
1

MODELING WITH ENHANCED PRIORITIZED PRETRI NETS:

EP-NETS

Sheng-Uei Guan and Sok-Seng Lim

Department of Electrical & Computer Engineering

The National University of Singapore

10 Kent Ridge Crescent

Singapore 119 260
FAX: (65) 7791103\ (65) 4570706

Email: eleguans@nus.edu.sg\engp9092@nus.edu.sg

ABSTRACT

Recently, many researchers have their attention focused on interactive temporal

models, like the extended finite state machines or the extended Petri net models. One

of the recent mechanisms proposed for synchronization is known as the Prioritized

Petri net, P-Net, which is implemented in the Distributed Object Composition Petri

Net, DOCPN. The development of DOCPN has achieved media synchronization in

distributed multimedia environments. This P-Net mechanism holds a powerful

property: if the deadline is due, it forces firing events regardless whether they are

ready or not. A side effect might occur, which is known as premature/late arriving

tokens. This paper addresses the key issue of providing flexible multimedia

presentation with user interaction and suggests improved P-Net models, which

handles premature/late arriving tokens, accommodates dynamic event mechanisms

and can specify user interactions in real time during presentation. To demonstrate the

concepts are feasible, a prototype with runtime support has been developed and used

to construct several interactive multimedia applications, including skip, freeze and

restart, reverse, speed scaling, and multicasting.

KEYWORDS

Interactive multimedia environments, enhanced P-Net, multimedia-authoring,

premature/late arriving token, dynamic events, multi-priorities and multimedia

synchronization

1. INTRODUCTION

Multimedia systems have become increasingly more sophisticated and complex

with the steady improvement of computer technology since the mid-1980s. Trends in

computing and communications are changing the way people work, play, and

communicate. In today’s world, business demands multimedia applications and

communications, which mix audio, video, text and images in real-time, interactive,

multiparty communications. Current multimedia applications include

videoconferencing, video and audio playback, live video distribution, video libraries

and CD-quality sound, multimedia documents, distance learning, shared graphics and

images[2].

The focus of the research flows from the synchronization of the multimedia

without user interactions, to interactions in distributed environments[2-7]. The

2

meaning of multimedia synchronization and their methods of synchronization are

introduced. Multimedia systems operate in two different types of environments:

centralized and distributed. In a centralized environment, resources are located

locally. Therefore, synchronization in a centralized situation is not a big problem.

Where else, in a distributed environment, synchronization could be a disaster if it is

not managed properly. The media bases are located at remote areas and, sometimes

even, different remote areas for different resources. Although, theoretically, we can

provide a tight schedule to maintain the temporal relationships among these data

streams, the random network delays still can introduce jitter in each individual stream,

and skew among streams at the destination site.

Every researcher has the same goal, which is to improve the Quality of Service

(QoS). Multimedia presentations can tolerate deficiencies in presentation quality to a

certain degree but no more than that. Human senses cannot perceive slight deviations

in the presentation of continuous media e.g. audio and video. This is why multimedia

presentations have near real-time requirements. The permitted deviations of the actual

presentation quality from the specified presentation quality is captured by means of

QoS parameters, such as average delay, speed ratio, utilization, jitter and skew[12].

However, different application domains may have different QoS requirements.

Synchronization issues are divided into two portions; namely inter-media and

intra-media synchronization. Inter-media synchronization is to maintain the

temporal/spatial relationship between media, e.g. video and audio. Intra-media

synchronization is to maintain the temporal relationship within the media, e.g. video

usually has 30 frame/sec, and therefore the playback interval is 1/30 sec. Then, inter-

media synchronization is further broken down into course-grain and fine-grain.

Course-grain refers to the synchronization of presentation stages, and fine-grain refers

to the synchronization within a presentation stage, usually between sections e.g. lip-

synchronization. However, it must be noted that intra-media synchronization is not

the same as fine-grain synchronization.

Inter-media synchronization forms the backbone for intra-media synchronization.

They are closely related to each other. At the inter-media synchronization level, it

sends a signal to the intra-media synchronization level. Upon receiving the signal, the

intra-media level will activate the media to playback. After the playback is completed,

it sends another signal back to the inter-media level. This is how the inter-media level

oversees the entire performance schedules of each stage or section of the presentation.

Different levels of synchronization have different policies. For intra-media

synchronization, we have blocking and restricted blocking policies. A blocking policy

could wait for the expected data unit to arrive even when the schedule deadline of the

presentation is reached, e.g. static media (text and image) and audio. A restricted

blocking policy could discard the late data units when the deadline for presentation is

due. For video, late arriving units will be discarded and in the meantime, it replays the

data stream for the next stage of presentation. For audio, the late arriving data stream

will also be discarded but it will not replay the current unit but hold silent for that

stage duration. Then, at the inter-media synchronization level, we have the re-

synchronization approaches. There are three types of re-synchronization approaches:

3

namely parallel first, restricted parallel first and parallel last. These approaches are

similar to the master-medium based interactive synchronization discussed in [8].

There are numerous models developed to represent temporal information, and

support synchronization in runtime rendering for multimedia systems. Examples are

Wahl and Rothernel’s Temporal Model[11], Firefly[11] and Fuzzy relation

language[11]. Petri nets are designed specifically to model systems with concurrent

components. Over the years, scientists have extended the Petri net model to overcome

the limitation of its original design such that it can be applied to multimedia systems.

Some of the models are Object Composite Petri Net, OCPN[15], Dynamic Timed

Petri Net [24], Extended OCPN, XOCPN[17, 22], Transitional Object Composition

Petri Net, TOCPN[18], Prioritized Petri Net: P-Net[7], and Distributed Object

Composite Petri Net: DOCPN[7]. As we can see, there are so many different extended

Petri models with their pros and cons. DOCPN is the most recent extended Petri net

model for the interactive distributed multimedia orchestration. It is associated with a

powerful property, prioritized arcs, in the net. With that, DOCPN has the ability to

carry out the multimedia synchronization, integrated synchronization and interactive

synchronization. However, this prioritized Petri net model has a side effect to deal

with when transitions are forced to fire, known as the premature/late arriving token

(PLAT) problem.

An Enhanced Priority Petri net, EP-net is proposed in this paper. Premature/late

arriving token handler is designed to eliminate the side effect. Besides, the EP-net

model also shares the same properties as the OCPN model. In other words, the places

in the net represent the resources such as video, audio, text and image playback or the

interacting activities such as the click of the mouse. And the transitions represent the

synchronized points in the presentation. Moreover, the model is associated with the

dynamic arcs to simplify the modeling of the interactive multimedia system, including

the skip, freeze and restart, reverse, speed scaling and multicasting.

The paper is organized in the following way. In section 2 we briefly describe the

backgrounds and related models for synchronization. Then, we present the EP-net

model in section 3. In section 4, the architecture and synchronous control of user

interaction is elaborated. In section 5, we explain the authoring environment

implemented, corresponding authoring stages and illustration of the EP-net simulator.

Finally, section 6 concludes the paper.

2. BACKGROUND AND RELATED WORKS

We have to understand that a multimedia presentation can consist of several media

objects with different temporal properties. The playback duration of each object is

known as the temporal intervals. There are 13 possible temporal relationships between

any two intervals. Figure 1 shows only 7 of the temporal relationships, the remaining

6 are just the inverse. Each block in figure 1 represents the playback duration of a

medium, for example video(v) and audio(a). Therefore, user interactions during a

presentation might alter the temporal relationship between two related media objects.

Table 1[5] depicts the possible changes of the temporal relationships following a user

interaction such as the skip, freeze and restart, reverse and speed scaling operations.

4

FIGURE 1. Possible temporal relationships between any two intervals[15]

 What it becomes when the user chooses

Relationship Reverse Skip, Freeze-restart, or scale

Equal Equal Equal

During No, start, during No, start, during

Overlap No, start, overlap No, overlap, start

Meet No, meet No, meet

Before No, before No, before

Start Equal, finish No, start

Finish No, start Finish, equal

Legends:

No: no relationship.

Others: as explained.

TABLE 1. Possible changes of temporal relationships caused by user interactions[5]

2.1 Extensions of Petri Nets

The integrity of a presentation is affected if the temporal constraints are not

maintained. Many various models have been proposed to express the presentation

specifications, capable of handling unpredictable user interrupts. The most common

models proposed are the extended Petri nets. Extended Petri nets have been

commonly used to express the dynamics of the multimedia application. In this section,

we will briefly discuss the very common extended Petri nets.

2.1.1 Object Composition Petri Net, OCPN

Little and Ghafoor have proposed the use of Object Composition Petri Net,

OCPN[15] to model temporal relations between media data in multimedia

presentation. The OCPN augments the conventional Petri net model with values of

time, as duration, and resource utilization on the places in the net. The OCPN model

has a good expressive power for temporal synchronization. However, it lacks of

power to deal with user interactions and distributed environments.

v

a

v equals a

v

a

v starts a

v

a

v during a

v

a

v overlaps a

v

a

v finishes a

a v

v before a

a v

v meets a

5

2.1.2 Extended Object Composition Petri Net, XOCPN

The Extended Object Composition Petri Net, XOCPN[17, 21] was proposed by

Woo, Qazi, and Ghafoor. XOCPN is an upgraded version of OCPN with the ability to

model distributed applications. Besides, XOCPN has been made to express fine-

grained synchronization requirements for multimedia data. Hence, the temporal

interval associated with an object is divided into a sequence of smaller units called

synchronization interval units, SIUs. Although XOCPN is able to deal with

distributed environments, it cannot handle user interactions.

2.1.3 Dynamic Timed Petri Net, DTPN

The lack of power in OCPN to express user interactions has led to an enhanced

OCPN model[16][24], proposed by Prabhakaran and Raghavan. DTPN provides the

ability for users to activate operations like skip, reverse, freeze, restart and scaling the

speed of presentation. The dynamic timed Petri net model is suggested to allow user

to pre-empt the Petri net execution sequence and modify the time duration associated

with the pre-empted Petri net process. The firing rules are similar to OCPN except

with a new feature, escape arcs. An escape arc is ended with a dot instead of an

arrowhead. A transition tj with escape arcs may pre-empt the execution if the other

normal input places for tj are active and contain a locked token and at least one of tj’s

escape places becomes nonempty. After pre-emption, a locked token is removed from

each of tj’s active input place and a token is added to each of the output place of tj.

The four different types[16][24] of interrupts are presented below. An example of skip

operation is shown in figure 2[16]. Now that this version of OCPN has the power to

express interactive multimedia systems, it still faces another problem known as

premature/late arriving tokens. The definitions of premature/late arriving tokens are

explained in section 2.2.

a. On pre-emption with deference of execution.

b. On pre-emption with termination of execution.

c. On pre-emption with temporary modification.

d. On pre-emption with permanent modification.

FIGURE 2. Skip Operation using enhanced OCPN model[16]

2.1.4 Prioritized Petri Net, P-Net and Distributed Object Composition Petri Net,

DOCPN

Guan, et. al have proposed DOCPN[7] to overcome the limitation of the original

OCPN and XOCPN in modeling interactive distributed multimedia systems. DOCPN

inherits the conventional Petri net firing rule, and applies OCPN and XOCPN

synchronous methods to synchronize among inter-media objects. Moreover, it extends

Pre-emption and

termination

6

OCPN to a distributed environment using a global clock, and enables user interaction

control into the OCPN model. Most important of all, a new mechanism known as

prioritized Petri nets(P-nets) are introduced. This priority-input event, as shown in

figure 3[7], has the ability to fire a transition without waiting for the arrival of other

non-priority input events. More detailed of its firing rules are well explained in [7].

The main concern here is what happens if a token arrives at a non-priority input place,

after the transition has been forced to fire by an earlier priority input event. The

paper[7] mentions the processing of late arriving tokens depends on the applications;

some may choose to discard them (e.g. late arriving video segments), some may

choose to recycle or reuse them (e.g. a buffer released for further use). It is better to

have a built-in mechanism in P-nets to allow a user/designer to specify how

premature/late arriving tokens should be disposed. This motivates the design of EP-

nets.

FIGURE 3. A transition with a priority input[7]

2.2 Premature/late Arriving Tokens

Due to the powerful property of priority arcs, it can enable a transition, regardless

of the status of other non-priority input places. For an example, in figure 4a, the

transition, t1, has a priority and a non-priority input events, with its respective input

places, p1 and p2. In the case, when a token arrives at p1 before the token arrives at p2,

the transition t1 fires and a token is removed from p1 and created at p3. Later, after τd

time duration after the transition, a token arrives at p2. Hence, this token is known as a

late arriving token. As we can see, the audio and video has gone out of

synchronization because of an incoming user interaction (e.g. skip), this is

undesirable.

Legends:

p1 : User interaction.

p2 : Audio clip.

p3 : Video clip.

d1 : Duration of audio playback.

d2 : Duration of video playback.

Priority input

Non-priority input

Fire

FIGURE 4b. Temporal relationship

Schedule
Time

Media

p2

p1

τd

d1

d2

p1 activated at this instant

p3

FIGURE 4a. Transition, t1 fired before

any token arrives at p2

p1

p2

p3

d1

d2

t1

7

Although interaction events are unpredictable, it will definitely fall into one of the

three situations as mentioned below:

i. When a transition with a priority input event is active, the other non-priority

place contains an unlocked token as shown in figures 5a, 5b and 5c.

ii. When a transition with a priority input event is active, the other non-priority

place contains a locked token as shown in figures 6a, 6b and 6c.

iii. When a transition with a priority input event is active, the other non-priority

place contains no token as shown in figures 7a, 7b and 7c.

FIGURE 6c. Temporal

p1

Media

Time

p2

p3

d1

d2

FIGURE 6a. Before the transition

fires

p1

p2

p3

d1

d2

t1

FIGURE 6b. After the transition

p1

p2

p3

d1

d2

t1

FIGURE 5c. Temporal

p1

Media

Time

p2

p3

d2

d1

FIGURE 5a. Before the transition

fires

p1

p2

p3

d1

d2

t1

FIGURE 5b. After the transition

p1

p2

p3

d1

d2

t1

8

Figure 5a shows that p1 (with priority arc) is active when p2’s token is unlocked,

this will not create a premature/late arriving token problem. Figure 6a shows that p1

(with priority arc) is active when p2’s token is locked. Since, p1 has a higher priority,

it forces p2’s token to unlock and enables the transition. Hence, tokens are removed

from p1 and p2 and created at p3, and a premature arriving token is forced to fire. This

property expresses the EP-net modeling power in interactive environments. Take

freeze operation for example, if p1 represents a user interaction and p2 represents the

playing of video clip; the token arrives at p1 (user interaction occurs) while the token

in p2 is still in the locked condition (e.g. playing of the video clip). The prioritized

user interaction forces the playing of the video to stop and keeps the premature

arriving token in the premature/late arriving token handler. Figure 7a displays the real

problem - late arriving token. p1 (with priority arc) is active when no token arrives at

p2 yet. However, soon after the transition has fired, a token reaches p2. This is known

as a late arriving token as shown in figure 8. The premature/late arriving token

handler (PLATH) shown in figure 8 is explained in section 3.1.

FIGURE 8. Illustration of PLATH, L1

p1

p2

p3

p4 (e.g. Discard)

L1

t1

Late arriving token
L1 = [p2 (τd) (seq)]

Priority arc with priority level of 1.

PLATH

[1]

FIGURE 7a. Before the transition

fires
FIGURE 7b. After the transition fires

FIGURE 7c. Temporal Information

p1

Media

Time

p2

p3

d1

d2

p1

p2

p3

d1

d2

t1

p1

p2

p3

d1

d2

t1

9

3. ENHANCED PRIORITIZED PETRI NET

The conceptual temporal model that we are proposing here is an extended model

of the Prioritized Petri Nets, P-nets proposed by Guan, Yu and Yang[7]. In this

section, an improved version of the P-net, Enhanced P-net, EP-net, is introduced to

handle PLAT. Besides, this EP-net imposed another feature that simplifies and

improves the flexibility of designing interactive systems, known as dynamic arcs,

which can be associated with sets of program statements. Huang has also used this

dynamic mechanism, in his extended finite-state machines[5] to orchestrate

multimedia presentation, however the main advantage of Petri net over finite state

machines is its expressive power to visually display temporal information.

3.1 Definitions

An enhanced prioritized Petri net structure, EP-net, is a twelve-tuple. EP-net = (P,

T, I, O, L, D, Pri, DynI, DynO, M, PS, CV). The structure is defined as shown below.

P = {p1, p2, ….. pn) is a finite set of places, where n ≥ 0.

T = {t1, t2, …….tm} is a finite set of transitions, where m ≥ 0.

P ∩ T = ∅ i.e. the set of the places and transitions are disjoint.

τ = {τ1, τ2, …….τx} is a finite set of remaining duration after the interactions, where x

≥ 0.

seq = {q} is an integer that indicates the current token sequence number, where q ≥ 0.

L:T = Bag{P} is the PLAT Handler, PLATH function, a mapping from transitions to

bags of places, L = {[pn (τy) (seq)]}.

I:T → Bag(P} is the input function, a mapping from transitions to bags of places.

O:T → Bag(P} is the output function, a mapping from transitions to bags of places.

D = {d1, d2, ……dw} is a finite bag of duration to bags of places, where w ≥ 0.

Pri:(I:T) → {pri1, pri2…..priz} is a priority function, a mapping of priority level to

bags of input events, where priz is an integer, priz > 0 and z ≥ 0.

PS is a set of program statements.

CV is a set of context variables.

DynI:(P × Pri × PS × CV) → Bag{T} is a dynamic input function, a mapping from

places to bags of transitions based on PS and CV.

DynO:(T × PS × CV) → Bag{P} is a dynamic output function, a mapping from

transitions to bags of places based on PS and CV.

M = {m0, m1,……..mk} is a finite set of marking, where m0 represent the initial

marking and k ≥ 0.

The differences of EP-net from the traditional P-net are the introductions of the

PLATHs, the multi-priorities and the dynamic arcs. The broken line with an

arrowhead as shown in figure 8, represents a PLATH. This PLATH will act as a filter

that carry out the post-processing activities when the premature/late arriving tokens

are detected. The place, p4, shown in figure 8 represents any late token detected is

discarded from the buffer. The next feature, multi-priorities arc as mentioned in the

future work section of [7], is implemented in EP-net. A priority arc is represented by a

thick solid line with an arrowhead and associated with its priority level shown in

brackets (figure 8). If there is no indication of any priority level, by default it denotes

10

a priority level of 1. So, the higher the priority level indicated, the higher is the

priority of the arc. Note that we do not have any priority output event.

As for the last feature, dynamic arcs are associated with a set of program

statements. For dynamic arcs, it is most useful when used in applications where flow

of events (tokens) can be decided only at run-time. These dynamic arcs can be multi-

priorities, non-priority events or PLATHs. The graphical representations of dynamic

arcs are shown in figures 9a and 9b. The associated program statements to the

dynamic arc as shown in figure 10, deciding where the arc will be pointing to at run-

time.

FIGURE 9a. Dynamic input event

FIGURE 9b. Dynamic output event and PLATH

The firing rules of enhanced P-nets, EP-nets are the same as P-nets as mentioned

in [7]. A transition with non-priority input events only would fire when all events are

complete and ready. A transition with a priority input event concurring could fire with

the arrival of that priority input event, without waiting for other non-priority events.

For the same priority input events concurring at a transition, we apply the “AND”

rule. A place with a token and several transitions enabled from this place will fire the

transition with a priority arc from this place. If there are more than one priority arc

outgoing from a place enabling more than one transitions, then the firing choice is

non-determinate.

The designer has the choice to decide whether it is necessary to include PLATHs.

PLATH will deal with any late arriving token reaching a place within a user-specified

timeout, τd, as shown in figure 4b after the interaction. However, if a premature

arriving token still in the locked condition when the interaction occurred, in this case,

τd, can represent the duration of the media that has been played. Moreover, the

designer can also give the choice of detecting the late arriving token based on the

duration, τd and/or based on the token’s sequence number. Each PLATH has a

memory space (e.g. register) to store the currently expected token’s sequence number,

and each token carries its sequence number. Hence, a PLATH matches its stored

sequence number with the arriving token's sequence number. If the sequence number

does match, this token is considered late. Upon a late arriving token being detected, it

will be removed immediate from its respective place and created at the PLATH’s

place (e.g. P4 in figure 8). Then, the token is processed as pre-specified for example to

be discarded, saved for next use, etc.

non-priority priority

PLATH non-priority

11

3.2 Application and Examples

Based on the example of the global clock controlling the global schedule in [7],

including the premature/late arriving token handler completes the DOCPN map. Any

premature/late arriving token detected will be discarded, hence the synchronization of

the system is maintained and the premature/late arriving token problem is eliminated.

Figure 10 shows an example of the EP-net model. As shown in figure 10, the

transition, t1 will fire if both tokens arrive at places, p1 and p2, and the tokens are

unlocked. The transition, t1 will also fire, regardless the states of p1 and p2, if the

place, p7, contains at least a token, and the dynamic priority input event points toward

t1. This will force fire t1 and the premature/late arriving token will be handled by the

PLATH L1. The arrival of token at the place, p6, will force fire the transition, t2, and

the premature/late arriving token will be handled by the PLATH L2. The dynamic

output arc from p7 and dynamic output arc from t2, both depend on the program

statements, psa and psb respectively, to determine which transition or place the arc will

be pointing to. For example in psb, the dynamic output event pointing to which place

depends on whether any late arriving token is detected.

FIGURE 10. An Enhanced Petri Net

The mathematical representation for the example in figure 10 is shown below:

 P = {p1, p2, p3, p4, p5, p6, p7, p8, p9},

 T = {t1, t2},

 I(t1) = {p1, p2}, I(t2) = {p4, p5, p6},

 O(t1) = {p4, p5}, O(t2) = {p8},

 L(t1) = {p3}, L(t2) = {p9},

 D = {0, d1, 0, 0, d2, 0, 0, d3, 0},

 CV = {x, y},

PS = {psa, psb}

 Pri(I(t1)) = {0, 0}, Pri(I(t2)) = {0, 0, 1},

 DynI(p7, 1, psa, y) = {ty},

 DynO(t2, psb, x) = {tx}.

L1 = {[p1(τ1) (seq)], [p2 (seq)]}

L2 = {[p5(τ2) (seq)], [p4 (seq)]}

p8

d3

p1

p4

t1

p2

d1

p5

d2

t2

p6

L2

p9 (Discard)

px, psb psb = { If a token arrives at p9

 x = 1,

else

 x = 2.

 }

p7

ty, psa psa = { If a token arrives at p8

 y = 1,

else

 y = 2.

 }

L1

p3

(Discard)

12

4. USER INTERACTIONS MODELING USING EP-NETS

This proposed EP-Net could be effectively used in synchronization models for

flexible multimedia presentation with user interaction. The common user interactions,

reverse, skip, freeze and restart, speed scaling and multicasting, are discussed in

details in this section. They are modeled using the EP-Net.

4.1 REVERSE OPERATION

Reverse operation is one of the common user interactions. When the user requests

for a reverse operation, the temporal relationship of the multimedia presentation

changes as shown in table 1. For an example shown in figure 11a, the “starts”

temporal relationships of the media becomes the “equals” or “finishes” temporal

relationships after the user requests for a reverse operation. We will demonstrate how

the reverse operation can be modeled by the EP-net.

Referring to figure 11a, the multimedia is presented in its normal forward style

while the user activates a reverse operation during time between d’ and d’’. The

temporal relationship of the media hence becomes a “finishes” temporal relationship.

We have designed an EP-net model as shown in figure 11b. According to the EP-net

rules, a place with a token and several transitions enabled from this place will fire the

transition with a priority arc from this place. The arrival of token at place, preverse, and

locked/unlocked token in places, pg and pv, will force fire the transition, treverse and

reverse the direction of the presentation. The tokens are unlocked and removed, due

to its prioritized input event. Since there are no output events from the transition,

treverse, no token is created. Then, the PLATH, L1 and L2, which deal with the

premature tokens of gap and video respectively, will receive the premature token and

reverse the presentation from the points when they are interrupted. Notice that the

reverse interaction can only occur when there are tokens in Preverse, Pg and Pv, due to

the "AND" rule being applied to the same priority level input events concurring at

treverse, as shown in figure 11b.

FIGURE 11a. What temporal relationship will become after user

interaction

Audio

Video

If a user interacts during any time < d’, it

will become equals relationship.

If a user interacts any time between d’ to

d’’, it will become finishes relationship.

da dg

dv

d’ d’’

13

Legends:

pa : Place for forward audio playback.

ap : Place for reverse audio playback.

pv : Place forward video playback.

vp : Place for reverse video playback.

pg : Place for time lag.

preverse : Place for reverse interaction.

da : Duration for audio playback.

ad : The remaining duration of the premature audio

token from pa.

dv : Duration for video playback.

vd : The remaining duration of the premature video

token from pv.

dg : Duration for time lag.

gd : The remaining duration of the premature gap

token from pg.

L1 : Handles (reverses) premature arriving token

from pg, L1 = {[pg(gd)]}.

L2 : Handles (reverses) premature arriving token

from pv, L2 = {[pv(vd)]}.

t1, t2, t3, 1t , 2t and treverse : Transitions.

FIGURE 11b. Reverse operation occurs any time between d’ and d’’ (as indicated in

figure 11a)

Figure 11c shows how dynamic arcs associated with the program statements can

help us simplify the model. Let's us imagine if it is used in an EP-net model which is

much larger in size (e.g. increased number of places, transitions and arcs), the

crossing of arcs among each other can be eliminated with this dynamic mechanism.

For this example we can do so with the statements as in ps1 (see figure 11c).

v
d,

v
p

gd,pg

end
p

1
t

2t
a

d,
a

p

t1

t2

t3 pstart
pend

pa, da pg, dg

pv, dv

preverse

L2

L1

treverse

14

FIGURE 11c. Dynamic arcs associated with program statements for the reverse

operation

4.2 SKIP OPERATION

In the same temporal relationship illustration as shown in figure 11a, consider the

skip operation happens during time between d’ and d’’. The user requests a skip

operation to the place Pend. An EP-net model is demonstrated in figure 12a.

FIGURE 12a. Skip operation occurs any time between d’ and d’’ (as indicated in

figure 11a)

FIGURE 12b. Dynamic arcs associated with program statements for the skip

operation

pa, da

pg, dg

pv, dv

pskip

pend
pstart

t1

t2

t3

tskip

ps2 = { If a token arrives at pskip

 j = 3

 else
 j = null

 }

pskip

tj, ps2
pa, da

pg, dg

pv, dv

pstart
t1

t2

t3
tj, ps2

tj, ps2

pend

ps1 = { If a token arrives at preverse
 j = reverse

 else
 j = null (point to no where)

 }

preverse

gd,pg
2t

v
d,

v
p

a
d,

a
p

1
t

end
p

L1

L2

pstart

pa, da pg, dg

pv, dv

t3

t2

t1

treverse

tj, ps1

tj, ps1

tj, ps1
pend

15

The legends are similar to those shown in figure 11b except:

pskip : Place for skip interaction.

tskip : Transitions.

seq : Sequence number of the tokens.

 The skip operation using a dynamic mechanism as shown in figure 12b,

simplifies the model. It helps to eliminate the needs of the transition, t4. Since

those dynamic input events from pskip, pg and pv are not always pointing to

transition, t3, it can function as an interrupt when a token arrives at pskip, regardless

whether tokens in pg and pv are locked or unlocked. The prioritized arcs from

these places stop their playback, which means that they remove the tokens from

their respective places, even if the tokens are in the locked condition.

4.3 FREEZE and RESTART OPERATIONS

This is a dual operation, the user executes a freeze operation to stop the

presentation, and resumes the presentation by activating the restart operation. Using

the same temporal relationship as shown in figure 11a, assume the user requests a

freeze and restart operations during the time between d' and d''. Figure 13a

demonstrates the freeze and restart operations at that instance. Moreover, the dynamic

version of figure 13a is demonstrated in figure 13b.

FIGURE 13a. Freeze and restart operations occur any time between d’ and d’’ (as

indicated in figure 11a)

When the freeze operation is activated, the premature tokens in both places, pg and

pv, is handled by the LATHs, L3 and L4 respectively. Then, the places, pg' and pv' (e.g.

registers) store their corresponding remaining durations. The presentation is resumed

when the user activates the restart operation.

pv, dv

pg, dg pa, da

pstart

pend

pfreeze

t3

prestart

pg’

pv’

tfreeze trestart

L6

L5

t2

t1

L3

L4

16

FIGURE 13b. Dynamic arcs associated with program statements for the freeze

and restart operations

The legends are similar to those shown in figure 11b except:

 pfreeze : Place for freeze operation.

 prestart : Place for restart operation.

 pg' : Place that stores the duration of time lag that has been played.

pv' : Place that stores the duration of video that has been played.

 dg' : Duration of the time lag that has been played.

 dv' : Duration of the video that has been played.

 tfreeze and trestart : Transitions.

 L3 : Handles (freezes) premature arriving token from pg, L3 =

 {[pg(dg')]}.

L4 : Handles (freezes) premature arriving token from pv, L4 =

 {[pv(dv')]}.

L5 : Handles (restarts) premature arriving token from pg, L5 =

 {[pg'(dg')]}.

L6 : Handles (restarts) premature arriving token from pv, L6 =

 {[pv'(dv')]}.

4.4 SPEED SCALING OPERATION

Scaling the speed of the presentation can be modeled as illustrated in figure 14a,

based on the temporal relationship shown in figure 11a. Assume that the user requests

to change the speed of the presentation at time between d' and d''. Figure 14b shows

the speed scaling operation using dynamic event mechanism.

ps3 = { If a token arrives at pfreeze,

 j = freeze

 else
 j = null

 } pv, dv

pg, dg pa, da

pstart
pend t3

t2

t1

tj, ps3

tj, ps3

ps4 = { If a token arrives at prestart,

 m = v

n = g

 else

 m = null

 n = null

 }

pfreeze
tj, ps3

tfreeze
trestart

L6

L5

L3

L4

pg’

pv’

Pn, ps4 Pm, ps4 prestart

17

FIGURE 14a. Speed scaling operation occurs any time between d’ and d’’ (as

indicated in figure 11a)

FIGURE 14b. Dynamic arcs associated with program statements for the speed

scaling operation

The legends are similar to those shown in figure 11b except:

pscale : Place for speed scaling operation

pg(new) : Place for time lag with the new speed, for example ×2, ×4 and etc.

pv(new) : Place for video with the new speed, for example ×2, ×4 and etc.

dg'' : Duration of the time lag with the new speed.

dv'' : Duration of the video with the new speed.

tscale and t5 : Transitions.

L7 : Handles (Scale) the premature arriving token from pg, L7 =

{[pg(dg'')]}.

L8 : Handles (Scale) the premature arriving token from pv, L8 =

{[pv(dv'')]}.

4.5 Multicasting

The proposed EP-net model when applied to multicasting applications (e.g. VoD

multicast) can be implemented based on a multi-threaded server/clients solution. The

server is preferably situated on a multi-processor platform to ensure quick response

time to service each multicasting client. If tight synchronization is required, priority

arcs can be used to enforce tight deadlines when delivering/presenting media contents

ps5 = { If a token arrives at pscale,

 j = scale

 else
 j = null

 }

tscale
t5

pend''

L7

L8

pg(new), dg''

pv(new), dv''

pscale

tj, ps5

t1

t2

t3
pstart

pend

pa, da pg, dg

pv, dv

tj, ps5

tj, ps5

t1

t2

t3
pstart

pend

pa, da pg, dg

pv, dv

pscale

tscale
t5 pend''

L7

L8

pg(new), dg''

pv(new), dv''

18

to each client. Late or premature arriving resources (tokens) on each client will no

longer be a problem with the PLATH mechanism. PLATH can simply drop or put

away such resources (e.g. for later viewing or use). In the case when flexibility is

offered to multicasting clients to change viewing conditions (e.g. scale up or down

resolutions), dynamic arcs associated with program statements can come to rescue to

change the arrangement of resources and implement corresponding schedule update

on-the-fly.

5. AUTHORING ENVIRONMENT

With a suitable online mapping from EP-net to a runtime environment, user

interactions modeled in EP-net can be easily simulated. Hence, using the EP-net

model, a multimedia synchronization authoring and execution environment can be

generated. The authoring and execution environment contains three phases, namely:

Selection and transformation of the media objects to participate: in this phase the

author selects the media objects to participate in the authoring environment, and

defines the temporal relation of the media objects.

• User interaction: in this phase the author designs the input, output and

priority input events, dynamic events and PLATHs.

• Execution: in this phase the designed EP-net model is executed.

We are in the process of developing an experimental EP-net based multimedia

synchronization authoring and execution system on Windows (NT) workstations.

Users can author the presentation schedule of the system for both centralized and

distributed environments. In the near future, we also plan EP-net to be built as run-

time library functions so that user applications requiring synchronization can include

the required library functions to realize distributed multimedia synchronization.

5.1 EP-NET SIMULATOR

The interrupt specification and handling mechanisms like priority events, PLATH

and dynamic events are introduced to enable programmers to specify user

interactions. The presentation specification mechanisms like places, non-priority

events and transitions are developed to enable programmers to specify temporal

relationships among media in a presentation. Together, the distributed interactive

multimedia applications can be simulated using this EP-net simulator.

EP-net simulator is designed to be user-friendly. What a programmer needs is a

mouse that does most of the job. To draw a place or transition, the user just clicks on

the place or transition icons shown on top of the menu as displayed in figure 15, and

keys in an integer label from 1 to 50. In the current prototype, we have set its

maximum label to 50. Then, by clicking onto any area within the white screen (see

figure 15), a place or transition will be drawn. With that, the places and transitions can

be linked together with those event mechanisms by clicking respective icons also

shown on top of the menu. After the marking is initialized, the simulator is ready to

run. This simulator has two running modes. The first mode runs step by step, which

means it fires all enabled transitions once and waits for the next execution. The

19

second mode runs and fires till no transition is enabled. The simulator simulates an

EP-net as demonstrated in figure 15.

Each place has a local timer. The timer is initialized to a duration value when the

presentation starts. The runtime executive in the simulator periodically updates the

timer value associated with each active place. For example, places, p2, p3 and p4 are

associated with duration, 10, 20 and 10 seconds respectively as indicated in figure 15.

If any of these places contains a token (locked), and the user runs the simulator, the

duration will count down until zero. Hence, the token in the place is unlocked and

ready to be removed if its transition fires.

FIGURE 15. EP-net Simulator

5.2 HANDLING PLACES, PLATHS and DYNAMIC ARCS

Places in the net represent resources (e.g. audio playback, video playback etc). In

this simulator, we are not restricting it to only those mentioned. Instead, we allow a

place to be customized, i.e. it contains a customized resource specified by the user.

Besides, the design of PLATH not only deals with the discard, reverse, freeze, restart

Place

 Transition

Input

event

Priority

Input

event

 Output

event

PLATH

Dynamic

Input

event

Dynamic

priority

input event

Dynamic

Output

event

Dynamic

PLATH

Initial

Marking

Run

Step-by-step

Run

20

and speed scaling operations, a customized operation can also be introduced. Figures

16 and 17 show the PLATH and dynamic output event menus respectively.

Dynamic link libraries (DLL) are used in the simulator. With DLL, the simulator

links to the functionality in the library file when it runs. The library file remains a

separate file that is referenced and called by the application. We can update and

modify any functionality in the DLLs without having to recompile the application

program, this is the reason why we have chosen DLL as our runtime library for the

simulator. Therefore, to realize the places, PLATHs and dynamic arcs, we have

employed DLLs to run their corresponding customized resources, customized

operations and program statements.

FIGURE 16. PLATH menu

FIGURE 17. Dynamic output event menu

Visual C++ programming language was chosen because its C++ development

environment and set of tools enable advanced applications for Windows and NT

platforms to be created with ease.

5.3 Architecture of EP-Net Simulator

The simulator's architecture is demonstrated in figure 18. There are four main

portions, namely: selection of medium and define their temporal relations, design

initial marking, design the dynamic arcs and, compile and run the simulator.

21

FIGURE 18. State diagram of how the EP-Net Simulator operates

5.4 Implementation Issues

DLL Implementation for Dynamic Mechanisms

Initially, our implementation used different dynamic link library (DLL) for

different dynamic mechanisms. For example, a dynamic output event carries out its

skip task using the DLL file (skip.dll) as shown in figure 17. Hence, the DLL files

grow with the number of dynamic mechanisms. In order to avoid such overhead, a

DLL file is created which contains all program statements associated with its dynamic

arcs used in the simulator. Each statement is given an ID called DLL Function ID as

shown below.

switch(DLL Function ID) {

 case 0: break; //Not Used

 case 1: Program statements I;

 break;

 case 2: Program statements II;

 break;

 … … }

PLATH Implementation Issues

One of the PLATH functions is to monitor and identify late arriving tokens,

this is done by embedding a sequence number for each token in the system. A PLATH

would record per incoming arc each arriving token's sequence number during

execution. The stored sequence number(s) in a PLATH will be updated (i.e.

incremented) whenever its transition is enabled and fires. With the PLATH sequence

number(s) updated, the late-arriving token from each incoming arc which has been

forced to fire previously can be captured.

6. CONCLUSIONS

In this paper we have presented an extended Prioritized Petri net, the enhanced

Petri net (EP-net) to handle the side effect of the Prioritized Petri net (P-net). P-net

holds a strong property, it will force firing events when the deadline is due regardless

whether they are ready or not. This leads to a side effect known as premature/late

arriving token problem. The paper has illustrated the problem and how EP-net can

Selection of medium and define their

temporal relations

Design the dynamic arcs

Design the initial marking

Compile and run

Design stage

Activate stage

22

handle the problem by using the PLATH invoke pre-specified processing on

premature/late arriving tokens.

In summary, we have studied the synchronization requirements for a multimedia

presentation with user interactions. We use the concept of temporal relationship

changes after interactions to understand the operations to be carried out, for various

user inputs. We have proposed the EP-net model, which eliminated the shortcoming

of P-net and increased the modeling power of OCPN in user interaction. A dynamic

event mechanism has also been proposed for EP-net so that the target of an arc or

PLATH can be decided at run-time. The reverse operation has been modeled using

the EP-net features. Besides the reverse operation, other various user interactions e.g.

skip, freeze and restart, and speed scaling operations can also be modeled by the EP-

net model.

EP-net can also be applied when applications have tight and/or dynamic

synchronization requirements. The illustrated multimedia UI handling is such an

example. Memex-like applications can be another where users could frequently

change trails when viewing through documents, whereby a change in the trail

normally means a need to drop the viewing schedule of the current document and

resynchronize to the new document viewing schedule. Dynamic arcs and PLATH will

be useful to handle such condition changes. EP-net may also find applications in

distributed control environments where run-time events frequently render changes to

control sequences and synchronization conditions. PLATH would be useful here as it

allows patching up the loopholes created from a forced priority firing, late arriving

events can thus be handled. Dynamic arcs associated with program statements can be

prescribed to anticipate such on-line control events and re-route control sequences

accordingly.

In order to demonstrate the concepts are feasible, a prototype with runtime support

has been developed (i.e. using visual C++ programming language running on

Windows (NT) platform) and used to construct several interactive multimedia

applications, including skip, freeze and restart, reverse and speed scaling operations.

REFERENCES

[1] Cosmos Nicolaou, “An Architecture for Real-Time Multimedia Communication

Systems”, IEEE Journal on Selected Areas in Communications, Vol. 8, No. 3,

pp.391-400, Apr. 1990.

[2] Fabio Bastian and Patrick Lenders, “Media Synchronization on Distributed

Multimedia Systems”, International Conference on Multimedia Computing and

System, pp. 526-531, 1994.

[3] Gerold Blakowski and Ralf Steinmetz, “A Media Synchronization Survey:

Reference Model, Specification, and Case Studies”, IEEE Journal on Selected

Areas in Communication, Vol. 14, No. 1, pp. 5-35, Jan. 1996.

[4] Chung-Ming Huang and Chung-Ming Lo, “An EFSM-Based Multimedia

Synchronization Model and the Authoring System”, IEEE Journal on Selected

Areas in Communication, Vol. 14, No. 1, pp. 138-152, Jan. 1996.

[5] Chung-Ming Huang and Chung-Ming Lo, “Synchronization for Interactive

Multimedia Presentations”, IEEE Multimedia, Vol. 5, No. 4, pp. 44-62, 1998.

23

[6] Prabhat K., Andleigh and Kiran T., “Multimedia Systems Design”, Prentice Hall

PTR, pp. 421-444, 1996.

[7] Guan Sheng-Uei, Yu Hsiao-Yeh, and Yang Jen-Shun, “A Prioritized Petri Net

Model and Its Application in Distributed Multimedia Systems”, IEEE

Transactions on Computers, Vol. 47, No. 4, pp. 477-481, Apr. 1998.

[8] Chung-Ming Huang, Chian Wang, and Cheng-Yi Kuo, “A Master-Medium-based

Interactive Synchronization Control Scheme for Distributed Multimedia Systems,

Euromicro Conference proceedings, Vol. 2, pp. 506-513, 1998.

[9] Jeffrey J. P. Tsai, Yaodong Bi, Steve J. H. Yang and Ross A. W. Smith,

“Distributed Real-Time Systems”, A Wiley-Interscience Publication John Wiley

& Sons Inc, Chapter 11, pp. 247-275, 1996.

[10] P. Lougher, “The Design of a Storage Server For Continuous Media”, IEEE

Computer Journal, Vol. 36, 1993.

[11] Soon M Chung, “Multimedia Information Storage And Management”, Kluwer

Academic Publishers, pp. 303-411, 1996.

[12] H. Thimm, W. Klas, “Managing Adaptive Presentation Executions in Distributed

Multimedia Database System”, Proceedings 1996 International Workshop On

Multimedia Database Management Systems, pp. 152-167, Aug 1996.

[13] G. Bruno, “Model-based Software Engineering”, Chapman and Hall, pp. 63-101,

1995.

[14] James L. Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice-

Hall, Inc, 1981.

[15] Thomas D. C. Little, “Synchronization and Storage Models for Multimedia

Objects”, IEEE Journal on Selected Areas in Communication Vol. 8, No.3, pp.

413-427, April 1990.

[16] B. Prabhakaran and S. V. Raghavan, “Synchronization Models for Multimedia

Presentation with User Participation”, ACM Multimedia proceedings, pp. 157-

166, Aug. 1993.

[17] M. Woo, N.U. Qazi, and A. Ghafoor, “A Synchronization Framework for

Communication of Pre-orchestrated Multimedia Information: IEEE Network, pp.

52-61, Feb. 1994.

[18] Kyoungro Yoon and P. Bruce Berra, “TOPCN: Interactive Temporal Model for

Interactive Multimedia Documents”, International Workshop on Multimedia

Database Management Systems, pp. 136-144, Aug. 1998.

[19] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis,

“Modelling with Generalized Stochastic Petri Nets”, John Wiley & Sons, Chapter

3, pp. 49 – 68, 1996.

[20] Andrew F. Tanenbaum, “Computer Network”, Prentice Hall, pp. 219 - 239, 1996.

[21] Naveed U. Qazi, Miae Woo and Arif Ghafoor, “A Synchronization and

Communication Model for Distributed Multimedia Objects”, Proceedings First

ACM International Conference on Multimedia, pp. 147 - 155, Aug 1993.

[22] Michel Diaz and Patrick Senac, “Time Stream Petri Nets A Model for

Multimedia Streams Synchronization”, Proceedings of the First International

Conference on Multimedia Modelling, pp. 257-273, 1993.

[23] Yahya Y. Al-Salqan and Carl K. Chang, “Temporal Relations and

Synchronization Agents”, IEEE Multimedia, Vol. 3., pp 30 - 39, 1996.

[24] Raghavan, S.V. Prabhakaran, B. Tripathi, S.K., "Synchronization representation

and traffic source modeling in orchestrated presentation", IEEE Journal on

Selected Areas in Communications, Vol. 14, No. 1, pp. 104 -113, Jan. 1996.

