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Abstract 

Over the years, researchers have tried to extend Petri net to model multimedia. The focus of the 

research flows from the synchronization of multimedia without user interactions, to interactions in 

distributed environments. The issues in concern are the flexibility and compactness of the model when 

applied to model a system under change. Most existing models lack the power to model a system 

under change during execution. Petri net extensions have been developed to facilitate user interactions 

(UI) in distributed environments, however they require sophisticated pre-planning to lay out detailed 

schedule changes. On the other hand, there has been active research on self-modifying protocols or 

adaptive protocols in recent years. Plenty of models have been developed to model communication 

protocol execution, to name a few, finite state machines, communicating finite state machines, Petri 

nets. However, there exist no suitable models to simulate protocols that are self-modifying or adaptive 

during execution. In this paper, we propose a Reconfigurable Petri Net (RPN) for adaptable 

multimedia. A RPN comprises of a novel mechanism called modifier. This modifier can create a new 

change or delete an existing mechanism (e.g. arc, place, token, transition, etc.) of the net. In a way, 

modifier embraces controllability, reconfigurability, and programmability into the Petri net, and 

enhances the real-time adaptive modeling power. This development allows a RPN to have a greater 

modeling power over other extended Petri nets.  The paper includes both the model and theory 

required to establish the technique's validity. Examples are also shown how RPN can be used to 

model interactive multimedia, and simulate self-modifying protocols. A simulator has been developed 

using Visual C++ under Windows NT to show that RPN is feasible.  
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1. Introduction 

With the recent advances in software and hardware technologies, multimedia systems have 

become increasingly more sophisticated and complex. In today's world, business demands multimedia 

applications which combine a variety of sources, such as audio, video, voice, graphics, animation, text 

and images in real-time, interactive and multiparty communications. On the other hand, the 

development of Quality of Service (QoS) networks with the ability to guarantee the delivery of time 

sensitive data have enhanced the transmission of voice, audio and video packets over data networks 

like local area networks or wide area networks to deliver advanced interactive multimedia services 

[9]. In order to study and understand such sophisticated system effectively with least effort, modeling 

is a promising option. It helps to assess vital aspects of a system's performance.  

Formalisms such as finite state machines [4, 5, 8] and extended Petri net [2, 3, 7, 23, 25] have 

been developed to represent temporal information, and support synchronization in runtime rendering 

for multimedia systems. Others like Wahl and Rothernel’s Temporal Model [11], Firefly [11], Fuzzy 

relation language [11] have also been developed to serve the same purposes. Basically, Petri nets [14] 

are designed specifically to model systems with concurrent components. Over the years, scientists 

have extended the Petri net model to overcome the limitation of its original design such that it can be 

applied to multimedia systems. The focus of the research flows from the synchronization of 

multimedia without user interactions, to interactions in distributed environments [1-7, 15-16, 21-23]. 

Some of the models are Object Composite Petri Net, OCPN [15], Dynamic Timed Petri Net [16], 

Prioritized Petri Net (P-Net) [7], Distributed Object Composite Petri Net: DOCPN [7] and Enhanced 

Prioritized Petri Net (EP-Net) [23].  The issue of modeling an interactive distributed multimedia 

application using extended Petri nets is one of the promising areas of research in multimedia 

synchronization. It has the potential to demonstrate the temporal relationships with interaction modes 

in distributed environments. The problems of using tradition extended Petri net are the flexibility and 
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compactness of the model. User interactions (UI) often interrupt current presentation or force a 

schedule change. Petri net extensions (e.g. Prioritized Petri net, P-net [7], Enhanced Prioritized Petri 

net, EP-net [23]) have been developed to facilitate UI, however they require sophisticated pre-

planning to lay out detailed schedule changes.  

On the other hand, there has been active research on self-modifying protocols [20] or adaptive 

protocols [10, 12, 13] in recent years. A self-modifying (or adaptive) protocol is a set of 

instructions, rules, or conventions that can be changed by the systems that communicate with 

the help of that protocol. The purpose of self-modification is to adapt to new communication 

environment or QoS requirements during protocol execution. Self-modifying protocols do not 

prevail at present, but this work is certainly important and promising for the next generation 

of intelligent protocols. Plenty of models developed to model communication protocol execution, to 

name a few, finite state machines, communicating finite state machines [17, 18, 19], Petri nets. 

However, there exist no suitable models to simulate protocols that are self-modifying or adaptive 

during execution. 

In this paper, we propose a Reconfigurable Petri Net (RPN) which has multimedia 

synchronization facilities and the ability to model unpredictable user interactions on the fly. A RPN 

comprises of a novel mechanism called modifier. This modifier can control, create a new change or 

delete an existing mechanism (e.g. arc, place, token, transition, etc.) of the net. This important 

development allows a RPN to have a greater modeling power over other extended Petri nets. The 

paper includes both the model and theory required to establish the technique's validity and a 

simulator, which is developed using Visual C++ in Window NT, to show that RPN is feasible. 

The modifier empowers RPN to embrace controllability, reconfigurability, and programmability 

based on Petri net. To model a lip-sync audio and video presentation using OCPN is straightforward 

as illustrated in figure 1. However, in real life a frame is unrealistic to produce a one-hour movie for 

example. We might need 108000 frames if it is a 30-frames/sec video playback. Building 108000 x 2 

places (i.e. audio and video fragments) in the model is not a pleasant task to do. With the modeling 
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power from the modifiers, the giant model size is reduced significantly into two layers: control and 

presentation layers. Moreover, the capability of modifier has enhanced the real-time adaptive 

modeling power of Petri net. 

In this following section, we briefly overview the major extended Petri nets which handle 

complex multimedia applications. In section 3, we present the definitions and examples of the RPN 

model. In section 4, we depict synchronous control of user interactions based on RPN. In section 5, 

we show how RPN can be used to simulate self-modifying protocol execution.  Section 6, we explain 

the RPN simulation, from its architecture to some important functions. Finally, section 7 summarizes 

the contributions of this research work and potential future directions. The appendix discusses the 

safeness, boundedness, conservation, and synchronization properties of RPN. 

2. Related Work 

In this section, we give a broad overview of the existing extended Petri nets which were 

developed to model interactive distributed multimedia environments. Little and Ghafoor have 

proposed the use of Object Composition Petri Net, OCPN [15] to model temporal relations between 

media data in multimedia presentation. OCPN augments the conventional Petri net model with values 

of time, as duration (d), and resource utilization on the places (p1, p2, p3 and p4) in the net (figure 1). A 

token is locked in place p2 when the duration counter d starts to count down. When the duration 

reaches zero, the token is considered to be unlocked. The OCPN model has a good expressive power 

for temporal synchronization. However, it lacks of power to deal with user interactions and distributed 

environments. 

 

 

 

Figure 1. Elements of OCPN 

a.  The lack of power in OCPN to express user interactions has led to an enhanced OCPN model 

[16], Dynamic Timed Petri Net (DTPN) proposed by Prabhakaran and Raghavan. DTPN provides the 
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ability for users to activate operations like skip, reverse, freeze, restart and speed scaling of 

presentation. DTPN is suggested to allow a user to pre-empt the Petri net execution sequence and 

modify the time duration associated with the pre-empted Petri net process. The firing rules are similar 

to OCPN except with a new feature, escape arcs. An escape arc is ended with a dot instead of an 

arrowhead. A transition tj with escape arcs may pre-empt the execution if the other normal input 

places for tj are active and contain a locked token and at least one of tj’s escape places becomes 

nonempty. After pre-emption, a locked token is removed from each of tj’s active input place and a 

token is added to each of the output place of tj.  

Guan, et al. have proposed DOCPN [7] to overcome the limitation of the original OCPN in 

modeling interactive distributed multimedia systems. DOCPN inherits the conventional Petri net 

firing rule, and applies OCPN synchronous methods to synchronize among inter-media objects. 

Moreover, it extends OCPN to a distributed environment using a global clock, and enables user 

interaction control into OCPN. Most important of all, a new mechanism known as prioritized Petri net 

(P-net) is introduced. This priority-input event, as shown in figure 2 [7], has the ability to fire a 

transition to meet a prescheduled deadline without waiting for the arrival of other non-priority input 

events. The details of its firing rules are well explained in [7]. The main concern here is what happens 

if a token arrives at a non-priority input place, after the transition has been forced to fire by an earlier 

priority input event without the presence of this late arriving token. The paper [7] mentions the 

processing of late arriving tokens depends on applications; some may choose to discard them (e.g. late 

arriving video segments), some may choose to recycle or reuse them (e.g. a buffer released for further 

use). It is better to have a built-in mechanism in P-nets to allow a user/designer to specify how 

premature/late arriving tokens [23] should be disposed. This motivates the design of EP-nets. 

 

 

 

Figure 2. A transition with a priority input [7] 
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S. U. Guan and S. S. Lim have proposed Enhanced Prioritized Petri Net (EP-net) [23] as an 

upgraded version of P-net. It has a mechanism known as Premature/Late Arriving Token Handler 

(PLATH) to handle late and/or premature tokens (locked tokens forced to unlock). Moreover, EP-net 

imposed another feature that simplifies and improves the flexibility of designing interactive systems, 

known as dynamic arcs, which can be associated with sets of program statements. For instance, 

dynamic PLATHs, dynamic input/output events and dynamic priority input events have been 

developed. Figure 3 shows an example of reverse operation using EP-net. As shown in figure 3, 

PLATHs (L1 and L2) are denoted by the dotted arrows and the dynamic priority input events are 

signified by the thick 90° arrows with the associated program (ps1). Even though EP-net has much 

powerful mechanisms than P-net, having the necessity to duplicate a reverse Petri net every time a 

reverse operation is called, implies that the modeling size and effort will be considerably large and 

difficult to analyze if the model's size increases. Hence, this has induced us to originate RPN. 

 

 

 

 

 

 

 

Figure 3. Reverse operation using EP-net [23] 

SMIL [9] – a W3C standard, allows integrating a set of independent multimedia objects 

into a synchronized multimedia presentation. Using SMIL, an author can: 1. describe the 

temporal behavior of the presentation; 2. describe the layout of the presentation on a screen; 

3. associate hyperlinks with media objects. The difference between SMIL & RPN is that RPN 

can deal with the indeterministic part of temporal schedule, i.e. temporal schedule changeable 

and programmable due to (new type of) user or network interrupts or manipulations at run-
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time while SMIL focus on the layout & prescription of temporal schedule due to fixed types 

of user interrupts. RPN allows run-time change of the temporal model itself with the changes 

pre-programmed to handle any type of user or network interrupts customizable by the user or 

network manager. 

Last but not the least, a researcher Rüdiger Valk has proposed a Self-modifiable Petri Net 

(SMPN) on the computation power of extended Petri nets [25]. The paper [25] used the read-write 

processor to illustrate its SMPN. The reason that we mention this extended Petri net in this section is 

to clarify that SMPN is different from RPN. As illustrated in the paper [25], a self-modifiable Petri net 

is defined as in the classic Petri net as a bipartite multi-graph having edges of the forms shown in 

figure 4. 

 

 

Figure 4. Aspects of Self-Modifiable Petri Net [25] 

If q equals to 1, then the firing rule of the transition is defined as in the classic case. On the other 

hand, q is allowed to be the name of an arbitrary place of the net. In this case the number of tokens to 

be moved from or to the place is equal to the actual number of tokens specified in q. Consequently 

self-modifiable nets are able to modify their own firing rules. 

In short, none of the extended Petri nets mentioned above have demonstrated reconfigurability, 

controllability and programmability as RPN has offered to Petri net. They do not have the ability to 

reduce the modeling size, improve the design flexibility, model a playback on the fly and simulate a 

real-time adaptive application with self-modifying operations. OCPN is not able to simulate a 

distributed environment. XOCPN cannot simulate an interactive environment. DTPN as well as 

DOCPN, EP-net, and SMPN do not have the ability to reduce its modeling size nor the ability to 

model a presentation on the fly and simulate real-time adaptive application.  

3. Reconfigurable Petri Net 
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 In the following, we introduce the general concepts and definitions of Reconfigurable Petri 

Net (RPN). RPN methodology facilitates the compact and readable specification of intricate, large-

scale synchronization while preserving fine granularity as well as supporting user interactions in 

distributed environments.  

3.1  Definitions 

RPN consists of two entities: control and presentation layers. Each entity is represented as a 

rectangle. These two layers can be joined together by a link (denoted by a double-line arrow). 

Referring to an example of RPN shown in figure 5, the mechanisms found in the white box displayed 

in the presentation layer are created after the activation of those modifiers (e.g. f1, f2 and f3) in the 

control layer. As a matter of fact, there is no white box and mechanisms in it in the beginning. First, 

the control layer as shown in figure 5 starts with a token in pUI, transition ta is enabled and fires. The 

token is removed from pUI and created at modifier f1.  Upon the token arriving at modifier f1, 

transition t3 is then created in the presentation layer.  Transition tb is enabled and fires only if a token 

is present at f1 and the transition t3 is created. After transition tb is enabled and fires, the token in 

modifier f1 is removed and created at modifier f2. Upon the token arriving at modifier f2, place p5 is 

created in the presentation layer. Next, transition tc is enabled and fires. The token in modifier f2 is 

removed and created at modifier f3. Upon the token arriving at modifier f3, the arcs p4t3 and t3p5 are 

created in the presentation layer. Finally, transition td is enabled and fires. The token is removed from 

modifier f3. Therefore, we have shown how a RPN works. In the following, we explain the definitions 

related to RPN. 
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COM(f1) = {add transition t3} 

COM(f2) = {add place p5} 

COM(f3) = {add arcs p4t3, t3p5} 

Figure 5. RPN: an example 

Definition 1: Control and Presentation Layers 

The structure of an unmarked layer in RPN is a six-tuple, S = {T, P, A, D, L, COM}. For a 

marked RPN layer, the definition of the structure becomes a seven-tuple, S = {T, P, A, D, L, COM, 

M}. Referring to the structures S as mentioned above, the condition P ∩ T = ∅ holds. A complete 

RPN may consist of zero or more control layers and one or more presentation layers. 

T = {t1, t2, t3,…………,tm} is a finite set of transitions where m  > 0.  

P = {p1, p2, p3,……….,pi, f4, f5, f6,………..fk} is a finite set of places and/or modifiers where i 

and k > 0. 

COM:fa → {com1, com2, com3…….comz} is a mapping from the set of modifiers to the 

commands (as defined in Table 1) where a and z > 0.  

A:{P×T}∪{T×P} is a set of arcs representing the flow relation.  

M:P → I
+
, I

+
 = {0, 1, 2…} is a mapping from the set of places or modifiers to the integer 

numbers, representing a marking of a net.  

D:pb → R
+
 is a mapping from the set of places to the non-negative real numbers, representing the 

presentation intervals or the durations for the resources concerned where b > 0. 

L = {cx or px} indicates whether an entity is a control layer cx or presentation layer px where x > 

0. 

    We use a conventional set of graphical symbols for nets in which places are represented as 

circles, transitions represented as a solid bar and arcs represented as a unidirectional arrow. In 

addition, a modifier (f) is represented as a double, control layers are represented as rectangles 

with bold borderline and presentation layers are represented as rectangles with fine borderline. 
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Table 1. List of commands 

 

 

 

 

 

Figure 6. Illustration of multiple control and presentation layers 

No. Mechanisms Commands Actions 

1. Arc Disable arc An arc is disabled (Virtually deleted).  

  Enable arc An arc is enabled (Recovered). 

  Create arc An arc is created. 

  Delete arc An arc is deleted. 

  Reverse arc The direction of an arc is reversed. 

    

2. Place or Modifier Create place or modifier A place or modifier is created. 

  Delete place or modifier A place or modifier is deleted. 

  Replace place or 

modifier 

A place or modifier is replaced. 

    

Disable transition  A transition is disabled (Virtually 

deleted). 

Enable transition  A transition is enabled (Recovered). 

3. Transition  

Create transition  A transition is created. 

  Delete transition  A transition is deleted. 

    

  Lock token To lock a token (The duration 

continues to count down, however 

when the count reaches zero, the token 

remains lock). 

4. Token Unlock token To unlock a token (The duration forces 

to zero and the token is unlocked). 

  Pause token To stop counting down if a place 

associated with a duration or stops a 

transition to be fired if the place is 

associated with no duration. 

  Resume token To resume a token and start counting 

from the time it has been paused. 

  Create token To create a token to the indicated place 

with no condition. 

  Delete token To remove a token at the indicated 

place with no condition. 

Multiple control layers 

Multiple presentation 

layers 
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In general, a control layer may consist mainly of modifiers and a presentation layer may consist 

mainly of places representing resource playback. The layer names have self-explained their meanings. 

A presentation layer represents a layer that consists of multimedia resources playback. Otherwise, the 

layer is known as control layer. However, there is a special case see definition 3 for more details. We 

can also extend a single control and presentation layer into multiple control and presentation layers as 

shown in figure 6. This multiple control and presentation layers operate on a hierarchy concept. The 

control layers is vertically integrated and a single piece of integrated control layers is applied to 

numerous presentation layer concurrently.    

 

a. Place   b. Transitions   c. Arcs 

 

d. Links   e. Modifier   f. Token   

 

 

g. Control layer  h. Presentation layer 

Figure 7. Graphic representations 

The set of graphical symbols for RPNs are demonstrated in figures 7a to 7h. A classic place is 

shown in figure 7a, which could represent a resource (e.g. audio, video playback, etc). If the place is 

associated with duration (D), it indicates the interval of the resource to be consumed. Figure 7b 

displays a transition, which represents a synchronization point in a presentation. In figure 7c, an arc is 

demonstrated which represents a flowing relation in a presentation. Then, the links as shown in figure 

7d establish connections linking two different layers (e.g. between control and presentation/control 

layers). Figure 7e introduces a modifier, which signifies a place having the ability to control, create or 

delete a new or existing mechanism (e.g. arc, place, token and transition) of a presentation/control 

layer in a net. A solid dot (token) as displayed in figure 7f indicates the marking in a place. Finally, 

1tp1 

f1 
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the two rectangles denote a control and a presentation layer as presented in figures 7g and 7h 

respectively. 

Definition 2: Firing rules  

 The conventional firing rules of a Petri net are as the following. A transition is enabled when 

all its input places comprise of number of tokens greater than or equal to the number of each 

respectively place's arcs to the transition. If the condition mentioned is met, the transition fires and 

token(s) is removed from each of its input places and token(s) is created at each of its output places. 

The transition fires instantly if each of its input places is not associated with any duration or contains 

any unlocked token. In case when a place is associated with duration, the place remains in the active 

state for an interval specified by the duration d1 after receiving a token. During this period, the token 

is locked. Upon the cessation of the duration d1, the token becomes unlocked.  

RPN extends the capabilities of OCPN by providing support for interactive, adaptive multimedia 

environment and enhance the modeling power over the latest extended Petri net (e.g. P-net, EP-net, 

etc). This is achieved by using some novel mechanisms: modifiers. The two entities of a RPN namely: 

control and presentation layers are designed to distinguish between layers for ease of analysis. With 

mechanisms grouped into layers, modifiers can modify them in terms of group instead of individual. 

In a way, this helps reducing the modeling size. However, the grouping approach is not the key factor 

to reduce the modeling size. The key factor is the power introduced by the programming modifiers as 

illustrated in section 4 & 5. Once the mechanisms are grouped into layers, how the layers are 

communicated is indicated by links. 

Unlike the conventional places and transitions, modifiers f have the capabilities to manipulate or 

customize the presentation flow and the schedule of multimedia in a presentation layer(s) or 

controlling flow and schedule in the other control layer(s). A modifier f executes its associated 

commands (see table 1) upon receiving a token. In addition to the conventional firing rules mentioned 

above, if a transition has an input modifier containing a token, the transition is enabled and fires upon 

the modifier's command being executed. These are also known as inter-layer firing rule.  
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Inter-layer firing rules are applied at layers level. Control and presentation layers interact 

whenever execution of modifier-associated commands (see table 1) in a layer(s) manipulates and 

changes mechanisms in another layer(s). We have two types of interactions between the layers. They 

are feed-forward and feedback interactions. The former interaction occurs when modifiers f in a layer 

change the structure of another layer (e.g. to change the course of presentation style, flow, etc).  The 

latter interaction occurs when a layer reports the state of it to another layer. For an example, we can 

use the virtual common transition driving two output places (one in a presentation layer and the other 

in a control layer) as shown in figure 9. Regardless the interactions are feed-forward and/or feedback 

between two layers, we need to consider the synchronization issue among layers. For example in 

figure 10, modifier f3's command is to disable transitions t1 and t2. At this moment, there are tokens in 

modifier f3 and place p1 which means that the command can execute (transition ta is enabled) and 

transition t2 can fire. Therefore, we have a racing problem. We have two situations: First, transition t2 

fires before the command is executed (not desired). Second, the command executes before transition t2 

fires (desired). In order to overcome the problem, we have two rules of thumb: First, the execution of 

a modifier's command has higher priority than the firing of a. Second, the lock-step synchronization or 

interleaved approach is applied to the control and presentation layers. Enabled transitions within a 

layer (i.e. control layer) will fire before enabled transitions in the other layer (i.e. presentation layer). 

Starting with the control layer, each layer takes its turn to execute its respective mechanisms until no 

enabled transitions can fire.  

Definition 3: Self Reconfigurable Petri net (S-RPN) 

S-RPN is a sub-class of RPN. S-RPN does not have separate control and presentation layers. The 

modifiers are able to control, create, or delete new or existing mechanisms in the same layer (see 

section 3.2, theorem 2).  

3.2 Modeling Power of RPN and S-RPN 

In this section, we present examples to elaborate upon the concepts discussed earlier, and 

describe how the Turing machine can be simulated from RPN or S-RPN. Agerwala et al. [24] have 
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shown that an extended Petri net model with the ability to test a place for zero token can simulate a 

Turing machine.  Thus by proving a RPN/S-RPN has the ability to test a place for zero token it shows 

that they have the modeling power of Turing machines. 

Theorem 1: RPN has the modeling power of Turing machines. 

Consider p3 represents a place to be tested, p1 represents a place to start the zeroing test, p4 

represents p3 has no token and p2 represents p3 has a token as shown in figure 8. Note that p1 (see 

figure 8) appears in the control and presentation layers. To illustrate how it happens, we can imagine 

that they are driven by a common transition as shown in figure 9.  

 

 

 

 

 

 

 

 

 

Legends: 

COM(f1) = {enable transition t1} 

COM(f2) = {enable transition t2} 

COM(f3) = {disable transitions t1 and t2} 

p1 represents a place to start the zeroing test. 

p2 represents p3 has a token. 

p3 represents the place to be tested. 

p4 represents p3 has no token. 

Figure 8. Simulated zero-token test by RPN 
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Figure 9. Driven by a virtual common transition (t) 

Now, we are ready to explain how figure 8 works. The initial marking is marked as shown in 

figure 8. The zeroing test starts off with tokens arrive at p1s as shown in figure 8. Assume p3 (in the 

presentation layer) contains no token. Initially, the transitions t1 and t2 are disabled by modifier f3. 

Transition ta (in the control layer) is enabled and fires. Tokens in place p1 and modifier f3 (in the 

control layer) are removed and the token is created at modifier f1. Upon the arrival of token at 

modifier f1, transition t1 (in the presentation layer) is enabled. Therefore, the arrival of token in f1 

enables t1 but t1 is not able to fire (no token in p3). Transition tb fires and the token is removed from 

modifier f1 and created at modifier f2. So, transition t2 is enabled by modifier f2 and together with a 

token in place p1, transition t2 fires. As a result, p2 has no token and p4 contains a token which 

indicates that p3 contains no token. Repeat the whole procedure again but this time p3 contains a 

token. The outcome is p2 contains a token and p4 contains no token. Therefore, we have established a 

proof that RPN has the modeling power of Turing machines. The purpose of the output arc t1p3 as 

shown in figure 8 is to preserve the token in p3 if t1 fires. 

Theorem 2: S-RPN has the modeling power of Turing machines 

Unlike RPN, S-RPN has the power to change the firing rule within its layer. Let us illustrate it as 

shown in figure 10.  
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Legends: 

COM(f1) = {enable input arcs p1t2 and p3t2} COM(f2) = {enable input arc p1t3 } 

COM(f3) = {disable  input arcs p1t2, p3t2 and p1t3} 

pstart represents the start of zeroing test. 

p2 represents p3 containing a token. 

p3 represents the place to be tested. 

p4 represents p3 containing no token. 

Figure 10. Simulated zero-token test by S-RPN 

The initial marking is marked as shown in figure 10. Initially, the input arcs p1t2, p3t2 and p1t3 are 

disabled by modifier f3. Transition ta is enabled and fires. The tokens in place pstart and modifier f3 are 

removed and created at modifier f1. Upon the arrival of token at modifier f1, the input arcs p1t2 and 

p3t2are enabled. Assume initially, place p3 contains no token, transition t2 is not enabled and hence 

cannot fire. Then, transition tb is fired and the token in modifier f1 is removed and creates at modifier 

f2. Upon the arrival of a token at modifier f2, the input arc p1t3 is enabled. Hence, transition t3 is 

enabled and fires. As a result place p2 contains no token and place p4 contains a token. The procedure 

is repeated with a token in place p3. This time, the consequences show that place p2 contains a token 

and place p4 contains no token. We have proved that S-RPN is as powerful as a Turing machine. From 

this example and the example shown in figure 10, they have shown the flexibility of using either arcs 

or transitions enabling techniques to prove that they are as powerful as a Turing machine. 

3.3 Synchronization 

Extended Petri nets are so popular in modeling multimedia presentation because they exhibit the 

synchronization properties among resources e.g. lip-sync. In this section, the term synchronization 

refers to the synchronization between layers. In order to prevent any conflict between the layers, a 

control layer should pause the token(s) in the presentation before carrying out its necessary executions 

as shown in figures 11, 12 and 13 for examples. In case of controlling the presentation on fly, the user 

needs to anticipate outcome of his design to avoid any adverse result. For example, it is obvious that 
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we cannot create and delete the same mechanism (e.g. token, place, transition, arc, etc) at the same 

time. The effect is undetermined. Take figure 8 for an example, upon the arrival of tokens at places 

p1s and modifier f3, transitions ta and t1 are enabled and fire only after modifier f3 executes its 

command. The command is to disable the transitions t1 and t2, if transition t1 fires before the command 

is executed in the modifier f3 then the outcome is not desired. However, if the rules of thumb as stated 

in section 3.1 definition 2 are followed, the racing problem is avoided. 

4. Synchronous Control of User Interactions 

The synchronization mechanism (in the control layer): a modifier has the authority to manipulate 

the existing mechanisms or generate new mechanisms (in presentation layers). This enhances the 

power to support user interaction. Whenever a user interacts, a token arrives at the initial place pUI as 

shown in sections 4.1-4.4. As the token flows through the RPN structure in the control layer, the 

modifiers with each associated commands are executed respectively and the interactions are carried 

out properly. In addition, we have included an example in section 4.5, demonstrating how RPN has 

the ability of reducing modeling size as compared to other extended Petri nets 

4.1  Reverse Operation 

The reverse operation is similar to the forward operation, only that the presentation flows are 

opposite. Sometime, the reverse operation can also be combined with the speed scaling operation to 

form a fast reverse operation. To simplify the explanation, let us illustrate the reverse operation 

without speed scaling as shown in figure 11.  

When a user requests for a reverse operation, a token is created at pUI(reverse). ta (in the control 

layer) is enabled and fired. It removes the token in pUI(reverse) and creates a token in f1. The arrival of 

the token in f1 causes its associated command to be executed: pause the token in the presentation 

layer. Then, the token in the control layer flows through f2, f3 and f4 consequently. When a token 

arrives at f2, it changes the direction (reverse) of all the arcs in the presentation layer. Next, when a 

token arrives at f3, it replaces the forward resources (places) with the reverse ones. Last, when a token 

arrives at f4, the token in the presentation layer is resumed. The reverse operation has been executed 
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and the presentation flows in the reverse manner. The places p2 to p5 shown in figure 11 are illustrated 

in coarse-grain. A reverse resource implies that a resource with its intra-media frames are arranged in 

a reverse manner such as a reverse audio playback. For a static media (e.g. image, text, etc), we see no 

reverse effect during its interval (e.g. d3 and d4) if a user requests for a reverse at that instant. The 

viewer needs to watch the intact presentation to realize that the reverse is in operation. 

 

 

 

 

 

 

 

Legends: 

COM(f1) = {pause the token in the presentation layer} 

COM(f2) =  {reverse all arcs in the presentation layer} 

COM(f3) =  {replace all places with the resources reversed in the presentation layer} 

COM(f4) = {resume the token  in the presentation layer} 

p1 represents the start of a multimedia presentation. 

p2 represents an audio playback with duration d1. 

p3 represents a video playback with duration d2. 

p4 represents an image display with duration d3. 

p5 represents a text display with duration d4. 

p6 represents the end of a multimedia presentation. 

Note that p1 to p6 share the same representatives throughout section 4. 

Figure 11. Reverse operation 

4.2 Skip Operation 
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A user might feel that a certain section of a presentation boring and decides to skip. This 

operation is able to skip on the fly an on-going stage or a stage which is going to be presented as 

specified by the user. Assume a multimedia presentation is displaying an image (p4, in the 

presentation layer) when a user decides to skip from the current stage to the end of the presentation (t4, 

in the presentation layer) as demonstrated in figure 12.  

Upon a user interaction, a token arrives at pUI(skip). The token is created and moves from f1 to f2 

(in the control layer) as the transitions ta to te are enabled and fire respectively. When the token arrives 

at f1,  it executes the command to delete the token in presentation layer. Subsequent, when a token 

arrives at f2, a token is created at place p6  and the presentation comes to an end. 

 

 

 

 

 

 

 

Legends: 

COM(f1) =  {delete the token in the presentation layer} 

COM(f2) = {create a token at place p6} 

Figure 12. Skip operation from p4 to p6  

4.3 Freeze and Restart Operations 

Among various user interactions, freeze and restart operations are the simplest ones to model. 

The RPN model for freeze and restart operations is shown in figure 13.  

When a user requests for a freeze operation, a token is created in pUI(freeze) (in the control layer). ta 

is enabled and fires. Upon ta firing, a token is removed from pUI(freeze) and a token is created in f1. The 

arrival of token at f1 would run the command to pause the token  in the presentation layer. In other 
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words, the presentation is paused. Then, when the user requests for a restart operation, a token is 

created in pUI(restart) which enables and fires tc. With that, the token  in the presentation layer is 

resumed and the presentation starts to playback. 

 

 

 

 

 

 

Legends: 

COM(f1) =  {pause the token  in the presentation layer} 

COM(f2) =  {resume the token  in the presentation layer} 

Figure 13. Freeze and restart operations 

4.4  Speed Scaling and Zooming Operations 

A user can either increase or decrease the speed of a presentation by a factor of 2, 3, etc. in the 

forward or reverse manner. We have demonstrated a fast forward example as shown in figure 14.  

 

 

 

 

 

 

Legends: 

COM(f1) = {pause the token  in the presentation layer} 

COM(f2) = {replace all places with resources of presentation speed increment by 2} 

COM(f3) = {resume the token  in the presentation layer} 
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Figure 14. Speed scaling operation 

Whenever a speed scaling operation is requested, a token is created in pUI(speed scaling). ta is enabled, 

fires and the same procedure happens as mentioned in sections 4.1, 4.2 and 4.3, only that f1, f2 and f3 

carry different execution in the presentation layer. A token arriving at f1 pauses the token in the 

presentation layer. The places are replaced with resources of presentation speed incremented by a factor 

of 2 upon a token arriving at f2. Last, when a token is created in f3, the presentation is resumed with the 

new presenting speed. Considering a case when a user requests to increase the speed of the presentation 

by a factor of 2, it means that the playback skips every odd/even sequence of its intra-media. On the 

other hand, when a user requests to decrease the speed of the presentation by a factor of 2, it connotes 

that the playback includes a duplicated intra-media frame for every odd/even frame. 

Similar to speed scaling, zooming in or out of a video screen on the fly during a video conference 

at t1 and t2 as shown in figure 14 can also be simulated. The modifier command (f2) will be changed as 

to replace all video places with larger or smaller video screens. 

4.5 RPN has the Ability of Reducing Modeling size as Compared to Other Extended Petri Nets 

To model a lip-sync presentation of a series of video frames and audio samples for example 1000 

frames or samples Base on existing extended Petri nets, the user needs to create about 2000 places 

(representing the video frames and audio samples) as shown in figure 15a. As a result, this has 

become an intricate and time-wasting task for the user.  

 

 

 

 

Figure 15a. OCPN: An example of lip-sync presentation 

We demonstrate how RPN can reduce the modeling size in figure 15b. As we can see RPN uses 

only 8 places and modifiers to represent the 1000 video frames and 1000 audio samples. Even if the 

number of frames and samples increase, the number of places in the RPN as shown in figure 15b 
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remains. This is how figure 15b works. Initially, the counter's value i is set to 1. When a token is 

created at place pstart, transition t1 is enabled and fires. Token in place pstart is removed and create at 

places paudio(1) and pvideo(1). Since place pi<1000 always contains a token if the counter value is less than 

1000. Upon the tokens in places paudio(1) and pvideo(1) are unlocked, transition t2 is enabled and fires. As 

the token flow through modifiers f1, f2 and f3, places paudio(1) and pvideo(1) is replaced by places paudio(2) 

and pvideo(2) respectively with each places having a token. The procedure repeats itself until when the 

counter's value i is 1000. At this moment, place pi<1000 contains no token. Upon the tokens in places 

paudio(1000) and pvideo(1000) are unlocked, transitions t3 instead of t2 is enabled and fires. The reason is that 

place pi<1000 has an inhibitor (i.e. a mechanism of classic Petri net) pointing to transition t3. This input 

event (a line with a circle at its end) is activated when its place contains no token. Finally, tokens in 

places paudio(1000) and pvideo(1000) are deleted and created at place pend. 

 

 

 

 

 

 

Legends: 

COM(f1) = {delete places (paudio(i)  and pvideo(i)),  create places (paudio(i=i+1)  and pvideo(i=i+1))} 

COM(f2) = create input arcs (paudio(i=i+1)t2, pvideo(i=i+1)t2, paudio(i=i+1)t3, pvideo(i=i+1)t3). 

COM(f3) = create tokens at places (paudio(i=i+1)  and pvideo(i=i+1)). 

pstart represents the start of presentation. 

paudio(i)  represents the audio playback. 

pvideo(i) represents the video playback.  

pi<1000 represents the index count less than 1000. 

i represents the sequence number of frame and sample. 
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d represents the duration of the resource (i.e. each video frame and audio sample) playback. 

Figure 15b. RPN: An example of lip-sync presentation 

5. Using RPN to Model Self-Modifying ABP 
 

In the following we show how RPN can be used to model self-modifying protocol execution. 

First we give a self-modifying protocol example, and then we show how RPN can be used to model 

its execution. 

Self-Modifying Protocol (SMP) is a set of instructions, rules, or conventions that can be changed 

by the systems that communicate with the help of that protocol. 

5. 1 Self-Modifying Alternating Bit Protocol 

The original Alternating Bit Protocol (ABP) can be defined as follows: 

• The sender sends its data messages, one by one, to the receiver, but after sending each data 

message, it must wait for an acknowledgement before sending the next data message. 

• Whenever the receiver receives a data message, it should be able to detect whether it has 

received an identical copy of this message earlier. For this reason, the value of some bit in the 

sender is attached to each data message sent. So long as a data message is being resent, the 

value of this bit remains fixed, but whenever a new data message is about to be sent, the value 

of this bit is altered (hence the name "alternating bit"). 

 

Legends: 

Solid line: original ABP 

Dotted line: self-modifying part 

 Figure 16.  Extension of the Alternating Bit Protocol 
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ABP is designed for communication without error, which is the common scenario during data 

transmission. Occasionally, network congestion or error can occur, then ABP is not sufficient. SMP 

(e.g. Self-Modifying ABP) has been proposed in [20] so that it is lightweight during normal 

communication, however it is capable of self-modification to deal with exceptions when network 

events arise. An SMP example has been presented in [20] as shown in figure 16. When the sender 

does not receive any acknowledgement for some time or receives a negative acknowledgment (Nak) / 

corrupted message (Err), some new transitions will be added to the sender and some new states (N1, 

N2) and transitions will be added to the receiver. Self-modification is introduced upon serious network 

events.  The protocol change created is meant to deal with the event raised.  

5.2 Self-Modifying ABP Modeling using RPN 

Using RPN to model ABP self-modification, an incoming event (e.g. message received, message 

error or loss) will trigger an interrupt upon which a corresponding color token is created based on the 

type of events occurred or messages received. Then transitions in the corresponding control layer will 

fire, the commands associated with modifiers will be executed upon the arrival of a token. Different 

events/messages received will lead to different implementation as shown in figures 17 & 18. We’ll 

give a detailed description in the following.  

1) Receiver’s responses in place p1:  

 In figure 18, if the receiver (place p1) receives message A0, that means a message is received, a 

token corresponding to this will be injected into PUI (A0) in the control layer 2, the commands 

associated with it in this control layer will be executed. Transition t1 in the presentation layer will be 

enabled. Then B0 is sent to the sender and t1 fires – while the resource token moves from p1 to p2, the 

next stage begins. Otherwise, if a Nak or Err signal is detected/received, then the receiver is alerted 

that there is some problem with communication. A token used to handle this condition will be injected 

into pUI (Err, Nak), the commands associated with it in the control layer 2 will be executed, a new 

transition t3, a new place p3 and four arcs will be created represented by the dot lines as shown in 
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figure 18. Then transition t3 fires, the resource token moves to p3 and Nak/Err is sent to the sender. At 

last, the resource moves back to p1 - waiting for the message to be resent from the sender.   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legends: 

       place                                Events (token injected 

into pUI) 

Actions (semantics) 

Timeout, Err, Nak, B1  COM(f8) = {create transition t3} 

COM(f9) =  {create arc p1t3} 

COM(f10) =  {create arc t3p1} 

COM(f11) = {enable transition t3} 

COM(f12) = {disable all transitions} 

p1 upon receiving 

messages/events  

B0 COM(f13) = {enable transition t1} 

COM(f14) = {disable all transition} 

Timeout, Err, Nak, B0 COM(f1) = {create transition t4} 

COM(f2) = {create arc p2t4} 

COM(f3) = {create arc t4p2} 

COM(f4) = {enable transition t4} 

COM(f5) = {disable all transitions}  

p2 upon receiving 

messages/events 

B1 COM(f6) = {enable transition t2} 

COM(f7) = {disable all transitions} 
 

Control layer 1 (for the sender in place p2 receiving network events) 
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Figure 17. Using RPN to design Self-Modifying ABP – Sender 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legends: 

       place                                Events (token 

injected into pUI) 

Actions (Semantics) 

A0 COM(f15) = {enable transition t1} 

COM(f16) = {disable all transitions} 

p1 upon receiving 

messages/events   

Message loss (Nak) 

or message error 

(Err) 

COM(f9) = {create transition t3} 

COM(f10) = {create place p3} 

COM(f11) = {create arc p1t1 & t1p3} 

COM(f12) = {create arc p3t3 & t3p1} 

COM(f13) = {enable transition t3} 

COM(f14) = {disable all transitions} 

A1 COM(f7) = {enable transition t2} 

COM(f8) = {disable all transitions} 

p2 upon receiving 

messages/events 

Message loss (Nak) 

or message error 

(Err) 

COM(f1) = {create transition t4} 

COM(f2) = {create place p4} 

COM(f3) = {create arc p2t4 & t4p4} 

COM(f4) = {create arc p4t4 & t4p2} 

COM(f5) = {enable transition t4} 

COM(f6) = {disable all transitions} 
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Figure 18. Using RPN to design Self-Modifying ABP - Receiver 

2) Sender's responses in place p1:  

As shown in figure 17, after the sender (place p1) sent a message A0 to the receiver, if a timeout, Err, 

Nak or B1 signal is detected or received, then the sender is alerted that transmission has not been 

successful. Then a token used to handle this condition will be injected into pUI (Timeout, Err, Nak, 

B1), the commands associated with it in the control layer 2 will be executed. A transition t3 and two 

arcs p1t3 & p3t1 are created in the presentation layer, represented by the dot lines as shown in figure 17. 

At last, transition t3 in the presentation layer fires, a resource token is re-injected into place p1, the 

current message A0 will be sent again. If B0 is received, a token corresponding to this will be injected 

into PUI (B0) in the control layer 2, the commands associated with it in this control layer will be 

executed. Transition t1 in the presentation layer will be enabled. At last, transition t1 fires - while the 

resource token moves from p1 to p2, the next message A1 is sent.    

6. RPN Simulation 

The modifiers and layers (i.e. control and presentation layers) of RPN are introduced to enable 

programmers to specify user interactions. The presentation specification mechanisms like places, 

input/output events and transitions are developed to enable programmers to specify temporal 

relationships among media in a presentation. Together, the distributed interactive multimedia 

applications can be simulated using this RPN simulator. These mechanisms might be grouped into 

many different presentation layers whereby some of these layers might be monitored and manipulated 

by other control layers. This is an interesting issue because we have formed an object-oriented 

approach to the model. The control layer uses to control a presentation layer, can also use to control 

other layers in future. With these two powerful mechanisms: modifiers and layers, the modeling size 

is reduced significantly as illustrated in section 4. 

RPN simulator is designed to be user-friendly. What a programmer needs is a mouse that does 

most of the job. To draw a place, modifier, or transition, the user just clicks on the place, modifier or 

transition icon shown on top of the menu as displayed in figure 19, and keys in an integer label from 1 



 

 

 

     28 
 

to 50. In the current prototype, we have set its maximum label to 50. Then, by clicking onto any area 

within the white screen (see figure 19), a place, modifier, or transition will be drawn. With that, the 

places or modifiers and transitions can be linked together with those event mechanisms by clicking 

the icons such as input event or output event show on top of the menu. Then the mechanisms are 

grouped together according to the control and presentation layers as shown in figure 19. After the 

marking is initialized, the simulator is ready to run. This simulator has two running modes. The first 

mode runs step by step, which means it fires all enabled transitions once and waits for the next 

execution. The second mode runs and fires till no transition is enabled. The simulator simulates an 

example: mute operation during an MTV playback as demonstrated in figure 19. 

 

 

 

 

Figure 19. RPN Simulator: Mute operation during a mini MTV playback 
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Figure 20. Dialog box of modifiers (see figure 19) property 

Each place has a local timer. The timer is initialized to a duration value when the presentation 

starts. The runtime executive in the simulator periodically updates the timer value associated with 

each active place. For example, places, p2, p3, p4 and p5 are associated with duration 5 seconds, place 

p7 is associated with duration 2 seconds and places p1 and p6 have no duration as indicated in figure 

15. If any of these places contain a token (locked), and the user runs the simulator, the duration will 

count down until zero. Upon the duration reaches zero the token in the place is unlocked and ready to 

be removed if its transition fires. On the other hand, the token in the modifier is ready to be removed 

only after its command is executed and then if its transition fires. 

Figures 20 and 21 show what happen when the icons "iM" and "iP" respectively are clicked. A 

dialog box pops up on the screen and this box indicates the legend of the modifiers or places as 

illustrated in figure 19. In figure 20, it shows that modifiers f8 and f9 are commanded to delete tokens 

contained in places p2 and p4, modifiers f10 and f11 are commanded to disable the input arcs p2t2 and 

p4t3 and modifiers f12 and f13 are commanded to disable the output arcs t1p2 and t2p4. The legend of the 

places in figure 19 is self-explained by figure 21. 

Once the user clicks on the icon "!" (Execution) on top of the menu, the simulation starts to run. 

Figure 22 shows a snap -shot of the simulation 3 seconds later after the user initialized the simulator 

to run. At this instant, the modifiers have executed their commands. Therefore, the programmed 

tokens, input arcs and output arcs are deleted and disabled respectively. In other words, the model has 

simulated a mute mode of a mini MTV playback. 
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Figure 21. Dialog box of places (see figure 19) property 

 

Figure 22.  RPN simulation: After the modifiers executed their commands 

7. Conclusions and Future Work 

We have proposed a powerful mechanism RPN for self-modifying protocol modeling and 

synchronization control for adaptable multimedia where schedule changes can be made into the 

presentation layer at run-time. Moreover, we have proved that RPN and its variation (S-RPN) are as 

powerful as Turing machines. We have also shown that RPN can reduce modeling size. With the 

comprehensive commands that can be associated with a modifier, the modeling power of RPN is 

much greater than the conventional Petri net and its extensions in terms of modeling self-modifying 



 

 

 

     31 
 

actions and user interactions. Some of the basic user interactions such as zooming, reverse, skip, 

freeze and restart, and speed scaling are modeled. Besides, we have also shown how RPN can be 

used to model self-modifying ABP.  

RPN facilitates the compact and flexible specification of run-time, large-scale specifications 

while preserving fine granularity as well as supporting real-time user interactions in distributed 

environment. In conclusion, we have included both the model and theory required to establish the 

technique's validity and a simulation, which is developed using Visual C++ in Window NT, to show 

that RPN is feasible. 
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Appendix: Analysis of RPNs 

The major strength of a RPN is in the modeling of systems, which may exhibit concurrency, 

synchronization, interaction and distribution (e.g. multimedia applications with user interactions in a 

distributed environment) and others as illustrated in sections 4 & 5. The following properties of RPN 
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have been considered in the following, namely: safeness, boundedness, conservation, and 

synchronization. 

Safeness 

Conventionally, a place in the net is safe if the number of tokens in that place never exceeds one. 

A net is safe if all the places in the net are safe.  

A place pi ∈ P or a modifier fj ∈ P of a RPN's layer, S = {T, , P,  A, D, L, COM} with a marking 

M is safe if M(pi) or M(fj) ≤ 1. A RPN is safe if each place in that net is safe. However this property 

will not be true if a modifier creates/manipulates a new/existing token inside the presentation layer. 

Other cases like creates/manipulates a new/existing arc can also break the safeness property. 

Safeness is a very important property for modeling multimedia applications. If a place is safe, 

then the place can be implemented as a process that it is utilizing a resource (e.g. text, audio, video, 

image and others). Assume a place represents a video playback with a specified duration. Hence, a 

token (locked) in the place represents that the video is playing. When the token in the place is 

unlocked and removed represents that the video playback had reached the end. 

Boundedness 

Safeness is a sub-case of the boundedness property. Boundedness refers to limiting a maximum 

number of tokens present in a place. Hence, a place with k-safe or k-bounded means that the number 

of tokens inside a place cannot exceed an integer k. 

A place pi ∈ P and a modifier fj ∈ P of a RPN's layer, S = {T, , P, A, D, L, COM} with a marking 

M is bounded if M(pi) and M(fj) ≤ k. A RPN is bounded if each place in that net is bounded. The same 

argument as stated earlier applies here. 

Conservation 

By classic OCPN definitions, some tokens may represent resources. Conservation is an important 

property such that tokens representing resources are neither created nor destroyed. One of the methods 

to achieve this conservation property is to ensure that the total number of tokens in a net remains 
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constant. For the second method, we can make sure that the number of input events to each transition 

must be equal to the number of output events. 

A RPN may not meet the conservation property. As a matter of fact, we need to create and 

destroy a resource due to a user interaction. For example, when a user requests for a reverse operation, 

a forward resource will be replaced by a reversed resource this may break the conservation property. 

Synchronization 

For traditional Petri nets, a transition can only fire if all its input places have a token. This type 

of synchronization mechanism is specified before simulation. As for RPN, since a transition can be 

created dynamically, this means the system under simulation can create synchronization points at run-

time. This would be useful for real-time applications or simulations where such flexibility is desired.  

      


