. As a contrast, the classification error obtained in [25]
is 44.7%.

From the experiments, we can see that our method is es-
pecially good for those problems that have a large number of
output units, e.g., the Vowel problem and the Glass1 problem.
Their classification error and test error are reduced dramatically
based on output parallelism. This is because conflicting sig-
nals from different output units retard learning in a nonmodular
network. However, in modular network, the hidden structures
for the original problem’s output units are decoupled and con-
sequently the internal interferences reduce. Therefore, weight
modification in each module is guided by only one portion of
output units and learning is likely to be more efficient and the
error to be smaller.

In our experiments presented above, is set to 0.1. For
some problems (validation set errors obtained by some indi-
vidual modules are below 0.1), we can actually set a smaller

. The results obtained when is set to 0.01 for Building1
and Glass1 are displayed in the Appendix. From the results, we
can see that their test errors and classification errors are reduced
further compared to the results in Tables I and IV. Note that the
test errors and classification errors from the nonmodular net-
work remain the same for these two problems. The cost of doing
this is that some modules will have a few more independent pa-
rameters than the previous results.

TABLE V
RESULTS FORVOWEL

*Percentage of test error reduction by modular network (3.610) versus non-
modular network (4.557): 20.78%.

**Percentage of classification error reduction by modular network (24.355)
versus nonmodular network (34.737): 28.89%.

V. CONCLUSION

This paper presents an approach to grow and train neural net-
works based on output parallelism. Feasibility of output par-
allelism is analyzed and proved by (6). A problem can be di-
vided into several subproblems, each of which is composed of
the whole input vector and a fraction of the output vector. Each
module (for one subproblem) thereby is responsible for pro-
ducing a fraction of the output vector of the original problem.
Such modules can be grown and trained in parallel. Based on
output parallelism, a complex problem can be divided into sev-
eral simpler subproblems as chosen, and internal interference
is greatly reduced. This is because the hidden structure for the
original problem’s output units are decoupled. Efficient and ef-
fective learning is consequently achieved. It should be men-
tioned that problems that have only one output unit cannot be
decomposed using our method. And as we can see from the ex-
periments, our method is especially good for the problems that
have a large number of output units.
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TABLE VI
RESULTS FORBUILDING1 (E IS SET TO 0.01)

*Percentage of test error reduction by modular network (0.481) versus non-
modular network (0.612): 21.41%.

From the results obtained by our experiments, we can sum-
marize the advantages of output parallelism as follows:

1) A problem can be decomposed into a set of subproblems
as chosen without any prior knowledge concerning the
decomposition of the problem.

2) In a nonmodular network, conflicting signals from
different output units retard learning. Modular learning
based on output parallelism is likely to be more efficient
and effective, since weight modification is guided by
only one portion of output units.

3) Individual modules in a modular network are simpler than
the nonmodular network, and a smaller error threshold are
likely to be achieved.

4) Although the total number of independent parameters in
all the modules usually exceeds that in the nonmodular
network, the modular approach yields faster convergence
and better generalization accuracy.

5) Since each subproblem can be learned independently, dif-
ferent constructive learning algorithms and different net-
work structures can be used to learn each subproblem.

6) Since each subproblem can be learned independently,
they can be learned and recalled in parallel on multiple
processing elements.

VI. FUTURE WORK

In our experiments, the problems are decomposed into a
number of subproblems and better generalization accuracy
and less network complexity is achieved. As we have seen
that different subproblems have different complexities and
generally require different training time. In practice, different
processing elements may have different computation power. An
interesting problem is how to predict subproblem’s complexity
and schedule a balanced computation load for each processing
element in order to minimize idle time. This will be further
studied in our future work.

TABLE VII
RESULTS FORGLASS1 (E IS SET TO 0.01)

*Percentage of test error reduction by modular network (9.177) versus non-
modular network (9.881): 7.12%.

**Percentage of classification error reduction by modular network (34.528)
versus nonmodular network (40.236): 14.19%.

APPENDIX

In this section, we present the results obtained whenis
set to 0.01 for Building1 and Glass1 problem (see Tables VI
and VII).
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