
 1

Agent Fabrication and Its Implementation for

Agent-based Electronic Commerce

Sheng-Uei Guan and Fangming Zhu
Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

{eleguans@nus.edu.sg}

Abstract In the last decade, agent-based e-commerce has emerged as a potential role for the next

generation of e-commerce. How to create agents for e-commerce applications has become a

serious consideration in this field. This paper proposes a new scheme named agent fabrication and

elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent

Fabrication, Evolution & Roaming) architecture. First, a conceptual structure is proposed for

software agents carrying out e-commerce activities. Furthermore, agent module suitcase is defined

to facilitate agent fabrication. With these definitions and facilities in the SAFER architecture, the

formalities of agent fabrication are elaborated. In order to enhance the security of agent-based e-

commerce, an infrastructure of agent authorization and authentication is integrated in agent

fabrication. Our implementation and prototype applications show that the proposed agent

fabrication scheme brings forth a potential solution for creating agents in agent-based e-commerce

applications.

Keywords software agent, e-commerce, agent fabrication

1. Introduction

The Internet and electronic commerce (e-commerce) are revolutionizing our concept and

behavior in doing business. Nowadays, more and more companies and customers are getting

used to selling and purchasing online. As a result, the revenue of e-commerce in the world is

increasing tremendously.

 E-commerce can offer a lot of advantages such as lower operating cost, higher

accessibility, and broader services. However, there are some barriers blocking the road to

success, which include overload of information, difficulty in searching, lack of negotiation

infrastructure, etc. Therefore, e-commerce demands advanced technologies as support.

Software agent seems to be the excellent candidate with its properties of intelligence,

autonomy, and mobility. Agent-based e-commerce has emerged and become the focus of the

next generation of e-commerce. In this new approach, software agents act on behalf of

customers to carry out delegated tasks automatically. They have demonstrated tremendous

potential in conducting various tasks in e-commerce, such as comparison shopping,

negotiation, payment, etc.

 Most research work in literature focuses on issues such as traceability, integrity, and

security of agent systems [Corradi (1999), Greenberg (1998), Marques (1999)], while very

little work touches the field of agent creation. However, creation of agents should be

essential, since it is the starting point and the way of agents being created will be directly

related to concerns about agent security.

MIT Media Lab’s Kasbah [Chavez (1998)] is an online marketplace for buying and

selling goods. A user can create a buyer agent, provide it with a set of criteria, and dispatch it

into marketplaces. The Minnesota AGent Marketplace Architecture (MAGMA) [Tsvetovatyy

(1997)] is a prototype for a virtual marketplace targeted toward items that can be transferred

over the Internet. Agents can register with a server that maintains unique identifiers for

agents. The Michigan Internet AuctionBot [Wurman (1998)] is an auction server which

 2

facilitates the connection of potential buyers and sellers. Agents can place bids, create

auctions, request auction information, or review their accounts. Since these projects are

designed with their specific goals such as negotiation or information collection, agents inside

them are function-oriented and only supported by the specific marketplaces. Moreover, users

are only guided to fill in their particulars, and have little influence on the creation of new

agents. This means that users cannot embody individual preferences in their agents, and they

are given little chance to customize agents.

In recent years, there has been a new research stream which aims to help users creating

agents by providing certain frameworks and development toolkits. Some of them even have

been provided as commercial packages. AgentBuilder [Reticular (1999)] is such an integrated

tool suite for constructing intelligent software agents. It is designed to provide agent software

developers with an integrated environment to quickly and easily construct intelligent agents.

Concordia [Wong (1997)] is another full-featured framework for the development and

management of agent applications. The work of creating new agents in Concordia is left to

users, while Concordia provides users with an agent development guide which covers the

issues of programming agents in great details. Zeus [Collis (1998)] provides a toolkit for

creating generic collaborative agents. It comprises of three functional groups, i.e. an agent

component library, an agent-building tool, and an agent visualization tool. It enables users to

visually specify their significant attributes in creating agents. Users can also view, analyze, or

debug agents with the visualization tool. Aglet [Lange (1998)] provides Aglet Software

Development Kit (ASDK) for creating and managing aglet, mobile Java agent. ASDK

includes API (Application Programming Interface) packages with which users can implement

a platform independent aglet. Users can also override necessary subclasses of Aglet to meet

aglet behavior for different assignments.

However, these frameworks and toolkits only provide basic development environment

and tools to help users create generic agents. For various agents in e-commerce applications,

users still need to program specific function modules by themselves. For example, if a user

needs to employ an agent for some negotiation tasks, at least he needs to program part of the

agent such as negotiation strategies. But most users do not have such programming skills, and

a simple usage of toolkits may even be difficult for them. Furthermore, e-commerce agents

created with different toolkits can only be supported by compatible marketplaces, and this

situation can also lead to lack of interoperability, which may result in disorder and cause

difficulty in communication among agents. These limitations is due to the fact that the

original intention of these toolkits is to assist users in developing generic intelligent agents,

not meant to meet the particular demands of e-commerce applications.

The agents in e-commerce applications have their distinctive characteristics, compared to

agents for other purposes. For example, e-commerce has much wider user bases. So it should

be easy for users (especially novice users) to create and employ agents. Furthermore, e-

commerce cannot be widely accepted unless the related security concerns can be relieved, for

agent-based e-commerce this means agents should be secure and trustworthy. Our agent

factory approach has reduced the security hazards that could be possible if agents can be

fabricated by potential hackers. Therefore, these special demands of e-commerce agents have

motivated us to set up an architecture/mechanism to facilitate agent fabrication.

As agents roam to visit various hosts and operate in those hosts, some security concerns

would arise naturally. How can hosts identify incoming agents? How can agents ensure that

their confidential information is not being revealed during operations in hosts? On the one

hand, hosts cannot trust incoming agents belonging to unknown owners, because malicious

agents may launch attacks on the hosts and other visiting agents. On the other hand, agents

may also have concerns on the reliability of hosts and will be reluctant to expose their secrets

to distrustful hosts. To build bilateral trust in an e-commerce environment, an infrastructure of

agent authorization and authentication should be well designed and implanted into agents

when they are created.

In order to alleviate the above concerns, a new agent fabrication scheme, which is

factory-based, has been proposed and integrated into the SAFER architecture (Secure Agent

Fabrication, Evolution & Roaming) [Zhu (2000)]. The objective of our scheme is to provide a

 3

convenient and safe approach to create agents for various e-commerce applications. The key

point is that new agents should be fabricated by authorized agent factories according to

prescribed formalities and customizations from agent owners. The agents created would have

a uniform structure that can facilitate communication and collaboration among agents.

Further, users can be alleviated from the laborious work of programming, and agents are

fabricated in a more systematic and standardized way. Hosts can be relieved from the risks of

accommodating agents fabricated by hackers. In addition, the scheme also aims to enhance

the security of agent-based e-commerce by integrating an infrastructure of agent authorization

and authentication into agent fabrication. Our scheme of agent fabrication sheds light on a

new way of creating agents in agent-based e-commerce applications.

This paper is organized as follows. Section 2 briefly introduces the SAFER architecture

and its main components involved in agent fabrication. Section 3 elaborates agent conceptual

structure, agent module suitcase, and fabrication formalities. An infrastructure of agent

authorization and authentication is illustrated in section 4. Implementation work is presented

in section 5. Section 6 presents two prototype applications. Section 7 concludes the paper.

2. Architecture of SAFER

SAFER is an infrastructure designed to serve agents in e-commerce and establish necessary

mechanisms to manipulate them. The main objective of SAFER is to construct an open,

dynamic and evolutionary agent system for agent-based e-commerce, incorporating agent

fabrication [Guan (2000)], evolution [Zhu (2001)], and roaming [Guan (1999)]. Agent

fabrication is one of the fundamental parts in the SAFER Architecture.

Agent communities are basic units in SAFER. Each SAFER community can possess a set

of facilities and entities as described in Figure 1. However, Figure 1 only lists typical entities

in a community, as some communities may have more or less entities than those depicted. For

instance, the number of agent owners can be varying all the time, and several communities

may share one factory.

Since this paper focuses on agent fabrication, only the involved components are briefly

introduced here. These components include agent factory, community administration center,

agent owner, and agent itself. The detailed description is provided in [Zhu (2000)].

Subnet/Internet

Owner 1

Agent 1B
u

tl
er

 1

Auction House

Owner 2

Agent 2B
u

tl
er

 2

Agent Charger

Agent Clinic

Clearing House

Bank Virtual Marketplace

Workshop

Warehouse

Archive

Database

Agent Factory

Roster

Bulletin Board

Message Exchanger

Service Agents

Community

Administration Center

 Figure 1. SAFER agent community

 4

Agent factory is the kernel of SAFER, especially considering its role in agent fabrication.

It undertakes the primary task of creating agents. An agent factory assembles new agents with

desirable functionality according to the customizations from owners. In addition, an agent

factory has the responsibility to fix and check agents, which is an indispensable function of

agent integrity and security.

 Community Administration Center (CAC) is responsible for administrative matters in the

community, coordinating and facilitating activities of the entities in the community. It aims to

ensure smooth routine operations and security of the whole community. CAC maintains a

roster for the community, which includes basic information of registered owners and agents.

This roster is updated periodically.

Agent owner stands at the top of the SAFER hierarchy, since he has the priority and

responsibility for all his agents. He controls his agents from creation to termination. Each

owner should register successfully in CAC before he can have access to the facilities in the

community. To relieve his burden, an owner can authorize his butler to handle most of his

tasks.

Agents play a central role in SAFER, as facilities in SAFER serve agents in one way or

another. Agents are fabricated by authorized agent factories and customized by their owners.

To identify itself, each agent has a unique ID issued by the agent factory. An agent can roam

from one host to another to carry out various tasks, crossing the boundary of communities.

3. Agent Fabrication

3.1 Conceptual structure for e-commerce agent

In order to facilitate agent fabrication, a conceptual structure for e-commerce agent is

proposed, which is shown in Figure 2. There are four functional layers in the conceptual

structure, namely, communication layer, identity layer, security layer, and application layer

[Guan (2000)].

The communication layer comprises some message modules that are used for

communicating with external entities such as owners, agent factories, as well as other agents.

The identity layer includes personal information of the agent. The security layer consists of

modules concerning mechanisms of security and self-protection, such as implementation of

cryptography tools and measures to deal with attacks from malicious agents or hosts.

The application layer is filled with various functional modules. According to the

nomenclature of Maes’ group in the MIT Media Lab [Guttman (1999), Maes (1994)], the

common commerce behavior can be described with Consumer Buying Behaviour (CBB)

model, which consists of six stages, namely, need identification, product brokering, merchant

brokering, negotiation, purchase & delivery, and product service & evaluation. Since the first

Communication layer

Identity layer

Merchant

brokering

modules

Product

brokering

modules

Purchase &

delivery

modules

Negotiation

modules

Figure 2. Conceptual structure for e-commerce agent

Security layer

 Application layer

 5

and last stages are atypical and dispensable in a practical shopping situation, only four stages

are included in our conceptual structure for e-commerce agents, as shown in Figure 2.

Actually, one agent can possess one to four modules in the application layer. Thus, a

typical e-commerce task may be solely completed by one agent or through collaboration of

several agents. The arrows between modules in Figure 2 stand for information flowing from

the previous module to the next module. For instance, after retrieving information from

chosen merchants, the merchant brokering module will pass addresses of these merchants to

the negotiation module for continuing the tasks. Therefore, if all the stages are carried out by

one single agent, these information flows will happen internally. While in the scenario of

collaboration, information flow will take place among agents with the help of communication

modules.

3.2 Agent module suitcase

Modularization is a theme that runs through the whole process of agent fabrication. Various

modules for different types of agents are stored in agent factories. These modules are

combined to form an agent during fabrication. But not all the modules in a factory will be

assembled into an agent. An agent is just like a suitcase, into which necessary modules can be

loaded according to the requests from its owner and guidelines for fabrication. As a matter of

fact, the size of an agent is essential for its efficiency and fitness. An agent with redundant

modules will be less efficient, because a lot of time is wasted on transferring its heavier body

during roaming. On the other hand, if an agent lacks the necessary modules, it cannot fulfill

even the basic functions. Therefore, how to achieve an optimal module combination is the

pursuit of agent factories and owners.

A general agent module suitcase is defined as in Figure 3. A suitcase is composed of four

kinds of modules, i.e., identity, data, knowledge, and functionality. The identity module

contains basic elements of the identity of an agent, such as agent ID, certificate, timestamp,

agent-digest, etc. The data modules are to store information collected from hosts, parameters

used in functionality modules, as well as logs of the agent activities. The knowledge modules

store the knowledge base to support analysis and decision-making. The most important part of

an agent is the functionality modules. They comprise specific and standard modules. Each

specific module, e.g. negotiation module, is customized by its owner for different purposes.

Specific modules constitute the variable components of an agent. For the standard modules,

Figure 3. Agent module suitcase

Agent Suitcase

Identity

Data

Functionality

Standard

Modules

Specific

Modules

Module

Implementation

Module GID

Knowledge

 6

SAFER provides two choices, i.e. direct module implementation and virtual module

implementation with Global ID (GID). GID is a string representing a standard module in

agent factories. GIDs can be placed into an agent suitcase instead of the real implementations

to decrease the volume of an agent. In SAFER, each merchant host keeps a database of

standard module implementations. Whenever an agent visiting a host needs to make use of

standard functions which are represented by GIDs, the host will simply load the module

implementations from its database if available, according to the GID in the agent suitcase.

Even if the implementation associated with certain GID cannot be found in the database, the

host can download it from agent factories. The tradeoff on binding to either direct or virtual

implementation is determined by each owner. An example of agent suitcase is illustrated in

Figure 4.

Figure 4. An example of agent suitcase

3.3 Agent fabrication formalities

In SAFER, agent fabrication obeys a set of strictly prescribed formalities. These formalities

involve some SAFER facilities, including community administration center (CAC), agent

factory, and agent owner, which have been introduced in section 2. The process of agent

fabrication comprises three stages, namely, identification, customization, and fabrication, as

illustrated in Figure 5.

The fabrication process is initiated by an agent owner. First, the agent owner sends a

request message to an agent factory. The request message contains information about the

identities of the owner and community. When the agent factory receives the request, it

contacts the corresponding CAC with check-ID message to check the identity of the agent

owner. Then CAC looks up the identity of the owner in the roster, which has basic

information of registered owners and is updated periodically, as mentioned in section 2. After

CAC ensures that the owner has registered before, it returns confirmation to the agent factory.

Then the agent factory informs the owner of the approval of his fabrication request. The agent

owner then requests to start the stage of customization. During customization, the agent

factory provides many choices such as agent type, module combinations, etc. Having all the

requirements settled, the agent factory then starts the assembly procedures following the

fabrication instruction from the agent owner. After an agent is successfully fabricated, the

agent factory will update its own database and send register-agent to CAC who will add the

Agent_Tom {

Identity {String AgentID;

String Timestamp;

String Certificate;

String Agent_Digest;

};

Functionality {

 Void Com_Message1();

Void Security_Check();

Void Negotiation();

 };

 Knowledge {

Void Product_Ontology();

 };

Data {

 Void DataFromHost();

 Void Nego_Strategy_Para();

 Void Log();

 };

 }

 7

information of this new agent into the roster. In addition, the fabrication event will be

recorded in the archive of agent factory. As soon as the agent factory gets back the successful

message from CAC which indicates a successful update, the infant agent will be dispatched to

the owner who can deploy the new agent to undertake intended tasks.

In order to fabricate a new agent successfully, the fabrication process must pass through

all three stages successfully. Sometimes accidents may occur unexpectedly. For instance, the

agent owner and the agent factory may not have reached an agreement in customization

phase, or the agent owner has not registered yet, or messages are lost during transfer. These

will result in termination of the fabrication procedure midway.

Agent Owner Agent Factory Community
Administration Center

Request

Check_ID

Confirmation

Customization

Choice

Approval

Fabrication

Register_agent

Successful

Dispatch

Id
en

ti
fi

ca
ti

o
n

C
u

st
o
m

iz
a
ti

o
n

F
a
b

ri
ca

ti
o
n

Figure 5. Agent fabrication formalities

4. Agent Authorization and Authentication

In order to enhance security, an infrastructure of agent authorization and authentication is

designed and integrated into agent fabrication. Agent authorization builds the identity of an

agent, while authentication checks the identity.

Agent authorization in SAFER is controlled with a tower structure. Agent community is

at the top of the tower, and agent factory, agent owner and software agent lie in lower

positions in sequence. The authorization procedure is from top to bottom. Entities in higher

positions have the information of entities in lower positions and take responsibility of

authorizing the lower ones. In SAFER, one of the most important procedures during

fabrication is to assign a unique ID to each newborn agent. The agent ID is created by

concatenating four strings, namely, Community ID, Factory ID, Owner ID, and Fabrication

Series Number. Since these four components are all unique, the resulting agent ID is ensured

to be unique too.

PKI (Public Key Infrastructure) is introduced into our infrastructure to enhance security.

Under PKI, every agent factory possesses a pair of keys. One is the private key which is only

 8

known by the factory itself, and the other one is the public key which should be made known

publicly. Information encrypted with the private key can only be decrypted by the matched

public key, and vice versa. In SAFER, a fresh agent ID is signed (encrypted) with the private

key of the agent factory. Then the fresh agent ID and encrypted one are all included in an

agent ID package.

When an agent roams to a host and requests certain services, the first task the host should

do is to check the identity of the agent, which is called agent authentication. Figure 6

illustrates the process of agent authentication using a Trusted Factory List (TFL). In SAFER,

each host maintains a TFL, which contains the IDs and public keys of trusted agent factories.

This list is updated periodically to maintain up-to-date information of trusted factories. When

a host authenticates an incoming agent, it first extracts the factory ID from the agent ID

package. Then the host searches it within the TFL. If this factory ID cannot be found in the

list, authentication fails and service requests will be refused. Otherwise, the public key of the

corresponding factory is retrieved and then used to decrypt the encrypted agent ID, producing

the decrypted agent ID. Finally, the decrypted agent ID is compared with the fresh one. If

these IDs coincide, the host can be sure that the identity of this agent is true. Otherwise, the

identity of this agent is suspected or it may have been compromised. In this way, it can be

sure that only agents fabricated by trusted factories are served, and any hacker or potential

attacker can be detected.

The advantages of this mode of agent authorization and authentication are as follows:

• It is uniform in building the identity of an agent.

• It is more feasible for hosts to maintain a TFL than a list of owners or agents, because

the number of agent factories is limited, compared with numerous owners and agents.

Apart from checking the identity of agents, checking the integrity of agent body is also an

important procedure in the authentication process. Agent digest, which has been mentioned in

section 3.2, can be used for this purpose, while PKI is still a useful tool in protecting the agent

digest [Wayner (1995)].

5. Implementation and Discussions

Host

Trusted

Factory

List

Agent ID

Package

(Fresh &

Encrypted)

Decrypted

Agent ID

Factory ID Public key

… …

Figure 6. Agent authentication using a Trusted Factory List

Fresh

Agent ID

Extract

Decrypt

Compare
Retrieve

 9

The implementation of agent fabrication is divided into three stages. Firstly, the functions and

interfaces of three main facilities in SAFER, namely, CAC, agent factory, and agent owner

are designed and implemented. Secondly, a typical agent community, which includes one

CAC, one agent factory, and agent owners, is constructed. In this community, formalities of

agent fabrication are defined and implemented. Thirdly, an infrastructure of agent

authorization and authentication is built into agent fabrication.

Primary Factory Owner 1

Roster of Community

Owner 2 Owner M

Agent A Agent CAgent B Agent E Agent FAgent D... ...

...

...

Figure 7. Hierarchical structure of a CAC roster

 In a CAC, the most important component is the roster which contains basic information

of entities in the community. In order to facilitate the process of updating and retrieving the

roster, a hierarchical structure is used to compose the roster, which is shown in Figure 7.

There are two layers in the roster. The upper level contains information of registered agent

factories and owners, while the lower level contains that of registered agents. Agents are

closely attached with their owners in the roster. Therefore, when a new agent is registered in

the roster, the roster will try to link it with its owner. In the case that its owner has not

registered in the roster, the registration of such an agent will fail. Furthermore, when other

entities ask the center to help check the identity of an agent, CAC can complete this task

quickly by locating first its owner in the roster. Figure 8 is a screenshot of a CAC. It shows

that five owners and one agent factory have been registered in the community. A list is pulled

down showing agents which belong to Owner M.

Figure 8. Screenshot of community administration center

 The primary task of an agent factory is to fabricate new agents. When it is activated, it

waits for incoming requests from agent owners. Till now, four types of agents, namely,

brokering agent, negotiation agent, payment agent, and common agent, have been defined in

an agent factory. Common agent has the highest flexibility, since it can be customized to

possess any combination of functions that the other three types of agents can provide. For

instance, a most powerful common agent may embody all the brokering, negotiation, and

payment modules. Furthermore, agent factory also provides other functions through

 10

corresponding interfaces such as searching agent records, browsing factory archive, skimming

agent catalog, and maintaining the agent factory. The factory archive stores records of all the

agents that were fabricated in the factory before. Each agent record in the factory archive

includes agentID, ownerID, agent type, etc. Therefore, users can search agent records using

the keywords of agent ID, owner ID, and agent type as shown in Figure 9.

Figure 9. Screenshot of agent factory in searching agent records

 In order to efficiently control his agents, an agent owner is armed with many user-friendly

tools, as shown in Figure 10. As a start, an agent owner should register in CAC through the

‘register owner’ interface. If he meets the membership criteria, the agent owner will get a

certificate together with a successful reply message, and become a member of the community.

Then, he can request the agent factory to fabricate a new agent by using the ‘request new

agent’ interface. Figure 10 shows that the agent factory has returned the types of agents that it

is able to fabricate, and the owner is prompted to choose one from them. In addition, an

owner can check his agents with the ‘check agent’ interface to examine the module lists of

agents or change parameters in some modules. Furthermore, agent owner can also sort the

agent list and exchange the modules among agents. If an agent is no longer useful, the owner

can delete agents with the ‘delete agent’ interface.

Figure 10. Screenshot of agent owner requesting to fabricate a new agent

 With these three types of entities in place, the formalities of agent fabrication have been

implemented. The formalities of agent fabrication have been discussed in section 3.3. Among

the three stages of agent fabrication, the customization stage is the most important and

complicated. Figure 11 depicts the scenario that an agent owner is customizing a new agent.

Among a variety of module choices, the owner can pick up modules according to his

preferences. Some modules are indispensable, while some are optional. A user can also

 11

specify parameters in some modules after he chooses these modules. After fixing the

customization information, the agent owner can request the agent factory to continue the

fabrication process.

Figure 11. Screenshot of a user customizing a new agent

Java is chosen as the language for implementation, because it has important features

including robustness, security, and portability. Moreover, Java provides a three-layered

security model and many mechanisms to enhance security protection.

Java offers socket-based communication that enables applications to view networking as a

simple file I/O. There are two stream-based socket classes: a ServerSocket that a server uses

to listen for incoming connection and a Socket that a client uses in order to initiate a

connection. In our implementation, an initiator, e.g. agent owner, creates a Java Socket with

the agent factory’s address and port number, and then initiates the connection. The destination

server, e.g. agent factory, creates Java’s ServerSocket with its port number and listens for

incoming connections. Once a connection is established, the data flows between them in

continuous streams.

Since an agent factory is expected to deal with many owners simultaneously. Java’s

multithreading facility is employed to support multiple concurrent subtasks. The basic scheme

for handling multiple clients with multithreading is that the agent factory creates a thread

attached to Java’s ServerSocket and listens for incoming connections with accept() method.

The return value (a Socket) is passed to the constructor Handler, which creates a new thread

to handle that particular connection. Then accept() method is called again to wait for a new

request from others. Object serialization is another feature provided by Java, which allows an

object, that implements the Serializable interface, to turn into a sequence of bytes that can be

restored fully into the original object later on a different machine. This feature is also utilized

to implement message exchanges among entities in the community.

6. Prototype Applications

Two prototype applications have been built to test the proposed agent fabrication scheme.

One demonstrates the fabrication of product-brokering agents, and another one demonstrates

the fabrication of air-ticket purchasing agents, accomplishing tasks in a virtual marketplace.

Both are implemented with the Java language. As the implementation of the SAFER

architecture and its entities has been presented in the previous section, we focus on their

specific functionalities and fabrication processes here.

The first application built is to fabricate agents that could search for product information

in related databases. The agents are expected to accept queries from users, search the

corresponding databases, and present results to the users. As a simple testing, the agent

factory maintains three types of modules, i.e. SQLquery, sorting, and report. The functionality

 12

of each module is indicated by its name. While a user fabricates a new agent, he/she is

prompted with the choice of these three modules to decide which of them will be assembled

into the agent body. With different selections, the resulting agents will possess different

combinations of the functionalities. This simple application has shown our concepts of agent

suitcase and modularization are feasible.

Client

Buyer Agent

Virtual Marketplace

Control Center

Client /

Agent

Database

Authentication /

policing

Business Center

Merchant

Brokering /

Negotiation

Airline

Inventory

Preferences /

Strategy

Financial Center

Purchase and

Delivery

Bank

Record

Migration

Airline

 Management

Interface

Dynamic

Pricing

Agent Factory

Internet /

Network

Figure 12. Virtual marketplace architecture

Another application is to fabricate agents that are able to buy air-tickets in a virtual

marketplace. This is a relatively complicated application. Figure 12 shows the architecture of

the virtual marketplace. It consists of three separate elements, namely, control center,

business center, and financial center, which undertaking different functions as shown in the

figure. Seller agents are permanent entities residing in the marketplace and they belong to

individual airlines, and airline companies can manage their agents via a management

interface. Buyer agents act on behalf of users who are interested in purchasing air tickets

which best match their preferences. They will meet seller agents in the marketplace, negotiate

with them, and even make transactions if applicable. The crucial thing here is the fabrication

of the buyer agents, especially the process of customization. During fabrication, a user should

select his/her preferences based on the details like flight time, preferred airlines, etc. Certain

parameter such as departure time also has a flexibility rating. The user has the option of

choosing among different flexibility settings that are used to determine an acceptable range

for that particular parameter. After setting the desired preferences, the user is required to

customize the buyer agent’s negotiation strategy. This includes setting the initial offer price,

the maximum allowable price, and a choice of three time-based price-adjustment functions.

After the agent is successfully fabricated, the user can then proceed to dispatch his buyer

agent into the marketplace. After being authenticated by the control center, the buy agent will

be matched with several seller agents according to the preference settings. A negotiation

session will be initiated through the help from a proxy agent designated by the marketplace.

Both the buyer agent and the seller agents have their own negotiation strategies to propose

offers or counter-offers. The negotiation session will last until both sides agree on the price or

either side quits. If they finally reach a deal, they will conduct the transaction in the financial

center. Thus, a full air-ticket purchasing process is realized.

 13

The two prototype applications have demonstrated the feasibility of our agent fabrication

scheme, although they are still under further development. Some lessons are learnt from the

experience of building these applications. For example, the construction and deployment of

agent factories require some significant starting effort, and the structure of agents should be

less complicated and easy to be modularized.

7. Conclusion

This paper presents a factory-based agent fabrication scheme which aims to provide a

convenient and safe approach to create agents for various e-commerce applications. A

conceptual structure is proposed as a model for e-commerce agents. On the basis of this

structure, agent module suitcase is designed and the formalities of agent fabrication are

elaborated. Our implementation shows that, with these facilities, agents can be successfully

fabricated according to the formalities prescribed and customizations from owners, although

these agents are simple with little intelligence. Finally, a new infrastructure of agent

authorization and authentication is integrated into agent fabrication, coupling with the PKI

technology. The analysis and implementation show that it can enhance the security of agent-

based e-commerce.

For future work, our schemes and implementation will be improved in several aspects.

Firstly, in order to equip agent factories with the ability of automatic maintenance for agent

definitions, an ontology structure has been proposed. Secondly, more flexibility will be added

into the stages of agent fabrication. Lastly, a more challenging future work item is regarding

how to fabricate self-organizing agents for e-commerce applications.

Acknowledgement

The authors would like to thank MinThein Maung, ChuenHwee Ng, and Sunny Kusnadi for

their contributions in implementing the agent fabrication scheme and prototype applications.

References

Chavez, A. and Maes, P. (1998). Kasbah: an agent marketplace for buying and selling goods,

in Proceedings of First International Conference on Practical Application of Intelligent

Agents and Multi-Agent Technology, London, 75-90.

Collis, J., Ndumu, D., Nwana, H., and Lee, L. (1998). The Zeus agent building toolkit, BT

Technology Journal, vol. 16(3).

Concordia project, Mitsubishi Electric Information Technology Center America,

http://www.meitca.com/HSL/Projects/Concordia/MobileAgentsWhitePaper.html.

Corradi, A., Montanari, R., and Stefanelli, C. (1999). Mobile agents integrity in e-commerce

applications, in Proceedings of 19th IEEE International Conference on Distributed

Computing Systems, 59-64.

Dasgupta, P., Narasimhan, N., Moser, L.E., and Melliar-Smith, P.M. (1999). MAgNET:

mobile agents for networked electronic trading. IEEE Transactions on Knowledge and

Data Engineering, vol. 11(4), 509-525.

Greenberg, M.S., Byington, J.C., and Harper, D.G. (1998). Mobile agents and security. IEEE

Communications Magazine, vol. 36(7), 76-85.

Guan, S.U. and Yang, Y. (1999). SAFE: secure-roaming agent for e-commerce, in

Proceedings the 26th International Conference on Computers & Industrial Engineering,

Melbourne, Australia, 33-37.

Guan, S.U., Zhu, F.M., and Ko, C.C. (2000). Agent fabrication and authorization in agent-

based electronic commerce, in Proceedings of International ICSC Symposium on Multi-

Deleted:

 14

Agents and Mobile Agents in Virtual Organizations and E-Commerce, Wollongong,

Australia, 528-534.

Guttman, R.H. and Maes, P. (1999). Agent-mediated negotiation for retail electronic

commerce, in Agent Mediated Electronic Commerce: First International Workshop on

Agent Mediated Electronic Trading, (Noriega, P., and Sierra, C. ed.), Springer, Berlin, 70-

90.

Hua, F. and Guan, S.U. (2000). Agent and payment systems in e-commerce, in Internet

Commerce and Software Agents: Cases, Technologies and Opportunities, (Rahman, S.M.

and Bignall, R.J. ed.). Idea Group, PA, 317-330.

Lange, D.B. and Oshima, M. (1998). Programming and Deploying Mobile Agents with Java

Aglets, Addison-Wesley, Mass., USA.
Lee, J.G., Kang, J.Y., and Lee, E.S. (1997). ICOMA: an open infrastructure for agent-based

intelligent electronic commerce on the Internet, in Proceedings of International

Conference on Parallel and Distributed Systems, 648-655.

Jardin, C.A. (1997). Java electronic commerce sourcebook, Wiley Computer Publishing, New

York.

Krishna, V. and Ramesh, V.C. (1998). Intelligent agents for negotiation in market games,

part2: application. IEEE Transactions on Power Systems, vol. 13(3), 1109-1114.

Maes, P. (1994). Agents that reduce work and information overload. Communication of the

ACM, vol. 37(7), 31-40.

Marques, P.J., Silva, L.M., and Silva, J.G. (1999). Security mechanisms for using mobile

agents in electronic commerce, in Proceedings of the 18th IEEE Symposium on Reliable

Distributed Systems, 378-383.

Poh, T.K. and Guan, S.U. (2000). Internet-enabled smart card agent environment and

applications, in Electronic Commerce: Opportunities and Challenges, (Rahman, S.M. and

Raisinghani, M. ed.), Idea Group, PA, 246-260.

Reticular Systems, Inc. (1999). AgentBuilder: an integrated toolkit for constructing intelligent

software agents, revision 1.3, http://www.agentbuilder.com/.

Tenenbaum, J.M., Chowdhry, T.S., and Hughes, K. (1997). Eco system: an Internet

commerce architecture. IEEE Computer, vol. 30(5), 48-55.

Tsvetovatyy, M., Mobasher, B., Gini, M., and Wieckowski, Z. (1997). MAGMA: an agent

based virtual market for electronic commerce. Applied Artificial Intelligence, vol. 11(6),

501-524.

Wang, T.H., Guan, S.U., and Chan, T.K. (2001). Integrity protection for code-on-demand

mobile agents in e-commerce, to appear in Special Issue of Journal of Systems and

Software.

Wayner, P. (1995). Agent Unleashed: A Public Domain Look at Agent Technology, Academic

Press, London.

Wong, D., Paciorek, N., Walsh, T., et al. (1997). Concordia: an infrastructure for

collaborating mobile agents, in Proceedings of First International Workshop on Mobile

Agents, Berlin, Germany.

Wurman, P.R., Wellman, M.P., and Walsh, W.E. (1998). The Michigan Internet AuctionBot:

a configurable auction server for human and software agents, in Proceedings of the

Second International Conference on Autonomous Agents, Minneapolis, USA, 301-308.

Yang, Y. and Guan, S.U. (2000). Intelligent mobile agents for e-commerce: security issues

and agent transport, in Electronic Commerce: Opportunities and Challenges, (Rahman,

S.M. and Raisinghani, M. ed.). Idea Group, PA, 321-336.

Zhu, F.M., Guan, S.U., and Yang, Y. (2000). SAFER E-Commerce: Secure Agent

Fabrication, Evolution & Roaming for E-Commerce, in Internet Commerce and Software

Agents: Cases, Technologies and Opportunities, (Rahman, S.M. and Bignall, R.J. ed.).

Idea Group, PA, 190-206.

Zhu, F.M. and Guan, S.U. (2001). Towards evolution of software agents in electronic

commerce, in Proceedings of the IEEE Congress on Evolutionary Computation 2001,

Seoul, Korea, 1303-1308.

