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Abstract— An inherent problem in multiobjective optimiza-
tion is that visual observation of solution vectors with four
or more objectives is infeasible, which brings big difficulties
for algorithmic design, examination, and development. This
paper presents a test problem, called the Rectangle problem, to
aid the visual investigation of high-dimensional multiobjective
search. Key features of the Rectangle problem are that the
Pareto optimal solutions 1) lie in a rectangle in the two-variable
decision space and 2) are similar (in the sense of Euclidean
geometry) to their images in the four-dimensional objective
space. In this case, it is easy to examine the behavior of
objective vectors in terms of both convergence and diversity,
by observing their proximity to the optimal rectangle and their
distribution in the rectangle, respectively, in the decision space.
Fifteen algorithms have been investigated. Underperformance of
Pareto-based algorithms as well as most state-of-the-art many-
objective algorithms indicates that the proposed problem not
only is a good tool to help visually understand the behavior
of multiobjective search in a high-dimensional objective space
but also can be used as a challenging benchmark function to
test algorithms’ ability in balancing convergence and diversity
of solutions.

I. INTRODUCTION

COMMON existence of optimization problems with
more than three objectives in industrial and engineering

design leads to the emergence of a new research topic in the
evolutionary multiobjective optimization (EMO) area, called
many-objective optimization [1], [2]. However, problem’s
characteristics of the high dimension landscape, such as
the curse of dimensionality and the ineffectiveness of the
Pareto-based selection, bring great challenges for algorithmic
designers and practitioners in the area. One of the chal-
lenges lies in the visualization of evolutionary search. In
contrast to for two- or three-objective problems where it is
straightforward to show the track of objective vectors during
the evolutionary process, for problems with four or more
objectives we cannot visually monitor how a set of objective
vectors are evolved and visually understand how are their
distribution in the space and their proximity to the Pareto
front.

Effort has been made to ease this challenge. In general,
there exist two classes of methods to visualize a set of vectors
in the objective space. One, stemming from the multiple cri-
terion decision-making (MCDM) community, is on the direct
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display by using a plane plot in the sense that objective vec-
tors are displayed with no modifications, such as the parallel
coordinate, bar chart, and star coordinate methods [3]. These
methods, though, often come without information about the
Pareto dominance relation between vectors. The other class is
on the mapping of high-dimensional objective vectors to two-
or three-dimensional ones for visualization. Key concerns
under such mapping include the maintenance of the Pareto
dominance relation between vectors and the reflection of their
location information in the population. Many current studies
originate from this motivation, presenting various interesting
attempts [4], [5], [6], [7]. However, inevitable information
loss associated with the dimension reduction will influence
the observation and understanding of objective vectors. In
addition, several methods of constructing or/and mapping
some ‘key’ vectors from a objective vector set have been
developed [8], [9], [10]. Despite failing to display all vectors
in detail, these methods can provide an outline of the whole
set, e.g., the range and the location of the set in the space.

On the other hand, some studies deal with the visualization
challenge of evolutionary search from another prospective.
Unlike the above methods which focus on objective vec-
tors coming from any test problem, these studies propose
(or introduce) a particular class of test problems to help
the visual investigation of evolutionary search [11], [12].
Specifically, Köppen and Yoshida [13] presented a class of
many-objective test problems whose Pareto optimal set is in
a regular polygon in a two-dimensional decision space. This
allows easy visualization and examination of the proximity
of the obtained solutions to the optimal region and their
distribution in the decision space. Later, Ishibuchi et al. [14],
[15] extended and generalized this class of problems (called
distance minimization problems), introducing multiple Pareto
optimal polygons with same [14] or different shapes [16] as
well as making decision variables’ dimensionality scalable
[15]. Overall, these problems provide a good alternative to
help understand the behavior of multiobjective evolutionary
search, and thus have been widely used to compare many-
objective algorithms in recent studies [17], [18], [19].

However, one weakness of such a class of test problems
is that from the decision space prospective it fails to exactly
reflect the behavior and performance of objective vectors,
i.e., their convergence and distribution with respect to the
Pareto front. Even if a set of objective vectors are distributed
perfectly over the optimal front, we cannot know this fact via
the observation of the corresponding decision variables in the
polygon(s).

In this paper, we construct a four-objective test problem
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Fig. 1. An illustration of a four-objective distance minimization problem
whose Pareto optimal region is determined by the four points.

with its Pareto optimal region being a rectangle in a two-
dimensional decision space, called the Rectangle problem.
The key feature in this problem is that the Pareto optimal
solutions in the decision space and their images in the objec-
tive space are similar (in the sense of Euclidean geometry). In
other words, the ratio of the distance between any two Pareto
optimal solutions to the distance between their corresponding
objective vectors in the Pareto front is a constant. In this way,
we can easily understand the behavior and performance of
the objective vector set (e.g., its uniformity and coverage
over the Pareto front) by observing the solution set in the
two-variable decision space.

Using three instances of the proposed problem, we investi-
gate the behavior of fifteen EMO algorithms, including well-
known multiobjective algorithms and recently-developed
many-objective ones. Interesting observations indicate that
the Rectangle problem not only is a good tool to examine
objective vectors’ diversity that algorithms maintain but also
provides a big challenge for algorithms to lead the solutions
to search towards the optimal region.

The rest of this paper is organized as follows. Section II
constructs and explains the proposed test problem. Section III
briefly describes the considered EMO algorithms and their
corresponding parameter settings. Section IV is devoted to
visual investigation and understanding of the search behavior
of the fifteen algorithms on three problem instances. Finally,
conclusions are drawn in Section V.

II. RECTANGLE PROBLEM

The distance minimization problems, proposed by Köppen
and Yoshida [13] and generalized by Ishibuchi et al. [14],
are a class of many-objective optimization problems that
minimize the Euclidean distance from a solution to a given
set of points in the two- or three- dimensional Euclidean
space, where the distance to any of these points is treated
as an independent objective. Figure 1 gives a four-objective
example of the distance minimization problem with a set of
points A, B, C, and D.

A significant feature of the distance minimization prob-
lems is that their Pareto optimal region is a convex polygon
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Fig. 2. An illustration of a Rectangle problem whose Pareto optimal region
is determined by the four lines.

determined by the given point set [13]. This allows a clear
observation of whether the considered solution set converges
into the Pareto optimal region. However, a weakness of such
problems is that they are unavailable for the distribution
investigation of a solution set in the objective space. There
is no explicit distribution relation between decision variables
and their corresponding objective images in the problems.

Inspired by the above, this paper constructs a test problem
whose Pareto optimal solutions lie in a rectangle in the
decision space and more importantly are similar (in the sense
of Euclidean geometry) to their images in the objective space.
Unlike the distance minimization problems which consider
the distance to a set of points, the proposed Rectangle
problem takes into account the distance to a set of lines
parallel to the coordinate axes. Figure 2 gives an example
of the Rectangle problem where the Pareto optimal solutions
are in the region enclosed by four lines A, B, C, and D
(including the boundary).

Formally, the Rectangle problem minimizes the Euclidean
distance from a solution, x = (x1, x2), to four lines parallel
to the coordinate axes (x1 = a1, x1 = a2, x2 = b1, and
x2 = b1):

min

f1(x) = |x1 − a1|
f2(x) = |x1 − a2|
f3(x) = |x2 − b1|
f4(x) = |x2 − b2|

(1)

Next, we explain the geometric similarity of the Rectangle
problem between the Pareto optimal solutions and their
images in the objective space. Let x1 = (x1
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1
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Also, the distance of their images in the objective space is
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Since x1 and x2 are two Pareto optimal solutions of the
problem, it holds that a1 ≤ x1
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The above equation indicates that the ratio of the distance
between any two Pareto optimal solutions to the distance
between their corresponding objective vectors is a constant.
As such, it is easy to understand the distribution of the ob-
jective vectors in a Pareto front approximation by observing
their position and crowding degree in the rectangle in the
two-dimensional decision space.

Note that this two-dimensional problem with respect to
decision variables can be extended to the three-dimensional
scenario. In this way, the proposed problem will minimize the
Euclidean distance from a solution (i.e., x = (x1, x2, x3))
to six lines parallel to the three coordinate axes, and the
Pareto optimal region will become a cuboid enclosed by
these six lines. In addition, it is necessary to point out that
unlike in the distance minimization problems where objective
dimensionality can be set freely, in the Rectangle problem the
number of objectives (i.e., the considered lines) is determined
by the number of decision variables (two lines corresponding
to one coordinate axis). It is not easy (or even impossible) to
add new lines while keeping the dimensionality of decision
space unchanged, because the geometric similarity between
the Pareto optimal solutions and their objective images will
be violated when one coordinate axis corresponds to more
than two lines.

III. FIFTEEN ALGORITHMS INVESTIGATED

In this section, we briefly describe the considered al-
gorithms and their corresponding parameter settings in the
experimental studies. In all, fifteen EMO algorithms are
investigated, including well-known multiobjective algorithms
and recently-developed many-objective ones. Readers seek-
ing more details on these algorithms should refer to their
original literature.

• Nondominated Sorting Genetic Algorithm II (NSGA-
II) [20]. As a representative Pareto-based algorithm,
NSGA-II is well-known by its nondominated sorting
and crowding distance-based density estimation strate-
gies in fitness assignment.

• Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[21]. SPEA2 is also a prevalent Pareto-based algorithm,
which adopts a so-called fitness strength value and
the k-th nearest neighbor to rank individuals in the
population.

• Multiple Single Objective Pareto Sampling (MSOPS)
[22]. MSOPS uses the idea of single-objective aggre-
gated optimization to search in parallel. Specifying an
individual with a number of weight vectors, MSOPS
is popular to deal with many-objective optimization
problems.

• Indicator-Based Evolutionary Algorithm (IBEA)
[23]. IBEA aims to integrate the preference information
of the decision maker into multiobjective search. The
main idea is to define the optimization goal in terms of
a binary performance measure and then to directly use
this measure to guide search.

• ϵ-dominance Multiobjective Evolutionary Algorithm
(ϵ-MOEA) [24]. ϵ-MOEA is a steady-state algorithm
using ϵ-dominance to strengthen selection pressure.
Dividing the objective space into many hyperboxes, ϵ-
MOEA allows each hyperbox at most one solution based
on ϵ-dominance and the distance from solutions to the
utopia point in the hyperbox.

• S Metric Selection EMO Algorithm (SMS-EMOA)
[25]. SMS-EMOA, like IBEA, is also an indicator-
based algorithm, which maximizes the hypervolume
contribution of a population during the evolutionary
process. Combined with the concept of nondominated
sorting, SMS-EMOA can produce a well-converged and
well-distributed solution set.

• Multiobjective Evolutionary Algorithm based on
Decomposition (MOEA/D) [26]. Using a predefined
set of weight vectors to maintain a diverse set of
solutions, MOEA/D converts a multiobjective problem
into many single-objective problems and tackles them
simultaneously. As one of the most popular algorithms
developed recently, MOEA/D can work well with dif-
ferent aggregation functions, such as Tchebycheff and
penalty-based boundary intersection (here denoted as
MOEA/D-TCH and MOEA/D-PBI, respectively).

• Average Ranking (AR) [27]. AR, ranking solutions in
each objective and then summing all the rank values
to evaluate them, has been found to be successful in
terms of convergence for many-objective problems [33],
despite the risk of leading the solutions to gather into a
sub-area of the Pareto front due to the lack of a diversity
maintenance scheme [34], [28].

• Average Ranking combined with Grid (AR+Grid)
[28]. AR+Grid is a hybrid method which uses grid to en-
hance diversity for AR in many-objective optimization.
In AR+Grid, the AR strategy is employed to provide
the selection pressure towards the Pareto front, and the
grid device is introduced to prevent solutions from being
crowded in the objective space.

• Hypervolume Estimation Algorithm (HypE) [29].



TABLE I
THE PARAMETER SETTING AND THE SOURCE OF THE TESTED ALGORITHMS

Algorithm Parameter(s) Source
NSGA-II [20] http://www.iitk.ac.in/kangal
SPEA2 [21] http://www.tik.ee.ethz.ch/pisa
MSOPS [22] weight vectors 200 http://code.evanhughes.org/
IBEA [23] κ = 0.05 http://www.tik.ee.ethz.ch/pisa
ϵ-MOEA [24] ϵ = 0.85 http://www.iitk.ac.in/kangal
SMS-EMOA [25] http://jmetal.sourceforge.net/index.html
MOEA/D-TCH [26] neighborhood size 10% http://dces.essex.ac.uk/staff/qzhang/
MOEA/D-PBI [26] neighborhood size 10%, penalty parameter 2.0 http://dces.essex.ac.uk/staff/qzhang/
AR [27] written by ourselves
AR+Grid [28] grid division 30 http://www.brunel.ac.uk/ cspgmml1/
HypE [29] sampling point 10, 000 http://www.tik.ee.ethz.ch/pisa
DMO [30] written by ourselves
GrEA [31] grid division 25 http://www.brunel.ac.uk/ cspgmml1/
FD-NSGA-II [32] σ = 0.5 provided by its authors
SPEA2+SDE [18] http://www.brunel.ac.uk/ cspgmml1/

Adopting Monte Carlo simulation to approximate the
exact hypervolume value, HypE significantly reduces
the time cost of the HV calculation and enables
hypervolume-based search to be easily applied to many-
objective optimization problems [29].

• Diversity Management Operator (DMO) [30]. Based
on the basic framework of NSGA-II, DMO improves
the diversity maintenance mechanism by adaptively
tuning it according to the search range of the current
evolutionary population.

• Grid-based Evolutionary Algorithm (GrEA) [31].
GrEA introduces three grid-based criteria to distinguish
between individuals in mating and environmental se-
lection. Together with a fitness adjustment strategy,
these criteria are used to avoid partial overcrowding as
well as guiding the search towards different promising
directions in the space.

• Fuzzy Dominance-based NSGA-II (FD-NSGA-II)
[32]. To deal with the failure of Pareto dominance in
many-objective optimization, FD-NSGA-II develops a
fuzzy dominance-based fitness evaluation mechanism
to continuously differentiate individuals into different
degrees of optimality. The concept of fuzzy logic is
adopted in the algorithm to quantify the difference
between individuals in a population.

• SPEA2 with Shift-based Density Estimation
(SPEA2+SDE) [18]. Shifting individuals’ position
before estimating their density, SDE attempts to
make Pareto-based algorithms suitable for many-
objective optimization. In contrast to traditional
density estimation which only involves individuals’
distribution, SDE covers both the distribution and
convergence information of individuals. The Pareto-
based algorithm SPEA2 has been demonstrated to be
very competitive in a high-dimensional space when
cooperating with SDE.

A crossover probability pc = 1.0 and a mutation proba-
bility pm = 1/L (where L denotes the number of decision
variables) were used. The operators for crossover and mu-

tation are simulated binary crossover (SBX) and polynomial
mutation with both distribution indexes 20. The population
size was set to 120 (also the archive set maintained with
the same if required) and the termination criterion of a
run was 30,000 evaluations (i.e., 250 generations) for all
the algorithms. In ϵ-MOEA, the size of the archive set is
determined by the ϵ value. For a fair comparison, we set ϵ
so that the archive set is approximately of the same size as
that of the other algorithms. Table I summarizes parameter
settings as well as the source of all the algorithms. The setting
of these parameters in our experimental studies either follows
the suggestion in their original papers or has been found to
make the algorithm perform well on the tested problem.

IV. RESULTS AND DISCUSSION

In this section, we investigate the behavior of the fifteen
EMO algorithms in terms of convergence and diversity on
the Rectangle problem by demonstrating their solutions in
the two-dimensional decision space. Three problem instances
with the same objective lines (x1 = 0, x1 = 100, x2 = 0,
and x2 = 100) are introduced, where only difference lies in
the search (decision) space’s range, thus providing different
challenges for an algorithm to balance convergence and
diversity.

A. Instance I

Figure 3 shows the final solution sets obtained by one
typical run of the 15 algorithms on a problem instance where
the search range of both x1 and x2 is [−20, 120]. From
different behaviors of their solutions in the figure, these
algorithms can be divided into four groups.

The first group corresponds to the algorithms which fail to
converge, including NSGA-II, SPEA2, and MSOPS. Among
them, SPEA2 performs better than the other two algorithms
in terms of diversity, although its solutions seem to cover
the whole search space rather than the optimal region. Two
algorithms, AR and FD-NSGA-II, belong to the second
group where the obtained solutions concentrate in a small
part of the Pareto optimal region. The algorithms in the third
group struggle to maintain uniformity although most of their
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(a) NSGA-II (b) SPEA2 (c) MSOPS (d) IBEA (e) ϵ-MOEA
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(f) SMS-EMOA (g) MOEA/D-TCH (h) MOEA/D-PBI (i) AR (j) AR+Grid
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Fig. 3. The final solution set of the fifteen algorithms on the Rectangle problem where x1, x2 ∈ [−20, 120].
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(a) MOEA/D-PBI(0.1) (b) MOEA/D-PBI(1.5) (c) MOEA/D-PBI(2.0) (d) MOEA/D-PBI(2.5) (e) MOEA/D-PBI(5.0)

Fig. 4. The final solution set of the five implementations of MOEA/D-PBI with different penalty parameter values on the Rectangle problem where
x1, x2 ∈ [−20, 120]. The number in the bracket denotes the penalty parameter value of the algorithm.

solutions can converge into the optimal region. MOEA/D-
TCH, MOEA/D-PBI, HypE, and DMO fall into this group,
their solutions overcrowded in some regions of the rectangle,
thus leading to vacancy in other ones.

The last group involves the remaining algorithms (i.e.,
IBEA, ϵ-MOEA, SMS-EMOA, AR+Grid, GrEA, and
SPEA2+SDE) which perform well in terms of convergence
and diversity. More specifically, the solutions obtained by
ϵ-MOEA tend to be perfectly uniform, but fail to cover
the boundary of the optimal region. SMS-EMOA has the
same problem, with most of its solutions on the middle
part of the rectangle. This observation is interesting in view
of that SMS-EMOA has been reported to perform well in
maintaining solutions’ extensity [25], [35]. Although the
solutions of IBEA, AR+Grid, and GrEA can reach the
boundary the optimal region, they are not so uniform as those
of ϵ-MOEA and SPEA2+SDE. SPEA2+SDE appears to be

the only algorithm with excellent performance in terms of
both extensity and uniformity, and its solutions are distributed
uniformly over the whole Pareto optimal region.

In addition, it is worth mentioning that among different
implementations of MOEA/D regarding aggregation func-
tions, MOEA/D-PBI with the penalty parameter value 2 (i.e.,
the setting considered here) performs best on the rectangle
problem; this is not the case for the distance minimization
problem where MOEA/D-TCH and MOEA/D-PBI with the
penalty parameter value 0.1 (denoted as MOEA/D-PBI(0.1))
have been found to work well [36], [18]. Figure 4 shows
the result of five implementations of MOEA/D-PBI with
different penalty parameter values on the tested instance.
Clearly, MOEA/D-PBI(0.1) fails to maintain diversity, while
MOEA/D-PBI(5.0) to make all of its solutions converge
into the optimal region. Despite having similar distribution
with MOEA/D-PBI(1.5) and MOEA/D-PBI(2.5), MOEA/D-



PBI(2.0) seems to achieve a better balance between conver-
gence and diversity, some of its solutions located exactly in
the boundary of the rectangle.

B. Instance II

The Rectangle problem instance considered in this sec-
tion greatly enlarges the search space of instance I, with
x1, x2 ∈ [−10000, 10000]. Figure 3 shows the final solution
sets obtained by one typical run of the 15 algorithms on the
instance.

It is clear from the figure that most of the algorithms face
big challenges in balancing convergence and diversity on
this problem instance. The solution sets obtained by NSGA-
II, SPEA2, AR, AR+Grid, DMO, and FD-NSGA-II fail to
approach the Pareto optimal region. The first five sets are
distributed in the form of a cross and the last one is located
in a rhombic region. All solutions of MSOPS overlap in six
points near the rectangle. MOEA/D-TCH and GrEA perform
similarly—most of their solutions can converge into the
Pareto optimal region, but there still exist several solutions far
away from the optimal rectangle. Although all the solutions
obtained by IBEA and HypE are the Pareto optimal solutions,
the two algorithms struggle to maintain uniformity, leading
their solutions to concentrate (or even coincide) in some areas
of the rectangle.

The remaining four algorithms, ϵ-MOEA, SMS-EMOA,
MOEA/D-PBI, and SPEA2+SDE, perform significantly bet-
ter than the previous ones. The solutions of ϵ-MOEA have
almost perfect uniformity. Despite some shortcomings in
terms of extensity or uniformity, the solution set obtained
by SMS-EMOA and MOEA/D-PBI largely covers the whole
optimal region. SPEA2+SDE, like the case on the problem
instance I, achieves the best performance in balancing solu-
tions’ uniformity and extensity.

Contrast the results on instance II with those on in-
stance I: only the four algorithms (i.e., ϵ-MOEA, SMS-
EMOA, MOEA/D-PBI, and SPEA2+SDE) perform simi-
larly; some algorithms’ solution set, like NSGA-II’s and
SPEA2’s, is far away from the optimal region and distributed
crosswise. This is not the case for the distance minimization
problem where the solution set obtained by Pareto-based al-
gorithms can easily approach the Pareto optimal region even
when the number of objectives reaches ten [19]. Figure 6
gives an illustration to explain why this happen. Let x1 and
x2 be two solutions for the Rectangle problem in the figure.
x1 is located in the middle of the two objective lines parallel
to coordinate axis o2, and x2 in the right upper area to
the four objective lines. The region that Pareto-dominates
x1 is a line segment, far smaller than that dominating x2,
although x2 is closer to the optimal region than x1. In
fact, any solution located between two parallel objective
lines (except the Pareto optimal solutions) is dominated
only by a line segment parallel to the two objective lines,
given that any improvement of the solution’s distance to
the one objective line will lead to the degradation to the
other. This characteristic of the Rectangle problem (i.e., some
non-Pareto optimal solutions dominated by only a linear

o2

o1

1x

2x

Fig. 6. An illustration of the difficulty for algorithms to converge on the
Rectangle problem. The shadows are the regions that dominate x1 and x2,
respectively.

region) will bring a great challenge for algorithms which use
Pareto dominance as the sole selection criterion in terms of
convergence, usually leading their solutions to be distributed
crisscross in the space.

In addition, it is necessary to mention that on instance II
the optimal setting of the algorithms’ parameter(s) (if exist-
ing) is likely to be different from that on instance I. The
characteristic of the Rectangle problem explained above can
make the optimal setting of the parameter(s) vary for the
search space with different ranges. For instance, a signifi-
cantly large grid division of GrEA (say 500) can make the
algorithm’s solutions converge into the optimal rectangle as
well as having good diversity on instance II. Similar cases
lie in the algorithms IBEA, AR+Grid, and FD-NSGA-II.

C. Instance III

From the result comparison on instance I and instance II,
the four algorithms, ϵ-MOEA, SMS-EMOA, MOEA/D-PBI,
and SPEA2+SDE, have been found to perform steadily with
the change of search space. In this section, we tremendously
enlarges the search range of solutions in order to further
test the algorithms’ ability of leading solutions to converge
towards the Pareto optimal region when working in a huge
space. Figure 7 shows the final solution sets obtained by one
typical run of the four algorithms on the problem instance
with x1, x2 ∈ [−1012, 1012].

Clearly, only SPEA2+SDE works well on this instance,
with its solutions located in the rectangle as well as having
good coverage. The archive set of ϵ-MOEA has only one
individual far from the optimal region. In fact, however
setting the ϵ value of the algorithm, there is only one solution
left in the final archive set when the problem’s search space
becomes huge. Likewise, SMS-EMOA and MOEA/D-PBI
fail to lead their solution set to approach the optimal region.
The solutions of the former have a crisscross distribution and
the solutions of the latter gather into two clusters parallel to
the horizontal axis.
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Fig. 5. The final solution set of the fifteen algorithms on the Rectangle problem where x1, x2 ∈ [−10000, 10000].
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Fig. 7. The final solution set of the four algorithms on the Rectangle
problem where x1, x2 ∈ [−1012, 1012].

V. CONCLUSIONS

Visual investigation of evolutionary search in a high-
dimensional space is an important issue in the EMO area,
which can help understand the behavior of the existing
EMO algorithms, facilitate their modification, and further
develop new algorithms for many-objective optimization
problems. Unlike the existing studies which mainly focus
on the mapping of high-dimensional objective vectors to

two- or three-dimensional ones for visualization, this paper
develops a test function, called the Rectangle problem, where
the Pareto optimal solutions in the two-variable decision
space have similar distribution to their images in the four-
dimensional objective space. In this case, it is feasible to
visually investigate high-dimensional objective vectors of the
problem by observing their behavior in the decision space.

Fifteen EMO algorithms have been investigated on three
instances of the proposed problem with varying range of
search space which present different challenges for an algo-
rithm to converge. Different behaviors of the test algorithms
have been demonstrated. The Pareto-based algorithms (i.e.,
NSGA-II and SPEA2) fail to guide their solutions evolving
towards the Pareto optimal region even if the optimal region
accounts for a large proportion of the whole search space.
IBEA, AR+Grid, and GrEA can achieve a good balance
between convergence and diversity on instance I, but struggle
when the search space become larger. Although ϵ-MOEA,
SMS-EMOA, and MOEA/D-PBI work well on instances I
and II, their solutions fail to approach the optimal rect-
angle when a huge problem’s search space is introduced.
SPEA2+SDE is the only algorithm with good performance
on all the three test instances, its solutions distributed uni-
formly over the whole Pareto optimal region all along.

Despite involving only four objectives, the Rectangle
problem has posed big challenges to most of the many-
objective algorithms. This is different from the case that on
most four-objective problems in the literature (e.g., the DTLZ
problem suite [37]) the algorithms developed specifically for



many-objective optimization (or even only based on Pareto
selection criterion) perform fairly well [35]. One major future
work is on the changeability of objectives’ number of the
Rectangle problem. More research is desired to improve
the proposed problem or develop new problems whose
objectives’ number is independent of the dimensionality of
decision space.
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