
1

Evolutionary Intelligent Agents for e-Commerce:
Generic Preference Detection with Feature Analysis

Sheng-Uei Guan, Tai Kheng Chan and Fangming Zhu

Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

eleguans@nus.edu.sg

ABSTRACT

Product recommendation and preference tracking systems have been adopted

extensively in e-commerce businesses. However, the heterogeneity of product

attributes results in undesired impediment for an efficient yet personalized e-

commerce product brokering. Amid the assortment of product attributes, there are

some intrinsic generic attributes having significant relation to a customer’s generic

preference. This paper proposes a novel approach in the detection of generic product

attributes through feature analysis. The objective is to provide an insight to the

understanding of customers’ generic preference. Furthermore, a genetic algorithm is

used to find the suitable feature weight set, hence reducing the rate of

misclassification. A prototype has been implemented and the experimental results are

promising.

KEYWORDS: Generic Preference, E-Commerce, Generic Attributes, Feature

Analysis, Genetic Algorithm

2

1 INTRODUCTION

Intelligent software agents are software entities that carry out some set of operations

on behalf of a user. They normally possess certain form of intelligence together with

some representation of user’s goals or desires [1] [2] [3]. These software agents are

usually autonomous, reactive, intelligent and even social. Smart agents should be able

to anticipate customer needs and proactively take an action. Artificial intelligence

built into e-commerce agents can provide services such as intelligent product filtering

and brokering to patrons at online stores. In addition, e-commerce agents should have

the ability to understand customer’s requirements and personalize products

recommendation.

Nevertheless, productive use of online resources is hampered by the colossal amount

of information. As the number of products retailing in e-commerce websites increases

exponentially, customers will have some difficulty in searching for a desired item. At

Amazon.com [4], there are millions of products available with tens of millions of

customers browsing through the website. However, Amazon.com manages to succeed

in the e-commerce retailing industry with a personalized and intelligent

recommendation system. Inevitably, personalization will be an indispensable

contrivance for an efficacious and thriving e-commerce industry. Information seekers

or online customers will require an individualized, autonomous system that can learn

a customer’s specific preference and search for relevant information.

The purpose of our research is to exploit the capabilities of intelligent e-commerce

agents that can filter and recommend suitable products for a customer in an effective

3

way. This paper focuses on the detection of useful generic product attributes that are

unaccounted for per se, as we believe these generic attributes generally contain

valuable information in constructing customer-oriented recommendation.

Most similar approaches in the past can only identify specific tangible product

attributes of interest to customers. In fact, many recommendation systems are not

dynamic and flexible enough to adapt to the customer’s preference changes. Unlike

those approaches, our approach aims to probe in-depth the underlying preference of a

customer. By detecting generic attributes, the system is able to understand the generic

preference of a customer.

Generic preference is useful as it characterizes the intrinsic liking of a customer. For

example, knowing that a customer prefers a 2.2 GHz Intel-chipset notebook is

superficial for true understanding. Instead, if the system is able to know that the

customer’s preference is a “high speed” notebook or any computer that has Intel chips,

it is an added advantage. Therefore, a better smart system can go further than just

recommending localized preferred products – it can recommend extra products with

certain generic attributes which match with the customer’s preference.

This paper proposes an approach for discovering generic product attributes. The key

element in this approach is the feature analysis of attributes, where product attributes

are evaluated according to their distinctive features. The features of each attribute

embody unique properties, which represent the signature of the attribute inherently

(refer to section 3.2). In addition, to corroborate the strength of the attribute’s

4

signature, weights are bound to each feature to symbolize the significance. With the

weighted-features, each product attribute possesses a distinctive coded signature,

which is used in the classification of matching attributes. An adaptation of the k-

Nearest Neighbor (k-NN) classification approach [5] and product attribute ontology [6]

[7] are used to identify the generic classes. Furthermore, a genetic algorithm (GA) is

used to find the suitable feature weight set and reduce the rate of misclassification [8]

[9].

A prototype has been implemented in Java. The prototype contains a population of

evolutionary intelligent agents gathering customer feedback, processing product

information, and recommending suitable products to the customer. Some simulations

were run and the results proved to be satisfactory. The prototype is able to detect

generic attributes with low misclassification rate. The GA deployed in the system,

together with the k-NN classification approach, can successfully find the suitable

feature weights. It is also observed that the system is able to adapt to abrupt customer-

preference changes.

The paper is organized as follows. We first introduce some background on product

recommendation and preference tracking systems in section 2. The system design

issues are discussed in section 3. The evaluation of the design and corresponding

findings can be found in section 4. Section 5 concludes the paper.

5

2 BACKGROUND

A great deal of research has been done to improve the efficiency and usability of e-

commerce. The common goal is to analyze and understand a customer’s needs prior to

recommending suitable products through product brokering services. The pervasive

penetration of e-commerce activities has enticed many researchers towards improving

e-commerce transactions. Above all, product brokering agents have been studied

extensively [10] [11] [12] [13], in which these agents have the capabilities to provide

customer-oriented recommendations intelligently.

User preference is an important concept in predicting customer behaviors and

recommending preferred products in personalized systems. Preference is the concept

to make relation between a person and a target item which contains several kinds of

attributes. Formalized preference models include positive and negative preference

[14]. Preferred items are known as positive preference, and non-preferred items are

known as negative preference.

A lot of research has targeted tracking customer preference in order to provide more

customized recommendations. In the paper by Guo et al. [15], agents operate on

behalf of customers in e-commerce negotiations. The agents retrieve the required

information about their customer’s preference structures. In another research, Shibata

et al. [11] proposed an approach in which autonomous agents can learn customer-

preference by observing the customer’s reaction to contents recommended by agents.

6

An intelligent preference tracking research done by Guan et al. [10] made use of

evolutionary ontology-based product brokering agents targeting m-commerce

applications. The GA was used to tune parameters for tracking customer preference.

The same research group led by Guan, designed another recommending system [16]

that consists of agents with the ability to capture customer preference with product

attribute tracking. The proposed solution is able to detect both quantifiable and non-

quantifiable intangible product attributes through repeated customer feedbacks.

However, though the research is successful in detecting intangible attributes hidden in

the products, it was not designed to detect generic attributes that will provide clues on

the customer’s generic preference.

Other recommendation systems [17] [18] used various filtering approaches to elicit

the customer’s preference. Shahabi and Chen [17] employed a hybrid approach that

combines collaborative filtering (CF) and content-based querying. The downside is

that the system relied too heavily on customer profiles for providing accurate

recommendation lists.

The common approach to handle product attributes is to assemble these attributes and

assign weights with relevance to their importance to the customer. The weights are

adjusted to reflect the customer’s preference. Guan et al. [10] captured customer

preference by requesting the customer to select the best product from a short list of

products before adjusting the weights according to the feedback. A similar approach

[11] also assigned weights to attributes, and these attributes weights were adjusted

7

through reinforcement learning. Though weights were being used to improve the

robustness of the system, they are not flexible enough for true optimization.

A consumer’s product preference is often influenced by product attributes that can

vary from price to brand. Product ontology plays an important role in the discovery of

user preference because it provides an initial guide in the direction where the

preference might be heading [6] [19]. Many researchers have also made use of

product ontology in the field of e-commerce to improve the understanding of

customer preference. In this research, product ontology is one that categorizes and

maps heterogeneous products taxonomically. In contrast, attribute ontology refers to

one that categorizes and maps heterogeneous product attributes taxonomically.

Figures 1 and 2 illustrate these two ontologies.

Figure 1: Product Ontology Example

Figure 2: Product Attribute Ontology
Example

It is observed from Figure 2 that attributes such as brand, speed and type are actually

generic attributes of a computer product. These generic attributes are the super

attributes of those specific attributes such as IBM, 1.8GHz and Server. Therefore, a

8

computer brand can either be IBM, HP or Dell. When we refer to a customer having

some generic attribute preference, we are indicating that the customer gives more

importance to the brand of a computer than speed or type. For example, if the user

thinks that the brand of a computer is more important than the speed or type, the

particular preference for brand will be useful for product brokering.

3 SYSTEM DESIGN

Figure 3 illustrates the system architecture. The user interface agent is embedded

within the Java-based graphics user interface (GUI). Its main purpose is to assist the

user in selections, feedbacks, retrieval of products, and presentation of

recommendations.

The Database Centre maintains the product database, attribute ontology and user’s

preference in previous sessions. A population of agents is created by the system

automatically, after which they undergo GA evolution at the Agent Training Center

(refer to section 3.4). After a few generations of the GA, the results are presented to

the user. Each agent possesses some form of knowledge, including feature set, its

corresponding feature weights, attribute signature, and generic attributes or classes

detected. Furthermore, each agent has a fitness level which is the decisive factor to the

survival of the agent during evolution. The detailed design issues are presented in the

following subsections.

9

Figure 3: System Architecture

3.1 USER FEEDBACK AND RANKING SYSTEM

In order to understand the customer’s preference, a series of feedbacks is used. The

initial feedback is the ranking of a list of desired products. Upon the selection of a

desired category, the user is presented with a list of several (e.g. ten) products. This

list of products is generated from two aspects. The first part is from the previous

preference tracked by the system. If there are some previous preferred products saved

within the database and the user wishes to include them, the system will refer to this

history of preference, and come up with some products for the user. The second part

is some random products retrieved by the system from the product database.

10

With the list of products, the user is to rank the products in accordance to his or her

preference. Since the only properties of the products presented to the user are the

product descriptions and price, the user has only these two attributes for reference. In

this paper, the agents in the system give preference to a product if it is priced the

highest. Hence, the highest priced and lowest priced products are ranked 1st and 10th

respectively by the agents. In doing so, if the user ranks a product higher than the

agent’s ranking, then the hypothesis is that the user is affected by some unaccounted

product attributes. From the ranking of products, we suggest two propositions as

follows.

Proposition 1: If the user gives product X a higher ranking than what the agent gives,

then product X is positively ranked. On the other hand, if the user gives product X a

lower ranking than what the agent gives, then product X is negatively ranked.

For example, if the user ranked Product X as 2nd but the agent ranked Product X as 9th,

then product X’s rankingScore = (Ranking by agent) – (Ranking by user) = 9 – 2 = 7

(positive ranking). Every positively or negatively ranked product will have a

rankingScore.

Proposition 2: If the user ranks product X higher than product Y, and the agent also

ranks product X higher than product Y, the agent will be awarded one ranking fitness

point.

3.2 DETECTING GENERIC ATTRIBUTES WITH FEATURE ANALYSIS

11

From proposition 1, positively and negatively ranked products are also known as

illogical ranked products. Those positively illogically ranked products might contain

some attributes affecting the user. In addition to the list of positive illogically ranked

products, there may be some logically ranked products. The system does not wish to

exclude these influential products that the user may like. For this reason, other than

the positive illogically ranked products, the system will also include any “logically”

ranked products in the top five ranking into the list of suspicious products. Figure 4

illustrates the aggregation.

Figure 4: Aggregation of Illogically and Logically Ranked Products

The aggregated list of suspicious products is transferred to the pool of agents for

evaluation. The descriptive field for each product is analyzed for the understanding of

the hidden attributes in the product. Figure 5 illustrates the tokenization process. As a

matter of fact, any attribute that is longer than one word will be treated as a 2-word

attribute. The composite attribute will be confirmed when it is checked with the

current product attribute ontology. For example, the ontology contains a product

attribute “Western Digital”, which is the brand of a hard disk. If “Western” is detected

in the product description, the agent will check if “Digital” appears after “Western” in

12

the description. If “Western” and “Digital” exist in the correct sequence, the agent

will treat “Western Digital” as a single attribute instead of two separate attributes.

With the aggregated list of suspicious product attributes, the analysis of these

attributes follows. In the IBM research report [20], Neumann et al. made use of the

properties (features) of the values stored for an attribute, to determine its signature.

Accurate classification was possible for their work, as their aim was to group similar

attributes among various groups of data values. Contrary to our research data, each

attribute in their research contains more corresponding values. As such, the IBM

researchers were able to make use of an attribute signature vector storing the average

number of occurrences (as a fraction) of the Boolean features for all its values.

Figure 5: Tokenization of Product Descriptions

In our design, we try to cluster a new attribute into a group of attributes. For each

attribute, features will be examined and noted in a Boolean feature vector whether the

attribute has the feature or not. If a feature exists, its presence will be represented by

“1”, otherwise “0”. Features include the existence of certain characters, as such

hyphen or digits. Aggregated features, such as the presence of upper-case characters

or alphanumeric words will also be examined. Features are combined to form a

Boolean data signature vector describing multiple properties of a single attribute.

13

Having a unique signature for each product attribute is not a strong property for

similarity classification, simply because a binary vector of “1” and “0” has only a 1-

dimensional similarity confidence. We argue that by comparing simply the presence

of a feature in an attribute, it is not strong enough to cluster similar attributes. Some

slight difference in the features of attributes may occur in two similar attributes

belonging to the same attribute group. For example, although “450Mhz”, “900MHZ”

and “1.5Ghz” have slight disparity in their features, they are common representations

of speed (generic attribute) in computer terms. Therefore we propose a more general

2-dimensional similarity confidence measurement among attributes. Besides using a

binary vector of the attribute, we also apply different weights to the features,

reflecting different significance. With the inclusion of feature weight, we can generate

an attribute signature by aggregation of weighted data signature. However, finding a

suitable weight for each feature in the attribute is a challenge by itself.

Before a feature set, which is a list of attribute features, can be formed, we need to

formally define attribute feature. A feature is a unique property of an attribute. It may

check for the presence of a symbol, whether the attribute contains any alphabet or

digit. For the purpose of classification, a carefully selected set, called a feature set, is

used as the fundamental component for generating a data signature for each data. A

few definitions are as follows.

Definition 1 (Feature): A feature f is a Boolean function that takes a data value t as

input and generates 1 (for true) and 0 (for false) as output.

14

Definition 2 (Data Signature): Given a data value t and a feature set F = {f1, f2, …,

fn}, the data signature of t with respect to F is F(t) := (f1(t), f2(t), … , fn(t)).

However, as mentioned earlier, a data signature with just the feature set as the sole

validation source will not provide a strong case. In this research, we propose the

inclusion of weight for each feature. Weighted feature will reflect different

significance. A feature weight set is a vector of feature weights. Therefore, an

attribute together with its feature set and feature weight set will generate a unique

attribute signature.

Definition 3 (Feature Weight Set): Given a data value t, a feature set F and n

number of features, the feature weight set Wt(t) := (w1, w2, …, wn), where 0 ≤ w ≤ 1.0 .

Definition 4 (Attribute Signature): Given an attribute a with n existing features, f1,

f2, …, fn, a feature set F and a feature weight set Wt, the attribute signature of a is

∑ =
=

n

i ii wafa
1

*)(:)(δ (1)

With the above definitions, we can determine similarity or dissimilarity in attributes.

For example, assume attribute data a1 = 500mhz, a2 = 750MHZ, a3 = Maxtor and a4 =

1.2Ghz. On top of that, let f1 check whether the input contains any digit, f2 check

whether the input contains any upper-case letters, f3 check whether the input contains

any lower-case letter, and f4 check for numeric-alpha pattern. We have the following.

Feature Set F = { f1, f2, f3, f4 }

Data signature F(a1) = (1, 0, 1, 1)

15

F(a2) = (1, 1, 0, 1)

F(a3) = (0, 1, 1, 0)

F(a4) = (1, 1, 1, 1)

Assume the feature weight set Wt = { 0.65, 0.2, 0.2, 0.85 }. Therefore with a1, a2, a3

and a4 defined earlier, we generate the following attribute signatures by using (1),

δ(a1) = (1*0.65) + (0*0.2) + (1*0.2) + (1*0.85) = 1.70

δ(a2) = (1*0.65) + (1*0.2) + (0*0.2) + (1*0.85) = 1.70

δ(a3) = (0*0.65) + (1*0.2) + (1*0.2) + (0*0.85) = 0.40

δ(a4) = (1*0.65) + (1*0.2) + (1*0.2) + (1*0.85) = 1.90

From this simple example, with only 4 features and weights, the proximity of attribute

signatures of a1, a2 and a4 suggest similarity among them, and dissimilarity in attribute

a3. In fact, attribute a3 is a brand name while the other attributes are speeds in

computer terms.

On a closer look at the above derivation of attribute signature, it can be seen that an

attribute signature is just the sum of all existing weighted features (represented by

“1”). The approach was inspired by the hamming distance function in the

communication field. In our case, we made some variation where weight is added to

reflect significance.

There are two types of features that are used in this paper – singleton and aggregate

features. A singleton feature checks for the presence of certain characters or symbols

in the attribute data. On the other hand, an aggregate feature checks if the attribute

data contains any characters in a predefined aggregate set of characters. An aggregate

16

set aims to capture characters that are strongly correlated at various levels. Observing

the satisfactory results from Neumann et al. research [20], this research uses both

singleton and aggregate features. The combination usage of features has shown to

yield the best results.

In this research, all singleton features check for a delimiter, a letter, or a digit. For

aggregate features, delimiters, lower-case vowels, upper-case vowels, lower-case

letters, upper-case letters, alphabets, digits, alphanumeric and numeric-alpha are

verified during evaluation. Table 1 tabulates the list of features.

Table 1: The Default Feature Set

Singleton Feature

A Digit {0}, …, {9}

A Letter {a}, …, {z}, {A}, …, {Z}

A Delimiter {@}, …, {\}

A Lower Vowel {a}, {e}, {i}, {o}, {u}

A Upper Vowel {A}, {E}, {I}, {O}, {U}

A Lower Letter {a}, …, {z}

A Upper Letter {A}, …, {Z}

Hyphen {-}

Aggregate Feature

Digits {0, …, 9}

Letters {a, … z}, {A, …, Z}, {a, …, z, A, …, Z}

Lower Letters {a, … z}

Upper Letters {A, …, Z}

Alphanumeric {a, …, z, A, …, Z, 0, …, 9}

Numeric Alpha {0, …, 9, a, …, z, A, …, Z}

3.3 DETECTING GENERIC PREFERENCE

17

After the creation of attribute signatures from suspicious product attributes, the ability

of the agents to classify these attribute signatures is vital. Only with efficient and

accurate classification can there be a generalization of attributes that provides the

system with some clues to the customer’s preference. For example, 500Mhz,

750MHZ and 1.2Ghz can be clustered under a generic attribute grouping such as

“Speed”.

We use a classification approach based on an adaptation of the k-Nearest Neighbor

(k-NN) classification technique in attributes clustering, which is simple yet competent.

There are many cases [5] [21] where the k-NN approach has been deployed in

webpage and text classification with good results. In particular, the k-NN

classification algorithm used by Han et al. [5] is able to learn the importance of

attributes and utilize them in the similarity measurement.

For the k-NN approach in this paper, there does not exist an explicit training

procedure usually found in the traditional k-NN approach. Instead, the main training

and learning process is found in the genetic-algorithmic optimization of the agents.

Each new attribute to be classified will have its attribute signature verified with every

existing generic attribute grouping. A proximity level has to be achieved in order for

that new attribute to be clustered into the generic attribute category.

Figure 6 illustrates the k-NN classification approach. There are three existing groups:

Neighborhood A, B and C, with a, b and c being the number of instances respectively.

18

The average value of each neighborhood is calculated using (2), where there are k

instances of attributes in that neighborhood h and δ is the attribute signature.

Average value of neighborhood
k

i
h

k

i
∑
== 1

)(
:)(

δ
µ (2)

Figure 6: Nearest Neighbor Approach

For example, a new instance of value (attribute signature value) 2.215 is introduced.

Upon verification with all three groupings, the new instance best matches the average

value in neighborhood B, because it has the lowest proximity value of 0.015 with

neighborhood B. Therefore the new instance is classified under neighborhood B.

Proximity value is calculated as the absolute Euclidean distance between the new

instance and the average value of a neighborhood, as shown in (3).

Proximity value of instance s:)()(:)(hss µδρ −= (3)

With distinctive attribute signature, the agent is able to classify similar attributes into

a generic attribute class. However, a small problem is that the agent does not know

the name of that generic classification. For example, the agent might know that

“500Mhz”, “850MHZ” and “1.5Ghz” belong to the same generic classification, but it

19

does not know the name for this classification without prior knowledge. Therefore, to

aid the agent in the discovery of the name for any generic classes, a preloaded product

attribute ontology is referred to. Generic classes are defined as generalized groupings

of similar attributes in this paper.

Product attribute ontology contains information about the relationships and

schematics between attributes and product, as shown in Figure 2. In this research, it is

assumed that there is some prior knowledge about some default product attribute

ontology in the database. It will serve as a basic initial reference for the agents. The

ontology is available to the population of agents when the user chooses the category

of a product.

3.4 GA-BASED EVOLUTION AND FEATURE WEIGHT OPTIMIZATION

A good feature weight set enables the generation of distinctive attribute signatures,

which aids in good classification of attributes. In this paper, a Genetic Algorithm (GA)

based optimization approach is used to find the suitable feature weight set. Feature

weight ranges from 0.0 to 1.0 in a double precision format. The chromosomes are

manipulated in binary string format with eight bits. Thus, 0.0 will be coded as

00000000 and 1.0 coded as 11111111. All the coded binary strings are concatenated

to form a long binary string representing the feature weights set.

The GA design in this paper uses a modest form of elitist selection, in which a

percentage of elite agents from the previous generation replaces the same percentage

of poorly performing agents in the current generation. Elitism rapidly increases the

20

performance of GA, by preventing loss of the best-found solutions. The GA begins

with the selection process, where a tournament-like selection operator is used. Three

randomly selected chromosomes participate in a round of tournament, where the

fittest of the three will be selected as one of the parents for mating. During each round

of selection, the three random chromosomes selected during the 1st round of

tournament cannot enter the 2nd round of selection for the 2nd parent. This blockade of

selection is to ensure diversity in mating. Figure 7 illustrates the selection process.

Figure 7: Tournament Selection Process

After the tournament selection, the two parents will undergo a crossover operation. A

randomized single-point crossover is performed on these two parents to produce two

offspring. After the crossover operation, the chromosomes undergo a mutation.

Mutation rate is the probability that a bit in the chromosome will undergo a mutation.

Since the chromosome is in the binary string format, a mutated bit will have its value

flipped, such that “0” becomes “1” and “1” becomes “0”.

21

The fitness of chromosome is evaluated through the agent fitness. The agent fitness

function comprises two components. The first component is the ranking fitness and

the second is the evolution fitness.

Agent Fitness = Ranking Fitness + Evolution Fitness (4)

From proposition 2, the agent is awarded some ranking fitness point when the user

and the agent both rank product X higher than product Y. Furthermore, if the agent

ranks the 1st ranking product in the same order as the user, the agent can receive up to

a maximum of 9 ranking fitness points. Extending similar treatment to the 2nd ranking

product, the agent can receive up to 8 ranking fitness points for that 2nd product

ranking. If we extend similar treatment to all 10 products on the list, and considering

that the agent has ranked all products in the same order as the user, then the maximum

total ranking fitness points that the agent can receive is as follows.

Total Ranking Fitness = 9 + 8 + … + 2 +1 = 45 (5)

On the other hand, agents are awarded points during evolution for good classification

of attributes and have points deducted for poor classification. The points that an agent

receives during evolution will be known as evolution fitness. The system will reward

one evolution fitness point to an agent for the detection of a generic classification of

attributes. For example, if the agent derives 3 generic classes after the classification

process, it will be rewarded 3 fitness points. However, for the agents to learn correctly,

we also give demerit points if any agent has made some wrong or inaccurate

classification. The user is allowed to view all detected classifications by the elite

agents, and is able to remove or edit the classification. Any removal or amendment of

the classification proposed by the agent will result in demerit points. A removal will

22

penalize more than an amendment, because a removal signifies a complete rejection

by the user.

For all GENERATIONS {
 For half the POPULATION size {
 parentA <= Select from Population_A based on evaluation
 parentB <= Select from Population_A based on evaluation

child1, child2 <= Generate 2 children based on

 crossover(ParentA, Parent B)

 child1 <= Mutate(child1, MUTATION RATE)
 child2 <= Mutate(child2, MUTATION RATE)

 Population_B <= Add child1 to Population_B;
 Population_B <= Add child2 to Population_B;
 }

 Evaluation_B <= evaluate (Population_B)
 Elites replace poorly performed agents in Population_B
 Population_A <= new Generation(Population_B)
 Evaluation_A <= evaluate (Population_A)
 Elites <= find elite agents from Evaluation_A
}

Figure 8: Genetic Algorithm

After all the manipulations of the agents’ feature weight set, the current agent

population must first be evaluated before the evolution process. The evaluation will

determine the initial elite agents. After retrieving the elite agents, the population of

agents will loop through a number of generations. During each generation, 2 parents

are selected based on the tournament selection approach mentioned earlier. Figure 8

shows the GA pseudo code. The new generation, also know as Population B is

evaluated, and those poor performers in terms of agent fitness are to be replaced by

elite parents from the previous generation, also known as Population A. The number

of elite parents is determined by the elitist rate defined. Elitism allows a certain

number of parents which are very fit to be carried over to the new generation

untouched. The new population with elitist replacement then undergoes the next

23

round of evolution process consisting of selection, recombination, mutation and

evaluation.

The intelligent agents in the system have learning capabilities through incremental re-

evaluation. The incremental detection approach undertaken in understanding user’s

preference will enable the system to analyze complex user preference situation. The

system recognizes that not all generic attributes can be detected accurately within one

feedback cycle. Therefore, the system seeks to consider any previous results. The

satisfied recommendations and generic attributes affecting a user’s preference in one

feedback will become useful information in the next set of feedback. Reusing vital

information previously found while new set of generic attributes and products are

being detected allows the software agents to learn incrementally. However, the user

has the choice to reuse previously detected information or to start afresh in each

feedback cycle.

4. EVALUATION OF DESIGN

For the results shown in the following subsections, some default simulation

parameters are used. During the GA evolution, a population of 30 agents is evolved.

During the selection process of GA, tournament selection with a tournament size of 3

is implemented. The elitist rate is set at 0.1, or 10%, which has been found to be

suitable and appropriate. In addition, the mutation rate is set at 0.25, which gives

better results than other mutation rates during the simulation.

24

Figure 9: Convergence of Feature Weight for Four Mutation Rates

4.1 Convergence of Feature Set Weights

To evaluate if our prototype can obtain a suitable set of feature weight, we run a

simulation with some worst-case illogical ranking initially. Worst-case illogical

ranking occurs when the user ranks the cheapest product top. HardDisk is chosen as

the product category for the simulation. Four different mutation rates were used which

is illustrated in Figure 9. As observed, a mutation rate at 0.1 or 0.5 did not result in the

5.0
6.0
7.0
8.0
9.0

0 20 40 60 80 100 120 140 160 180 200

Generations

W
ei

gh
ts Mutation Rate

0.85

4.0
5.0
6.0
7.0
8.0
9.0

0 20 40 60 80 100 120 140 160 180 200

Generations

W
ei

gh
ts

Mutation Rate
0.5

4.0
5.0
6.0
7.0
8.0
9.0

0 20 40 60 80 100 120 140 160 180 200

Generations

W
ei

gh
ts

Mutation Rate
0.25

4.0
5.0
6.0
7.0
8.0
9.0

0 20 40 60 80 100 120 140 160 180 200

Generations

W
ei

gh
ts

Mutation Rate
0.1

25

convergence of feature weights. On the other hand, a mutation rate at 0.25 or 0.85

resulted in the convergence of feature weights. However, it should be noted that the

convergence for mutation rate at 0.25 is preferred because there is a greater variation

of weights before convergence. The variation allows the agents to learn different sets

of weights before convergence, which is more desirable than in the case of mutation

rate of 0.85. When the feature set weights have converged and stabilized, the agents

would have found a set of suitable feature weight for each attribute that may result in

good classification of generic attributes.

4.2 Misclassification Rate

Using a mutation rate at 0.25 and single crossover, a simulation was conducted with

12 evolutions. Each evolution process consists of 30 agents with a set of user

feedback regarding the classification of attributes. The misclassification rate is

defined as the percentage of classes or attributes that are classified wrongly.

0.0%

10.0%

20.0%

30.0%

40.0%

0 1 2 3 4 5 6 7 8 9 10 11 12

Evolutions

%
 R

at
e

% Rejected Classes % Rejected Attributes
% Edited Classes % Deleted Attributes

Figure 10: Misclassification Rate

Figure 10 illustrates the misclassification rates of rejected classes, edited classes,

rejected attributes and deleted attributes. These feedbacks are from the user who will

inspect the classification produced by the agents after every evolution. From Figure

26

10, the misclassification rates are noted to be decreasing with more evolutions. After

9 evolutions, the average misclassification rates drop below 10%. From the 11th to the

12th evolution, there is no improvement in classification. This shows that the GA-

agents are learning well through the process of evolutions, but the learning rate

reaches a threshold after 10 evolutions when the misclassification drops just below

10%. The misclassification rate of 10% cannot be further improved in this case, which

could be due to the fact that there are a limited number of features (e.g. 14) at the

disposal of the agents for the generation of attribute signature. The limitation in the

variety of attribute features reduces the accuracy of classification of similar attributes.

A more distinctive and unique feature set will be needed for more accurate

classification. By and large, a 10% misclassification rate would be very satisfactory

considering the complexity of classifying different types of attributes from numerical,

textual to alphanumeric.

4.3 Detecting Generic Attributes

This section will discuss the ability of the prototype to detect generic attributes and its

ability to adapt to user’s abrupt changes.

Figure 11: Initial Product Ranking

In this test case, the user wishes to search for a hard disk and considers the brand of

hard disk as an important attribute influencing his preference. In particular, the user

27

has a preference for WESTERN DIGITAL and SEAGATE hard disks as indicated in

Figure 11, where WESTERN DIGITAL and SEAGATE hard disks are ranked top.

The ranked products are submitted for evaluation by the population of agents. In total

30 autonomous agents evaluate the input by the user. When the agents have finished

all the evolution processes, the elite agents will provide some generic classes detected,

as shown in Figure 12. As observed, the system has successfully detected some

generic classes such as the “Brand” and “Size”. The user can reject any undesirable

classification by de-selecting the generic classes. The names of the generic classes

that match the names found in the ontology as shown in Figure 13 are available for

the user to confirm.

Figure 12: Detected Generic Classes

Figure 13: HardDisk Attribute Ontology

When the user feedbacks to the agents about the generic classes and re-evaluate the

attributes again, the agents are able to come up with some recommended products as

shown in Figure 14.

28

Figure 14: Recommended Products by Elite Agents

The recommendation indeed provides products that the user preferred, such as

WESTERN DIGITAL and SEAGATE hard disks. The recommendation relies mainly

on the relationship between successful detection of generic attributes and positive

ranking of products by the user. Therefore, only products that are highly ranked yet

containing the generic attributes would be recommended. Because the generic

attributes play an important role in influencing the user to rank the products highly,

we deduce that the acknowledged generic attributes that can be found in the highly

ranked products are usually the generic preference of the user.

Now that the user has saved the 1st round of information, he can go for a 2nd round

and makes use of the previously saved data. Figure 15 shows the previously saved

data and the user shall set the initial condition with these data. Making use of

previously saved information allows the agents to incrementally learn about the user

preference. During the 2nd round of feedback, the user ranks with WESTERN

DIGITAL as the preferred choice of hard disk. The ranking is illustrated in Figure 16.

In this round, a 2nd agent also detected a generic class of brands, comprising

WESTERN DIGITAL and SEAGATE. With the rejection and amendment done, the

29

agents will re-evaluate the product attributes and provide a second round of generic

attributes list as shown in Figure 17. We can observe that the detection of generic

attributes has improved with more accurate classification. The classes BRAND and

SIZE are confirmed by the user.

Figure 15: Making Use of Previously Saved Data

Figure 16: 2nd Round Product Ranking

 Figure 18 shows the recommended products in the 2nd round. Again three WESTERN

DIGITAL hard disks are recommended, but this time with only one SEAGATE hard

disk. The system has probably understood that the user might not have much

preference for SEAGATE as compared to WESTERN DIGITAL. In addition, though

during the ranking of products, the user chooses four WESTERN DIGITAL hard

disks, but only three are recommended. The fourth WESTERN DIGITAL hard disk is

ranked 4th even though it is priced higher than the other three WESTERN DIGITAL

hard disks. Therefore, the system detects that this WESTERN DIGITAL hard disk is

30

negatively ranked. In our case, negatively ranked products are not recommended to

the user.

Figure 17: Re-evaluated Detected Generic Attributes

Figure 18: Recommended Products in the 2nd Round

We further test the adaptability of the prototype to abrupt user preference changes. In

this 3rd round of feedback, the user changes his preference for quality product which

is in correlation to the pricing. Therefore the user ranks the products in accordance to

their prices as illustrated in Figure 19. After a few rounds of evaluations, the agents

finally recommend a list of hard disks as shown in Figure 20.

Figure 19: 3rd Round Product Ranking

31

Figure 20: Recommended Products in the 3rd Round

From the recommendation shown in Figure 20, we observed that system is able to

adapt to the change of preference from BRAND to PRICE. Maxtor DiamondMax is

the top recommended product with a price of $295.00. Though most of the

recommended products are highly priced quality hard disks, it can be noted that the

$195.00 IBM hard disk is placed below the WESTERN DIGITAL hard disk. The

WESTERN DIGITAL hard disks though priced lower than the IBM hard disk is

recommended above it. This shows that the system has adapted to the change in user

preference, nevertheless it also takes into account the generic attributes detected in the

previous rounds.

To show that the system has indeed adapted to the changes in user preference, we

tracked the feature weights during each generation of evolutions. Figure 21 shows the

continuous tracking of feature weights from the 1st to 450th generation of evolutions

by the agents. The 450 generations comprise the 3 rounds of simulations in

chronological order. It is observed that the weights stabilized within the 1st round of

simulations which end at generation 200th. In the 2nd round, from generation 200th to

generation 325th, there is some fluctuation in the weights initially. However the

weights are stabilized when it reaches the 300th generation.

32

During the 1st and 2nd rounds, the user has a preference for BRAND, especially

WESTERN DIGITAL and SEAGATE. The 3rd round begins at generation 325th and

we can see that there is a sudden fluctuation in the feature weights. This is likely due

to the fact that in the 3rd round, the user has a sudden preference for PRICE, and

disregarding the preference for BRAND. The system takes around two hundred

generations before the feature weights stabilized. The system has tried and

successfully adapted to the sudden change in user preference, with a new set of

feature weights.

3.0
4.0
5.0
6.0
7.0
8.0
9.0

0 50 100 150 200 250 300 350 400 450
Generations

W
ei

gh
ts

Figure 21: Adapting to User Preference Changes

4.4 Summary and Discussions

On the whole, the recommendation provided based on the detection of generic

attributes is found to be satisfactory. Most recommendations provide products tailored

to the user’s preference. However, with more rounds of re-evaluations and feedbacks,

the agents are able to improve the recommendation quality. The complexity of feature

weights with numerous features within each attribute is closely related to the system

performance. However, GA is able to overcome this complexity and produce

satisfactory overall population fitness over generations. The misclassification rates of

attributes also decreased over generations with final misclassification rates at around

33

10%, which produced satisfactory results in our case. It is also observed that the

system is able to adapt to abrupt user-preference changes.

Many other optimization approaches exist that may work as well for our research

problem. In particular, Simulated Annealing (SA) and Tabu Search (TS) techniques

are both comparable to the GA approach. As observed in [22] [23], SA is comparable

to GA, as SA can be thought of as GA with a population size of one. Empirically, SA

is able to achieve satisfactory results in shorter time, but will not improve much when

given more time to progress. In contrast, though GA may be a slower starter, it has the

ability to improve the solution consistently over time, or even attain more and better

solutions. In fact, we are able to complete the optimization process in this research

using GA in a relatively short time span. TS has been proven successful in target-

specific problems with the best solution in mind. However, the problem of optimizing

multiple-attribute fitness in our research cannot be classified as a target-specific

problem because our agents cannot predetermine exactly the user’s preference, since a

“good” attribute may only have temporal wellness. Besides, TS concentrates on

navigating towards maxima or minima fitness and avoids repetition on a tested path.

Such characteristic of TS will pose a problem when the user’s preference changes.

In this paper, GA is chosen for the optimization problem partly because GA is highly

adaptive. A highly adaptive algorithm is needed for two reasons. Firstly, the user’s

taste might not be consistent, so the agents have to be flexible in their findings to

adapt to any changes. Secondly, the algorithm might make a mistake during

optimization, and the nature of GA allows the agents to revisit some of the solutions

34

which they have discarded previously. The solutions presented in this research require

an optimization process to be self-correcting in nature, and GA’s adaptive capability

will serve this research well. According to Chu and Fang [24], GA can produce

numerous, diverse near-optimal solutions simultaneously because GA holds the whole

generation of chromosomes which may not originate from the same parents. In fact,

GA also exhibits the capability of parallelism by searching solutions from many

points in the search space, rather than from just one starting point [25].

5. CONCLUSION

This paper proposed a new approach to detect user’s generic preference with feature

selection. The product attributes were evaluated according to their distinctive features.

Attribute signature and weight set were proposed to detect the generic attributes. GA

was used to aid in the optimization of feature weights. A prototype was implemented

and had shown that the detection of generic attributes was feasible with correct

attribute classification and some help from the product attribute ontology. It was also

observed that the system was able to adapt to abrupt customer-preference changes.

For future research, different types of features are potential candidates for successful

classification such as schema meta-data, n-grams, entire words, and domain specific

features. Furthermore, the current system relies mainly on the user and product

attribute ontology to provide accurate generic attribute name for any classification.

However, the ontology implemented is simple and without much intelligence. Further

development in including better ontology with product-attribute relationships and

associations will help the system detect generic attributes better.

35

REFERENCES
[1] H.S. Nwana, D. Ndumu, An introduction to agent technology, BT Technology

Journal 14 (4) (1996).
[2] H.H. Sung, Helping online customers decide through web personalization, IEEE

Intelligent Systems, 17 (6) (2002) 34-43.
[3] B. Sheth, P. Maes, Evolving agents for personalized information filtering, in:

Proceedings of the Ninth Conference on Artificial Intelligence for Applications, 1993,
pp. 345-352.

[4] G. Linden, B. Smith, J. York, Amazon.com recommendations: item-to-item
collaborative filtering, IEEE Internet Computing, 7 (1) 2003) 76-80.

[5] E.H. Han, G. Karypis, V. Kumar, Text categorization using weight adjusted k-nearest
neighbor classification, in: Proceedings of the 5th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2001, pp. 53-65.

[6] S. Luke, L. Spector, D. Rager, J. Hendler, Ontology-based web agent, in: Proceedings
of the 1st International ACM Conference on Autonomous Agents, 1997, pp. 59-66,

[7] S.U. Guan, F. Zhu, Ontology acquisition and exchange of evolutionary product-
brokering agents, Journal of Research and Practice in Information Technology 36 (1)
(2004) 35-46.

[8] Z. Michalewicz, Genetic Algorithms + Data Structures =Evolution Programs, 3rd ed.
New York: Springer-Verlag, 1996.

[9] S.U. Guan, F. Zhu, Incremental learning of collaborative classifier agents with new
class acquisition - an incremental genetic algorithm approach, International Journal of
Intelligent Systems 18 (11) (2003) 1173-1193.

[10] S.U. Guan, C.S. Ngoo, F. Zhu, Handybroker - an intelligent product-brokering agent
for m-commerce applications with user preference tracking, Electronic Commerce
and Research Applications, 1 (3-4) (2002) 314-330.

[11] H. Shibata, T. Hoshiai, M. Kubota, M. Teramoto, Agent technology recommending
personalized information and its evaluation, in: Proceedings of the 2nd International
Workshop on Autonomous Decentralized System, 2002, pp. 176-183.

[12] S.U. Guan, F. Zhu, Agent fabrication and its implementation for agent-based
electronic commerce, International Journal of Information Technology and Decision
Making 1 (3) (2002) 473-489.

[13] S.U. Guan, F. Zhu, M.T. Maung, A factory-based approach to support e-commerce
agent fabrication, Electronic Commerce and Research Applications 3 (1) (2004) 39-
53.

[14] S.J. Jung, J.H. Hong, T.S. Kim, A formal model for user preference, in: Proceedings
of the IEEE International Conference on Data Mining, 2002, pp. 235-242.

[15] Y.T. Guo, J.P. Müller, C. Weinhardt, Elicitation of user preferences for multi-
attribute negotiation, in: Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne Australia, 2003, pp. 1004-
1005.

[16] S.U. Guan, P.C. Tan, T.K. Chan, Intelligent product brokering for e-commerce: an
incremental approach to unaccounted attribute detection, Electronic Commerce
Research and Applications 3 (3) (2004) 232-252.

[17] C. Shahabi, Y.S. Chen, An adaptive recommendation system without explicit
acquisition of use relevance feedback, Source Distributed and Parallel Databases, 14
(2) (2003) 173-192.

36

[18] M. Kwak, D.S. Cho, Collaborative filtering with automatic rating for
recommendation, in: Proceedings of the International Symposium on Industrial
Electronics, 2001, pp. 625-628.

[19] V. Tamma, M. Wooldridge, I. Blacoe, I. Dickinson, An ontology based approach to
automated negotiation, in: J. Padget et al. (Eds.): Agent-Mediated Electronic
Commerce IV: Designing Mechanisms and Systems, LNAI 2531, Springer-
Verlag, Berlin Heidelberg, 2002, pp. 219–237.

[20] F. Neumann, C.T. Ho, X. Tian, L. Haas, N. Meggido, Attribute classification using
feature analysis, in: Proceedings of the International Conference on Data Engineering
ICDE, 2002.

[21] O.W. Kwon, J.H. Lee, Web page classification based on k-nearest neighbor approach,
in: Proceedings of the Fifth International Workshop on Information Retrieval with
Asian languages, Hong Kong, 2000, pp. 9-15.

[22] L. Davis, (Eds.) Genetic Algorithms and Simulated Annealing. Research Notes in
Artificial Intelligence, Pitman Publishing, 1987.

[23] L. Ingber, B. Rosen, Genetic algorithms and very fast simulated reannealing: a
comparison, Mathematical Computer Modeling 16 (11) (1992) 87-100.

[24] S.C. Chu, H.L. Fang, Genetic algorithms vs. tabu search in timetable scheduling, in:
Proceedings of the Third International Conference on Knowledge-Based Intelligent
Information Engineering Systems, 1999, pp. 492-495.

[25] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE Transactions
on Evolutionary Computation 6 (5) (2002) 443-462.

