
 1

CONFIGURABLE CELLULAR AUTOMATA FOR

PSEUDORANDOM NUMBER GENERATION

MARIE THERESE QUIETA AND SHENG-UEI GUAN

Department of Electrical and Computer Engineering

National University of Singapore

 3 Engineering Drive 3, Singapore 117576

Abstract

This paper proposes a generalized structure of cellular automata (CA) – the

configurable cellular automata (CoCA). With selected properties from programmable CA

(PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In

CoCA, the cells are dynamically reconfigured at run-time via a control CA.

Reconfiguration of a cell simply means varying the properties of that cell with time.

Some examples of properties to be reconfigured are rule selection, boundary condition,

and radius. While the objective of this paper is to propose CoCA as a new CA method,

the main focus is to design a CoCA that can function as a good pseudorandom number

generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of

18 Diehard tests with 31 cells. CoCA PRNG’s performance based on Diehard test is

considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for

research not only in the field of random number generation, but in modeling complex

systems as well.

Key words: random number generation, cellular automata, configurable cellular automata

 2

1 Introduction

Cellular automata (CA) was first introduced by John von Neumann [28] in the late

1940s and initiated in the early 1950s to provide modeling and simulation for complex

systems capable of self-reproduction. Later on, some researchers maintained active

interest in the field and subsequent developments went on. Several research activities

have confirmed that CA’s inherent parallel architecture provides high-performance

computational simulation environments which can be used for solving real-world

problems in science and engineering [15]. Few distinct real-world examples are

simulations of macroscopic phenomena and biochemical phenomena. In computer

simulations, CA has been used in cryptography [11], [20], VLSI testing [12], and

pseudorandom number generation [1], [3]-[5], [7]-[9], [14], [17], [18].

For over a decade, one active application of CA is in pseudorandom number

generation. Motivations for these works are ascribed to the aspect of CA which can be

easily implemented in hardware as they are simple, regular, localized, and are essentially

made up of networks of Boolean functions. CA-based pseudorandom number generators

(PRNGs) have been studied extensively [1], [3]-[5], [7]-[9], [14], [17], [18] and for the

past years, they have been shown to offer superb performance and efficiency. They are

superior over other pseudorandom number workhorses like linear congruential generators

(LCGs) and linear feedback shift registers (LFSRs) [9], [20].

In this paper, a novel CA which we coin the Configurable CA (CoCA), is proposed

with the objective of obtaining good CA-based PRNGs in a more flexible way. In CoCA,

CA cells can be configured at run-time via a configuration control CA. CA parameters to

 3

be configured are selected based on some standard CA properties [21] and some new CA

properties recently proposed in [4][5].

The rest of this article is organized as follows: Section 2 gives an overview of cellular

automata and pseudorandom number generators. Section 3 presents the new approach to

CA – the configurable CA. and demonstrates some preliminary experiments on CoCA as

a PRNG, Section 4 discusses the evolutionary approach to CoCA which provides analysis

on CoCA performance as a random number generator, Section 5 presents some new

rooms for further research, and finally, Section 6 concludes the paper.

2 Cellular Automata PRNGs

2.1 Cellular Automata Overview

Cellular automata are discrete dynamic autonomous systems consisting of an array of

cells where each cell is in any one of its permissible states, s∈{0,1} for Boolean CA.

The cells are updated synchronously at discrete time steps (clock cycle) by certain rule

functions. The state of a CA, X(t), at time t is defined as the n-tuples formed from the

states of the individual cells, 1 2() [(), (),..., ()]
n

X t x t x t x t= where n is the number of CA

cells. A CA is considered autonomous since it evolves from its previous state to its next

state. Changing the initial conditions of the CA may result in somewhat different upshots

as it evolves in time.

A CA’s behavior is completely specified in terms of local relation. The transition

rule is a function of the previous states (i.e. at previous time step, t-1) of its k neighbors

for a k-neighborhood CA. Normally, each cell’s neighborhood considers itself and the

cells physically closest to it. For a 3-neighborhood 1-d CA with n number of cells, the

 4

neighborhood of each cell considers itself and the left and right cells directly connected to

it. Each cell state transition is given by the equation:

1 1() ((1), (1), (1)) 1,2,...,
i i i i i

x t f x t x t x t i n
− +

= − − − ∀ = where fi represents the transition rule

for the ith cell.

In accordance with Wolfram’s convention [20], transition rule functions are defined

in Boolean forms. For a k-neighborhood CA, there are 2
k
 possibilities of combining the

state values of neighbors. Each combination has an equivalent next state value for a

certain cell xi, depending on the rule function used by that particular cell. For a 3-

neighborhood CA, there are 2
3

= 8 combinations of neighbor states. Performing a rule

function on each of the 8 combinations would result in 8 next-state values of xi. The

transition rule names of CA are based on the decimal equivalent of 8 next state values.

For instance, if a certain rule function is to 000111102 (equivalent to 3010), then the rule

function is named rule 30. The most commonly used rule functions in pseudorandom

number generation are rules 30, 90, 105, 150, and 165.

If all the cells in a CA obey the same rule, then that CA is said to be uniform;

otherwise, it is nonuniform or hybrid [7]. A CA is said to be a periodic boundary CA if

the extreme cells (leftmost and rightmost cells) are adjacent to each other. A CA is said to

be a null boundary CA if the extreme cells are connected only to its left (or right) cell

[21] and a constant value of ‘0’ or ‘1’ is assigned to its supposed-to-be right (or left)

neighboring cell. Research on CA PRNGs has shown that nonuniform CA [8] and

periodic boundary CA [16] give better randomness quality. In this work, nonuniform

periodic boundary CA is used.

 5

A CA is said to be a programmable CA (PCA) if it uses a control CA to determine

the rules of each cell. A control CA is essentially just another basic CA which is usually

of uniform nature. The rule function used by each cell changes with time and is decided

by the control CA. PCA is, in fact, a nonuniform CA because all its cells collectively use

different rule functions. A PCA may use m-bit control CA, where 1m ≥ . For each cell,

there are 2
m
 rules to choose from, thereby, allowing less probability of correlations

among the cells. As a PRNG, 2-bit PCA has been explored by some researchers [17]. As

expected, it showed better performance than a 1-bit PCA PRNG. However, increasing m

is not practical as it introduces more hardware implementation costs. For benchmarking

purposes, 2-bit PCA is also considered in this paper.

2.2 Randomness Tests

The pseudorandom bits are obtained from CA by sampling the cell state values at

certain time steps. Time spacing (ts) and cell spacing (cs) are often used to avoid

correlations among the pseudorandom numbers obtained. The ts parameter is the number

of time steps in between when CA cells are sampled as output. For example, if the output

bits are extracted from the CA PRNG every 2 time steps (ts = 2), only CA at specific time

steps, X(t), X(t+2), X(t+4), …, X(t+2i) are utilized. The cs parameter is the number of

cells in between two consecutive output cells in a CA PRNG. For example, if the cs

parameter is set at 3 (cs = 3), then, cells xi(t), xi+4(t), xi+8(t), xn(t) are used as output cells.

It has been shown that time and cell spacing significantly improves the performance of

CA PRNGs [4], [5]. This shows that output methods are non-trivial in pseudorandom

number generation.

 6

Like in previous research [3]-[6], two well-known randomness test suites are utilized

in this work: the ENT Test [2] and the Diehard test [10].

ENT test is a collective term for three tests: chi-square, entropy, and serial

correlation coefficient (SCC). The overall evaluation for the ENT test can be obtained

from the F value as given in Equation (1). In comparing good quality CA PRNGs, the

entropy (ent) and SCC values normally have comparable results with minimal

discrepancies unlike the chi-square value. Because the chi-square test is an important

indication of randomness, it is given the highest weightage in the calculation of F.

(7)*30% (1 | |)*30% ()*40%F entropy SCC f chi square= − + − + − (1)

where:
0; if chi-square 90% 10%

()
1; if 10% < chi-square < 90%

or
f chi square

> <
− = 



The Diehard test, which is known to be a very stringent test, is also used to further

evaluate the randomness of CoCA PRNGs. The Diehard Test is a battery of tests in which

each test calculates p-values. There are 18 tests all in all including those tests that were

not mentioned in Tomassini’s work [18]. These are the OPSO test, OQSO test, and DNA

test, which are said to be the more difficult tests to pass as there are many p-values to

consider. In this work, a pass is considered if the p-value is not 0 or 1.

It is observed that if a CA PRNG has F < 0.9 (assuming that number of initial

pseudorandom seeds, S = 100), the CA PRNG has low chances of passing the Diehard

test [4], [5]. Moreover, generating random bits to be tested under Diehard test is more

time-consuming than generating for ENT test. This is because Diehard test requires more

random numbers than the ENT test. Thus, in this work, some comparisons are made

using ENT test first, e.g., in preliminary experiments of CoCA PRNG. Diehard test is

 7

used to verify the results of CoCA PRNGs which gives good ENT test results. In the

end, Diehard test is still the gauge of a good pseudorandom number generator.

2.3 CA PRNGs (1-d CA/PCA, 2-d CA, SPCA, CCA)

Research on CA PRNGs has diversified from internal properties (e.g., locality, rule

selection, and programmability) to external structures like 1-d string, 2-d array, and 3-d

solid. Combinations of some internal properties with the external structure property has

opened a wide range of research on CA as a PRNG, e.g., varying rule selection of 1-d

CA pioneered the research on 1-d PCA. Hence, research interest on CA PRNGs

intensifies from time to time as new developments continue to emerge.

In the last decade, research interests on CA PRNGs were focused on 1-d CA. The

first work on CA as PRNG can be credited to Wolfram [20]. He used uniform rule 30 1-d

CA and showed that it can produce fairly random temporal bit sequences. Later,

Hortensius et al. studied the first nonuniform CA PRNG, the programmable CA (PCA)

[7]. In their work, Hortensius et al. explored on 1-bit control PCA using rule 90 and rule

150, coined as PCA 90-150. Hortensius et al. also researched on PCA 30-45 showing

that PCA 90-150 has better potential than PCA 30-45 in pseudorandom number

generation [8]. Shortly after Hortensius’ work, Tomassini et al. further explored PCA 90-

165 [14] and 2-bit control PCA referred to as PCA 90-105 [17]. Results showed that the

latter of Tomassini’s work is better than Hortensius’ work. But they are still not

comparable to classical generators (e.g. LCG) in terms of randomness quality and cannot

pass Diehard test by Marsaglia [10], the most stringent randomness test known at present.

 8

While some works were concentrated on thorough searching for good PRNGs using

1-d CA, some researchers shifted their exploration to 2-d CA PRNGs. Chowdhury et al.

first proposed a methodology which generates pseudorandom number using 2-d CA [1].

They showed that 2-d CA PRNG is superior to 1-d CA PRNG using the same number of

cells. Tomassini et al. worked on 2-d CA as well [17]. In their work, he studied time

spacing parameters and recommended time spacing of 2 for practicality.

Apparently, previous works on 1-d CA are directed to varying rule and rule selection

methods. Guan et al. recently proposed new types of CA, controllable CA (CCA) [4]-[5]

and self-programmable CA (SPCA) [3]. CCA was designed for the purpose of

disregarding the tradeoff between randomness quality and structural complexity. This is

because CCA PRNG is one-dimensional but the performance can compete with that of 2-

d CA PRNGs. On the other hand, SPCA can also compete with 2-d CA PRNGs and CCA

PRNGs. But in terms of cost-effectiveness, SPCA is somewhat less attractive than CCA

PRNGs since the former uses memory cells to store the previous state values (way back

to t-2 state values) of the cells. As will be seen later, CoCA PRNG is essentially a

generalized form of CA PRNG. Hence, it can not be simply compared with other CA

PRNGs based on randomness quality alone. Complexity and hardware implementation

should also be taken into consideration. Moreover, a CoCA may be combined in context

with the related work like SPCA and 2-d CA PRNGs for further improvement of CA

PRNG’s randomness quality.

3 Configurable Cellular Automata

3.1 Configurable Cellular Automata Overview

 9

Configurable cellular automata (CoCA) is a generalized CA in which the CA cells are

dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply

means varying the properties of that cell with time. From conventional CA theories of

Wolfram [21] and some novel CA PRNG properties in [4]-[5], five CA properties can be

derived. Each item is discussed in detailed below.

Rule Selection (RS). The transition rule to be used by each cell can be reconfigured at

run-time. In this paper, rules can be selected from rules 30, 105, 165, and 195. These

rules are chosen based on the performance in previous works. Varying rule selection in

CoCA is equivalent to a 2-bit PCA. Thus, for the RS item, 2 bits of control CA are

allotted for each cell.

Status and Reference (SR). The SR item defines the state of each cell at a specific

time step. If the status of a cell is normal (S=1), then, the cell is updated at that particular

time step. Otherwise, it is not updated. If a cell is referenced (R=1), then, that cell will be

used by its left and right neighbors in their state transition at that particular time step.

Otherwise, the left and right neighbors will use the nearest referenced cell’s state value in

their state transition. The status and reference properties are derived from the CCA

PRNG properties. The ‘reference’ property dynamically changes the neighborhood of

CA. [4]-[5] show that using status and reference properties in some cells can improve the

randomness of CA PRNGs. For the SR item, 2 bits are allotted for each cell.

Boundary Condition (BC). In this paper, boundary condition does not refer to the

neighborhood characteristics of extreme cells (leftmost and rightmost) in a CA. Rather,

BC here refers to the connections of cells with its neighbors. Basically, there are three

types of boundary conditions: null boundary, mirror boundary, and normal boundary. If

 10

a cell assumes a null BC, then, that cell does not use the state values of neighbors in its

state computation. A constant value of ‘0’ or ‘1’ is assigned to its supposed-to-be left and

right neighbors. If a cell assumes a mirror BC, the cell’s left and right neighbors treat that

cell as a mirror, i.e. the left (right) neighbor uses its own state in state computation to

replace the state value of the cell assuming a mirror BC. If a cell assumes a normal BC,

then, that CA cell is updated as usual using its left and right neighbors. Like SR, the

mirror and null BCs are also derived from CCA properties. For BC, since there are left

BC (LBC) and right BC (RBC), 4 bits of control CA are allotted for each cell.

Output Status (OU). Output method, as mentioned earlier, is very important in

pseudorandom number generation. Instead of using time spacing and cell spacing, bit

sampling is used in CoCA. This time, the cells are not sampled in a regular manner as in

ts and cs. The output status determines if a cell is to be used as an output cell or not, for a

particular time step. For the OU item, 1 bit of control CA is allotted for each cell.

Considering the four items, the total number of control bits for each cell is 9 bits. The

control bits are generated by a uniform CA with the structure as shown in Figure 1.

Figure 1 Control CA Structure

Depending on how frequent the cells are reconfigured, CoCA can take on three basic

configuration methods:

1. Fixed configuration (F). The configurations of the cells are pre-assigned and do

not change dynamically with time. Normally, CA PRNGs are tested with different

 11

initial seeds. So, for each initial seed tested, a different CA configuration is used.

Because CA cell configurations do not change with time, configuration method F

does not need a control CA.

2. Configured at run-time per time step (C). The cells can be reconfigured at every

discrete time step. While the control CA cells change states at every time step, its

cell state values are used to reconfigure the cells of CoCA.

3. Configured at run-time per T time step (E). The cells can also be reconfigured at

every T time step. Configuration method C is actually a special case of

configuration method E, where T=1. Both configuration methods require a

control CA so that cell configurations are dynamically changed with time.

Before proceeding on to the experiments, a few terminologies for CoCA are now

established.

Uniform cell configuration is when all the cells in CoCA use the same configuration,

thereby requiring one 9-cell control CA.

Non-uniform cell configuration is when each cell uses a unique configuration. For a

CoCA of length L, the required number of 9-cell control CA is L.

Non-item-dependent configuration means that the items are reconfigured at the same time

depending on the configuration method used (C or E). For example, if E configuration

method with T=3 is chosen, all the items RS, SR, BC and OU are reconfigured at the

same time for every 3 discrete time steps.

Item-dependent configuration means that the items are not reconfigured at the same time.

For example: F configuration method may be used by item RS; C configuration method

may be used by item SR; and E configuration may be used by item OU.

 12

Given the definitions and considerations of CoCA, several approaches in the

implementation of configurable CA are introduced. The approaches are summarized

below:

Approach 1. Uniform cell configuration and non-item dependent for F, C, and E

configuration methods. In this approach, using the C and E configuration methods

require a 9-cell control CA. The four items RS, SR, BC, and OU are all updated at the

same time.

Approach 2. Uniform cell configuration and item-dependent for C and E configuration

methods. Being item-dependent or not does not affect the use of F configuration method.

Thus, in this approach, only C and E configuration methods are considered. Both

methods require a 9-cell control CA because of uniform cell configuration. But in this

approach, the items RS, SR, BC and OU are not updated at the same time.

Approach 3. Nonuniform cell configuration and non-item dependent for F, C, and E

configuration methods. Because of nonuniform cell configuration, each cell would need a

9-cell uniform CA. So, for an L-cell CoCA, L 9-cell control CA is required. All the four

items in this approach are updated at the same time for all cells.

Approach 4. Nonuniform cell configuration and item-dependent for C and E

configuration methods. This approach also requires L 9-cell control CA to control the

configuration. C and E configuration methods are applied in this approach. The items are

not updated at the same time.

3.2 Preliminary Experiments on CoCA

 13

The succeeding experiments will show a study of the four different approaches that

were presented in the previous section. For the reason that the four different approaches

are very much associated with each other, the experimental setups may introduce

confusion to the reader. To avoid such confusion, the approach will be clearly identified

in each experiment. Also, it is worth noting that each set of experimental results serves as

a foundation of the next experiment. To provide rational analysis, the summary of the

course of experiments is described as follows. First, the items to be reconfigured are

analyzed individually by following CoCA Approach 4. Second, CoCA Approach 1 and

Approach 2 are studied and compared with a fixed CA. Thirdly, CoCA Approach 3 and

Approach 4 are compared by varying the number of configurable cells. Lastly, genetic

algorithms are applied to CoCA PRNGs in order to find good CoCA PRNGs that can

pass Diehard test. The head start of analyzing CoCA PRNGs is based on ENT results.

Specifically, the preliminary experiments provide some analysis via ENT results. Similar

to other works [4], [5], [17], Diehard test is applied after the evolution process to ensure

that the evolved PRNGs are of good quality.

3.2.1 Item-based Analysis

Each of the four items has a significant effect in the randomness of bits produced by

CoCA PRNGs. It is important then to analyze the effect of reconfiguring each item on

CA. In the following experiments, CoCA items are studied by reconfiguring each item at

run-time while fixing the others at the usual CA configuration. By usual CA

configuration, it means that: 1) all the cells are updated and referenced during every time

step (S=1, R=1), 2) all the cells use a normal boundary condition (BC), and 3) all the

cells are used as output cells. A nonuniform cell configuration where each cell uses a

 14

unique control CA is assumed here. For benchmarking purposes, if configuration method

E is used, the item/s is/are updated every T=3 time step. There are L 9-cell control CA

used in experimenting on configuration methods C and E as described in the later part of

Section 3.1. Each 9-cell control CA is a uniform CA which uses rule 30 as the transition

rule function.

Figures 2 and 3 compare the performance of CoCA PRNGs based on the ENT test.

Each point in the graph is an F value (see Section 2.2) of the ENT test after averaging the

F value of 300 initial seeds fed into a CoCA. Each graph is divided into three sets via the

configuration methods: method F, method C, and method E. A point corresponding to

BC in the x-axis under the method C set and rule 105 in the legend means that it is a

CoCA where only item BC is reconfigured every time step, transition rule is fixed at rule

105, and other items are fixed at the usual CA configuration (i.e. all the cells are updated

and referenced at every time step and all the cells are used as output cells). If, for

example, a point corresponds to SR in the x-axis under the method E set and mirror,

normal in the legend, then that point represents a CoCA where only item SR is

reconfigured every T=3 time step, mirror and normal BCs are used by left and right

neighbors, all the cells are used as output cells. If a fixed rule is necessary, rule 105 is

used as the transition rule in the CoCA experiments shown in Figure 3. The use of rule

105 is motivated by the results shown in Figure 2, which will be discussed later.

Essentially, the CoCA PRNGs described in Figures 2 and 3 are considered CoCA

PRNGs following Approach 4, nonuniform cell configuration and item-dependent for C

and E. These CoCA PRNGs are in fact item-dependent CoCA because one item is

 15

reconfigured every T time step (T=1 for method C, T=3 for method E) while the

remaining items are kept at a fixed, preset configuration.

Aside from providing an item-based analysis of CoCA PRNG, another motivation of

performing such experiments is to find a default configuration that will strengthen the

performance of CoCA following Approach 4. Later, it will be shown that some cells

should be kept at a fixed configuration and the other cells should be reconfigured at run-

time so as to improve the performance of CoCA PRNG. Therefore, a fixed default

configuration for some cells is required to achieve the maximum performance of CoCA.

The default configuration considers the best choices for each item, as decided by these

experiments.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

BC SR OU BC SR OU BC SR OU

item to be reconfigured

F
 v

a
lu

e
 o

f
E

N
T

 t
e
s
t

rule 30 rule 105 rule 165 rule 195

method F method C method E

Note: F value is calculated using the equation shown in Section 2.2. If the entropy value of a CoCA PRNG is less than

7, then F would most likely have a negative value.

Figure 2 ENT test results of CoCA PRNGs (Approach 4) under fixed RS

 16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

RS SR OU RS SR OU RS SR OU

item to be reconfigured

F
 v

a
lu

e
 o

f
E

N
T

 t
e
s
t

mirror, normal null, normal mirror, mirror null, null normal, normal

method F method C method E

Note: F value is calculated using the equation shown in Section 2.2. If the entropy value of a CoCA PRNG is less than

7, then F would most likely have a negative value.

Figure 3 ENT test results of CoCA PRNGs (Approach 4) under fixed BC

Analysis of Figure 2. The performance of CoCA PRNG reconfiguring item BC is

dependent on the transition rule that is used. Looking at the results from method C and

method E, if the transition rule is fixed at either rule 105 or rule 30, CoCA PRNG

reconfiguring item BC can give better ENT performance than if either rule 165 and rule

195 is used. This shows that the selection of transition rule function is crucial in

designing PRNGs, as empirically proven in the past works. Particularly in CoCA PRNGs,

this suggests that rule functions that are selected are closely related with the boundary

conditions of the left and right neighbors. Recall that transition rules are functions of

either 1) left neighbor and right neighbor, 2) left neighbor and the cell itself, 3) right

neighbor and the cell itself, or 4) left, right neighbor and the cell itself. In [4], some of the

rules are summarized using Boolean functions. It can be observed that rules 105 and 30

 17

use left, right and the cell itself in the next state transition, whereas, rules 165 and 195 use

left and right neighbor only.

Another important observation is that, CoCA reconfiguring item SR in method C and

method E set of results are likewise affected by the selection of the fixed transition rule.

Going back to the definition of SR item, status S refers to the updating of the cell, while

reference R is related with dynamic changing of neighborhood. For some reasons, the

rules 105 and 30 in CoCA reconfiguring item SR are negatively affected, if compared

with CoCA reconfiguring item BC. On the other hand, rules 165 and 195 in CoCA

reconfiguring item SR are improved. This shows that rule selection is also a very

important factor in designing good CoCA PRNGs.

If item OU is to be reconfigured, the ENT results under different transition rules are

somehow good and close with each other as compared to the ENT results of items BC

and SR being reconfigured, which are greatly affected fixed rule used. This is because

item OU is basically a sampling method which is not directly related with the transition

rule functions of the CoCA.

Overall, if a cell is to be fixed at a certain rule, the best choice is rule 105 as

exemplified by the set of results from method F, C, and E.

Analysis of Figure 3. In Figure 3, the results clearly showed that mirror and null are

not good choices for boundary conditions. Moreover, RS is the most affected item if

boundary conditions are fixed at different choices of BC, as shown in method C and

method E sets. Considering CoCA reconfiguring item SR, the ENT performances under

different boundary conditions are comparable, but somehow inferior compared to CoCA

 18

reconfiguring either item RS or OU. Like in Figure 2, CoCA reconfiguring item OU

gives good performance regardless of the fixed boundary condition used.

Overall, normal boundary conditions for both left and right neighbors are the best

choices for item BC.

Summary of Figure 2 and Figure 3 analysis. Based on the experiment results shown

in Figures 2 and 3, in order to get good quality random numbers, the CoCA items should

be set at the best choices. Thus, the default configuration is described as follows: RS

must be rule 105, BC must use the normal boundary condition, some cells must be used

as output cells for item OU, and S and R (in SR) must be both equal to 1, which means

that cells must be updated and referenced every time step. This idea brings us back to the

basics of CA or PCA PRNGs which uses certain sampling method, e.g., cell spacing.

Table 1 ENT results (S=300) of CoCA Approach 4

CA PRNG chi-square ent 1-scc

Fixed CA 0.76 7.981102 0.990827

CoCA - item BC 0 4.74076 0.861363

CoCA - item RS 0 6.987152 0.941298

CoCA - item SR 0 4.978203 0.851827

M
et

h
o
d

 F

CoCA - item OU 0.56 7.974581 0.991619

CoCA - item BC 0 7.918321 0.991268

CoCA - item RS 0.91 7.980783 0.991814

CoCA - item SR 0 6.120713 0.936092

M
et

h
o
d

 C

CoCA - item OU 0.94 7.981306 0.992248

CoCA - item BC 0 7.764403 0.988617

CoCA - item RS 0.851667 7.980282 0.991679

CoCA - item SR 0 7.191303 0.959354

M
et

h
o
d

 E

CoCA - item OU 0.938333 7.981544 0.991534
Note: CoCA item – x means that only item x is reconfigured.

Table 1 shows a detailed ENT result comparison of CoCA PRNG (Approach 4).

Each CoCA item is reconfigured at run-time while other items are fixed at the default

configuration. As mentioned previously, in F configuration method, configurations are

dynamically changed not with time but with initial seed. The total number of initial seeds

 19

to be tested is 300. Hence, for F configuration method, 300 different configurations were

tested.

Figures 2 and 3, and Table 1 clearly showed that configuration method significantly

affects the randomness of CoCA PRNGs. Method F gives the worst result. It is expected

because the initial configurations are randomly chosen from good and not so good

choices for each item, e.g., BC may be null or mirror, and RS may be rules 165 or 195.

The results in the table indicate the average performance of the 300 different

configurations. According to the initial experiments performed, items SR and BC should

always be kept at S=1, R=1, and BC=normal. Thus, if items SR and BC do not follow

these requirements, it will result in poor randomness quality.

Another important observation is that reconfiguring CoCA items dynamically, i.e. at

every T discrete time step as in configuration methods C and E, improves CA PRNG

performance. Although, the randomness results of configuring each of the items BC and

RS are still not good enough. Between methods C and E, using method C in CoCA

PRNG gives better randomness quality. This ENT result will be verified later with the

Diehard test after the evolution process.

3.2.2. CoCA Approach 1 and Approach 2 at a glance

From the previous section, a default configuration has been construed. In this section,

a similar experimental setup is applied where each item is reconfigured while fixing the

others under the default configuration. In this case, a 9-cell control CA is used for all the

cells, thus, leading to a CoCA PRNG following Approach 2. To assume CoCA PRNG

Approach 1, an experiment involves all the items being reconfigured simultaneously, i.e.

every T time step (T=1 for method C, T=3 for method E).

 20

Table 2 shows the results of comparing CoCA Approach 1 and Approach 2.

Apparently, a uniform cell configuration, regardless of item dependency, is very much

inferior compared to a fixed CA. If the entropy value of a PRNG has not even reached 7

(i.e. ent < 7), it means that it has a very poor randomness quality. Thus, in this work,

CoCA Approach 3 and 4 are the focus of a more systematic search for good CoCA

PRNGs.

Table 2 ENT results (S=300) of CoCA Approach 1 and 2

CA PRNG chi-square ent 1-scc

Fixed CA 0.76 7.981102 0.990827

CoCA - item BC 0 4.746562 0.849972

CoCA - item RS 0 4.563677 0.832516

CoCA - item SR 0 4.552444 0.848316

CoCA - item OU 0 3.790048 0.763356 M
et

h
o
d

 F

CoCA - item ALL* 0 3.805767 0.758685

CoCA - item BC 0 2.654191 0.227827

CoCA - item RS 0 2.173383 0.15109

CoCA - item SR 0 5.83183 0.854459

CoCA - item OU 0 5.561192 0.85204 M
et

h
o
d

 C

CoCA - item ALL* 0 2.507474 0.129482

CoCA - item BC 0 3.78886 0.276986

CoCA - item RS 0 2.288893 0.111186

CoCA - item SR 0 6.268899 0.866066

CoCA - item OU 0 5.961369 0.858318 M
et

h
o
d

 E

CoCA - item ALL* 0 2.838053 0.131395
* - CoCA item ALL is following CoCA Approach 1

3.2.3. CoCA Approach 3 and Approach 4 by varying the number of configurable cells

It has been found that the number of controllable cells in CCA has a significant effect

upon the randomness of a PRNG [4]-[5]. The objective of the next experiment is to test

the effect of varying the number of configurable cells on the randomness of CoCA

PRNGs. In essence, the number of configurable cells differentiates Approach 3 from

Approach 4 in terms of item-dependency. In this work, non-configurable cells are cells

which assume fixed preset configuration at all time steps. On the other hand,

 21

configurable cells are those cells which are configurable in some or all items during

every T time step. In a CoCA, if some cells are configurable and others are not, then, it

means that some items are reconfigured every T time step and others are not. This

description falls into CoCA Approach 4 where reconfiguration is item-dependent, i.e. not

all items are configured at the same time. On the other hand, if all the cells in CoCA are

configurable cells and the items are reconfigured at the same time every T time step,

then, it falls into CoCA Approach 3, where all items of all the cells are reconfigured

every T time step.

Table 3 ENT results of CoCA with 10 out of 50 configurable cells

CA PRNG chi-square ent 1-scc

Fixed CA 0.865 7.980588 0.992206

CoCA - item BC 0.47 7.977803 0.991389

CoCA - item RS 0.935 7.98128 0.991699

CoCA - item SR 0.355 7.975967 0.991452

M
et

h
o

d
 C

CoCA - item OU 0.945 7.98159 0.992734

Tables 3 and 4 are two sets of experiments which differ by the number of cells to be

reconfigured. In Table 3, 10 out of 50 cells are configured every time step. In Table 4, 5

out of 50 cells are configurable cells. The purpose of finding some default configuration

in the previous section comes in here. If a cell is non-configurable, it will assume the

default configuration. In this way, the maximum performance of CoCA is most likely

ensured because the configuration of non-configurable cells will not deteriorate nor affect

to some extent the performance of the CoCA PRNG.

As an initial experiment, a simple function of modulus is used to select the cells to be

reconfigured. Take for example modulo-n. A cell xi is selected as configurable if its index

i is divisible by n, i.e., i modulo n equals 0. Method C is tried and compared with Fixed

CA. 300 initial seeds are tested in both sets of experiment.

 22

Table 4 ENT results of CoCA with 5 out of 50 configurable cells

CA PRNG chi-square ent 1-scc

Fixed CA 0.765 7.979021 0.991184

CoCA - item BC 0.83 7.980704 0.992741

CoCA - item RS 0.96 7.981605 0.992832

CoCA - item SR 0.915 7.981374 0.991654

M
et

h
o

d
 C

CoCA - item OU 0.87 7.981137 0.990856

As shown in Table 3, if the number of cells to be configured is decreased, i.e., 10

configurable cells, the performance of CoCA PRNG is generally improved. But

comparing individual results of all the CoCA PRNGs in Table 3, CoCA reconfiguring

item BC and SR give low ENT results. Table 4 shows that further reducing the number of

cells to be reconfigured further improves the performance of CoCA PRNGs specifically

CoCA reconfiguring items BC and SR. This suggests that CoCA reconfiguring items BC

and SR can give good performance as long as the number of configurable cells is

properly aligned. It is worth noting that if the number of configurable cells of CoCA is 0,

then it is equivalent to a Fixed CA.

Table 5 shows the results when the number of configurable cells of CoCA is varied

and all the four items are configured at the same time.

Table 5 ENT results of CoCA with varying number of configurable cells

CA PRNG chi-square ent 1-scc

Fixed CA 0. 851667 7.980924 0.991852

5 cells 0.921667 7.981446 0.991633

10 cells 0.675000 7.978407 0.992127
CoCA

(Method C)
50 cells* 0.031667 7.974198 0.991896

Note: x cells means that x cells are configurable in CoCA.

* - configuring 50 cells is equivalent to CoCA Approach 3

From the results of Tables 3 to 5, it can be concluded that CoCA can outperform

fixed CA by configuring all the four items provided the following restrictions are met.

Firstly, items RS and OU are to be configured for all cells. Secondly, items SR and BC

 23

are to be configured for some cells only. Lastly, cells must be reconfigured at every T

time step as in methods C and E. After the evolution process in the next section, a

conclusion on the best configuration method, whether method C or E, will be reached.

Conclusively, CoCA Approach 4 is the best approach to be used in random number

generation. Thus, from here onwards, CoCA Approach 4 will be the focus of searching

good quality PRNGs by genetic algorithms.

4 Evolutionary Algorithm

A genetic algorithm (GA) is an iterative procedure that autonomously searches for

possible solutions to a given problem with countless number of solutions. Each solution

is represented in an encoded form, known as chromosome. GA involves a constant-size

population which evolves at every evolutionary step, also known as generation. It starts

with an initial population that is randomly or heuristically generated. During every

generation, each individual is evaluated by a certain fitness function. The population in

the next generation is then generated by selecting individuals from the previous

generation according to their fitness values and transforming these individuals via genetic

operators like mutation (randomly altering one or more values in a string of chromosome)

and crossover (combining two chromosomes to form a novel chromosome). By

repeating the procedure, an acceptable solution with the highest fitness value may be

found.

Traditionally, CA PRNGs are handcrafted. The design process is however, time-

consuming and inefficient. Accordingly, researchers began to use GA to evolve CA

PRNGs. And like the other research on CA PRNGs [4]-[6], [17], CoCA also makes use

 24

of genetic algorithms to search for good CA PRNG structures. The pseudo code of the

genetic algorithm is shown in the Appendix.

The main objective of applying GA in CoCA PRNGs is to search for a CoCA PRNG

design that is comparable with past work on CA PRNGs in terms of performance. As

seen in Section 3, the randomness of a CoCA PRNG is dependent on the number of

configurable cells and perhaps, the positioning of these configurable cells. It is the GA’s

role to find the optimal number of configurable cells in CoCA.

In Tomassini et al.’s work [17] and Guan et al.’s work [4]-[6], they used ENT test as

a fitness measure. In this work, the function F described in Section 2.2 is used as the

fitness function. After obtaining the best chromosomes, they are tested under the Diehard

test, which, as mentioned earlier, is the foremost gauge of a good pseudorandom number

generator.

The input of an evolution process is randomly generated by a C++ function.

Population size is set at 16. The stopping criterion is the maximum stagnation steps. If

the best chromosome in each population keeps unchanged for 200 steps continuously, the

evolution process stops [6]. The 2-point crossover rate is set at 1.0. The bit mutation rate

is set at 0.1. During reproduction, half of the better-performing parents and child

chromosomes are copied into the next generation.

Based on the level of configurability (i.e. items to be configured) of a CoCA, three

different chromosome structures are to be evolved. The three chromosome structures are

designed based on the experimental results shown in the preliminary experiments section

(Section 3.2). Table 6 shows the summary of the three chromosome structures.

 25

Table 6 Summary of the three chromosome structures of GA used in CoCA PRNGs
Chromosome

Structure
Length Illustration Legend

1 L

CoCA

Chrom

0 1 2 …. L-2 L-1

0 1 2 …. L-2 L-1

0 – not

configurable

1 – all items

configurable

2 L*2

CoCA

Chrom

0 1 …. L-1

0 1 2 3 …. L*2

-1 L*2

00 – not

configurable

01 – RS & OU

configurable

10 – all items

configurable

3 L*2

CoCA

Chrom

0 1 …. L-1

0 1 2 3 …. L*2

-1 L*2

00 – not

configurable

01 – RS & OU

configurable

10 – RS, OU, &

BC configurable

11 – all items

configurable

The first chromosome structure deals with the extreme case where a cell is to be

determined as configurable or not. For a 1-d CoCA with L number of cells, the length of

the chromosome is L bits, where, ‘1’ indicates that a cell is configurable and ‘0’

otherwise.

The second chromosome structure redefines the first chromosome structure such that

its length is L*2 bits. A pair of bits (which allows maximum of four categories)

corresponds to each cell. Three categories are designed: “not configurable”, “all items

configurable”, and “items RS and OU configurable”.

 26

The third chromosome structure has a level of configurability which is the most

flexible. The chromosome length is also L*2 and a pair of bits corresponds to a cell. But

this time, the categories are more specific, i.e. “00 for not configurable”, “01 for

configurable RS and OU”, “10 for configurable RS, OU, and BC”, and “11 for

configurable RS, OU, BC, and SR”.

4.1 Evolving chromosome structure 1 and comparison of configuration methods C and E

In the following experiments, the configurable cells of a 50-cell CoCA PRNG

Approach 4 are evolved following the aforementioned genetic algorithm via chromosome

structure1. After the evolution process, the top 5 chromosomes of the CoCA are tested

with five initial seeds under the Diehard test. Apart from evolving the best chromosome

structures, another objective of this experiment is to compare the performance of using C

configuration method and E configuration method. Experimental setup is the same as in

the previous section.

Table 7 shows the average number of Diehard tests that a CoCA PRNG can pass.

The results show that indeed, CoCA PRNG is better than a fixed configuration CA. Also,

it can be concluded that CoCA PRNG following configuration method C (abbreviated as

CoCA-C) is better than CoCA PRNG following configuration method E (abbreviated as

CoCA-E) at T=3 for two reasons. First, the maximum average number of Diehard tests

that CoCA-C PRNG can pass is greater than that of CoCA-E PRNG. Also, most of the

chromosomes of CoCA-C can pass more number of Diehard tests, which means that

CoCA-C PRNG has more chances of passing Diehard test at different number and

position of configurable cells. This suggests that in method C, the reconfiguration

process is more arbitrary and random as it is changed every T=1 time step.

 27

Table 7 Diehard Results of CoCA at L=50, S=5

No. of tests passed in Diehard

CA PRNG

seed1 seed2 seed3 seed4 seed5 average

Fixed CA 10 15 5 6 16 10.4

chrom1 13 14 13 10 14 12.8

chrom2 16 15 12 12 15 14.0

chrom3 16 16 14 12 15 14.6

chrom4 15 14 13 12 13 13.4

CoCA

Method E

T=3

chrom5 17 14 17 16 15 15.8

chrom1 16 17 15 15 17 16.0

chrom2 16 15 14 13 17 15.0

chrom3 16 15 15 16 15 15.4

chrom4 16 17 16 16 17 16.4

CoCA

Method C

chrom5 16 16 17 17 16 16.4

With the results shown in Table 7, CoCA-C PRNG is the focus of the next

experiments. It is further improved by studying and designing the external structures, i.e.

the length of CoCA.

4.2. Searching for good CoCA external structure

The external structure, specifically the number of cells of a CA PRNG significantly

affects the randomness quality. In the following experiment, this important property of

CA PRNGs is explored by finding the optimal number of cells of a CoCA PRNG that can

pass Diehard test. Two sets of experiments are conducted. One uses rule 30 as transition

rule function of the uniform control CA. While the other uses rule 90. The purpose of

involving two different transition rule functions is to compare the effect of the control CA

in CoCA random number generation.

Again, genetic algorithm is applied to evolve the number and position of configurable

cells of CoCA PRNGs at different lengths. The evolution and CA transition parameters

and conditions are the same as in the previous experiment where chromosome structure 1

 28

is evolved. After the long evolution process, the top 5 chromosomes of each CoCA-C

PRNG (under different lengths) are subjected to Diehard test.

A summary of results is shown in Table 8. In each entry (length of CoCA), the

chromosome that can give the best performance in under the Diehard test is selected and

recorded in the table.

Table 8 Diehard results of L-length CoCA-C PRNG

Average no. of Diehard tests passed CoCA-C

Length Control CA Rule 30 Control CA Rule 90

50 16.4 16

49 12 14.8

41 12.8 11.2

35 14 14.8

33 15.4 15.2

31 14.8 15.4

29 13.8 14.4

23 13.2 13.6

19 12 12.2

15 11.6 10.2

An interesting observation from Table 8 is the trend of randomness quality as the

number of cells of CoCA PRNG decreases. There is a certain optimal length (L=31,33)

of CoCA that can fairly pass Diehard test. Figure 4 shows a graph of comparing the

performance of CoCA PRNG with different control CA rule function.

 29

0

2

4

6

8

10

12

14

16

18

50 49 41 35 33 31 29 23 19 15

length

n
o

.
o

f
te

s
ts

 p
a
s
s
e
d

 i
n

 D
ie

h
a
rd

CoCA
using
Control CA
30

CoCA
using
Control CA
90

Figure 4 Diehard test performance of varying CoCA length using different rule function

of Control CA

It can be seen from Figure 4 that control CA rule function somehow affects the

performance of CoCA PRNG based on different lengths. Another important observation

is that using rule 90 is better than using rule 30 as transition rule function for the control

CA. This suggests that the CoCA, which do not use rule 90, avoids correlations between

the control CA and the CoCA.

4.3. Evolving chromosome structure 2 and 3

In the previous subsections, the genetic algorithm evolves the number and position of

configurable cells where the length of chromosome is equal to the number of CoCA cells.

If a cell is configurable, then, all the four items are configured every time step.

Otherwise, the cell is non-configurable and uses the default configuration. Like in the

previous subsections, CoCA following Approach 4 and configuration method C is

assumed in the evolution process of chromosome structures 2 and 3 shown in Table 6.

Chromosome structures 2 and 3 introduce a more flexible way of assigning items to be

configured for each cell. In this way, it is probable that the level of configurability will

 30

bring in better randomness quality to CoCA PRNGs since the CoCA cells have more

choices to choose from.

From the genetic algorithm point of view, the search space (number of possible

solutions) increases with the length of the chromosome. It is therefore important to note

that a longer chromosome structure may also be an impediment to a successful search of

good chromosome structures. On account of a larger search space, longer chromosome

structure may require longer evolution time as well. In this work, only 2 bits per cell is

assigned in chromosome structures 2 and 3. Also, the optimal number of cells, which is

L=31, is experimented on. Thus, the length of both chromosome structures 2 and 3 is L*2

= 62 bits.

Table 9 shows the results of comparing the three chromosome structures of CoCA

PRNG, all following Approach 4 and configuration method C and using rule 90 for the

uniform control CA. As in the previous experiments, after the evolution process, the best

chromosomes are subjected to Diehard test.

Table 9 Diehard test result of 31-cell CoCA-C Method E
Chromosome structure Average no. of tests passed in Diehard

1 (31 bits) 15

2 (62 bits) 16

3 (62 bits) 17

It can be concluded from Table 9 that the level of configurablity of a CoCA PRNG

affects the randomness quality based on Diehard test. Chromosome structure 3 is the

most flexible and configurable structure, therefore, it gives the best Diehard test result.

5 Discussion on Design Considerations for Future Works

The design of CoCA PRNGs involves several considerations. As seen in the

preliminary experiments, the four items are closely interrelated with each other. For

 31

instance, the choice of rules to be fixed affects the randomness of CoCA reconfiguring

BC and SR. It was seen that rules 165 and 195 do not have good effect on reconfiguring

other items. Thus, more variations to CoCA PRNGs may be experimented by using

different choices of rule other than rules 165 and 195.

Another important consideration in designing CoCA PRNGs is the item-dependency

of each cell. As can be observed from the experiments conducted in this work, item-

dependency is also influenced by configuration method C. This means that items RS and

OU of all the cells which are assigned ‘01’ in chromosome structure 3 are updated at the

same time every time step. Similarly, items RS, OU, and BC of all the cells which are

assigned ‘10’ in chromosome structure 3 are updated at the same time. More arbitrary

configurations may be introduced to CoCA PRNGs by making these cells differ at the

time of reconfiguration, i.e. involving configuration method E in some cells. However, as

mentioned previously, longer chromosome length may introduce longer evolution time.

Finally, control CA is another area of CoCA PRNG design that can be further

investigated. In this work, two rule functions for control CA are tried. Also, for

Approach 3 and 4, the L 9-cell CA, which is one-dimensional in nature, is utilized.

Further search for good CoCA PRNGs may be done by making use of other transition

rule functions in the control CA rather than transition rules 30 and 90. Moreover, a 2-d

CA variation [6] may be used as control CA. The 2-d CA variation may initiate more

random configurations to CoCA, thereby, improving the randomness quality of CoCA

PRNGs.

6 Conclusion

 32

As a PRNG, CoCA can be a suitable candidate. A 31-cell CoCA following Approach

4 and Method C can pass 17 tests in Diehard. In this paper, CoCA is introduced for the

purpose of designing a random number generator, whose primary features are flexibility

and programmability in a number of aspects. CoCA PRNG has an advantage over other

CA PRNGs as there can be an indefinite number of designs to be drawn out from the

concept. This way, researchers can explore on different variations of a CA PRNG with a

guarantee of good randomness quality. In this paper, CoCA PRNG was compared with a

fixed configuration PRNG. Because CoCA PRNG is essentially a generalized form of a

CA PRNG, it can not be simply compared with other CA PRNGs like PCA, CCA, SPCA,

or 2-d CA. Moreover, CoCA may be combined with SPCA and 2-d CA properties for

further improvement of CoCA PRNGs. For information purpose, a summary of all

existing CA PRNG designs is presented in Table 10.

It is worth noting that apart from random number generation, CoCA can be applied in

a wide area of applications where normal CA is applied, e.g., modeling and simulation

for complex systems. CoCA is a general model that covers all aspects of the CA

framework. An example would be to combine CoCA with CAM (Cellular Automata

Machine, MIT) [13], a programmable chip for CA, to be used in modeling complex

systems.

Table 10 Past works on CA PRNG and its performance in Diehard test

CA PRNG design No. of cells

No. of tests

passed in

Diehard

Remarks

PCA [14] 50 17 Programmable in rule selection (RS)

CCA0/CCA2 [5] 50 18 Programmable in status and RS

SPCA 150/105 [3] 21 18 Programmable in RS

CoCA 31 17 Programmable in many aspects

 33

References

[1] D.R. Chowdhury, I.S. Gupta, and P.P. Chaudhuri, A class of two-dimensional cellular

automata and applications in random pattern testing. J. Electrical Testing: Theory and

Applications 5, 65(1994).

[2] ENT Test, http://www.fourmilab.ch/random/.

[3] S.U. Guan S.U. and S.K. Tan, Pseudorandom number generator - The self programmable

cellular automata. Knowledge-based Intelligent Information and Engineering Systems,

PT 1, Proceedings (2003).

[4] S.U. Guan, and S. Zhang, A family of controllable cellular automata for pseudorandom

number generation, International Journal of Modern Physic C, Vol. 13, No. 8 (2002).

[5] S.U. Guan, and S. Zhang, An evolutionary approach to the design of controllable cellular

automata structure for random number generation. IEEE Trans. Evolutionary

Computation 7(1): 23-36 (2003).

[6] S.U. Guan, and S. Zhang, and M.T. Quieta, 2-d CA Variation with Asymmetric-

Neighborship for Pseudorandom Number Generation, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 23-3 (2004).

[7] P.D. Hortensius, R.D. Mcleod, and H.C. Card, Parallel Random Number Generation for

VLSI System Using Cellular Automata. IEEE Trans. Comput. 38, 1466 (1989).

[8] P.D. Hortensius, R.D. Mcleod, W. Pries, D.M. Miller, and H.C. Card, Cellular automata-

based pseudorandom number generators for built-in self-test. IEEE Transactions on

Computer-Aided Design 8(8) (1989).

[9] J.C. Isaacs, R.K. Watkins, S.Y. Foo, Cellular automata PRNG: maximal performance and

minimal space FPGA implementations. Engineering Applications of Artificial

Intelligence 16 (5-6): 491-499 (2003).

[10] G. Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, (1998).

[11] S. Nandi, B.K. Kar, and P.Pal Chaudhuri, Theory and Applications of Cellular Automata

in Cryptography. IEEE Trans. Comput. 43, 1346 (1994).

[12] W. Pries, A. Thanailakis, and H. Card, Group Properties of Cellular Automata and VLSI

Applications. IEEE Trans. Comput. C-35 (12) (1986).

[13] P. Sarkar, ACM Comput. Surveys 32(1), 80(2000)

[14] M. Sipper and M. Tomassini, Generating parallel random number generators by cellular

programming. Int. J. Mod. Phys. 7(2), 181 (1996).

[15] D. Talia and P. Sloot, Cellular Automata: Promise and Prospects in Computational

Science. Future Generation Computer Systems 16 (1999). V-vii.

[16] T. Toffoli and N. Margolus, Cellular Automata Machines, A new environment for

modeling. MIT Press Series in Scientific Compuation (1985).

[17] M. Tomassini, M. Sipper, and M. Perrenoud, On the generation of high-quality random

numbers by two-dimensional cellular automata. IEEE Trans. Comput. 49, 1146(2000).

[18] M. Tomassini., M. Sipper, M. Zolla, and M. Perrenoud, Generating high-quality random

numbers in parallel by cellular automata. Future Generation Computer Systems 16, 291

(1999).

[19] S. Wolfram, Cryptography with Cellular Automata, Advances in Cryptography:

Proceeding of CRTPTO 85, Lecture Notes in Computer Science, Vol. 218 (1985), pp.

429-432.

[20] S. Wolfram, Theory and Applications of Cellular Automata: Including Selected Papers

1983-1986 (World Scientific Publishing Co., Inc., River Edge, N.J., 1986).

[21] J. Von Neumann, “The general and logical theory of automata”, J. von Neumann

Collected Works, ed. A. Taub.

 34

Appendix - Genetic Algorithm

The evolutionary algorithm is shown below. P is the total number of chromosomes in

a population. T is the total number of CA running cycles. Q is the percentage of

crossover-generated chromosomes in the next generation. EL is the length of the

chromosome and R is the percentage of EL that has been altered by mutation.

Initialization

randomly generate 100 initial seeds for main CA (CoCA), and control CA (if needed);

Evolution

 while (stopping condition is not true) do

 Fitness calculation

for each chromosome i (i=1 to P)

 for each CA initial seed j (j=1 to 100) do in parallel

 initialize main CA and control CA;

run CA for T time steps;

 calculate the fitness Fij of main CA;

 end parallel for

Calculate average fitness value, Fi of the 100 initial seeds for each

chromosome

end

 Offspring generation

scale the fitness value using the windowing method

• roulette-wheel select from parent chromosomes, generate (P* Q%) child

chromosomes by crossover;

• generate P child chromosomes (EL*R%) by mutation

Selection

Copy the first half of parent chromosomes and first half of child chromosomes to

the next generation.

 end while

