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ABSTRACT 

Product recommendation and preference tracking systems have been adopted 

extensively in e-commerce businesses. However, the heterogeneity of product 

attributes results in undesired impediment for an efficient yet personalized e-

commerce product brokering. Amid the assortment of product attributes, there are 

some intrinsic generic attributes having significant relation to a customer’s generic 

preference. This paper proposes a novel approach in the detection of generic product 

attributes through feature analysis. The objective is to provide an insight to the 

understanding of customers’ generic preference. Furthermore, a genetic algorithm is 

used to find the suitable feature weight set, hence reducing the rate of 

misclassification. A prototype has been implemented and the experimental results are 

promising. 
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1  INTRODUCTION 

Intelligent software agents are software entities that carry out some set of operations 

on behalf of a user. They normally possess certain form of intelligence together with 

some representation of user’s goals or desires [1] [2] [3]. These software agents are 

usually autonomous, reactive, intelligent and even social. Smart agents should be able 

to anticipate customer needs and proactively take an action. Artificial intelligence 

built into e-commerce agents can provide services such as intelligent product filtering 

and brokering to patrons at online stores. In addition, e-commerce agents should have 

the ability to understand customer’s requirements and personalize products 

recommendation. 

 

Nevertheless, productive use of online resources is hampered by the colossal amount 

of information. As the number of products retailing in e-commerce websites increases 

exponentially, customers will have some difficulty in searching for a desired item. At 

Amazon.com [4], there are millions of products available with tens of millions of 

customers browsing through the website. However, Amazon.com manages to succeed 

in the e-commerce retailing industry with a personalized and intelligent 

recommendation system. Inevitably, personalization will be an indispensable 

contrivance for an efficacious and thriving e-commerce industry. Information seekers 

or online customers will require an individualized, autonomous system that can learn 

a customer’s specific preference and search for relevant information.  

 

The purpose of our research is to exploit the capabilities of intelligent e-commerce 

agents that can filter and recommend suitable products for a customer in an effective 
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way. This paper focuses on the detection of useful generic product attributes that are 

unaccounted for per se, as we believe these generic attributes generally contain 

valuable information in constructing customer-oriented recommendation. 

 

Most similar approaches in the past can only identify specific tangible product 

attributes of interest to customers. In fact, many recommendation systems are not 

dynamic and flexible enough to adapt to the customer’s preference changes. Unlike 

those approaches, our approach aims to probe in-depth the underlying preference of a 

customer. By detecting generic attributes, the system is able to understand the generic 

preference of a customer. 

 

Generic preference is useful as it characterizes the intrinsic liking of a customer. For 

example, knowing that a customer prefers a 2.2 GHz Intel-chipset notebook is 

superficial for true understanding. Instead, if the system is able to know that the 

customer’s preference is a “high speed” notebook or any computer that has Intel chips, 

it is an added advantage. Therefore, a better smart system can go further than just 

recommending localized preferred products – it can recommend extra products with 

certain generic attributes which match with the customer’s preference. 

 

This paper proposes an approach for discovering generic product attributes. The key 

element in this approach is the feature analysis of attributes, where product attributes 

are evaluated according to their distinctive features. The features of each attribute 

embody unique properties, which represent the signature of the attribute inherently 

(refer to section 3.2). In addition, to corroborate the strength of the attribute’s 
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signature, weights are bound to each feature to symbolize the significance. With the 

weighted-features, each product attribute possesses a distinctive coded signature, 

which is used in the classification of matching attributes. An adaptation of the k-

Nearest Neighbor (k-NN) classification approach [5] and product attribute ontology [6] 

[7] are used to identify the generic classes. Furthermore, a genetic algorithm (GA) is 

used to find the suitable feature weight set and reduce the rate of misclassification [8] 

[9]. 

 

A prototype has been implemented in Java. The prototype contains a population of 

evolutionary intelligent agents gathering customer feedback, processing product 

information, and recommending suitable products to the customer. Some simulations 

were run and the results proved to be satisfactory. The prototype is able to detect 

generic attributes with low misclassification rate. The GA deployed in the system, 

together with the k-NN classification approach, can successfully find the suitable 

feature weights. It is also observed that the system is able to adapt to abrupt customer-

preference changes. 

  

The paper is organized as follows. We first introduce some background on product 

recommendation and preference tracking systems in section 2. The system design 

issues are discussed in section 3. The evaluation of the design and corresponding 

findings can be found in section 4. Section 5 concludes the paper. 
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2  BACKGROUND 

A great deal of research has been done to improve the efficiency and usability of e-

commerce. The common goal is to analyze and understand a customer’s needs prior to 

recommending suitable products through product brokering services. The pervasive 

penetration of e-commerce activities has enticed many researchers towards improving 

e-commerce transactions. Above all, product brokering agents have been studied 

extensively [10] [11] [12] [13], in which these agents have the capabilities to provide 

customer-oriented recommendations intelligently. 

 

User preference is an important concept in predicting customer behaviors and 

recommending preferred products in personalized systems. Preference is the concept 

to make relation between a person and a target item which contains several kinds of 

attributes. Formalized preference models include positive and negative preference 

[14]. Preferred items are known as positive preference, and non-preferred items are 

known as negative preference. 

 

A lot of research has targeted tracking customer preference in order to provide more 

customized recommendations. In the paper by Guo et al. [15], agents operate on 

behalf of customers in e-commerce negotiations. The agents retrieve the required 

information about their customer’s preference structures. In another research, Shibata 

et al. [11] proposed an approach in which autonomous agents can learn customer-

preference by observing the customer’s reaction to contents recommended by agents. 
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An intelligent preference tracking research done by Guan et al. [10] made use of 

evolutionary ontology-based product brokering agents targeting m-commerce 

applications. The GA was used to tune parameters for tracking customer preference. 

The same research group led by Guan, designed another recommending system [16] 

that consists of agents with the ability to capture customer preference with product 

attribute tracking. The proposed solution is able to detect both quantifiable and non-

quantifiable intangible product attributes through repeated customer feedbacks. 

However, though the research is successful in detecting intangible attributes hidden in 

the products, it was not designed to detect generic attributes that will provide clues on 

the customer’s generic preference.  

 

Other recommendation systems [17] [18] used various filtering approaches to elicit 

the customer’s preference. Shahabi and Chen [17] employed a hybrid approach that 

combines collaborative filtering (CF) and content-based querying. The downside is 

that the system relied too heavily on customer profiles for providing accurate 

recommendation lists.  

 

The common approach to handle product attributes is to assemble these attributes and 

assign weights with relevance to their importance to the customer. The weights are 

adjusted to reflect the customer’s preference. Guan et al. [10] captured customer 

preference by requesting the customer to select the best product from a short list of 

products before adjusting the weights according to the feedback. A similar approach 

[11] also assigned weights to attributes, and these attributes weights were adjusted 
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through reinforcement learning. Though weights were being used to improve the 

robustness of the system, they are not flexible enough for true optimization. 

 

A consumer’s product preference is often influenced by product attributes that can 

vary from price to brand. Product ontology plays an important role in the discovery of 

user preference because it provides an initial guide in the direction where the 

preference might be heading [6] [19]. Many researchers have also made use of 

product ontology in the field of e-commerce to improve the understanding of 

customer preference. In this research, product ontology is one that categorizes and 

maps heterogeneous products taxonomically. In contrast, attribute ontology refers to 

one that categorizes and maps heterogeneous product attributes taxonomically. 

Figures 1 and 2 illustrate these two ontologies. 

 

Figure 1: Product Ontology Example 

 

Figure 2: Product Attribute Ontology 
Example 

 

It is observed from Figure 2 that attributes such as brand, speed and type are actually 

generic attributes of a computer product. These generic attributes are the super 

attributes of those specific attributes such as IBM, 1.8GHz and Server. Therefore, a 
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computer brand can either be IBM, HP or Dell. When we refer to a customer having 

some generic attribute preference, we are indicating that the customer gives more 

importance to the brand of a computer than speed or type. For example, if the user 

thinks that the brand of a computer is more important than the speed or type, the 

particular preference for brand will be useful for product brokering. 

 

3  SYSTEM DESIGN 

Figure 3 illustrates the system architecture. The user interface agent is embedded 

within the Java-based graphics user interface (GUI). Its main purpose is to assist the 

user in selections, feedbacks, retrieval of products, and presentation of 

recommendations. 

 

The Database Centre maintains the product database, attribute ontology and user’s 

preference in previous sessions. A population of agents is created by the system 

automatically, after which they undergo GA evolution at the Agent Training Center 

(refer to section 3.4). After a few generations of the GA, the results are presented to 

the user. Each agent possesses some form of knowledge, including feature set, its 

corresponding feature weights, attribute signature, and generic attributes or classes 

detected. Furthermore, each agent has a fitness level which is the decisive factor to the 

survival of the agent during evolution. The detailed design issues are presented in the 

following subsections. 
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Figure 3: System Architecture 

 

3.1 USER FEEDBACK AND RANKING SYSTEM   

In order to understand the customer’s preference, a series of feedbacks is used. The 

initial feedback is the ranking of a list of desired products. Upon the selection of a 

desired category, the user is presented with a list of several (e.g. ten) products. This 

list of products is generated from two aspects. The first part is from the previous 

preference tracked by the system. If there are some previous preferred products saved 

within the database and the user wishes to include them, the system will refer to this 

history of preference, and come up with some products for the user. The second part 

is some random products retrieved by the system from the product database. 
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With the list of products, the user is to rank the products in accordance to his or her 

preference. Since the only properties of the products presented to the user are the 

product descriptions and price, the user has only these two attributes for reference. In 

this paper, the agents in the system give preference to a product if it is priced the 

highest. Hence, the highest priced and lowest priced products are ranked 1st and 10th 

respectively by the agents. In doing so, if the user ranks a product higher than the 

agent’s ranking, then the hypothesis is that the user is affected by some unaccounted 

product attributes. From the ranking of products, we suggest two propositions as 

follows. 

 

Proposition 1: If the user gives product X a higher ranking than what the agent gives, 

then product X is positively ranked. On the other hand, if the user gives product X a 

lower ranking than what the agent gives, then product X is negatively ranked. 

 

For example, if the user ranked Product X as 2nd but the agent ranked Product X as 9th, 

then product X’s rankingScore = (Ranking by agent) – (Ranking by user) = 9 – 2 = 7 

(positive ranking). Every positively or negatively ranked product will have a 

rankingScore. 

 

Proposition 2: If the user ranks product X higher than product Y, and the agent also 

ranks product X higher than product Y, the agent will be awarded one ranking fitness 

point. 

 

3.2 DETECTING GENERIC ATTRIBUTES WITH FEATURE ANALYSIS 
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From proposition 1, positively and negatively ranked products are also known as 

illogical ranked products. Those positively illogically ranked products might contain 

some attributes affecting the user. In addition to the list of positive illogically ranked 

products, there may be some logically ranked products. The system does not wish to 

exclude these influential products that the user may like. For this reason, other than 

the positive illogically ranked products, the system will also include any “logically” 

ranked products in the top five ranking into the list of suspicious products. Figure 4 

illustrates the aggregation. 

 

Figure 4: Aggregation of Illogically and Logically Ranked Products 

 

The aggregated list of suspicious products is transferred to the pool of agents for 

evaluation. The descriptive field for each product is analyzed for the understanding of 

the hidden attributes in the product. Figure 5 illustrates the tokenization process. As a 

matter of fact, any attribute that is longer than one word will be treated as a 2-word 

attribute. The composite attribute will be confirmed when it is checked with the 

current product attribute ontology. For example, the ontology contains a product 

attribute “Western Digital”, which is the brand of a hard disk. If “Western” is detected 

in the product description, the agent will check if “Digital” appears after “Western” in 



12 

the description. If “Western” and “Digital” exist in the correct sequence, the agent 

will treat “Western Digital” as a single attribute instead of two separate attributes.  

 

With the aggregated list of suspicious product attributes, the analysis of these 

attributes follows. In the IBM research report [20], Neumann et al. made use of the 

properties (features) of the values stored for an attribute, to determine its signature. 

Accurate classification was possible for their work, as their aim was to group similar 

attributes among various groups of data values. Contrary to our research data, each 

attribute in their research contains more corresponding values. As such, the IBM 

researchers were able to make use of an attribute signature vector storing the average 

number of occurrences (as a fraction) of the Boolean features for all its values. 

 

Figure 5: Tokenization of Product Descriptions 

 
In our design, we try to cluster a new attribute into a group of attributes. For each 

attribute, features will be examined and noted in a Boolean feature vector whether the 

attribute has the feature or not. If a feature exists, its presence will be represented by 

“1”, otherwise “0”. Features include the existence of certain characters, as such 

hyphen or digits. Aggregated features, such as the presence of upper-case characters 

or alphanumeric words will also be examined. Features are combined to form a 

Boolean data signature vector describing multiple properties of a single attribute. 
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Having a unique signature for each product attribute is not a strong property for 

similarity classification, simply because a binary vector of “1” and “0” has only a 1-

dimensional similarity confidence. We argue that by comparing simply the presence 

of a feature in an attribute, it is not strong enough to cluster similar attributes. Some 

slight difference in the features of attributes may occur in two similar attributes 

belonging to the same attribute group. For example, although “450Mhz”, “900MHZ” 

and “1.5Ghz” have slight disparity in their features, they are common representations 

of speed (generic attribute) in computer terms. Therefore we propose a more general 

2-dimensional similarity confidence measurement among attributes. Besides using a 

binary vector of the attribute, we also apply different weights to the features, 

reflecting different significance. With the inclusion of feature weight, we can generate 

an attribute signature by aggregation of weighted data signature. However, finding a 

suitable weight for each feature in the attribute is a challenge by itself. 

 

Before a feature set, which is a list of attribute features, can be formed, we need to 

formally define attribute feature. A feature is a unique property of an attribute. It may 

check for the presence of a symbol, whether the attribute contains any alphabet or 

digit. For the purpose of classification, a carefully selected set, called a feature set, is 

used as the fundamental component for generating a data signature for each data. A 

few definitions are as follows. 

 

Definition 1 (Feature): A feature f is a Boolean function that takes a data value t as 

input and generates 1 (for true) and 0 (for false) as output. 
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Definition 2 (Data Signature): Given a data value t and a feature set F = {f1, f2, …, 

fn}, the data signature of t with respect to F is F(t) := (f1(t), f2(t), … , fn(t)). 

 

However, as mentioned earlier, a data signature with just the feature set as the sole 

validation source will not provide a strong case. In this research, we propose the 

inclusion of weight for each feature. Weighted feature will reflect different 

significance. A feature weight set is a vector of feature weights. Therefore, an 

attribute together with its feature set and feature weight set will generate a unique 

attribute signature. 

 

Definition 3 (Feature Weight Set): Given a data value t, a feature set F and n 

number of features, the feature weight set Wt(t) := (w1, w2, …, wn), where 0 ≤ w ≤ 1.0 . 

 

Definition 4 (Attribute Signature): Given an attribute a with n existing features, f1, 

f2, …, fn, a feature set F and a feature weight set Wt, the attribute signature of a is  

∑ =
=

n

i ii wafa
1

*)(:)(δ     (1) 

 

With the above definitions, we can determine similarity or dissimilarity in attributes. 

For example, assume attribute data a1 = 500mhz, a2 = 750MHZ, a3 = Maxtor and a4 = 

1.2Ghz. On top of that, let f1 check whether the input contains any digit, f2 check 

whether the input contains any upper-case letters, f3 check whether the input contains 

any lower-case letter, and f4 check for numeric-alpha pattern. We have the following. 

Feature Set F = { f1, f2, f3, f4 } 

Data signature F(a1) = ( 1, 0, 1, 1 ) 
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F(a2) = ( 1, 1, 0, 1 ) 

F(a3) = ( 0, 1, 1, 0 ) 

F(a4) = ( 1, 1, 1, 1 ) 

Assume the feature weight set Wt = { 0.65, 0.2, 0.2, 0.85 }. Therefore with a1, a2, a3 

and a4 defined earlier, we generate the following attribute signatures by using (1), 

δ(a1) = (1*0.65) + (0*0.2) + (1*0.2) + (1*0.85) = 1.70 

δ(a2) = (1*0.65) + (1*0.2) + (0*0.2) + (1*0.85) = 1.70 

δ(a3) = (0*0.65) + (1*0.2) + (1*0.2) + (0*0.85) = 0.40 

δ(a4) = (1*0.65) + (1*0.2) + (1*0.2) + (1*0.85) = 1.90 

From this simple example, with only 4 features and weights, the proximity of attribute 

signatures of a1, a2 and a4 suggest similarity among them, and dissimilarity in attribute 

a3. In fact, attribute a3 is a brand name while the other attributes are speeds in 

computer terms. 

 

On a closer look at the above derivation of attribute signature, it can be seen that an 

attribute signature is just the sum of all existing weighted features (represented by 

“1”). The approach was inspired by the hamming distance function in the 

communication field. In our case, we made some variation where weight is added to 

reflect significance. 

 

There are two types of features that are used in this paper – singleton and aggregate 

features. A singleton feature checks for the presence of certain characters or symbols 

in the attribute data. On the other hand, an aggregate feature checks if the attribute 

data contains any characters in a predefined aggregate set of characters. An aggregate 
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set aims to capture characters that are strongly correlated at various levels. Observing 

the satisfactory results from Neumann et al. research [20], this research uses both 

singleton and aggregate features. The combination usage of features has shown to 

yield the best results. 

 

In this research, all singleton features check for a delimiter, a letter, or a digit. For 

aggregate features, delimiters, lower-case vowels, upper-case vowels, lower-case 

letters, upper-case letters, alphabets, digits, alphanumeric and numeric-alpha are 

verified during evaluation. Table 1 tabulates the list of features. 

Table 1: The Default Feature Set 

Singleton Feature 

A Digit {0}, …, {9} 

A Letter {a}, …, {z}, {A}, …, {Z} 

A Delimiter {@}, …, {\} 

A Lower Vowel {a}, {e}, {i}, {o}, {u} 

A Upper Vowel {A}, {E}, {I}, {O}, {U} 

A Lower Letter {a}, …, {z} 

A Upper Letter {A}, …, {Z} 

Hyphen {-} 

Aggregate Feature 

Digits {0, …, 9} 

Letters {a, … z}, {A, …, Z}, {a, …, z, A, …, Z} 

Lower Letters {a, … z} 

Upper Letters {A, …, Z} 

Alphanumeric {a, …, z, A, …, Z, 0, …, 9} 

Numeric Alpha {0, …, 9, a, …, z, A, …, Z} 

 

3.3 DETECTING GENERIC PREFERENCE 
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After the creation of attribute signatures from suspicious product attributes, the ability 

of the agents to classify these attribute signatures is vital. Only with efficient and 

accurate classification can there be a generalization of attributes that provides the 

system with some clues to the customer’s preference. For example, 500Mhz, 

750MHZ and 1.2Ghz can be clustered under a generic attribute grouping such as 

“Speed”. 

 

We use a classification approach based on an adaptation of the k-Nearest Neighbor 

(k-NN) classification technique in attributes clustering, which is simple yet competent. 

There are many cases [5] [21] where the k-NN approach has been deployed in 

webpage and text classification with good results. In particular, the k-NN 

classification algorithm used by Han et al. [5] is able to learn the importance of 

attributes and utilize them in the similarity measurement.  

 

For the k-NN approach in this paper, there does not exist an explicit training 

procedure usually found in the traditional k-NN approach. Instead, the main training 

and learning process is found in the genetic-algorithmic optimization of the agents. 

Each new attribute to be classified will have its attribute signature verified with every 

existing generic attribute grouping. A proximity level has to be achieved in order for 

that new attribute to be clustered into the generic attribute category.  

 

Figure 6 illustrates the k-NN classification approach. There are three existing groups: 

Neighborhood A, B and C, with a, b and c being the number of instances respectively. 
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The average value of each neighborhood is calculated using (2), where there are k 

instances of attributes in that neighborhood h and δ is the attribute signature. 

Average value of neighborhood 
k

i
h

k

i
∑
== 1

)(
:)(

δ
µ   (2) 

 

Figure 6: Nearest Neighbor Approach 

 
For example, a new instance of value (attribute signature value) 2.215 is introduced. 

Upon verification with all three groupings, the new instance best matches the average 

value in neighborhood B, because it has the lowest proximity value of 0.015 with 

neighborhood B. Therefore the new instance is classified under neighborhood B. 

Proximity value is calculated as the absolute Euclidean distance between the new 

instance and the average value of a neighborhood, as shown in (3). 

Proximity value of instance s: )()(:)( hss µδρ −=   (3) 

With distinctive attribute signature, the agent is able to classify similar attributes into 

a generic attribute class. However, a small problem is that the agent does not know 

the name of that generic classification. For example, the agent might know that 

“500Mhz”, “850MHZ” and “1.5Ghz” belong to the same generic classification, but it 
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does not know the name for this classification without prior knowledge. Therefore, to 

aid the agent in the discovery of the name for any generic classes, a preloaded product 

attribute ontology is referred to. Generic classes are defined as generalized groupings 

of similar attributes in this paper. 

 

Product attribute ontology contains information about the relationships and 

schematics between attributes and product, as shown in Figure 2. In this research, it is 

assumed that there is some prior knowledge about some default product attribute 

ontology in the database. It will serve as a basic initial reference for the agents. The 

ontology is available to the population of agents when the user chooses the category 

of a product.  

 

3.4 GA-BASED EVOLUTION AND FEATURE WEIGHT OPTIMIZATION 

A good feature weight set enables the generation of distinctive attribute signatures, 

which aids in good classification of attributes. In this paper, a Genetic Algorithm (GA) 

based optimization approach is used to find the suitable feature weight set. Feature 

weight ranges from 0.0 to 1.0 in a double precision format. The chromosomes are 

manipulated in binary string format with eight bits. Thus, 0.0 will be coded as 

00000000 and 1.0 coded as 11111111. All the coded binary strings are concatenated 

to form a long binary string representing the feature weights set. 

 

The GA design in this paper uses a modest form of elitist selection, in which a 

percentage of elite agents from the previous generation replaces the same percentage 

of poorly performing agents in the current generation. Elitism rapidly increases the 
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performance of GA, by preventing loss of the best-found solutions. The GA begins 

with the selection process, where a tournament-like selection operator is used. Three 

randomly selected chromosomes participate in a round of tournament, where the 

fittest of the three will be selected as one of the parents for mating. During each round 

of selection, the three random chromosomes selected during the 1st round of 

tournament cannot enter the 2nd round of selection for the 2nd parent. This blockade of 

selection is to ensure diversity in mating.  Figure 7 illustrates the selection process.  

 

 

Figure 7: Tournament Selection Process 

 
After the tournament selection, the two parents will undergo a crossover operation. A 

randomized single-point crossover is performed on these two parents to produce two 

offspring. After the crossover operation, the chromosomes undergo a mutation. 

Mutation rate is the probability that a bit in the chromosome will undergo a mutation. 

Since the chromosome is in the binary string format, a mutated bit will have its value 

flipped, such that “0” becomes “1” and “1” becomes “0”.  
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The fitness of chromosome is evaluated through the agent fitness. The agent fitness 

function comprises two components. The first component is the ranking fitness and 

the second is the evolution fitness. 

Agent Fitness = Ranking Fitness + Evolution Fitness (4) 

From proposition 2, the agent is awarded some ranking fitness point when the user 

and the agent both rank product X higher than product Y. Furthermore, if the agent 

ranks the 1st ranking product in the same order as the user, the agent can receive up to 

a maximum of 9 ranking fitness points. Extending similar treatment to the 2nd ranking 

product, the agent can receive up to 8 ranking fitness points for that 2nd product 

ranking. If we extend similar treatment to all 10 products on the list, and considering 

that the agent has ranked all products in the same order as the user, then the maximum 

total ranking fitness points that the agent can receive is as follows. 

Total Ranking Fitness = 9 + 8 + … + 2 +1 = 45  (5) 

On the other hand, agents are awarded points during evolution for good classification 

of attributes and have points deducted for poor classification. The points that an agent 

receives during evolution will be known as evolution fitness. The system will reward 

one evolution fitness point to an agent for the detection of a generic classification of 

attributes. For example, if the agent derives 3 generic classes after the classification 

process, it will be rewarded 3 fitness points. However, for the agents to learn correctly, 

we also give demerit points if any agent has made some wrong or inaccurate 

classification. The user is allowed to view all detected classifications by the elite 

agents, and is able to remove or edit the classification. Any removal or amendment of 

the classification proposed by the agent will result in demerit points. A removal will 
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penalize more than an amendment, because a removal signifies a complete rejection 

by the user. 

 
For all GENERATIONS { 
   For half the POPULATION size { 
 parentA <= Select from Population_A based on evaluation 
 parentB <= Select from Population_A based on evaluation 

 
child1, child2 <= Generate 2 children based on   

    crossover(ParentA, Parent B) 
  
 child1 <= Mutate(child1, MUTATION RATE) 
 child2 <= Mutate(child2, MUTATION RATE) 
 
 Population_B <= Add child1 to Population_B; 
 Population_B <= Add child2 to Population_B; 
   } 
 
   Evaluation_B <= evaluate (Population_B) 
   Elites replace poorly performed agents in Population_B 
   Population_A <= new Generation(Population_B) 
   Evaluation_A <= evaluate (Population_A) 
   Elites <= find elite agents from Evaluation_A 
} 

Figure 8: Genetic Algorithm 

 

After all the manipulations of the agents’ feature weight set, the current agent 

population must first be evaluated before the evolution process. The evaluation will 

determine the initial elite agents. After retrieving the elite agents, the population of 

agents will loop through a number of generations. During each generation, 2 parents 

are selected based on the tournament selection approach mentioned earlier. Figure 8 

shows the GA pseudo code. The new generation, also know as Population B is 

evaluated, and those poor performers in terms of agent fitness are to be replaced by 

elite parents from the previous generation, also known as Population A. The number 

of elite parents is determined by the elitist rate defined. Elitism allows a certain 

number of parents which are very fit to be carried over to the new generation 

untouched. The new population with elitist replacement then undergoes the next 
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round of evolution process consisting of selection, recombination, mutation and 

evaluation. 

 

The intelligent agents in the system have learning capabilities through incremental re-

evaluation. The incremental detection approach undertaken in understanding user’s 

preference will enable the system to analyze complex user preference situation. The 

system recognizes that not all generic attributes can be detected accurately within one 

feedback cycle. Therefore, the system seeks to consider any previous results. The 

satisfied recommendations and generic attributes affecting a user’s preference in one 

feedback will become useful information in the next set of feedback. Reusing vital 

information previously found while new set of generic attributes and products are 

being detected allows the software agents to learn incrementally. However, the user 

has the choice to reuse previously detected information or to start afresh in each 

feedback cycle. 

 

4. EVALUATION OF DESIGN 

For the results shown in the following subsections, some default simulation 

parameters are used. During the GA evolution, a population of 30 agents is evolved. 

During the selection process of GA, tournament selection with a tournament size of 3 

is implemented. The elitist rate is set at 0.1, or 10%, which has been found to be 

suitable and appropriate. In addition, the mutation rate is set at 0.25, which gives 

better results than other mutation rates during the simulation. 
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Figure 9: Convergence of Feature Weight for Four Mutation Rates 

 

4.1 Convergence of Feature Set Weights 

To evaluate if our prototype can obtain a suitable set of feature weight, we run a 

simulation with some worst-case illogical ranking initially. Worst-case illogical 

ranking occurs when the user ranks the cheapest product top. HardDisk is chosen as 

the product category for the simulation. Four different mutation rates were used which 

is illustrated in Figure 9. As observed, a mutation rate at 0.1 or 0.5 did not result in the 
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convergence of feature weights. On the other hand, a mutation rate at 0.25 or 0.85 

resulted in the convergence of feature weights. However, it should be noted that the 

convergence for mutation rate at 0.25 is preferred because there is a greater variation 

of weights before convergence. The variation allows the agents to learn different sets 

of weights before convergence, which is more desirable than in the case of mutation 

rate of 0.85. When the feature set weights have converged and stabilized, the agents 

would have found a set of suitable feature weight for each attribute that may result in 

good classification of generic attributes. 

 

4.2 Misclassification Rate 

Using a mutation rate at 0.25 and single crossover, a simulation was conducted with 

12 evolutions. Each evolution process consists of 30 agents with a set of user 

feedback regarding the classification of attributes. The misclassification rate is 

defined as the percentage of classes or attributes that are classified wrongly. 
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Figure 10: Misclassification Rate 

 

Figure 10 illustrates the misclassification rates of rejected classes, edited classes, 

rejected attributes and deleted attributes. These feedbacks are from the user who will 

inspect the classification produced by the agents after every evolution. From Figure 
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10, the misclassification rates are noted to be decreasing with more evolutions. After 

9 evolutions, the average misclassification rates drop below 10%. From the 11th to the 

12th evolution, there is no improvement in classification. This shows that the GA-

agents are learning well through the process of evolutions, but the learning rate 

reaches a threshold after 10 evolutions when the misclassification drops just below 

10%. The misclassification rate of 10% cannot be further improved in this case, which 

could be due to the fact that there are a limited number of features (e.g. 14) at the 

disposal of the agents for the generation of attribute signature. The limitation in the 

variety of attribute features reduces the accuracy of classification of similar attributes. 

A more distinctive and unique feature set will be needed for more accurate 

classification. By and large, a 10% misclassification rate would be very satisfactory 

considering the complexity of classifying different types of attributes from numerical, 

textual to alphanumeric. 

 

4.3 Detecting Generic Attributes 

This section will discuss the ability of the prototype to detect generic attributes and its 

ability to adapt to user’s abrupt changes. 

 

Figure 11: Initial Product Ranking 

 
In this test case, the user wishes to search for a hard disk and considers the brand of 

hard disk as an important attribute influencing his preference. In particular, the user 
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has a preference for WESTERN DIGITAL and SEAGATE hard disks as indicated in 

Figure 11, where WESTERN DIGITAL and SEAGATE hard disks are ranked top. 

 

The ranked products are submitted for evaluation by the population of agents. In total 

30 autonomous agents evaluate the input by the user. When the agents have finished 

all the evolution processes, the elite agents will provide some generic classes detected, 

as shown in Figure 12. As observed, the system has successfully detected some 

generic classes such as the “Brand” and “Size”. The user can reject any undesirable 

classification by de-selecting the generic classes. The names of the generic classes 

that match the names found in the ontology as shown in Figure 13 are available for 

the user to confirm. 

 

Figure 12: Detected Generic Classes 
 

 

Figure 13: HardDisk Attribute Ontology 

 
When the user feedbacks to the agents about the generic classes and re-evaluate the 

attributes again, the agents are able to come up with some recommended products as 

shown in Figure 14. 
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Figure 14: Recommended Products by Elite Agents 

 

The recommendation indeed provides products that the user preferred, such as 

WESTERN DIGITAL and SEAGATE hard disks. The recommendation relies mainly 

on the relationship between successful detection of generic attributes and positive 

ranking of products by the user. Therefore, only products that are highly ranked yet 

containing the generic attributes would be recommended. Because the generic 

attributes play an important role in influencing the user to rank the products highly, 

we deduce that the acknowledged generic attributes that can be found in the highly 

ranked products are usually the generic preference of the user. 

 

Now that the user has saved the 1st round of information, he can go for a 2nd round 

and makes use of the previously saved data. Figure 15 shows the previously saved 

data and the user shall set the initial condition with these data. Making use of 

previously saved information allows the agents to incrementally learn about the user 

preference. During the 2nd round of feedback, the user ranks with WESTERN 

DIGITAL as the preferred choice of hard disk. The ranking is illustrated in Figure 16. 

 

In this round, a 2nd agent also detected a generic class of brands, comprising 

WESTERN DIGITAL and SEAGATE. With the rejection and amendment done, the 
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agents will re-evaluate the product attributes and provide a second round of generic 

attributes list as shown in Figure 17. We can observe that the detection of generic 

attributes has improved with more accurate classification. The classes BRAND and 

SIZE are confirmed by the user. 

 

Figure 15: Making Use of Previously Saved Data 

 

 

Figure 16: 2nd Round Product Ranking 

 

 Figure 18 shows the recommended products in the 2nd round. Again three WESTERN 

DIGITAL hard disks are recommended, but this time with only one SEAGATE hard 

disk. The system has probably understood that the user might not have much 

preference for SEAGATE as compared to WESTERN DIGITAL. In addition, though 

during the ranking of products, the user chooses four WESTERN DIGITAL hard 

disks, but only three are recommended. The fourth WESTERN DIGITAL hard disk is 

ranked 4th even though it is priced higher than the other three WESTERN DIGITAL 

hard disks. Therefore, the system detects that this WESTERN DIGITAL hard disk is 
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negatively ranked. In our case, negatively ranked products are not recommended to 

the user. 

 

Figure 17: Re-evaluated Detected Generic Attributes 

 

Figure 18: Recommended Products in the 2nd Round 

 

We further test the adaptability of the prototype to abrupt user preference changes. In 

this 3rd round of feedback, the user changes his preference for quality product which 

is in correlation to the pricing. Therefore the user ranks the products in accordance to 

their prices as illustrated in Figure 19. After a few rounds of evaluations, the agents 

finally recommend a list of hard disks as shown in Figure 20. 

 

 

Figure 19: 3rd Round Product Ranking 
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Figure 20: Recommended Products in the 3rd Round 

 
From the recommendation shown in Figure 20, we observed that system is able to 

adapt to the change of preference from BRAND to PRICE. Maxtor DiamondMax is 

the top recommended product with a price of $295.00. Though most of the 

recommended products are highly priced quality hard disks, it can be noted that the 

$195.00 IBM hard disk is placed below the WESTERN DIGITAL hard disk. The 

WESTERN DIGITAL hard disks though priced lower than the IBM hard disk is 

recommended above it. This shows that the system has adapted to the change in user 

preference, nevertheless it also takes into account the generic attributes detected in the 

previous rounds. 

 

To show that the system has indeed adapted to the changes in user preference, we 

tracked the feature weights during each generation of evolutions.  Figure 21 shows the 

continuous tracking of feature weights from the 1st to 450th generation of evolutions 

by the agents. The 450 generations comprise the 3 rounds of simulations in 

chronological order. It is observed that the weights stabilized within the 1st round of 

simulations which end at generation 200th. In the 2nd round, from generation 200th to 

generation 325th, there is some fluctuation in the weights initially. However the 

weights are stabilized when it reaches the 300th generation. 
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During the 1st and 2nd rounds, the user has a preference for BRAND, especially 

WESTERN DIGITAL and SEAGATE. The 3rd round begins at generation 325th and 

we can see that there is a sudden fluctuation in the feature weights. This is likely due 

to the fact that in the 3rd round, the user has a sudden preference for PRICE, and 

disregarding the preference for BRAND. The system takes around two hundred 

generations before the feature weights stabilized. The system has tried and 

successfully adapted to the sudden change in user preference, with a new set of 

feature weights. 
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Figure 21: Adapting to User Preference Changes 

 

4.4 Summary and Discussions 

On the whole, the recommendation provided based on the detection of generic 

attributes is found to be satisfactory. Most recommendations provide products tailored 

to the user’s preference. However, with more rounds of re-evaluations and feedbacks, 

the agents are able to improve the recommendation quality. The complexity of feature 

weights with numerous features within each attribute is closely related to the system 

performance. However, GA is able to overcome this complexity and produce 

satisfactory overall population fitness over generations. The misclassification rates of 

attributes also decreased over generations with final misclassification rates at around 
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10%, which produced satisfactory results in our case. It is also observed that the 

system is able to adapt to abrupt user-preference changes.  

 

Many other optimization approaches exist that may work as well for our research 

problem. In particular, Simulated Annealing (SA) and Tabu Search (TS) techniques 

are both comparable to the GA approach. As observed in [22] [23], SA is comparable 

to GA, as SA can be thought of as GA with a population size of one. Empirically, SA 

is able to achieve satisfactory results in shorter time, but will not improve much when 

given more time to progress. In contrast, though GA may be a slower starter, it has the 

ability to improve the solution consistently over time, or even attain more and better 

solutions. In fact, we are able to complete the optimization process in this research 

using GA in a relatively short time span. TS has been proven successful in target-

specific problems with the best solution in mind. However, the problem of optimizing 

multiple-attribute fitness in our research cannot be classified as a target-specific 

problem because our agents cannot predetermine exactly the user’s preference, since a 

“good” attribute may only have temporal wellness. Besides, TS concentrates on 

navigating towards maxima or minima fitness and avoids repetition on a tested path. 

Such characteristic of TS will pose a problem when the user’s preference changes. 

 

In this paper, GA is chosen for the optimization problem partly because GA is highly 

adaptive. A highly adaptive algorithm is needed for two reasons. Firstly, the user’s 

taste might not be consistent, so the agents have to be flexible in their findings to 

adapt to any changes. Secondly, the algorithm might make a mistake during 

optimization, and the nature of GA allows the agents to revisit some of the solutions 
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which they have discarded previously. The solutions presented in this research require 

an optimization process to be self-correcting in nature, and GA’s adaptive capability 

will serve this research well. According to Chu and Fang [24], GA can produce 

numerous, diverse near-optimal solutions simultaneously because GA holds the whole 

generation of chromosomes which may not originate from the same parents. In fact, 

GA also exhibits the capability of parallelism by searching solutions from many 

points in the search space, rather than from just one starting point [25]. 

 

5. CONCLUSION 

This paper proposed a new approach to detect user’s generic preference with feature 

selection. The product attributes were evaluated according to their distinctive features. 

Attribute signature and weight set were proposed to detect the generic attributes. GA 

was used to aid in the optimization of feature weights. A prototype was implemented 

and had shown that the detection of generic attributes was feasible with correct 

attribute classification and some help from the product attribute ontology. It was also 

observed that the system was able to adapt to abrupt customer-preference changes. 

 

For future research, different types of features are potential candidates for successful 

classification such as schema meta-data, n-grams, entire words, and domain specific 

features. Furthermore, the current system relies mainly on the user and product 

attribute ontology to provide accurate generic attribute name for any classification. 

However, the ontology implemented is simple and without much intelligence. Further 

development in including better ontology with product-attribute relationships and 

associations will help the system detect generic attributes better. 
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