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In the information-based approach to asset pricing the market filtration is mod-
elled explicitly as a superposition of signals concerning relevant market factors and
independent noise. The rate at which the signal is revealed to the market then
determines the overall magnitude of asset volatility. By letting this information
flow rate random, we obtain an elementary stochastic volatility model within the
information-based approach. Such an extension is justified on account of the fact
that in real markets information flow rates are rarely measurable. Effects of having
a random information flow rate is investigated in detail in the context of a sim-
ple model setup. Specifically, the price process of an elementary defaultable bond
derived, and its characteristic behaviours are revealed via simulation studies. The
price of a European-style option on the bond is worked out, showing that the model
has a sufficient flexibility to fit volatility surface. As an extension of the random
information flow model, modelling of price manipulation is considered. A simple
model is used to show how the skewness of the manipulated and unmanipulated
price processes take opposite signature.

I. INTRODUCTION

In the information-based asset pricing framework of Brody, Hughston and Macrina (here-
after the BHM framework) the starting point is the specification of a model for the market
filtration, along with the cash flow of the asset [1–4]. The market filtration, more specifically,
is generated by a market information process that takes the form of a superposition of a
‘signal’ component associated with the cash flow of the asset (or, more generally, market
factors relevant to the actual cash flow) and an independent ‘noise’ component that obscures
the value of the cash flow. The simplest model for the information process within the BHM
framework was introduced in the context of modelling credit-risky discount bond price pro-
cess [1]. Specifically, we fix a probability space (Ω,Ft,Q), where Q denotes the risk-neutral
measure, and let XT denote the random variable representing the impending cash flow of a
credit-risky bond, with maturity T . The process that generates market information is then
defined by

ξt = σXT t+ βtT , (1)

where {βtT}0≤t≤T is a standard Brownian bridge on the interval [0, T ], independent of XT ,
and information flow-rate parameter σ > 0 is assumed constant.

The rationale of the model (1) can be described briefly as follows. Before time T market
participants do not have direct access to the value of the cash flow. Market participants
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nevertheless have partial information (signal) concerning the value of XT , which according
to this simple model choice is revealed to the market at a constant rate σ. This ‘signal’ is
however obscured by an independent ‘noise’, which is modelled here by a Brownian bridge
{βtT}. The market filtration {Ft} is thus identified to be that generated by the information
process {ξt}0≤t≤T . The price process of the asset that entails a single cash flow XT at time
T , which in this case might be viewed as a credit-risky discount bond, is thus obtained
according to the prescription:

BtT = PtTEQ[XT |Ft]. (2)

Here we let {PtT} denotes the discount function, which for simplicity is assumed determin-
istic. We thus see that, once the pricing measure Q is fixed, there are two inputs; cash flow
XT and market filtration {Ft}, the specification of which leads to an output that is the price
process {BtT}.

The fact that it is market information that affects price dynamics has been emphasised
by many authors (e.g., [5, 6]), and has been demonstrated against market data more re-
cently (e.g., [7–9]). The aim of the BHM approach is therefore to bring the mathematical
abstraction of financial modelling at the level of the specification of market filtration. In
this way, price process can be derived as an emergent phenomenon, rather than postulated
from the outset. Motivated by this, here we analyse in detail properties of a specific model
that corresponds to the simplest stochastic-volatility extension of the original BHM model
introduced in [1].

One of the simplifying assumptions in the original BHM model (1) and the various general-
isations of it that have appeared in the literature is that the information flow-rate parameter
σ is taken to be F0-measurable. In a more realistic setup, however, market participants have
little knowledge about the value of σ. In fact, in most cases the information flow rate is not
measurable even after the value of XT is revealed. The main issue addressed in this paper
is therefore to extend the original BHM model to allow for σ to be a random variable. Such
an extension is shown to give rise to a sufficient flexibility to calibrate volatility surfaces of
the original BHM model.

The paper is organised as follows. In §II we begin by discussing the interpretation of the
information process (1) as representing the totality of information available to the market
concerning the value of XT . In §III we work out a statistical measure of sensitivity of
the BHM model against the choice of the parameter σ, thus indicating the region in the
parameter space that is susceptive to the misspecification of σ in the original BHM model.
In §IV we show that there is a kind of complementarity relation that holds between the
information flow rate σ and the cash flowXT , and that they cannot both take arbitrary values
owing to the measurability condition. In §V we derive the expression for the defaultable
bond price process in the random σ environment. The associated price dynamics is worked
out in §VI. In §VII and §VIII we carry out a detailed numerical analysis to reveal a range of
subtle details about the price dynamics resulting from the model. The pricing of an option
on the defaultable bond is worked out in §IX. We conclude in §X with a sketch of an idea
on how we can model price manipulation within the information-based framework.

II. MEANING OF THE INFORMATION PROCESS

Before we proceed to investigate the properties of the model with a random σ in detail,
let us first comment on the meaning of the information process (1). In general, in a financial
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market, even if we accept the simplifying assumption implicit in (1) that the only relevant
market factor is the cash flow XT , there are plenty of information sources available for XT ,
each being obscured by noise. We can therefore represent each of the information source in
the signal-plus-noise form (1) and write

ξ1
t = σ1XT t+ β1

tT
...

ξnt = σnXT t+ βntT

(3)

for the family of information processes available in the market concerning the impending
cash flow XT . The various noise processes {βitT}i=1,...,n in general may be mutually correlated
(with correlation matrix ρ), but they are all independent of XT .

An important point to observe now is the fact that the aggregate information processes
(3) is somewhat redundant; the information relevant to the cash flow XT contained in (3)
can be represented in the form of a single information process (1), with the choice

σ2 =
Σn
i σ

2
i ρ
−1
ii − 2Σi 6=jσiσjρ

−1
ij

det(ρ)
(4)

for the effective information flow rate, and

βtT =
1

σ

(
ΣN
i,jσiρ

−1
ij β

i
tT

)
(5)

for the effective noise. Here ρ−1
ij denotes the ij element of the inverse correlation matrix.

Put the matter differently, the filtration generated jointly by the set of information pro-
cesses (3) is equivalent to the filtration generated jointly by the single information process
(1) and a family of noise processes given by combinations of {βitT}. However, since noise
terms are independent of XT , they make no contribution towards the pricing of that asset
entailing the cash flow XT . We can therefore discard them altogether and represent the
totality of ‘relevant’ information in the form of a single information process (1).

Remark: In the case of a pair of information processes on the same market factor XT , the
construction of an effective information process is used in [10] to characterise the behaviour
of an informed trader having access to additional noisy information.

III. SENSITIVITY ANALYSIS

It is of interest to identify the sensitivity of the BHM model (1) to the specification of the
information flow-rate parameter σ, given the fact that the value of σ is usually unknown.
Often one considers the option vega as a measure of parameter sensitivity, but here we
are interested in a global measure of parameter sensitivity. The result will be useful in
identifying the region in the parameter space for which a misspecification of the flow-rate
parameter σ yields significant errors in pricing a range of products, not just vanilla options.

A universal measure of sensitivity in statistical analysis is given by the Fisher information
[11]. To work out the Fisher information associated with the parameter σ we proceed as
follows. For simplicity, let as assume that the cash flow XT takes discrete values {xi} with
a priori probability {pi}. To determine the information measure of Fisher we need the
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expression for the a posteriori probability πit = Q(XT = xi|Ft). It is shown in [1], by
making use of the Bayes formula, that this is given by

πit =
pi exp

(
T
T−t

(
σxiξt − 1

2
σ2x2

i t
))∑

pi exp
(

T
T−t

(
σxiξt − 1

2
σ2x2

i t
)) . (6)

We can therefore regard {πit} = {πit(σ)} as a one-parameter family of probabilities. The
Fisher information gt(σ) associated with the parameter σ is then defined by the expression:

gt(σ) =
∑
i

1

πit(σ)

(
∂πit(σ)

∂σ

)2

. (7)

Remark: It is interesting that the Fisher information in the case of the BHM model (1)
has the interpretation in terms of the conditional variance:

gt(σ) = σt
(

T
T−t

)2
var (XTβtT |ξt) . (8)

To see this, let us define

pit(σ) = pi exp
(

T
T−t

(
σxiξt − 1

2
σ2x2

i t
) )

(9)

so that πit = pit/
∑

i pit. We then have

∂pit(σ)

∂σ
=

T

T − t
(xiξt − σx2

i t)pit(σ), (10)

from which it follows that

∂πit
∂σ

=
1

(
∑

i pit)
2

[
∂pit
∂σ

∑
i

pit − pit
∑
i

∂pit
∂σ

]

=
T

T − t
pit

(
xiξt − σx2

i t∑
i pit

−
∑

i pit(xiξt − σx2
i t)

(
∑

i pit)
2

)
. (11)

Therefore, we obtain

gt(σ) =

(
T

T − t

)2
∑

i pit

(
xiξt − σx2

i t−
P

i pit(xiξt−σx2
i t)P

i pit

)2∑
pit

, (12)

and by substitution of (1) in (12) we deduce (8).
The reason that gt(σ) measures the parameter sensitivity follows from the celebrated

Cramér-Rao inequality, which shows that the variance of the parameter estimate is bounded
below by the inverse of the Fisher information. Additionally, as observed by Rao [12], the
separation, i.e. the divergence measure associated with two models characterised by πit(σ)
and πit(σ

′) is determined by the integral:

Dt(σ, σ
′) =

∫ σ′

σ

√
gt(u) du. (13)
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FIG. 1: The unconditional expectation E[gt(σ)] of the Fisher information for different values of t.
The numerical result is obtained by averaging over 1,000 sample paths. The parameters are chosen
such that {xi} = {0, 0.5, 1}, {pi} = {0.1, 0.15, 0.75}, and T = 1. Where the value of E[gt(σ)] is
high, the model is on average sensitive to the choice of the specification of the parameter σ.

In figure 1 we show the numerical plot of the expectation E[gt(σ)] of the Fisher information
for different values of t, averaged over 1,000 sample paths. The parameters are chosen such
that {xi} = {0, 0.5, 1}, {pi} = {0.1, 0.15, 0.75}, and T = 1. We observe that the Fisher
information is increasing in σ. It is evident from the plot that the basic BHM model (1) is
sensitive to the choice of the information flow rate parameter σ up until about two thirds
of the way into the duration of the contract. The price of a generic derivative on a credit
risky bond, with maturity not too close to zero but also shorter than two-third of the bond
maturity, is thus likely to be sensitive to the specification of the parameter σ in this model.
This sensitivity can be made more robust by allowing σ to be random.

IV. QUANTISATION OF INFORMATION FLOW RATE

As indicated above, the complicated way in which the market information flow rate σ
depends on individual information flow rates {σi}, as represented in (4), suggests that it is
not reasonable to assume that market participants have access to the value of σ. Indeed,
in many realistic setup it is unlikely that market participants will ever learn the value of σ,
even after the value of XT is revealed (cf. [9]). More generally, the value of σ can change
over time in a random manner. Here we will be considering the simplest such situation
in which σ is given by a fixed random variable independent of XT and {βtT}. Before we
proceed, however, we draw attention to the fact that whether σ is a fixed random variable
or a more-general stochastic process, the FT -measurability of XT enforces a constraint on
the allowable choice for σ.

To see this, let us consider a simple example. Suppose that the random cash flow XT
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takes three possible values {0, 0.5, 1} with a priori probability {p1, p2, p3}, and σ takes two
possible values {0.5, 1} with a priori probability {q1, q2}. Then there are four possible
realised values for the terminal information ξT :

ξT = σTXT =


0 ⇒ XT = 0, σ = 0.5 or 1;

0.25T ⇒ (XT , σ) = (0.5, 0.5);

0.5T ⇒ (XT , σ) = (0.5, 1) or (1, 0.5);

T ⇒ (XT , σ) = (1, 1).

(14)

In this example, if the realised value of ξT happens to be 0, 0.25T , or T , then we can
unambiguously determine the value of XT irrespective of what the value of σ might have
been; whereas if the outcome happens to be 0.5T , then the value of XT could be 0.5 or 1.

This example illustrates the fact that once the cash flow random variable is modelled,
the information flow rate cannot take an arbitrary random variable. In particular, σ can
not be a continuous random variable. (More generally, if σ = σ(t) is time dependent, then
σ(t) for t < T can be arbitrary, but the constraint discussed here remains applicable for the
terminal value σ(T ).) Therefore, there is a kind of ‘quantisation’ condition imposed on σ.
For the same token, in the random-σ environment, the cash flow XT cannot be a continuous
variable—this does not pose real constraints because cash flows are strictly speaking never
continuous in reality.

V. PRICE PROCESS WITH A RANDOM INFORMATION FLOW RATE

Bearing in mind the quantisation condition imposed by the measurability of XT , we
proceed to consider the random-σ extension of the BHM model. Specifically, we let XT

take the values {xi}i=1,...,n with a priori probabilities {pi}i=1,...,n; and let σ take the values
{σk}k=1,...,m with a priori probabilities {qk}k=1,...,m. These random variables are chosen such
that degenerate situations like the example given in (14) are excluded, and hence XT is
ensured to be FT -measurable.

To determine the conditional expectation E[XT |Ft] we determine first the conditional
probability πit = Q(XT = xi|Ft). A calculation making use of the Bayes formula shows that
this is given by

πit =

∑m
k=1 piqk exp

[
T
T−t

(
xiσkξt − 1

2
x2
iσ

2
kt
)]∑n

s=1

∑m
l=1 psql exp

[
T
T−t

(
xsσlξt − 1

2
x2
sσ

2
l t
)] . (15)

It follows that the bond price is give by:

BtT = PtT

∑n
i

∑m
k=1 xipiqk exp

[
T
T−t

(
xiσkξt − 1

2
x2
iσ

2
kt
)]∑n

s=1

∑m
l=1 psql exp

[
T
T−t

(
xsσlξt − 1

2
x2
sσ

2
l t
)] . (16)

The derivation of (15) follows closely that of the original BHM model in [1]. First, we
show that the information process (1) with a random σ is a Markov process satisfying

Q(ξt ≤ x|Fs) = Q(ξt ≤ x|ξs) (17)

for all x ∈ R and all s, t such that 0 ≤ s ≤ t ≤ T . To establish this, it suffices to show that

Q(ξt ≤ x|ξs, ξs1 , ..., ξsk
) = Q(ξt ≤ x|ξs) (18)
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for any collection of times t, s, s1, ..., sk such that T ≥ t > s > s1 > ... > sk > 0. We recall
first that from properties of a Brownian bridge process it follows that (βsT/s−βs1T/s1) and
(βs2T/s2 − βs3T/s3) are independent. We now observe that

Q(ξt ≤ x | ξs, ξs1 , · · · , ξsk
) = Q

(
ξt ≤ x | ξs,

ξs
s
− ξs1
s1

, · · · ,
ξsk−1

sk−1

− ξsk

sk

)
= Q

(
ξt ≤ x | ξs,

βsT
s
− βs1T

s1

, · · · ,
βsk−1T

sk−1

− βskT

sk

)
, (19)

but since ξs and ξt are independent of the remaining variables βsT/s − βs1T/s1, · · · ,
βsk−1T/sk−1 − βskT/sk, the desired Markov property follows.

From the Markovian property of {ξt} the problem of determining the conditional proba-
bility process {πit} simplifies to calculating the conditional probability Q(XT = xi|ξt). Then
from the Bayes formula we find

Q(XT = xi|ξt) =
Q(XT = xi)ρ(ξt|XT = xi)∑
i Q(XT = xi)ρ(ξt|XT = xi)

, (20)

where ρ(ξ|XT = xi) is the conditional density for ξt. But from

ρ(ξt|XT = xi) =
∑
k

ρ(ξt|XT = xi, σ = σk)Q(σ = σk) (21)

we deduce that

πit =

∑
k piqkρ(ξt|XT = xi, σ = σk)∑

i

∑
k piqkρ(ξt|XT = xi, σ = σk)

. (22)

Conditional on XT = xi and σ = σk the random variable ξt = σXT t+βtT has the probability
law of a drifted Brownian bridge:

ρ(ξt|XT = xi, σ = σk) =
1√

2πt(T − t)/T
exp

(
−1

2

(ξt − σkxit)2

t(T − t)/T

)
. (23)

Substituting (23) in (22) we deduce the desired expression (15).

VI. PRICE DYNAMICS

With the expression (16) for the price process at hand we are able to investigate its
dynamics. To proceed let us write pikt = pik(t, ξt), where

pik(t, ξ) = piqk exp

[
T

T − t
(
xiσkξ − 1

2
x2
iσ

2
kt
)]
. (24)

Then an application of Ito’s lemma gives

dpikt
pikt

=
σkT

T − t
xi

(
dξt +

ξt
T − t

dt

)
. (25)
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It follows that the process {pit} defined by

pit =
∑
k

pikt (26)

fulfils the stochastic equation

dpit =
T

T − t
xi

(∑
k

σkpikt

)(
dξt +

ξt
T − t

dt

)
. (27)

Since the a posteriori density is given by

πit =
pit∑
i pit

, (28)

another application of Ito’s rule gives

dπit =
T

T − t

(
xi

∑
k σkpikt∑
i pit

− πitE[σXT |ξt]
)

dWt, (29)

where

dWt = dξt +
1

T − t
(ξt − TE[σXT |ξt])dt. (30)

Putting these together, we find that the dynamical equation satisfied by the defaultable
discount bond price is given by

dBtT = rtBtTdt+ ΣtTdWt, (31)

where the volatility process is determined by the conditional covariance process of XT and
σXT :

ΣtT = PtT
T

T − t
cov(XT , σXT |ξt). (32)

In particular, if σ is constant, the covariance reduces to the variance of XT , and we recover
the original BHM model. We remark that although σ and XT are a priori independent,
they are not conditionally independent, and hence the covariance term does not reduce to a
simpler expression E[σ|ξt] var(XT |ξt).

Next, we establish that the process {Wt} defined in (30) is the innovations representation
associated with the filtering problem corresponding to the information process {ξt}. We
shall follow closely the argument of [1] but extended to a random σ. Since (dWt)

2 = dt, to
show that {Wt} is a Brownian motion it suffices to establish that it is a martingale. For
t ≤ u we have

E[Wu|Ft] = Wt + E[(ξu − ξt)|ξt] + E
[∫ u

t

ξs
T − s

ds

∣∣∣∣ ξt]− TE
[∫ u

t

E[σXT |ξs]
T − s

ds

∣∣∣∣ ξt]
= Wt + E [σXTu+ βuT |ξt]− E [σXT t+ βtT |ξt] + E[σXT |ξt]

∫ u

t

s

T − s
ds

+E
[∫ u

t

βsT
T − s

ds

∣∣∣∣ ξt]− E[σXT |ξt]
∫ u

t

T

T − s
ds. (33)
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Evidently, the coefficients of E[σXT |ξt] cancel, and we are left with

E[Wu|Ft] = Wt + E[βuT |ξt]− E[βtT |ξt] +

∫ u

t

1

T − s
E[βsT |ξt]ds, (34)

but because

E[βuT |ξt] =
T − u
T − t

E[βtT |ξt], (35)

we deduce the martingale condition

E[Wu|Ft] = Wt. (36)

It follows that the process {Wt} defined via (30) is indeed a Q-Brownian motion with respect
to the filtration generated by the information process {ξt}.

VII. NUMERICAL ANALYSIS OF THE SAMPLE-PATH BEHAVIOUR

In this section we analyse the sample-path behaviour of a defaultable digital bond price
under our uncertain information model through simulation studies. This provides us with a
better intuitive understanding of the characteristics of the model under study.

In figure 2 and 3 we have shown simulations of sample paths of the bond price processes,
the corresponding averaged (over five sample paths) volatility process, and the averaged
(again, over five sample paths) vol-of-vol process. In these plots, we have set r = 0% for
simplicity; maturity of the digital bond is T = 1. The information flow rate in figure 2
is chosen to be a binary random variable taking values {0.6, 0.8} with an equal a priori
probability; whereas in figure 3, σ takes the values {0.4, 1.0} also with an equal a priori
probability. Hence in both cases we have E[σ] = 0.7, but they have different standard
deviations. The simulation study shows that as we increase the variance of σ the variance of
the price paths increases. This behaviour is intuitively expected although not immediately
apparent from the formula for the bond volatility.

One other interesting observation to be drawn from the simulation studies, as compared
to the original BHM model, is that the degree of variation of the sample paths, or simply
the volatility, is smaller than those observed in the BHM with the same σ value. For
example, although one of the sample paths in figure 3 has the value σ = 1, which in the
BHM model would have caused the paths to reach its terminal value at about four-fifth
of the way, such a large variation is not present in our uncertain information model. This
is because the conditional expectation of XT involves products of the a priori probability
{qk}, and this ‘dampens’ the overall variability. If we set one of the qk’s equal to zero,
which reduces the model to the original BHM, then the damping effect disappears. This
behaviour is plausible because market participants are uncertain about the true information
flow rate; their knowledge of the information is made additionally fuzzy by the uncertainty
in σ, and hence it generally takes a longer time to discover the true terminal cash flow. This
uncertainty will, consequently, and perhaps at first surprisingly, reduce the overall volatility
for the price process. The reduction in volatility becomes apparent when we look at the
average of the processes.

The volatility of the processes in some sense reflects the ‘learning rate’ of the terminal
value of the bond price (or, equivalently, the value of XT ). This learning rate is somewhat
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FIG. 2: Simulated Bond price (left), volatility (top right) and Vol-of-Vol (bottom right) processes
in uncertain information model with σ = {0.6, 0.8}, qk = {0.5, 0.5}, XT = {0, 1}, pi = {0.2, 0.8},
r = 0% and T = 1.

slowed down in the uncertain information model, hence resulting in the dampening of the
volatility. If the standard deviation of σ is very small, then the volatility process almost
matches that of the BHM model. However, as the standard deviation of σ is made wider
so that the true information becomes less clear, this leads to the reduction in the price
volatility. Nevertheless, as time passes, the value of XT must eventually be revealed, and
this leads to a subtle behaviour in the averaged volatility.

In view of this, we investigate further the behaviour of the volatility processes. Because
in our example here the random variable σ is chosen such that it is not measurable for all
t ∈ [0, T ], we can expect some degree of uncertainty to sustain until the very last moment.
Indeed, the behaviour of the price process in the uncertain information model is not entirely
counterintuitive; we expect, for example, that the price process behaves like a mixture of the
BHM with the probabilities {qk} denoting the weights of the possible scenarios of σk. That
this intuition is more or less correct, albeit there are subtle details, is illustrated in figure
4, in which the mean volatility Σ̄tT = E[ΣtT ] associated with various distributions for σ are
compared. The two solid lines represent Σ̄tT corresponding to the original BHM model, with
the top line at t = 0 taking the value σ = 0.9 and bottom line taking the value σ = 0.5. The
dashed lines are mean volatilities generated by our uncertain information model. They take
values σk = {0.5, 0.9} with the following probabilities: from the top at t = 0, qk = {0, 1};
qk = {0.1, 0.9}; qk = {0.2, 0.8}; qk = {0.3, 0.7}, and so on, until qk = {1, 0} for the bottom
dashed line that coincides with the solid line.

The result reveals the following features: First, we see that when σ = 0.5 the average
volatility starts with a lower value as compared to that of σ = 0.9; but eventually overrides
the latter because information is revealed towards the end, and hence causing higher volatil-
ity. Second, we see that as we shift the mean of σ from 0.9 to 0.5, the mean volatility shifts
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FIG. 3: Simulated Bond price (left), volatility (top right) and Vol-of-Vol (bottom right) processes
in uncertain information model with σ = {0.4, 1}, qk = {0.5, 0.5}, XT = {0, 1}, pi = {0.2, 0.8},
r = 0% and T = 1.

accordingly. The graph shows that the mean volatility of the random σ model behaves like
a weighted sum of the BHM mean volatilities, with weights given by the a priori probability
{qk}. In this regard, the random information model studied here can be viewed as a BHM
mixture model.

We also draw attention to the limiting behaviour of the mean volatility as t → T . In
figure 5 we see clearly that the mean volatility of the random information model does not
reach zero when t is very close to T , even though that of the BHM model has. This indicates
that there are ‘last minute surprises’ because information regarding the terminal value is
still uncertain, due to the additional uncertainty in σ. This is the essence of the random
information flow rate model, as it describes the uncertainty in this market up until the last
moment. Note, however, that values of mean volatility above t & 0.996T were not available
numerically, due to the appearance of large numbers.

VIII. MUTUAL INFORMATION ANALYSIS

An alternative way of investigating properties of the price process is to study the be-
haviour of mutual information between BtT and XT , or, equivalently, between ξt and XT .
This is the quantity that measures the amount of information contained in the asset price
about the value of the impending cash flow (cf. [13, 14]), and thus represents how much
the market has learned about the value of XT [10]. The mutual information is obtained by
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FIG. 4: Each line represents the average of 5,000 paths of volatility processes. The solid lines
are that of the original BHM model with the top and bottom line taking σ = 0.9 and σ = 0.5
respectively, XT = {0, 1}, pi = {0.2, 0.8}, r = 0% and T = 5. The dashed lines are mean volatilities
of the uncertain information model taking values, from top to bottom respectively, σk = {0.5, 0.9}
with qk = {0, 1}, qk = {0.1, 0.9}, qk = {0.2, 0.8},... and qk = {1, 0}.

FIG. 5: Magnification of the averages of volatility processes. Each line represents the average of
5,000 paths of volatility processes. The solid lines are that of the original BHM model with the top
and bottom line taking σ = 0.9 and σ = 0.5, respectively, XT = {0, 1}, pi = {0.2, 0.8}, r = 0% and
T = 5. The dashed lines are mean volatilities of the uncertain information model taking values,
from top to bottom respectively, σk = {0.5, 0.9} with qk = {0, 1}, qk = {0.1, 0.9}, qk = {0.2, 0.8},...
and qk = {1, 0}.
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determining the expression:

J(ξt, XT ) =
n∑
i

∫ ∞
−∞

ρξX(x, i) ln

(
ρξX(x, i)

ρξ(x)ρX(i)

)
dx, (37)

where

ρξX(x, i) =
d

dx
Q [(ξt < x) ∩ (XT = xi)] (38)

is the joint density function of the random variables (ξt, XT ), and ρξ, ρX are the respective
marginal probabilities. By independence of XT and σ, we find that

Q [(ξt < x) ∩ (XT = xi)] =
m∑
k

Q(ξt < x | XT = xi, σ = σk)Q(XT = xi)Q(σ = σk), (39)

from which it follows that

ρξX(x, i) =
m∑
k

qkpi
1√

2πt(T − t)/T
exp

(
−1

2

(x− σkxit)2

t(T − t)/T

)
(40)

since conditional on XT = xi and σ = σk, the random variable ξt is normally distributed
with mean σkxit and variance t(T − t)/T .

An alternative way of deriving the mutual information is via the formula

J(ξt, XT ) = H0 − E[Ht], (41)

where the Shannon-Wiener entropy {Ht} is defined by the expression:

Ht = −
n∑
i=1

πit lnπit. (42)

The entropy process {Ht}0≤t<T has the property that limt→T Ht = 0. This follows from the
fact that the conditional probability process {πit}0≤t<T has the limiting behaviour

lim
t→T

πit(ω) = 1{XT (ω) = xi} (43)

for i = 1, . . . , n. To see this, suppose that for a choice of ω ∈ Ω we have XT (ω) = xa and
σ(ω) = σb for some a, b. Conditional on this realisation the information process is given by
ξt = σbtxa + βtT . Substituting this expression for ξt into the expression for πit, and dividing
the denominator and the numerator by the exponential factor containing xa and σb, we
deduce that

πat =
pa

(
qb +

∑
k 6=b qk exp

[
T
T−t

(
xa(σk − σb)βtT − 1

2
x2
a(σk − σb)2t

)])
paqb +

∑
i 6=a
∑

k 6=b piqk exp
[
T
T−t

(
(xiσk − xaσb)βtT − 1

2
(x2

iσ
2
j − x2

aσ
2
b )t
)] . (44)

As t → T all of the terms in the sums vanish. Therefore, limt→T πat = 1 and furthermore,
since

∑
i πit = 1 for all t, we must have limt→T πit = 0 for i 6= a. Finally, since

Ht = − ln
n∏
i=1

ππit
it , (45)
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we deduce that limt→T Ht = 0.
In figure 6 we have a graphical illustration of the behaviour of mutual information. The

idea here is to relate this with the average volatility that we observed in the previous section.
We have used exactly the same parameter range to make the comparison more transparent.
Hence, the mutual information for the BHM model with σ = 0.9 and σ = 0.5 form the
upper and lower bounds, respectively, at early times in figure 6. The mutual information
curves that lie within these bounds at early times are those under the uncertain information
model, taking the values σk = {0.5, 0.9} with probabilities qk = {0, 1}, qk = {0.1, 0.9}, · · · ,
qk = {1, 0}, respectively, from top to bottom.

The results shown in the figure match exactly the findings from the mean volatility
analysis. The gap in the plots close to t ≈ T is again due to numerical limitations. Observe
the crossover pattern seen here, as we change the distribution of σ. The processes with a low
mutual information at early times cross the higher ones at later stages because the volatility
is greater towards the end so as to ‘catch up’ with the learning rate. Further, there are still
uncertainties left until the very last moment.

FIG. 6: Mutual information under the random σ model. We let σk = {0.5, 0.9} with probabilities,
from top to bottom at early times, qk = {0, 1}, qk = {0.1, 0.9},...,qk = {1, 0} respectively; XT =
{0, 1}, pi = {0.2, 0.8}, and T = 5.

IX. OPTION ON CREDIT-RISKY BONDS

We now turn to the problem of pricing options on a credit-risky bond in our uncertain
information flow-rate extension of the BHM model. Our analysis follows closely that given
in [1]. Consider the valuation of a European-style call option on the defaultable discount
bond maturing at T . The option maturity is t ≤ T , and the strike is K. The initial value
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of the call option is:

C0 = P0tE[(BtT −K)+]

= P0tE

[(∑
i

PtTπitxi −K

)+]
, (46)

where πit is as given in (28). If we define the positive process {Φt} according to

Φt =
∑
i

∑
k

pikt, (47)

then the call price can be expressed in the form

C0 = P0tE

[
1

Φt

(∑
i

∑
k

(PtTxi −K)pikt

)+]
. (48)

Our strategy now is to eliminate the term Φ−1
t via a measure change technique.

We remark first that it follows from (25) and (30) that

dΦt =

(
T

(T − t)
E[σXT |ξt]

)2

Φtdt+
T

T − t
E[σXT |ξt]ΦtdWt, (49)

from which it follows that

dΦ−1
t = − T

T − t
E[σXT |ξt]Φ−1

t dWt. (50)

Expressed in an integral form, we thus have

Φ−1
t = exp

(
−
∫ t

0

T

T − s
E[σXT |ξs]dWs − 1

2

∫ t

0

T 2

(T − s)2
E[σXT |ξs]2ds

)
. (51)

Since E[σXT |ξt] is bounded, the Novikov condition

E
[
exp

(
1
2

∫ t

0

T 2

(T − s)2
E[σXT |ξs]2ds

)]
<∞ (52)

is satisfied. Hence {Φ−1
t }0≤t≤u<T is a martingale. We also deduce that

Φ−1
0 =

(∑
i

∑
k

piqk

)−1

= 1, (53)

and hence that E[Φ−1
t ] = 1. Thus the factor Φ−1

t can be used to effect a change of measure.
Writing BT for the new measure, the option price then becomes:

C0 = P0tEBT

[(∑
i

∑
k

(PtT −K)pikt

)+]
. (54)
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It is not difficult to show that under BT , the information process {ξs}0≤s≤t is Gaussian
with mean 0 and variance t(T − t)/T ; that is to say, {ξt} is a BT -Brownian bridge. The
Radon-Nikodým derivative associated with this measure change is thus dBT = Φ−1

t dQ. The
random variables XT and σ have the same probability law with respect to BT as with Q,
and the conditional expectation of any integrable function f(XT , σ) can be expressed as:

EBT [f(XT , σ)|Ft] =
EQ[Φ−1

t f(XT , σ)|Ft]
EQ[Φ−1

t |Ft]
. (55)

In particular, the process {W ∗
t }0≤t≤u defined by

W ∗
t =

∫ t

0

T

T − s
E[σXT |ξs]ds+Wt (56)

is a BT Brownian motion. To verify that {ξt} is a BT -Brownian bridge, we substitute (30)
in (56) to deduce

dξt = − ξt
T − t

dt+ dW ∗
t . (57)

But this is just the SDE for a Brownian bridge process in the BT measure.
Returning to the problem of option pricing, let us begin by considering the case of a

binary bond whereby the cash flow takes the two possible values {x0, x1}. Then we have

C0 = P0tEBT

[(
(PtTx1 −K)

∑
k

p1kt + (PtTx0 −K)
∑
k

p0kt

)+]
. (58)

This expectation is nontrivial when PtTx1 > K > PtTx0. In this case, the option can expire
either in the money or out of the money, depending on whether ξt > ξ∗ or ξt < ξ∗, where ξ∗

is the unique critical value of ξt such that BtT = K, or, equivalently, the unique solution to
the relation ∑

k qk exp( T
T−t(σkx0ξ

∗ − 1
2
σ2
kx

2
0t))∑

k qk exp( T
T−t(σkx1ξ∗ − 1

2
σ2
kx

2
1t))

=
p1(K − PtTx1)

p0(PtTx0 −K)
. (59)

Note that in general ξ∗ has no closed-form expression. However, the solution to (59) can
be obtained by simple numerical root-finding methods. That the solution to (59) is unique
(assuming that σ is a positive random variable) can be seen by the fact that the bond price
is an increasing function of ξt.

The problem of option pricing thus reduces to performing an elementary Gaussian inte-
gration. We now consider the case where XT need not be a binary variable. The computation
simplifies further if we introduce a standard normal variable Z according to

Z =
ξt√

t(T − t)/T
. (60)

We write Z∗ for the corresponding critical value. Then the option pricing formula is:

C0 = P0t

∑
k

∑
i

qkpi(PtTxi −K)N(
√
τσkxi − Z∗), (61)
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FIG. 7: The implied BHM volatility. The implied volatility surface resulted from calibrating each
strike and maturity of the random information model to the BHM model is shown. The parameters
are set to be XT = {0, 1}, pi = {0.2, 0.8}, σBHM = 1.5, σRand = {0.3, 2.7}, qk = {0.5, 0.5}, r = 0%
and T ∈ [0, 2].

where τ = tT/(T − t) and N(·) denotes the standard cumulative normal density function.
Remark: We have noted that our random information model can be viewed as a mixture

of BHM models. In the context of the Black-Scholes model, Renault and Touzi [15] or
Brigo et al. [16], for instance, have carried out similar analysis, where the Black-Scholes
volatility parameter σ is taken to be time dependent random variable that is independent
of the underlying Brownian motion. By conditioning on the volatility path, the European
call option is obtained as the expectation of the Black-Scholes call price with time-averaged
volatility. In particular, when σ is time independent, the result of [15, 16] for the extended
Black-Scholes model is similar in nature to our result on extended BHM model.

Remark: The randomisation of the Black-Scholes volatility parameter (the log-normal
mixture) in the literature is carried out essentially in an ad hoc manner, without any fun-
damental economic or information-theoretic reason. Rather, it is justified on the practical
ground that it gives a better handling of calibration. In contrast, in our model the ran-
domisation arises from a more realistic analysis on the market information process. Hence,
although the net effect is similar in both cases, our model is accompanied by a better justi-
fication, which in turn also gives a better justification for the lognormal mixture models. In
particular, it can be seen, by applying the present scheme on the information-based deriva-
tion of the Black-Scholes model in [4], that the lognormal mixture models can be derived by
assuming that the information flow-rate is random.

The random information-flow model considered here can be viewed as the simplest
stochastic volatility model for option pricing in the information based asset pricing frame-
work. One natural and important question arising in the present model is: how do we
calibrate the distribution of σ? The answer is given by the volatility surface. We note
that in the original BHM model for defaultable bonds the information flow rate parameter
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FIG. 8: Left: Sample paths of the BHM with σ = 1 (blue) and σ = −1 (red) using same Brownian
Bridges; and the corresponding skew processes associated with XT (ω) = 1 (Top right) and XT (ω) =
1 (Bottom right). Here we set XT = {0, 1}, pi = {0.2, 0.8}, r = 0% and T = 5.

is calibrated by the option price for a fixed strike and a fixed maturity. Hence the model
cannot be used to calibrate against the volatility surface. In contrast, the random-σ model
considered here has a wider flexibility that allows for the calibration of larger market data
set. To illustrate the idea, we have plotted in figure 7 the option price (61) in our random-σ
model, but expressed in the form of an implied BHM volatility surface.

X. INFORMATION MANIPULATION

We conclude by drawing attention to another interesting feature of the variable σ model.
This concerns the notion of information manipulation, or, equivalently, a deliberate misrep-
resentation of information. The question that we are interested in here is the following: How
does one model the manipulation of information in the information-based framework? One
possible solution that we examine here is based on the misspecification of the information
flow-rate σ.

The idea can be sketched as follows. Each market agent reveals information, expressed in
the form of one of the information processes of (3). The impact of that agent’s information
on the market is then determined through formula (4). If an agent releases information that
is based purely on speculation, then that information source is noise dominated, having a
small value of the information flow rate. However, if that agent is trying to mislead the
market, based on a reliable piece of information, then that information source is no longer
noise dominated. Instead, this misinformation can be modelled by the fact that the agent
provides an incorrect value for the information flow rate parameter. In this way, the market
will estimate the ‘fair’ price of the asset—in the present example the defaultable bond—by
use of the pricing formula (16), but based on the incorrect value for the information flow
rate parameter. As a consequence, the market price will be misled.

As an illustration of this behaviour, in figure 8 we show sample paths for the defaultable
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digital bond price process; in one case where the bond did not default, whereas in the other
case where the bond defaulted. In each case, two sample paths are given; one corresponding
to the situation where the true market price ought to be if there is no misleading information,
and one corresponding to the situation where the realised price is, due to the existence of
a deliberate price manipulation. In order to make the effect of price manipulation visually
pronounced, here we have taken a slightly extreme case in which the true value of the
information flow rate is σ = +1 (blue), whereas the ‘conjugate’ price process is generated by
the false belief that the flow rate is given by σ = −1 (red). We find in these examples the
existence of a kind of anti-correlation between the ‘true’ and ‘false’ price movements around
their conditional means. This is illustrate more clearly in the skewness plot, also shown in
figure 8.

One might enquire in which way a mis-specification of the information flow rate σ is
realised in practice. In this connection it is worth remarking that there is an extended
literature on price manipulation, often in the context of insider trading. One typical way
of spreading a false information is by taking a trading position in a strategic manner (cf.
[17, 18]). For example, suppose that an informed trader has the information that the price
of an asset is likely to drop in near future. In this case, taking a short position amounts to
effectively revealing the content of that information. Hence, by momentarily taking a long
position before taking a short position, an informed trader can mislead the market. One
can think of such a deliberate manoeuvre being represented abstractly in the form of one of
the information processes in (3) taking an ‘incorrect’ value of σ.

We see therefore that the information-based framework allows for a range of flexible
extensions to model various scenarios that might occur in a given financial market. It would
be of considerable interest, in particular, to develop further the information-based approach
to price manipulation under the present scheme.
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[2] Brody, D. C., Hughston, L. P. and Macrina, A. 2008 “Information-based asset pricing” Inter-
national Journal of Theoretical and Applied finance 11, 107-142.

[3] Rutkowski, M. and Yu, N. 2007 “On the Brody-Hughston-Macrina approach to modelling
of defaultable term structure” International Journal of Theoretical and Applied finance 10,
557-589.

[4] Brody, D.C., Hughston, L.P. & Macrina, A. (2011) “Modelling information flows in finan-
cial markets” In Advanced Mathematical Methods for Finance, p. 133-153, G. Di Nunno &
B. Øksendal, eds. (Berlin: Springer).

[5] Grossman, S. J. & Stiglitz, J. E. (1980) “On the impossibility of informationally efficient
markets” The American Economic Review 70 393-408.



20

[6] Grossman, S. J. 2003 The Informational Role of Prices, 2nd revised ed. (Boston: The MIT
Press).

[7] Anderson, T., Bollerslev, T., Diebold, F. X. and Vega, C. 2007 “Real-time price discovery in
stock, bond and foreign exchange markets” Journal of International Economics 73 251-277.

[8] Bollen, J., Mao, H. & Zeng, X.-J. 2011 “Twitter mood predicts the stock market” Journal of
Computational Science, 2, 1-8.

[9] Brody, D.C., Meister, B. K. & Parry M.F. 2012 “Informational inefficiencies in financial mar-
kets” Mathematics and Financial Economics 6, 249-259.

[10] Brody, D. C., Davis, M. H. A., Friedman, R. L. and Hughston, L. P. 2009 “Informed traders”
Proceedings of Royal Society A465 11031122.

[11] Fisher, R. A. 1925 “Theory of statistical estimation” Proceedings of the Cambridge Philosoph-
ical Society 22, 700-725.

[12] Rao, C. R. 1945 “Information and accuracy attainable in the estimation of statistical param-
eters” Bulletin of the Calcutta Mathematical Society 37, 81-91.

[13] Gel’fand, I. M. and Yaglom, A. M. 1957 “Calculation of the amount of information about
a random function contained in another such function” Uspekhi Matematicheskikh Nauk 12,
3-52.

[14] Khintchine, A. Ya. 1953 “The concept of entropy in the theory of probability” Uspekhi Matem-
aticheskikh Nauk 8, 3-20.

[15] Renault, E. and Touzi, N. 1996 “Option hedging and implied volatilities in a stochastic volatil-
ity model” Mathematical Finance 6, 279302.

[16] Brigo, D., Mercurio, F. and Rapisarda, F. 2004 “Smile at the uncertainty” Risk Magazine
May, 97-101.

[17] Easley, D. and O’Hara, M. 1987 “Price, trade, size, and information in securities markets”
Journal of Financial Economics 19, 69-90.

[18] Allen, F. and Gale, D. 1992 “Stock-price manipulation” Review of Financial Studies 5, 503-
529.


