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Abstract Physically conditioning molten scrap aluminium alloys using high shear processing 
(HSP) was recently found to be a promising technology for purification of contaminated alloys. 
HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the 
nucleation of Fe-rich intermetallic phases which can subsequently be removed by the 
downstream de-drossing process. In this paper, a computational modelling for predicting the 
evolution of size of oxide clusters during HSP is presented. We used CFD to predict the 
macroscopic flow features of the melt, and the resultant field predictions of temperature and 
melt shear rate were transferred to a population balance model (PBM) as its key inputs. The 
PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a 
population of a dispersed phase. Although it has been widely used to study conventional de-
oxidation of liquid metal, this is the first time that PBM has been used to simulate the melt 
conditioning process within a rotor/stator HSP device. We employed a method which 
discretizes the continuous profile of size of the dispersed phase into a collection of discrete 
bins of size, to solve the governing population balance equation for the size of agglomerates. A 
finite volume method was used to solve the continuity equation, the energy equation and the 
momentum equation. The overall computation was implemented mainly using the FLUENT 
module of ANSYS. The simulations showed that there is a relatively high melt shear rate 
between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to 
significant fragmentation of the initially large oxide aggregates. Because the process of 
agglomeration is significantly slower than the breakage processes at the beginning of HSP, the 
mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually 
balances the process of breakage, the mean size of oxide clusters converges to a steady value. 
The model enables formulation of the quantitative relationship between the macroscopic flow 
features of liquid metal and the change of size of dispersed oxide clusters, during HSP. It 
predicted the variation in size of the dispersed phased with operational parameters (including 
the geometry and, particularly, the speed of the rotor), which is of direct use to 
experimentalists optimising the design of the HSP device and its implementation.  
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1.  Introduction 
Significant reductions in energy, production costs and carbon footprint can be achieved by 
manufacture of high performance automotive components with recycled aluminium alloys instead of 
primary aluminium alloys. Because scrap aluminium alloys are normally contaminated by harmful 
elements such as iron, at relatively high levels, a key challenge to the recycling process is the 
purification of materials. Physically conditioning molten scrap aluminium alloys using high shear 
processing (HSP) was recently found to be a promising technology for this type of purification. 
Research at Brunel University [1-6] showed that HSP can refine the solid oxide clusters in molten 
alloys significantly. These act as effective sites for the nucleation of Fe-rich intermetallic phases. The 
solidified intermetallic particles can subsequently be removed by the downstream de-drossing process, 
and hence purify the secondary aluminium alloys by removing the harmful elements (e.g. Fe). Due to 
the high temperature, opacity of the melt, and the close-coupling feature of the rotor-stator mixing 
head, it is very difficult to measure the temperature and particularly shear rate of melt inside, and in 
the close vicinity of the mixing head, without disturbance. Moreover, the shear rate characteristic of 
laminar melt flow and that of turbulent flow are mathematically formulated in totally different ways. 
Because the status of fluid flow (e.g. laminar or turbulent) directly depends on operational parameters, 
it is not easy to experimentally determine the characteristic melt shear rate in the process of HSP. 
Computational simulation is therefore needed to study the key parameters of the HSP process. By 
using appropriate mathematical equations that describe the related governing physical mechanisms, 
and corresponding numerical solution schemes, it is possible to predict computationally a variety of 
key parameters that are normally difficult to measure experimentally. Moreover, since the input data 
for such a computer model come from operational parameters and materials’ properties that are typical 
of the HSP process in practice, computational simulation can be used to directly determine the 
influence of operational parameters on the performance of HSP. The Population balance model (PBM) 
is a macroscopic model that can formulate the microscopic breakage and agglomeration of a 
population of a phase that is dispersed in a continuous phase [7-13]. In this paper, we present our PBM 
modeling of the behaviour of the oxide clusters during HSP.  

2.  Model details 
The key governing equation of PBM is the population balance equation (PBE): 
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where f is the number density of dispersed phase (i.e. solid oxide clusters in the case of conditioning 
molten scrap aluminium alloys with HSP) with internal coordinate v (the volume of dispersed phase). 
By using the number density, we can directly plot the size distribution of the dispersed phase and 

mathematically calculate the mean size. V is the advection velocity of the dispersed phase. S  is the 
net rate of generation of dispersed phase. We are neglecting, for now, the mechanism of growth and 
only taking the mechanisms of breakage and agglomeration into account.  

Determining the advection velocity of the dispersed phase depends on CFD modelling of melt-solid 
particle two-phase flow. In the CFD modelling, we use an Eulerian method to formulate the governing 
continuity, momentum and energy equations for every phase, taking the volume fraction of each phase 
and the interaction between one phase and another into account.  

Once the advection velocity is calculated by the CFD model, the evolution of number density of 
dispersed phase becomes dependent on the net generation rate in the PBM. In the HSP process, dilute 
oxide clusters are dispersed in the continuum melt. This mixture is strongly stirred by the mixing head 

with a rotor-stator design, at a relatively high temperature (e.g.  645 C  in [2]). The mechanisms of 
fragmentation and agglomeration dominate the change of number density of oxide clusters. Therefore, 

the net generation rate S  becomes: 
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where 
+S  is the birth rate and 

−S  is the death rate of oxide clusters due to breakage and 
agglomeration, respectively, and they follow: 
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where a is the agglomeration rate, b is the breakage rate, and P is the daughter size distribution 
function for the breakage. It can be seen that the whole PBM modelling is reduced to determining the 
value of these 3 terms. The first terms of Eq.3 and Eq.4 represent the contribution of mechanism of 
fragmentation to the change of number density of oxide clusters, while the second terms of Eq.3 and 
Eq.4 denote the contribution of mechanism of agglomeration to the change of number density of oxide 
clusters. 

In the sub-model for breakage, the shear rate is the dominant factor. The type of melt flow (i.e. 
laminar or turbulent) and size of oxide clusters (compared with the Kolmogorov length scale) 
commonly determine the mathematical formulation of the breakage rate [7-10]. For example, the 
characteristic shear rate depends on the fact that the melt flow falls in the laminar regime or turbulent 
regime. In the turbulent regime, the mechanism of fragmentation of oxide clusters depends on if the 
size of oxide clusters is larger than the size of smallest eddies. In the sub-model for the rate of 
agglomeration, we consider the mechanism of Brownian motion, differential sedimentation, and shear-
induced collision of the dispersed phase [7-10].  

We use a discrete method to solve Eq.1. The originally continuous profile of size of oxide clusters 
is firstly discretized into a collection of discrete size bins and Eq.1 is integrated over each bin and then 
the discrete form of Eq.1 is solved numerically. The discrete oxide cluster size bins follow a 
geometrical series and the advection velocity of oxides is input from CFD modelling.  

3.  Configuration of the case study and results of simulation 
The case study used in our research is a 2D one. The overall setup of this 2D case study is a very close 
mimic of the realistic rotor-stator mixer that we are using in experiments. Figure 1 illustrates the 
geometry of the domain of our 2D case study. This case study corresponds to an infinitely long 
cylindrical crucible full of molten recycled aluminium alloy, which includes alloy melt and solid oxide 
clusters. An infinitely long mixing head (with rotor-stator design) is placed at the centre of the crucible 
to shear the mixture. The impeller of the rotor has 4 flat blades and the cylindrical stator has holes 
along its circumference. Among the geometrical parameters, the key parameters include the size of the 
gap between the tip of impeller blades and the internal wall of the stator and the size (and number) of 
holes in the stator. The diameter of the crucible is 300 mm.  
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Figure 1. Geometrical setup of a 2D case as base line. 
 
 
In the design of Fig.1, the width of gap between the internal wall of the stator and the tips of 

impeller blades is 0.25 mm and there are 18 holes of 2.5 mm in diameter each drilled through the 
stator. The typical operational rotor speed is 5000 rpm.  These 3 values, as well as other geometrical 
features, exactly follow the real situation of the HSP applied in the laboratory, and we are using this 
setup as the base line case of our simulation.   

At the start of simulation, the melt and oxide clusters are set at C800 , and the size of oxide 
clusters are assumed to be mono-dispersed with Sauter mean diameter (SMD) of mμ2.10 . At the 
beginning of HSP, the melt/oxide mixture is stationary and the impeller spins at the designated 
constant rpm. The overall computation is implemented mainly using the FLUENT module of ANSYS. 
The CFD solver of FLUENT is used to predict the macroscopic flow features of the melt and oxide 
clusters, including the heat, mass and momentum transfer, using an Eulerian method. The resultant 
field predictions are transferred to PBM as its key inputs. Although there are some sub-models for the 
breakage and agglomeration of dispersed phase available in FLUENT, they are mostly suitable for 
liquid droplets and gas bubbles rather than solid particles. We program our own user subroutines in C 
for the breakage/agglomeration rates and load them into the PBM solver of FLUENT, in order to run 
PBM computation. 

4.  Results of the base line 
We set 5 points in the simulation domain, in order to monitor the evolution of parameters of interest. 
Points 1-3 are located along the axis of a hole in the stator and Points 4 and 5 are in the middle of the 
far field and near the wall of the crucible, respectively, as shown in Fig.2. 

300 mm 

42 mm 

Molten alloy 

Wall of crucible 

Mixing head 
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Figure 2. Position of sampling points. 
 
If we plot the predicted temporal evolution of SMD of oxide clusters, as in Fig.3, we can find some 

interesting phenomena. Firstly as shown by the red curve in Fig.3, at the internal orifice of the hole 
through the stator, the size of oxide clusters drops very dramatically at the start of HSP and then 
periodically oscillates towards a plateau value. The period of this oscillation is roughly 0.003 s, which 
is 1/4 the period of impeller spinning. Considering the 4 fold symmetry of the impeller, this is a good 
agreement. 

 

 
Figure 3. Temporal evolution of SMD of oxide clusters at different sampling positions during HSP in 
the baseline case.  

1,2,3 4 5 
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While checking the size of oxide clusters away from the centre of the impeller, over sampling 
points 2-5, we can find that the size decreases more and more slowly, particularly beyond the rotor.  

In order to explain the reason for the significantly different rate of decrease of cluster size at 
different positions, we plot the contours of some relevant parameters. In this paper, when plotting 
parameters at a specific moment of time, we use the data when the diameter of oxide clusters sampled 
at Point 1 has already reached its plateau value (i.e. 0.08 s). 

The spatial distribution of oxide cluster size is illustrated in Fig.4. It shows that the spatial 
distribution is very non-uniform. In the close vicinity of the mixing head, the oxide clusters are as 
small as mμ0406.0 . In the middle of the far field, the oxide clusters are as large as mμ491.0 . They 

are both much lower than the initial oxide cluster size of mμ2.10 . 
 

 
Figure 4. Contour of SMD of oxide clusters in the base line case study at 0.08 s. 

 
Figure 5a shows that, in the far field, the fluid flow is highly turbulent and the turbulence becomes 

relatively less significant in the close vicinity of the mixing head (Fig.5b). However, the value of 
turbulent viscosity ratio is generally above 30, except inside the very thin boundary layer at the surface 
of the solid walls of rotor and stator. This means that the shear induced breakage and agglomeration 
falls into the turbulent regime. The characteristic shear rate of turbulent flow is dominated by the 
turbulence dissipation rate as: 

2/1)(
c

cG
υ
ε= ,                                                                                                                           (5) 

where G is the characteristic shear rate, ε  and υ  are the turbulent energy dissipation rate and 
kinematic viscosity of the melt phase, respectively. 
Figure 5 (c,d) demonstrate that the turbulence dissipation rate in the close vicinity of the mixing head 
is significantly higher than that in the far field, by more than a few orders of magnitude. This makes 
the breakage and agglomeration of oxide clusters in the close vicinity of the mixing head dramatically 
stronger than that in the far field. The mechanisms of breakage and agglomeration compete with one 
another, and the net result is a significant refinement of oxide clusters in the overall crucible by HSP 
in this 2D case. The particle size at sampling point 4 is larger than that at point 5, as shown in Fig.3. 
This is because there is a narrow circular band of fluid of slightly lower turbulence dissipation rate, 
which sweeps right through point 4 as shown in Fig.5c. Such relatively low turbulence dissipation rate 
directly leads to relatively low characteristic shear rate (Eq.5) and hence relatively large size of oxide 
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clusters sampled at point 4. While checking the turbulence dissipation rate of fluid from the mixing 
head towards the wall of crucible along the radial direction of impeller, although the overall trend of 
the change of its value is decreasing, the decrease does not have to be monotonic. There can be a few 
radial positions where the value of turbulence dissipation rate is slightly lower than those at their 
radially neighboring positions, as separately found by Soos et.al. [14] for example. The number and 
position of such “cold spots” of turbulence dissipation rate of fluid (along the radial direction in the far 
field) depends on the agitation of the fluid by the impeller and the interaction between the impeller, 
stator and wall of the crucible.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Contour of turbulent viscosity ratio of the melt (a), its local zooming in around the mixing 
head (b), contour of turbulence dissipation rate of melt (c) and its local zooming in around the mixing 
head (d) in the base line case study at 0.08 s. 
 

Because the fluid in the close vicinity of the mixing head has been found to have the highest level 
of characteristic shear rate (in both the 2D simulation of this paper and a separate set of 3D case 
studies of us), we are paying most of our attention to the breakage of oxide clusters in the close 
vicinity of the mixing head rather than in the far field. The fluid flow in the far field for sure has 
significant influence on the macroscopic redistribution of fluid and oxide clusters, but it is our major 
interest in some other separate publication.  

Changing the impeller speed and the geometrical design of the mixing head 
In order to investigate the influence of operational rotor speed and geometrical design of the mixing 
head on the performance of HSP, three different simulations were run, each using a different setup to 
the reference case study. The rotor speed was reduced from 5000 rpm to 1000 rpm. The size of the gap 
between the rotor and the stator was increased from 0.25 mm to 2.5 mm. Finally, the number of holes 
along the circumference of the stator was reduced from 18 to 3, but their diameter was increased from 

(a) (b) 

(c) (d) 
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2.5 mm to 18 mm. Other aspects of the setup of these 3 different cases are as close to those of the base 
line case as possible. We summarize the simulation results of these 3 different cases and compare 
them with the result of the base line case, and plot the temporal evolution of oxide cluster size at 
sampling Point 1, in Fig.6. 

Although the size of oxide clusters in the 2.5 mm gap case and the 3 holes case decreases more 
quickly than the corresponding process of the base line case, the size converges quickly in all of these 
3 cases to almost the same plateau value. In the case of running HSP at 1000 rpm, the decrease in size 
of oxide clusters is significantly slower than the process of base line case and it looks very difficult for 
the size to converge to the same plateau value as that of the base line case. 

 

 
 

Figure 6. Temporal evolution of oxide cluster size sampled at point 1 with different setups. 
 

5.  Analysis and conclusion 
Reviewing the simulation results, in conjunction with the mathematical governing equations, a few 
interesting conclusions can be drawn. Firstly, the turbulence dissipation rate (and hence characteristic 
shear rate of turbulent flow) in the 2D HSP case is highly non-uniform in space. Therefore, the 
resultant refinement of oxide clusters is very non-uniform in space accordingly. Most of the significant 
refinement of oxide clusters is taking place between the rotor and the stator. This means that a 
reasonably strong macroscopic redistribution of the molten alloy is necessary if we want to refine all 
the oxide clusters throughout the whole crucible.  

Secondly, after changing related operational and geometrical parameters of the case study and 
comparing the results against the base line case, we have found a very strong influence of impeller 
speed on the decrease of oxide cluster size. Although in one case the size of the gap between rotor and 
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stator was increased to 2.5 mm, which is 10 times that in the base line case, and in a separate case the 
size of holes was increased to 15 mm in diameter which is 6 times that in the base line case, the 
temporal evolution of size of oxide clusters sampled at the internal orifice of the holes of the stator 
quickly converged to an almost common plateau value in all of these 3 cases. However, when we 
decreased the rotor speed from 5000 to 1000 rpm, it was found that the decrease in size of oxide 
clusters becomes significantly slower that the corresponding process in the base line case.  

Turbulence dissipation rate is the rate at which turbulent kinetic energy is converted into thermal 
energy due to the viscosity of a fluid. In Fig.5, we can find that the most significant dissipation of 
turbulent kinetic energy occurs inside the gap between the tips of the impeller blades and the internal 
wall of the stator. The value of turbulence dissipation here is higher than anywhere else in the 
computational domain by a few orders of magnitude. This is true even in the case when there are only 
3 relative large holes in the stator (very large openings connecting the inside and outside of the stator), 
and in the case when the size of the gap is 10 times that of the base line case (very large space between 
the tips of impeller blades and internal surface of stator). This means that the gap between the tips of 
impeller blades and internal surface of the stator acts as a sink of turbulent kinetic energy, strongly 
consuming the kinetic energy fed to the fluid by the agitation of the impeller. The more energy fed 
into the turbulent fluid flow, roughly the more turbulent kinetic energy is consumed inside this gap. 
Because the rotational speed of the of impeller is directly related to the energy input rate, it is 
reasonable to predict that low speed can lead to low turbulence dissipation rate and hence low 
characteristic shear rate.  

 

 
Figure 7. Temporal evolution of turbulence dissipation rate sampled at Point 1 with different setups. 

 
In Fig.7, it is clear that the turbulence dissipation rate sampled at Point 1 in the 1000 rpm case is 

lower than those of the other cases by nearly 2 orders of magnitude. This directly supports our 
aforementioned theoretical analysis and we conclude that the energy input rate (related to impeller 
speed) dominates the performance of the mixing head in terms of refining the oxide clusters.  
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