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A Market Based Transmission Planning for HVDC
Grid - Case Study of the North Sea

Shahab Shariat Torbaghan, Member, IEEE, Madeleine Gibescu, Member, IEEE, Barry G. Rawn, Member, IEEE,

Mart van der Meijden, Member, IEEE,

Abstract—There is significant interest in building HVDC
transmission to carry out transnational power exchange and
deliver cheaper electricity from renewable energy sources which
are located far from the load centers. This paper presents an
approach to solve a long-term transmission planning problem
for meshed VSC-HVDC grids that connect regional markets.
This is in general a nonlinear non-convex large-scale optimization
problem with high computational burden, partly due to the
many combinations of wind and load that become possible.
We developed a two-step iterative algorithm that first selects
a subset of operating hours using a clustering technique, and
then seeks to maximize the social welfare of all regions and
minimize the investment capital of transmission infrastructure
subject to technical and economic constraints. The outcome
of the optimization is an optimal grid design with a topology
and transmission capacities that results in congestion revenue
paying off investment by the end the project’s economic lifetime.
Approximations are made to allow an analytical solution to the
problem and demonstrate that an HVDC pricing mechanism can
be consistent with an AC counterpart existing onshore. The model
is used to investigate development of the offshore grid in the
North Sea. Simulation results are interpreted in economic terms
and show the effectiveness of our proposed two-step approach.

Index Terms—Transmission expansion planning, HVDC trans-
mission, optimization, wind energy.

I. INTRODUCTION

STUDIES of European renewable electricity development
have estimated required transmission capacities, in some

cases indicating a rate of construction twice the historical rate
[1]. By 2050 required transnational capacities in anticipated
scenarios increase in some cases by tens of gigawatts, and both
follow-up and regional studies [2], [3] indicate the need for
reinforcements and new connections. Particular attention has
been directed at the North Sea, where the development of off-
shore wind is already driving the construction of new connec-
tions from shore to sea. Visions are developing of an offshore
grid facilitating the exploitation of the offshore wind resource
and allowing increased trade between North Sea countries
[4], [5]. Significant expansion of transmission capacity in
reality can encounter technical, regulatory, social, and or legal
obstacles. The economic fundamentals of consumption and
generation also constrain realistic development. Appropriate
choices regarding technology and line routing are necessary
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for proper cost optimization in actual implementation [2],
[6]. Proper accounting of physical flows using impedances,
rather than transport models, are key to understanding the
connections between actual lines, their cost, and benefits to
different regions. Inclusion of the correlation and location of
actual injections can be obtained by using several periods, or
even all hours of the year, in order to achieve a grid design
that is adequate yet not overbuilt [4].

The pace of required development brings challenges of
finance; the magnitude of capital expenditures associated with
anticipated grid development have been evaluated as a strain
on financial viability of the usual financiers of transmission
projects, the transmission system operators of Europe [7].
Several national regulators are seeking possibilities to en-
courage private investment in grid projects [8]. The issue of
investment is a crucial factor because that it could slow or
threaten the feasibility of transmission development, and yet
it is not extensively studied. Issues of repaying investment
costs and equitable distribution of costs and benefits have been
examined, but only using a simple transport model to balance
generator and investor benefits [9], or only considering a fixed
grid [10]. Acknowledging that the grid grows in stepwise in-
creases can be a valuable element of realism to inform industry
and transmission companies [11]. For expansion planning, a
formulation where the line capacities are free to change is
key to discovering alternate possibilities that can reward both
society and investors.

This paper presents a transmission expansion planning
framework whose formulation includes investment recovery
through congestion revenue as an implicit strict equality con-
straint, and allows the consideration of multiple time periods.
The framework is intended to be driven by market historical
data in the form of hourly regional cost curves. Automatic
transformation and clustering is performed to select a subset
of hourly samples. The number of samples in the subset, as
well as their initial values, are adjusted heuristically in order
to match its flow-induced revenues to that of the full sample
set. The framework thus balances the need for reasonable
computation times against the benefits of a model that allows
multiple time periods, maintains an analytical structure, and
respects voltage constraints and Kirchhoff’s laws. The frame-
work determines the topology, transmission capacities and the
power flow of the offshore grid and the resulting distribution of
social welfare (defined as benefit of consumption minus cost
of generation of each region). By combining both grid and
investment recovery constraints and working from market data,
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the framework may deliver useful results that demonstrate how
the optimal grid design is not necessarily the least expensive
one. As an example, information about the North Sea is
processed in a case study at the end of the paper.

II. METHODOLOGY

Recent advances in HVDC converter technology and physi-
cal limitations of HVAC have triggered interest among system
planners to explore widespread application of HVDC for large-
scale long distance transmission, including in offshore environ-
ments. Many in-depth investigations of transmission planning
for AC networks can be found in the literature [12]–[15].
However, HVDC network planning and its integration with
the HVAC counterpart requires further development. In our
previous work we introduced a Socially Optimal Static Trans-
mission Expansion Planning (STEP) framework for designing
a meshed VSC-HVDC offshore grid [16]. We now present an
improved weighted formulation of the framework that takes
into account the probability of occurrence of various system
states. Since forming the optimization problem based on the
actual HVDC power flow is too complex, an approximation
of the branch flows is used. Finally, an iterative process to
make the optimization framework applicable to large-scale real
world problems is introduced.

A. Assumptions

In this work, electricity markets are assumed to be perfectly
competitive. We use a zonal market model, where the aggre-
gated supply and demand bidding curves of each onshore zone
are linear functions of the power generation/consumption of
that zone. Only maximum and minimum import and export
power constraints per zone are enforced. No inter-temporal
constraints on generation are considered. Intra-zonal transmis-
sion constraints are neglected. Infrastructure costs are assumed
linearly dependent on length and rated capacity of the cables.
Finally in the investment model we do not take the impact of
discount, inflation and variable interest rates into account.

B. Static Transmission Planning Problem (STEP)

Let us consider a power system with nb nodes. Each node
represents a price zone with a single clearing price double-
sided auction market. During its economic lifetime, the zones
interconnected by an offshore grid will experience different
market conditions. Each operating state t has the nominal
duration of one hour. The contribution of zone i to power
flows over all interconnectors is entirely captured via the net
power injection of that zone into the rest of the system, defined
as P t

i = P t
Gi

− P t
Di

and is positive if zone i has generation
surplus (i.e. is an exporter), and negative otherwise.

We define incremental social cost (SCt
i ) of each zone i

during hour t as cost of generation C(P t
Gi

) minus benefit of
consumption B(P t

Di
) [17], [18]. The contribution of each zone

in the total social welfare is the opposite of the social cost
(SW t

i = −SCt
i ) and is a function of the power injection of

that node:

SCt
i = at

i · P t2

i + bt
i · P t

i + ct
i (1)

Fig. 1. An incremental typical social cost curve. P min
i and P max

i present
minimum and maximum power that region i can inject during operating hour
t

where at
i, bt

i and ct
i are the cost curve coefficients and

determined from integrating the area beneath the linearly
approximated supply and demand curves for each operating
state t. For our research, we are interested in variations of
social welfare. As the solution of optimal power flow does
not depend on fixed social cost we exclude ct

i from cost curve
formulation. Hence we define the incremental social welfare
of zone i at hour t as Ct

i = at
i ·P t2

i +bt
i ·P t

i presented in Fig. 1.
The aggregated incremental social welfare of all regions reads
as:

Φ = −
∑

t∈O

nb
∑

i=1

Ct
i · ωt · n(O) (2)

where nb is the number of price zones in the power system.
O is the set of operating states analyzed. n(O) is the number
of members of O. A vector ωt indicates the influence of the
each operating state in O, with ωt ∈ (0, 1]. The vector ωt

is a normalized weighting factor :
∑

t∈O
ωt = 1, and allows

the option of using a set of representative states as will be
demonstrated in Section II-D. If all hours in the economic
lifetime were considered, every value of ωt would equal 1

n(O) .

For zone i = 1, 2, ..., nb, if F t
ij denotes the power flow through

one monopole of the interconnector i− j at time t leaving the
sending end, the net power injection of zone i into the system
equals:

P t
i =

nb
∑

j=1

F t
ij = P t

Gi
− P t

Di
. (3)

We assume that the interconnector between node i and j is
composed of a number Nij of identical parallel cables, each
with conductance gij . Hence the power flow over one pole of
the interconnector i − j during operating hour t reads as:

F t
ij = Nij · gij · [(vt

i)
2 − vt

i · vt
j ] (4)
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where vt
i and vt

j are per pole line-to-ground voltage of dc
converters at each end of the bipolar interconnector. Due to
operating limits, the dc voltage of the converters is bound
between 0.9 and 1.1 p.u. As power flow of each dc line is
precisely controlled through voltage control of the converters,
nodal voltages are considered independent decision variables.
In order to include the impact of capacity rating on cable
conductance and so on the grid design, the number of parallel
lines the interconnector i−j is made of Nij is introduced as the
second class of decision variable. Next, Lij represents length
of the interconnector (in km ) and kinv,ij denotes the unit
cost ( in Euro/MW ·km ) of transmission for interconnection
i − j where i, j = 1, ..., nb. Capacity of each interconnector is
Nij ·Kbase where Kbase (MW ) is the monopole rated capacity
for each of the parallel cables. The total investment cost of
building the offshore grid reads as:

Ψ =
nb

∑

i=1

nb
∑

j=1

kinv,ij · Lij · Nij · 2 · Kbase

2
. (5)

The optimization problem is to choose the network topology
(Nij) and voltages (vt

i ) such that the resulting zonal injections
P t

i will ensure the electricity supply and demand balance for
all zones while minimizing social cost (2) and investments
(5) subject to physical and technical constraints (6)-(12) of
transmission and generation. It takes on the form:

max
(vt

i ,Nij)
Ω = Φ − Ψ (6)

subject to

vmin
i ≤ vt

i ≤ vmax
i , ∀i, t ∈ O (7)

P min
i ≤ P t

i ≤ P max
i , ∀i, t ∈ O (8)

F t
ij = gij · [(vt

i)
2 − vt

i · vt
j ] ≤ Kbase, ∀i, j, t ∈ O (9)

Nij ≥ 0, ∀i, j (10)
nb

∑

i=1

P t
i − P t

L = 0, t ∈ O (11)

P t
i =

nb
∑

j=1

F t
ij = P t

Gi
− P t

Di
, ∀i, t ∈ O (12)

where (7) and (8) are nodal voltage and power injection
constraints, respectively and P min

i ≤ 0 ≤ P max
i . Equation (9)

limits the power flow of each interconnector to its maximum
capacity. Equation (10) enforces the number of lines to be a
positive real number. P t

L represents total transmission power
losses and (11) enforces the real power balance. This is a non-
linear non-convex optimization problem. The Lagrangian (L)
correspondingly reads as:

L(vt
i , Nij) = Ω(vt

i , Nij)

+
∑

t∈O

nb
∑

i=1

nb
∑

j=1

µt
ij · (Kbase − gij · [(vt

i)
2 − vt

i · vt
j)] · ωt · n(O)

+
∑

t∈O

nb
∑

i=1

αt
i · (P max

i − P t
i ) · ωt · n(O)

+
∑

t∈O

nb
∑

i=1

βt
i · (P t

i − P min
i ) · ωt · n(O)

+
∑

t∈O

nb
∑

i=1

γt
i · (vmax

i − vt
i) · ωt · n(O)

+
∑

t∈O

nb
∑

i=1

ϵt
i · (vt

i − vmin
i ) · ωt · n(O)

+
nb

∑

i=1

nb
∑

j=1

ξij · Nij

+
∑

t∈O

λt ·

[

nb
∑

i=1

P t
i − P t

L

]

· ωt · n(O) (13)

The Karush-Kuhn-Tucker (K.K.T.) optimality conditions state
that any set of vt

i , Nij that satisfies the constraints (7) - (12) is
a local solution to the problem (6) if and only if there exists a
set of non-negative Lagrangian multipliers µt

ij , αt
i, βt

i , γt
i , ϵt

i,
λt, ξij such that multipliers associated with inactive constraints
are zero and also derivatives of the Lagrangian with respect to
the two decision variables are zero, i.e., ∂L

∂vt
i

= 0 and ∂L
∂Nij

= 0
∀i, j, t.

C. Analytical solution

1) Full HVDC power flow: The analytical solution to the
optimization problem gives the pricing mechanism. This is
a relation between hourly zonal prices, power flows of all
interconnectors and associated congestion revenues. An ideal
pricing mechanism is one in which the power injections P t

i

are only a function of nodal price difference. Solving the
optimization problem using actual HVDC power flows as
in (9) and limiting the analysis to the case where voltage
constraints are not binding gives the pricing mechanism as
follows:

nb
∑

j=1

gij · Nij ·
[

vt
j · (ρt

j + αt
j − βt

j) − (2 · vt
i − vt

j) · (ρt
i + αt

i − βt
i )

]

=
nb

∑

j=1

gij ·
[

µt
ij · (2 · vt

i − vt
j) − µt

ji · vt
j)

]

(14)

where µt
ij and µt

ji are Lagrangian multipliers associated with
interconnector i − j and are strictly positive at line capacity.
αt

i and βt
i are Lagrangian multipliers associated with maxi-

mum/minimum power injections of each node. Schweppe et
al. [19], defined short term marginal cost of power injection of

node i at hour t: ρt
i = ∂(Ct

i (P t
i ))

∂(P t
i ) as the nodal price. Equation

(14) expresses the amount of power to be exchanged between
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zones as a function of both price and voltage magnitudes.
This is not economically desired or interpretable and is not
consistent with the existing pricing mechanisms [17]. In the
following subsection we address this issue by approximating
the HVDC power flow.

2) Linearly approximated power flow: The power flow over
an HVDC line at either end can be rewritten as follows:

F t
ij = Nij · gij ·

[

(vt
i)

2 − vt
i · vt

j

]

=
(

Nij · gij

2

)

·
[

(vt
i)

2 − (vt
j)2

]

+

(

Nij · gij

2

)

·
(

vt
i − vt

j

)2

(15)

The first term on the right side of the equation expresses
the power flow at the midpoint of the interconnector and the
second term represents half the line losses. Losses typically
amount to less than 5% of total power flows of a HVDC cable.
Therefore neglecting the second term of (15) introduces no
significant error to the power flow calculation and yields the
HVDC power flow as:

F t
ij ≈

(

Nij · gij

2

)

·
(

wt
i − wt

j

)

(16)

where wt
i = (vt

i)
2
. Transmission losses are dependent on

voltage magnitude and length of the cable: losses increase as
length of the cable increases or operating voltage decreases.
Highest transmission losses (and so approximation errors) are
expected at the receiving end of the cable, when the system
is operated at lowest operating voltage allowed (i.e., 0.9p.u.
at receiving end). For a 2000MW 500kV bipolar conven-
tional HVDC link with copper conductor of cross section
of 1800mm2 and length of 1000km (the longest connection
distance expected across the North Sea), approximation error
at the receiving end amounts to no more than about to 2.25%
of the rated power. Considering 1.1% losses for each of the two
VSC converters, total approximation error amounts to less than
3.4% at each end. Note that all financial calculations carried
out hereafter are based on approximated power flow (16).

3) Pricing mechanism for approximated power flow: We
should eliminate equation (11) from the problem formulation
as transmission losses are neglected from (16). Using the
approximated power flow, one obtains the pricing mechanism
for a meshed HVDC grid from the optimality criteria as
follows:

∂L

∂wt
i

= 0 =⇒
nb

∑

i=1

nb
∑

j=1

(

µt
ij − µt

ji

)

· Kbase · ωt · n(O) =

nb
∑

i=1

nb
∑

j=1

F t
ij

[(

ρt
j − ρt

i

)

+
(

αt
j − αt

i

)

−
(

βt
j − βt

i

)]

· ωt · n(O)

(17)

The pricing mechanism inferred expresses the relation between
amount of power to be exchanged, electricity prices in different

zones and congestion revenues. By expanding (
∂(L(wt

i ,Nij)
∂(Nij) =

0), multiplying both sides by Nij , then taking the sum over
all nodes at all times, one encounters the condition that at the
optimal grid design,

∑

t∈O

Rt
np,i =

∑

t∈O

Rt
µ =

∑

t∈O

Rt
ρ = Ψ (18)

where Ψ is the total investment cost (5), and the other terms
comprise total nodal payment Rt

np,i at time t:

Rt
np,i =

nb
∑

i=1

P t
i · (ρt

i + αt
i − βt

i ) · ωt · n(O) (19)

total congestion revenue Rt
µ at time t

Rt
µ =

nb
∑

i=1

nb
∑

j=1

(µt
ij − µt

ji) · Kbase · ωt · n(O) (20)

and total transmission revenue t
ρ at that time

Rt
ρ =

nb
∑

i=1

nb
∑

j=1

F t
ij

[(

ρt
j − ρt

i

)

+
(

αt
j − αt

i

)

−
(

βt
j − βt

i

)]

· ωt · n(O)

(21)

The associated grid design and operation pattern comprised
by the solution wt

i and Nij is one that establishes a balance
such that the total transmission revenue generated from nodal
price differences is precisely the amount paid by transmission
costumers at all nodes, and also equals congestion revenues.
Therefore, the grid design Nij pays off its initial investment
capital Ψ through the operation given by wt

i .

D. Clustering

At least a year of market behavior (i.e., T = 8760) is required
to exhibit relevant operating states. The dimensionality of the
search space and the computational intensity of the optimiza-
tion algorithm make the problem intractable. It is desirable
to identify and work with only a subset from the total set of
operating states, i.e.,

A = {∀t ∈ [1, T ]} = K ∩ K
C

where K is a set of operating states whose number of members
n(K) is much smaller than the total n(A). Clustering proce-
dures aim to select the least number of representative samples
that maintain the majority of information in the original data
set intact.

In general, before clustering is carried out one has to
determine if the data has any clustering tendency. For high
dimension data sets (e.g., 10 features and above) it is ex-
tremely difficult to identify patterns of clusters due to curse of
dimensionality. One solution to this problem is to apply a good
feature transformation technique. Feature transformations are
techniques that projects a feature (attribute) vector to a lower
dimension space. Principal component analysis (PCA) is a
popular statistical technique for unsupervised feature transfor-
mation and dimension reduction.
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1) Principal Component Analysis(PCA): Consider a data
set arranged in a matrix of size n × p where n is the number
of observations and p is the number of relevant features. PCA
transforms the original input set into another set of the same
size with linearly independent variables called principal com-
ponents. This conversion is carried out in such way that each
successive component carries less information compared to the
preceding ones. Thus the first component (column of the PCA
matrix) contains the largest amount of information from the
original data. One can easily calculate the information share
of each component. By selecting the first few components
(depending on the application), one accomplishes to reduce the
dimension of the data set and make clusters more distinctive.
In [20] the connection between K-means clustering and PCA
is explored. It is proven that the PCA dimension reduction
automatically finds the most discriminative clustered subspace.

The full set A contains 12 cost curve coefficients of the 6
onshore price zones and wind speed data of the 7 offshore
zones. The PCA analysis shows that, out of 19 features
related to the different zones, the first two components in the
transformed basis contains 79% of the information in the data
set.

2) K-medoids Clustering: K-means is a widely used clus-
tering technique in various applications [21]. What makes
K-means convenient for power system applications is easy
implementation on large-scale data set, and high efficiency
as it works directly with the data. A comprehensive review of
K-means and other clustering techniques is provided in [22].
For the sake of more transparent results, this work employs
K-medoids instead of K-means. In K-medoids clusters are
represented by the actual median present in the data set instead
of the mean value. Therefore it is more suitable for our
application, as it does not produce new samples in the reduced
subspace. It is more commonly used when dealing with data
sets with outliers [23]. Results of K-medoids clustering depend
on the chosen number of clusters and proceeds from an initial
selection of a subset K∗ of size n(K∗).

E. Optimal Power Flow to Validate Clustering

The purpose of this work is to devise a method that finds an
optimal design for a HVDC-based meshed grid. In a market-
driven transmission expansion approach, price differences re-
sulting in congestion revenues between every two zones are
a good indicator of the ability of the clustering method to
capture the diversity in the original data set. We propose an
iterative verification procedure that validates the results of the
clustering and optimization techniques as shown in Fig. 2.

The optimization result of the STEP module (i.e., grid topol-
ogy and capacities) is not expected to be severely different
from the case where the original data set would be used as
input, provided that the reduced-clustered data set is a good
representative of the original data. To investigate the similarity,
we solve the problem of round-the-year OPF for a fixed grid
determined from the STEP optimization module. Here trans-
mission topology and capacities are fixed; the OPF problem
is solved by controlling the squared reference voltage value of
dc converters (wt

i). The analytical solution to the full problem

Fig. 2. Schematic diagram of proposed data driven market based transmission
planning framework which shows the coordination of an iterative optimization
framework and a clustering technique based on congestion revenues Rt

µ

necessitates the equality of nodal payments (19), transmission
revenues (21) and congestion revenue (20). However, since the
OPF is solved for a fixed grid design (number of parallel lines
Nij is pre-determined by the STEP block), the investment
costs will not essentially equal transmission revenues. The
equality of investment cost with transmission revenue holds
true only if data clustering has been conducted appropriately.
Only in that case, the stochastic characteristics of the operating
states given to the STEP module would be similar to those
given to the OPF module and so congestion revenue calculated
by STEP (Rt

µ, t ∈ K which equals investment cost of building
the grid Ψ) would resemble the congestion revenue calculated
by OPF (Rt

µ, t ∈ A). Although OPF is a non-convex problem,
it is considerably easier than STEP to solve. The reason is
the OPF is solved for each operating state independently,
unlike the STEP where the problem is solved for all operating
states in one go. Hence the size of the problem (number of
independent variables to find) is significantly smaller than for
STEP problem: nb versus nb · n(O) + nb · nb−1

2 .

When the congestion revenue from the OPF is not suffi-
ciently close to the total investment Ψ, it becomes necessary
to exchange or add one or more operating states from the
discarded set KC, likely resulting in a set K∗ whose size
n(K∗) is larger than n(K), that of the original set. This new
selection K∗ is provided to the PCA/Clustering algorithm.

For the purpose of this study, the probability density func-
tion of the congestion revenues is selected as the most relevant
characteristic of the system. The distribution of congestion
revenues for the full set A of operating hours or observations
may be compared against the distribution for the reduced set
K . There are several statistical divergence measures which
establish a distance of one probability distribution to the other
[24]. From distances used in the Jeffrey’s divergence, we
define the distance between the two PDFs for every congestion
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value m as:

d(P (m)||Q(m)) = ln(
P (m)

Q(m)
) · (P (m) − Q(m)) ∀m (22)

where P(m) and Q(m) would here be the probability distri-
butions of congestion revenues Rt

µ over the sets A and K∗,
respectively and the distributions are defined over a discrete set
of m congestion values. The empirical distributions are first
fitted using a kernel density estimator. Low probability values
cause problem at comparison if they are not excluded by a
threshold. Thus, the distance measured between congestion
revenue probability for an index m is set to zero, if the Rt

µ

distribution for K∗ is smaller than the lowest value of the Rt
µ

distribution for A .
The distance function (23) provides a metric to measure

goodness-of-fit of the two empirical probability distribution
functions (ePDF) associated with congestion revenues deter-
mined from STEP and OPF. Operating states with larger differ-
ence are the missing operating states and need to be added to
the input set of the STEP module (the feedback loop in Fig. 2).
The iterative procedure continues until

∑

t∈A
Rt

µ ≈ Ψ.

III. NUMERICAL RESULTS

A. Input Data

In this study, six North Sea coastal states are considered
including UK, Norway, Denmark, Germany, The Netherlands
and Belgium. Except UK, each state is modeled with one
onshore and one offshore price zone. UK is broken in two
onshore and two offshore price zones for two reasons. The
strong West-East wind pattern exists in the North Sea [5]
and large offshore wind capacities UK is planning to install
in the next coming years and the huge impact it will have
on the rest of the system. Information about all existing and
planned wind farms were gathered from an online database
provided by the marine consultancy firm 4COffshore [25]. For
2025 this includes a total installed capacity of about 47.8 GW
distinguished as 7 offshore zones in Fig. 3. The equivalent
multi-turbine power curve of each offshore park is determined
as in [26] taking into account the statistical properties of the
given offshore location. A generic wind turbine is considered
for all offshore locations with cut-in and cut out speeds of
3 m/s and 25 m/s, respectively. All simulations are carried
out hourly, based on wind speed data from the year 1994,
simulated at 120 m above sea level with spatial resolution of
9 km × 9 km (Sander + Partner, Switzerland). Cost curve
coefficients are determined hourly from empirical aggregated
supply/demand curves of onshore electricity markets (i.e.,
APX-NL, APX-UK [27], NordPoolSpot [28], EPEXSpot [29]
and Belpex [30]) from April 1, 2011 to March 30, 2012 (8760
data points) as outlined under II-B. Note social cost curve of
offshore wind farms are determined from short term marginal
cost of power generation and so it is zero.

B. Assumptions and justifications

Currently trades via power exchanges constitute a small por-
tion of the total power transactions of the onshore zones. The

TABLE I
ANNUALIZED AVERAGE COST CURVE COEFFICIENT a OF EACH ONSHORE

ZONE BEFORE AND AFTER ADJUSTMENT

Country DE NL NO DK BE UKN UKS
Before 0.0022 0.0071 0.0020 0.0020 0.0425 0.0066 0.0066
New 0.0015 0.0014 0.0013 0.0013 0.0077 0.0005 0.0005

Fig. 3. Modified optimal grid design. Numbers in MW present capacity of
interconnectors and offshore wind farms. Numbered arrows show frequency
of power flows over each line in the dominant direction

cost curve coefficients derived from today’s market data, do
not account for all capacity onshore regions have for offshore
wind feed-in. Thus determining the optimal grid design using
today’s data results in under investment. In addition, the short
term marginal price of every onshore region becomes negative

at P min
i = −bt

i

2·at
i

(in Fig. 1) and causes social welfare loss.

To avoid these negative impacts, the at
i cost curve coefficient

of every onshore zones is adjusted in such a way that P min
i

always remains larger than or equal to the available offshore
wind capacity of that zone for all the hours. The adjustment is
carried out based on two aspects: the share from total power
trades that are settled through the power exchange and the
capability for wind feed-in of the onshore zone in relation
to the installed capacity of its respective offshore wind farm.
The a coefficient is depreciated more for small markets (e.g,
Belgium) or markets with a small share of power exchange in
total power trades (e.g, UK). Table I presents the annualized
average a coefficient for every onshore zone before and after
adjustment. One may note that a is a measure of market price
stability for every zone (refer to (1)). Hence by justifying
a coefficient as outlined above, we implicitly assume that
onshore markets will be highly liquid with stable prices which
is less sensitivity to power trades at the time of operation
of the offshore grid. As outlined earlier, the PCA analysis
illustrates that the first two components of the reduced space
contain 79% of information in the input set. Therefore it is
sufficient to cluster the reduced space data set using the first
two components of the PCA basis. Solving the OPF for 8760
hours is time consuming process. We reduce the size of the
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initial data set by separating it into 876 clusters. The clustering
is carried out in such a way that impact of every operating hour
of the initial data set (with 8760 hours) is preserved. From now
on we refer to the 876 subspace as the “original subspace”.

C. Grid Design

Table II presents the results of running the OPF for various
grid designs determined by STEP for different number of clus-
ters. The optimal design is expected to ensure investment re-
covery of all interconnectors. Therefore, the ratio of congestion
revenue to investment cost of building the grid is considered
as a measure of performance that would ideally equal one. It
is obvious that investment recovery is outstandingly improved
from 5.26 to 0.98 with increase in the number of clusters going
through columns in Table II. Another measure of interest is
the ability of the reduced set K to capture the full range of the
congestion revenues occurring in the fall set of the operation
states A. The full set can be viewed as being split in two:
A = B ∩ BC, where

B = {t ∈ A : Rt
µ < max

t∈K
Rt

µ} (23)

is the subset of operating states whose congestion revenue
falls in the range of that from the reduced set. It can be
seen that the iterate procedure of Fig 2 has driven the size
n(B) down to n(A). In practice, it is not plausible to build
interconnectors with small capacity. In this formulation Ni,j is
a continuous. To make the results more realistic, insignificant
interconnectors with capacity less than 1 MW are eliminated
from the grid. Discarding insignificant capacities may increase
the deviation further from the mathematically ideal optimal
design. To investigate the impact of above mentioned grid
modifications on remuneration of interconnectors, the results
of solving the problem of OPF for the modified optimal grid
design is compared with the original result in Table III. It
can be seen the money flow of the modified grid is slightly
different from the original design. Fig. 3 shows the grid design
obtained for K = 16 where congestion revenues represents
98% of the investment cost thus a reasonable approximation
of a local optimum.

D. Discussion

The North Sea states do not benefit equally from the
proposed grid. Table IV presents the benefit of each region as
annualized Social Welfare (SW) increase in each state. It be-
comes clear that SW significantly increases in all regions (UK
in particular) except for Norway where SW is negative. The
loss of benefit takes place as Norway acts as a net electricity
exporter. The grid design is observed to be sensitive to today’s
market prices of onshore zones, which are influenced by the
trades over the existing interconnection capacities as expressed
by the b coefficient. The last two rows of Table IV present
the average market price (MCP) of onshore regions before
and after constructing the offshore grid. Note that building the
grid induces market price decrease in the net importers and
the opposite in net exporters (i.e., Norway). These results are

TABLE II
IMPROVEMENTS IN OPTIMIZATION RESULTS FOR FIVE DIFFERENT

NUMBER OF CLUSTERS- ECONOMIC LIFETIME OF 25 YEARS, ZERO

INTEREST RATE. ALL NUMBERS ARE CALCULATED ON ANNUAL BASIS

Number of Clusters 8 11 13 15 16

Social welfare Φ(BAC) 7.86 8.35 8.18 8.45 8.42

Congestion revenues
∑

t∈O
Rt

µ (BAC) 2.64 0.72 0.92 0.51 0.59

Transmission revenues
∑

t∈O
Rt

ρ(BAC) 2.64 0.72 0.92 0.51 0.59

Transmission investment Ψ(BAC) 0.50 0.60 0.51 0.64 0.61
∑

t∈O
Rt

µ/Ψ 5.26 1.20 1.81 0.81 0.98

n(B)/n(A) 0.71 0.87 0.89 0.99 0.99

TABLE III
ANNUAL INCREMENTAL SOCIAL WELFARE, CONGESTION REVENUE

(EQUALS TRANSMISSION REVENUE) AND TRANSMISSION INVESTMENT

COST FOR THE ORIGINAL AND MODIFIED OPTIMAL GRID DESIGN AFTER

EXCLUDING INSIGNIFICANT INTERCONNECTORS

Design Social Welfare
Φ(BAC)

Congestion Revenue
∑

t∈O
Rt

µ (BAC)

Investment
Cost Ψ (BAC)

Original 8.42 0.59 0.61
Modified 8.42 0.60 0.61

TABLE IV
ANNUAL INCREMENTAL SOCIAL WELFARE OF EACH ONSHORE ZONE AND

THEIR MARGINAL MARKET PRICE (MCP) BEFORE AND AFTER BUILDING

THE GRID

Country DE NL NO DK BE UKN UKS
Social Welfare
Φ(BAC)

61.5 49.1 -31.3 13.7 8 389 353

MCP
(AC/MW h)

before 49.4 51.1 39.0 46 48.5 56.4 56.4
after 46.4 48.2 41.5 45.6 47.3 47.1 48.2

consistent with amendments made to cost curve coefficients
a (representing price stability). This amendment implicitly
reinforces the impact of stand-alone market price (i.e., the b
coefficient) on the grid design.

For each interconnector, there is an arrow indicating the
dominant direction of power flow in Fig. 3. It can be seen
that power flows mainly from offshore zones to onshore ones.
Norway has the lowest marginal cost of generation before
and after the grid is built due to large hydro reservoirs.
Therefore for this country power mainly flows from shore to
offshore farm P1 to P7 to UK-N. UK-N has the second highest
average market price after UK-S. The high market price of
the two UK zones makes them net importers of electrical
energy (almost 90% of the time power flows from the rest
of the system into the UK onshore zones). This phenomenon
is happening due to rather stable market price behavior (small
a coefficient) assigned to UK onshore zones. Hence regardless
of amount of power input, market prices in both UK onshore
zones remain rather high. This encourages construction of
interconnectors with large capacity. Large a and b of Germany
affect the country in two ways. First, it results in construction
of interconnector to its own offshore zone with transmission
capacity almost half of their installed offshore wind, rest being
exported to the two UK zones. Second, it makes their social
welfare increase an order of magnitude less than of the two
UK zones.
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IV. CONCLUSION

This paper proposed a multiple time period static transmis-
sion planning framework applicable to HVDC meshed grids.
The analytical solution to the problem gives the pricing mech-
anism which expresses the relationship between the electricity
price of different zones and the congestion charges associated
with the interconnectors between them. It is shown, with
no significant loss of accuracy, that linearly approximating
the HVDC power flow simplifies the mechanism and makes
it consistent with its existing AC onshore grid counterpart.
The proposed approach computes the expansion plan under
which the investment capital will be fully payed off through
congestion revenues by the end of the chosen lifetime of the
infrastructure. The salient feature of our approach is the use of
an iterative algorithm that combines an unsupervised clustering
technique with an optimization tool to cope with the large
computational burden of this large-scale problem.

Various economic indicators are used to appraise the quality
of the transmission expansion plan computed by the algorithm.
The output of the model is observed to be highly sensitive to
the quadratic and linear coefficients of the social cost curves
representing respectively price stability and stand-alone zonal
price. Based on the current assumptions and methodology,
it can be observed that countries benefit unequally from the
offshore grid. Being a winner or a loser depends on various
economic, technical and geographical characteristics of the
region such as market liquidity, conventional generation fleet
profile and wind availability. Norway is a net exporter and
the only region who loses benefit. UK benefits the most from
the offshore grid, followed by Germany and the Netherlands.
The offshore zone of Germany will have the largest number
of interconnections and may become a major offshore energy
hub in the North Sea grid.

The results of this work can support transmission system
planners and private investors as they determine the most
economically efficient design they should invest in. The pro-
posed market mechanism provides an economic insight over
the operation of a multi-terminal HVDC offshore grid. The
future offshore grid will consist of AC and point-to-point
DC connections in addition to the multi-terminal HVDC grid
considered here. As future work, it is essential to enable the
model to choose the capacity of these alternatives. In addition,
the impact of intermediate construction delays on development
of the grid and money flows ought to be investigated.
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