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Abstract Many constructive learning algorithms have been proposed to find an 

appropriate network structure for a classification problem automatically. Constructive 

learning algorithms have drawbacks especially when used for complex tasks and modular 

approaches have been devised to solve these drawbacks. At the same time, parallel 

training for neural networks with fixed configurations has also been proposed to 

accelerate the training process. A new approach that combines advantages of constructive 

learning and parallelism, output partitioning, is presented in this paper. Classification 

error is used to guide the proposed incremental-partitioning algorithm, which divides the 

original dataset into several smaller sub-datasets with distinct classes. Each sub-dataset is 

then handled in parallel, by a smaller constructively trained sub-network which uses the 

whole input vector and produces a portion of the final output vector where each class is 

represented by one unit. Three classification datasets are used to test the validity of this 

method, and results show that this method reduces the classification test error. 
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1. Introduction 

 

It is widely known that network size is of crucial importance for neural networks. Too 

small a network cannot learn the problem well [1], while a size too large will lead to 

overfitting and thus poor generalization [2]. It is a key issue in neural network design to 

find an appropriate network size automatically for a given application and optimize the 

set of network weights. 

 

There are three approaches to tackle this issue: pruning, regularization, and 

constructive algorithms. In pruning [3], some hidden units or weights are removed during 

training if they are no longer actively used. Regularization uses some penalty terms in the 

cost function to force the weights to yield smooth approximations [4]. The third 

approach, called growing or constructive approach, starts with a small network and then 

grows additional hidden units and weights until a satisfactory solution is found. The 

constructive approach has a number of advantages over pruning and regularization 

approaches. Detailed descriptions can be found in [5]. 

 

Constructive methods include the Dynamic Node Creation (DNC) method [6], 

CasCor family of learning algorithms [7] (including standard Cascade-Correlation (CC) 

algorithm [8]), Constructive single-hidden-layer network [9] and Constructive 

Backpropagation (CBP) algorithm [10], etc. Among them, DNC and CBP have only one 

single hidden layer and a new hidden unit receives complete connections from the inputs 

and is connected to all output units. DNC has no shortcut connections between the input 

units and the output units while CBP begins with shortcut connections. CC begins with 

shortcut connections and then automatically trains and adds new hidden units one by one 
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to create a multilayered network. Each hidden layer so constructed consists of just one 

single unit, which receives connections from each of the network’s inputs as well as from 

all hidden units in previous layers. 

 

Efforts [7, 9-13] have been made to compare their generalization capability. The 

results obtained show that: 1) In most cases, whether to cascade hidden units or not does 

not make a significant difference at all; 2) For some datasets, especially for regression 

problems, non-cascading hidden units is even superior to cascading them.  

 

Besides constructive methods above, Bayesian approaches [27] can be appropriate 

alternatives to automatically determine the optimal network size. In [28, 29], Mackay 

suggested a hierarchical inference approach with the following three progressive levels: 

weight inference, hyperparameter inference and model comparison. Using Bayesian 

approaches, model comparisons do not require any validation sets, hence more samples 

are available for training. However, Bayesian approaches are in general computationally 

expensive. 

 

Although constructive learning algorithms can automatically find an optimal 

combination, they are still suffering from drawbacks such as inefficiency in utilizing 

network resources as the task (and the network) gets larger, and inability of the current 

learning schemes to cope with high-complexity tasks [14]. Large networks tend to 

introduce high internal interference because of the strong coupling among their input-to-

hidden layer weights [15]. Modular neural networks attempts to solve these issues via a 

“divide and conquer” approach. Using this approach, [16] divides the training set into 

subsets recursively using hyperplanes until all the subsets become linearly separable. [17] 
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constructs neural networks where the first unit introduced on each hidden layer is trained 

on all examples and further units on the layer are trained primarily on examples not 

already correctly classified. Using modular neural networks, the input data are partitioned 

into several subspaces, and simple systems are trained to fit the local data. Such data 

partitioning is often more effective than training on the whole input data space [18]. 

 

At the same time, parallel training has also been proposed in order to gain faster 

training. For multilayered neural networks, backpropagation algorithms, including BP 

[19], RPROP [20], Quickprop [21], SuperSAB [22], etc., reveal four different types of 

parallelism as follows [23]: training session parallelism, training set parallelism, 

pipelining and node parallelism. These four parallelisms are commonly used for parallel 

training of a neural network with fixed configuration.  

 

Different from the previously proposed modular neural networks and the four 

network parallelisms mentioned above we propose a new approach — output partitioning. 

A dataset to be classified can be partitioned into several smaller sub-datasets with distinct 

classes. Each sub-dataset is then handled by a smaller sub-network which uses the whole 

input vector as input and produces a portion of the final output vector (each class is 

represented by a unit). Each sub-network solution to each sub-dataset is grown and 

trained using constructive algorithms; this can be performed simultaneously on parallel 

processing elements. The grown sub-networks are then integrated to produce the final 

results. This method creates smaller neural networks which have reduced internal 

interference among hidden layers, consequently, reduces computational time and 

improves performance. In section 1, we briefly recall the CBP learning algorithm. The 

concept of output partitioning is described in section 2. The proposed incremental-
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partitioning algorithm is then described in section 3. Experiments about output 

partitioning are implemented and the results analyzed in section 4. Finally, the 

conclusions are presented in section 5. 

1.1 Constructive backpropagation learning algorithm  
 

The CBP learning algorithm (depicted in Figure 1) can be described briefly as follows 

[10]: 

 

1. Initialization: The network has no hidden units initially. Only bias weights and 

shortcut connections from input units to output units feed the output units. The weights of 

this initial configuration are trained by minimizing the sum of squared errors cost 

function: 
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where jkw  is the connection from the j th hidden neuron to the k th output unit 

( kw0 represents a set of weights which are the bias weights and shortcut connections 

trained in step 1), pjo is the output of the j th hidden neuron for the p th training pattern 

( 0po represents inputs to bias weights and shortcut connections), while )(⋅a is the 

activation function. Note that from the new i th neuron's perspective, the previous 

neurons are fixed. We are only training the weights connected to the new unit. 

 

3. Freezing the new hidden unit: Fix the weights connected to the units permanently.  

 

4. Testing for convergence: If the current number of hidden units yields an acceptable 

solution, then stop training. Otherwise go back to step 2. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Evolution of the CBP architecture 

 

2. Output partitioning  

 

The goal for constructively constructing a neural network with output partitioning is to 

obtain an appropriate architecture of sub-networks with a set of weights that 

satisfy thEE <  ( thE  is the threshold of E ). 
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2.1 Dataset partitioning 

 

If we partition the output vector (each class is represented by one unit) into r sections 

( rSSS ,,, 21 ⋅⋅⋅ ), each containing at least one output unit, then equation (1) can be 

transformed into: 
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where KSSS r =+⋅⋅⋅++ 21 . 

 

1E , 2E ,…, rE  are independent of each other. The only constraint among them is 

that their sum E  should be smaller than thE . So we can partition the original dataset into 

r  sub-datasets.  

 

2.2 Sub-network growing  

 

After partitioning, the original dataset is divided into r  sub-datasets. The original single 

neural network solution for the dataset is replaced by r sub-networks (sub-NN), i.e. sub-

NN1, sub-NN2, …, sub-NNr, each of which is constructed for a sub-dataset, as shown in 

Figure 2. Each sub-NN can be grown and trained on different processing elements. When 
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we are classifying an unknown sample, each sub-NN computes a portion of the output 

vector and their results are merged to generate the final output.  

 

 

 

 

 

 

 
Figure 2. Parallel growing based on output partitioning 

 

3. Algorithm for growing and training neural networks using 

output partitioning   

 

3.1 Definitions 
 

Constructive learning algorithms are very sensitive to changes in the stopping criteria. If 

training is too short, the components of the network will not work together well enough 

for good results. If training is too long, it costs too much computation time and may result 

in overfitting and bad generalization. In this paper, we adopt the method of early stopping 

[7, 24] using a validation set. 

 

The set of available patterns is divided into three sets: a training set is used to 

train the network, a validation set is used to evaluate the quality of the network during 

training and to measure overfitting, and finally a test set is used at the end of training to 

    1 2                         K-1       K   
   …

sub-NN1 sub-NNr-1 sub-NNr 

… 1−rS  1S  rS  
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evaluate the resultant network.  In this paper, the size of the training, validation and test 

set is 50%, 25% and 25% of the dataset’s total available patterns. 

 

The error measure E  used is the squared error percentage [24], derived from the 

normalization of the mean squared error to reduce the dependence on the number of 

coefficients in (1) and on the range of output values used: 
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where maxo and mino are the maximum and minimum output values in (1). 

 

)(tEtr  is the average error per pattern of the network over the training set, 

measured after epoch t . The value )(tEva  is the corresponding error on the validation set 

after epoch t  and is used by the stopping criteria. )(tEte  is the corresponding error on the 

test set; it is not known to the training algorithm but characterizes the quality of the 

network resulting from training. The value )(tEopt  is defined to be the lowest validation 

set error obtained in epochs up to epoch t :  

)'(min)(
'
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The relative increase of the validation error over the minimum so far (in percent) 

is defined as the generalization loss at epoch t : 
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A high generalization loss is one candidate reason to stop training because it 

directly indicates overfitting.  
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A training strip of length m [24] is defined to be a sequence of m epochs 

numbered  n+1, …, n+m, where n  is divisible by m. The training progress measured 

after a training strip is: 

)1
)'(min

)'(
(1000)(

...1'

...1' −
⋅

⋅=
+−∈

+−∈∑
tEm

tE
tP

trtmtt

tmtt tr
m        (7) 

that is used to measure how much larger the average training error is than the minimum 

training error during the training strip.  

 

3.2 Procedure for growing and training of the sub-networks 

 

The procedure for growing and training each sub-NN is shown in Figure 3. sub_epoch is 

used to represent running epochs for training one configuration of a sub-NN. total_epoch 

is used to represent the total running epochs for growing the sub-NN (the sum of all 

sub_epochs). Initially, the sub-NN has no hidden units. There are only bias weights and 

the shortcut connections between inputs and output units. Now sub_epoch and 

total_epoch are both set to 1. Then train the initial neural network using the RPROP 

algorithm. Set the corresponding validation error va optE E=  , the optimal validation error 

so far. Record the weights accordingly as the optimal weights. 

 

After every m epochs (m is strip length, we used m =5), compare vaE  to optE . If  

vaE  is less than optE , then set optE  as vaE  and record the weights accordingly as the 

optimal weights. After every epoch, check the overall stopping criteria : 
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 (Training has reached Z = 5000 epochs) OR ( thopt EE < )  

OR ((Reduction of training set error due to the last new hidden unit is less than 1% ) 

AND (Validation set error increased due to the last new hidden unit)) 

 

If the overall stopping criteria are not satisfied, then check the criteria for adding a 

new hidden unit. If a new hidden unit should be added, then copy weights from the 

optimal weights and freeze the weights. The criteria for adding a new hidden unit:  

(At least X epochs reached)  

AND ((Generalization loss )(tGL >5) OR (Training progress )(tPm <0.1) OR (Y 

epochs reached)) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The growing and training procedure for sub-NNs 
 
 
 

Construct and Initialize sub-NN  
sub_epoch = 1 
total_epoch = 1 
While  (total_epoch < Z) 
{ 
 Train the current configuration of sub-NN for one epoch 
 If (sub_epoch == 1) 

optE = vaE  (Record the weights accordingly as the optimal weights) 

If (sub_epoch % m  == 0 && vaE < optE )   

optE = vaE  (Record the weights accordingly as the optimal weights) 

If ( thopt EE <  || little-improvement from last new hidden unit) 
  Break 

If (sub_epoch > X && ( )(tGL >5 || )(tPk <0.1 || sub_epoch > Y)) 
Copy weights from the optimal weights 

 Add a new hidden unit and initialize the weights (randomly) 
  sub_epoch = 0 
 sub_epoch ++ 
 total_epoch++ 
} 
Calculate teE  and Exit 

#We used X = 80 epochs while Y = 500 epochs. 
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3.3 Incremental-Partitioning algorithm  

 

The motivation to use several smaller sub-NNs is to reduce the high internal interference 

inherent in large networks [15] which has to classify all K  classes in a particular dataset. 

By dividing the original dataset into several sub-datasets with distinct classes and using 

smaller separate, sub-NNs for each sub-dataset of classes, we can reduce the internal 

interferences in the input-to-hidden layer weights, hence reduce the overall classification 

errors. Classification error is used as a metric to measure the interference among different 

classes. Here we propose an incremental-partitioning algorithm to produce near-optimal 

partitioning of classes according to the classification error. The algorithm produces a near 

optimal partitioning of the classes, in the form of an unordered list – for example 

{{6,3,2,11,9},{10,1,8},{4,7},{5}} where each element in the list represents a specific 

class in the original dataset (11 classes). In the above example, there are four partitions 

each representing a sub-dataset that will be trained on a sub-NN separately. 

 

The details of this algorithm are described as follows.  

 

Step 1: Find the classification error iC of each class and order them in ascending order as 

{ ,..., ,..., }a b cC C C , where a b cC C C≤ ≤ . To obtain the individual iC , 1 i K≤ ≤ , all 

patterns not belong to class i  are labeled as patterns of class i . A single NN is then used 

for the resulting two-class classification problem. 

 

Step 2: Form the first partition with the class i , i.e. {{ }}i . 
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Step 3: Choose another class j , add it to the above partition, i.e. {{ , }}i j  and measure the 

classification error. Similar to Step 1, all patterns not belonging to class i  and class j  are 

assigned as patterns of class ,i j . A single NN is then used for the resulting three-class 

classification problem. Next, put class j  into a new partition, i.e. {{ },{ }}i j  and measure 

again the classification error (training a sub-NN for each partition). For each sub-NN 

training respectively, all patterns not belonging to class i /class j  are assigned as patterns 

of class i /class j . A single NN is then used for each resulting two-class classification 

problem. Adopt the partitioning that produces a smaller classification error.  

 

Step 4: Repeat Step 3 for all remaining classes in the dataset. Assign another class to each 

existing partition and measure the resulting classification error. Next, form a new 

partition containing only this class and again measure the resulting classification error. 

For each sub-NN to be trained, all patterns not belonging to the classes in the partition 

will be assigned as patterns of a single “dummy” class. The classification error thus 

obtained is a measure of the difficulty in discriminating between patterns of a particular 

class (or some classes) and patterns from all the other classes. Based on the smallest 

possible classification error over all the possible combinations tested, this class is then 

either added to any existing partition or used to form a new single-class partition. In the 

final list, each partition contains distinct classes to be classified using a separate sub-NN. 

 

There are two major considerations required in the above algorithm - how to 

choose the first class to form the first partition and how to decide the order of assigning 

the remaining classes. 
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For the first class, we chose the class with the largest classification error (last 

element in { ,..., ,..., }a b cC C C ) since this class will dominate both the NN performance 

and the NN structure. When the classification error for a particular class is high, it will be 

very difficult to distinguish between the patterns belonging to this class and those 

patterns from the other classes (see Step 1 on how iC  is obtained). Therefore, the 

classification error for patterns from this class will dominate the overall classification 

error. The size of the classification error also influences directly the overall structure of a 

NN. During NN training, the NN either generates more hidden units or performs more 

weight adjustment to reduce any large classification error. 

 

We assign the remaining classes using the ordered list { ,..., ,...} \a b cC C C  (the 

class with largest classification error has previously been assigned), that is to try and 

partition the classes with the smallest classification error first. Patterns belonging to 

classes with smaller errors tend to be more easily distinguished from patterns belonging 

to the other classes. And it is more likely to obtain the lowest possible classification error 

when such classes with smaller errors are assigned into existing partitions. Furthermore, 

lesser partitions will be present in the final list generated. With lesser sub-NNs to be 

trained, fewer resources are required. 

 

Soft constraints were also used in the incremental-partitioning process where a 

small predefined performance margin is used for considering alternative solutions. 

During each stage of assigning classes into partitions, there can exist several intermediate 

solutions whose classification errors are close. Whenever a big increase in the 

classification error for all possible solutions is encountered in any stage of the algorithm, 
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back-tracking is performed and we consider alternative intermediate solutions (with 

classification errors within the margin) obtained in the previous stage. 

4. Experimental results  

4.1 Experiment scheme 

 

In this paper, we adopt the CBP network growing algorithm with the RPROP algorithm 

[20] for training the sub-NNs. The RPROP algorithm was used with the following 

parameters: 2.1=+η , 5.0=−η , 1.00 =∆ , 50max =∆ , 60.1min −=∆ e , initial weights 

from –0.25 … 0.25 randomly. The hidden units and output units all use the sigmoid 

activation function. All the experiments were simulated on a single Pentium III –500 PC. 

If implemented in parallel on multiple processors, communication overhead may be 

negligibly small as there is not much communication until the result merging stage. 

 

4.2 Benchmark dataset descriptions 
 

We examined the above automatic partitioning procedure on three classification datasets 

(see Table 1 for description). For each classification dataset, we use the incremental-

partitioning algorithm with performance margin 1% (i.e. alternative solutions have 

classification errors within 1% of the lowest classification error), as given in Section 3.2. 

 

Table 1. Benchmark dataset descriptions 

Dataset No. of outputs 
(classes) 

No. of inputs No. of examples in  
(train / validation / test) sets 

Thyroid 3 20 3600 / 1800 / 1800 
Glass 6 9 107 / 54 / 53 
Vowel 11 10 495 / 248 / 247 
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4.2.1 Thyroid1 

The individual classification error of each class is shown in Table 2. According to the 

algorithm in Section 3.2, we form the first partition with class 2. The incremental-

partitioning process is shown in Table 3. 

Table 2. Classification errors for individual classes in Thyroid1 

Class 1 2 3 
Ci 1.58 1.83 1.72 

 

Table 3.  Incremental-partitioning of Thyroid1 

Class Assigned  Partitioning / Ci Partitioning / Ci Partitioning / Ci 
2 {2} / 1.83   
1 {2,1} / 2.22 {{2},{1}} / 1.89  
3 {{2,3},{1}} / 2.06 {{2},{1,3}} / 1.72 {{2},{1},{3}} / 1.89 

 

The solutions formed during each stage, together with their associated 

classification error iC , are shown in Table 3. The class being assigned is shown in the 

leftmost column and the classification errors of partitionings attempted by the algorithm 

are recorded in the subsequent columns with the best current partitioning highlighted in 

bold. As the algorithm progresses, more partitionings will be attempted if more partitions 

were formed in the earlier stages. The partitionings can be read as, for example {2,1} 

means class 2 and 1 are assigned into one same partition and {{2},{1}} means class 2 

and 1 are assigned into two different partitions. For the Thyroid1 problem, we get the 

near-optimal partition of {{2},{1, 3}}.Compared with the non-partitioning and full-

partitioning methods (shown in Table 4), the classification error was reduced by 8.9% 

and 7.5% respectively. 

Table 4. Comparison of different methods for Thyroid1 

 Non-partitioning Full-partitioning Incremental-partitioning 
Classification error 1.86 1.89 1.72 
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4.2.2 Glass1 

The individual classification error of each class is shown in Table 5. We form the first 

partition with class 2. The incremental-partitioning process is shown in Table 6. 

 

     Table 5. Classification errors for individual classes in Glass1 

Class 1 2 3 4 5 6 
Ci 20.28 34.91 8.30 1.04 0.85 9.43 

 

Table 6. Incremental-partitioning of Glass1 

Class 
Assigned 

Partitioning / Ci Partitioning / Ci Partitioning / Ci Partitioning / Ci 

2 {2}  
 / 34.91 

   

5 {2,5} 
 / 34.34 

{{2},{5}} 
 / 34.15 

  

{2,5,4} 
 / 37.74 

{{2,5},{4}} 
 / 36.91 

{{2,4},{5}} 
 / 35.00 

{{2},{4,5}} 
 / 35.85 

4 

{{2},{4},{5}} 
 / 34.82 

   

{{2,3},{4},{5}} 
 / 30.76 

{{2,}{3,4},{5}} 
 / 34.49 

{{2},{4},{3,5}} 
 / 35.57 

{{2},{3},{4},{5}} 
 / 29.06 

3 

{{2,3,4},{5}} 
 / 32.08e 

{{2,4},{3,5}} 
 / 41.51 

{{2,4},{3},{5}} 
 / 43.39 

 

{{2,6},{3},{4},{5}} 
 / 36.42 

{{2},{3,6},{4},{5}} 
 / 37.08 

{{2},{3},{4,6},{5}} 
 / 37.08 

{{2},{3},{4},{5,6}} 
 / 39.05 

6 

{{2},{3},{4},{5},{6}} 
 / 36.13 

   

{{2,6,1},{3},{4},{5}}  
 / 32.93 

{{2,6},{3,1},{4},{5}}   
 / 36.96 

{{2,6},{3},{4,1},{5}}  
 / 37.73 

{{2,6},{3},{4},{5,1}}  
 / 38.85 

{{2,1},{3},{4},{5},{6}} 
 / 36.32 

{{2},{3,1},{4},{5},{6}}
 / 36.96 

{{2},{3},{4,1},{5},{6}}
 / 39.84 

{{2},{3},{4},{5,1},{6}}
 / 37.71 

1 

{{2,},{3},{4},{5},{1,6}} 
 / 39.88 

   

 

As shown in Table 6, in some stages, partitionings whose classification errors are within 

the specified performance margin (1%), are also kept for future generation (more than 

one entry highlighted in bold). Compared with the non-partitioning and full-partitioning 

methods (shown in Table 7), the classification error was reduced by 8.9% and 20% 

respectively. 
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Table 7. Comparison of different methods for Glass1 

 Non-partitioning Full-partitioning Incremental-partitioning 
Classification error 41.22 36.13 32.93 

 

4.2.3 Vowel1 

The individual classification error of each class is shown in Table 8. We form the first 

partition with class 6. The incremental-partitioning process is shown in Table 9. 

Table 8. Classification errors for individual classes in Vowel1 

Class 1 2 3 4 5 6 7 8 9 10 11 
C.error 2.00 2.39 2.00 2.81 5.43 8.40 4.72 3.95 7.45 2.19 6.84 

 

Table 9. Incremental-partitioning of Vowel1 

Class 
Assigned 

Partitioning / Ci Partitioning / Ci Partitioning / Ci 

6 {6} / 8.40   
3 {6,3} / 8.40 {{6},{3}} / 11.84  
1 {{6,3},{1}} / 13.26 {6,3,1} / 15.69  
10 {{6,3,10},{1}} / 15.49 {{6,3},{10},{1}} / 13.82 {{6, 3},{10},{1}}  / 12.85 
2 {{6,3,2},{10,1}} / 13.82 {{6,3},{10,1,2}} / 14.63 {{6,3},{10,1},{2}} / 14.37 
4 {{6,3,2,4},{10,1}} / 14.47 {{6,3,2},{10,1,4}} / 13.77 {{6,3,2},{10,1},{4}} / 13.21 
8 {{6,3,2,8},{10,1},{4} / 19 {{6,3,2},{10,1,8},{4}} / 13.92 {{6,3,2},{10,1},{4,8}} / 17.71
 {{6,3,2},{10,1},{4},{8}} 

 / 17.41 
  

7 {{6,3,2,7},{10,1,8},{4}} 
 / 22.98 

{{6,3,2},{10,1,8,7},{4}} 
 / 20.39 

{{6,3,2},{10,1,8},{4,7}} 
 / 19.08 

 {{6,3,2},{10,1,8},{4},{7}}  
 / 20.60 

  

5 {{6,3,2,5},{10,1,8},{4,7}} 
 / 18.72 

{{6,3,2},{10,1,8,5},{4,7}} 
  / 16.85 

{{6,3,2},{10,1,8},{4,7,5}} 
 / 19.64 

 {{6,3,2},{10,1,8},{4,7},{5}}  
 / 16.09 

  

11 {{6,3,2,11},{10,1,8},{4,7},{5}} 
 / 21.15 

{{6,3,2},{10,1,8,11},{4,7},{5}}
 / 25.40 

{{6,3,2},{10,1,8},{4,7,11},{5
}} 
 / 27.53 

 {{6,3,2},{10,1,8},{4,7},{5,11
}  
 / 21.41 

{{6,3,2},{10,1,8},{4,7},{5},{11
}} 
 / 22.67 

 

9 {{6,3,2,11,9},{10,1,8},{4,7},{5
}}  
 / 18.57 

{{6,3,2,11},{10,1,8,9},{4,7},{5
}} 
 / 28.34 

{{6,3,2,11},{10,1,8},{4,7,9},{
5}}   
 / 20.11 

 {{6,3,2,11},{10,1,8},{4,7},{5,
9}}  
 / 19.43 

{{6,3,2,11},{10,1,8},{4,7},{5},{
9}}   
 / 21.15 
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We obtain the near-optimal partitioning {{6, 3, 2, 11, 9}, {10, 1 8}, {4, 7}, {5}}. The 

comparison with the non-partitioning and full-partitioning methods is shown in Table 10. 

We can find the classification error was reduced significantly by partitioning. Recalling 

from Table 9, an interesting result is that we can find many solutions whose error is 

smaller than the non-partitioning or full-partitioning methods. For this dataset, there exist 

several incremental-partitioning solutions.  

Table 10. Comparison of different methods for Vowel1 

 Non-partitioning Full-partitioning Incremental-partitioning 
Classification error 34.73 24.39 18.57 

 

4.3 Analysis of complexity 

In the proposed algorithm, the computation complexity is not constant but changes with 

the specified performance margin. When soft constraints are not applied, the required 

number of partitions to test is 
1

K

i
i

=
∑ , where K  is the total number of classes. If the 

specified performance margin is large, the number of competing partitioning candidates 

per stage will increase. In the extreme situation where the margin is infinite, the searching 

algorithm will search every possible partitioning to look for the global optima. Therefore, 

we can find a partitioning with the best performance. If the margin is small, for example 

1% in above cases, the number of competing partitions is decreased. So the complexity of 

computation is also decreased. However, the final partitioning is less probable to be the 

global optima. In conclusion, there is a tradeoff between the complexity of computation 

and the performance of the incremental-partitioning algorithm. 

5. Conclusions 

An approach to grow and train neural networks based on output partitioning is presented. 

A dataset can be partitioned into several simpler sub-datasets where internal interference 
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is greatly reduced. From the experimental results obtained for all three datasets, 

partitioning a dataset using our proposed incremental-partitioning algorithm leads to 

lower classification errors. The results were better than either the non-partitioning and 

full-partitioning methods. The improvement is especially significant in datasets with 

more classes (Vowel). In datasets with large number of classes, the chances of having 

imbalanced class data are higher. The actual distance between each class is also likely to 

be non-uniform. Output partitioning utilizes the above phenomenon to assign appropriate 

classes to separate sub-NNs with the incremental-partitioning algorithm. And through 

adjusting the performance margin, we have tradeoff between the computation complexity 

and the performance of the final partitioning.  
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