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Event-based Recursive Distributed Filtering over
Wireless Sensor Networks

Qinyuan Liu, Zidong Wang, Xiao He and D. H. Zhou

Abstract—In this paper, the distributed filtering problem is investigated
for a class of discrete time-varying systems with an eventdsed commu-
nication mechanism. Each intelligent sensor node transnstthe data to its
neighbors only when the local innovation violates a predetenined Send-
on-Delta (SoD) data transmission condition. The aim of the mposed
problem is to construct a distributed filter for each sensor rode subject
to sporadic communications over wireless networks. In terra of an event
indicator variable, the triggering information is utilize d so as to reduce
the conservatism in the filter analysis. An upper bound for tte filtering
error covariance is obtained in form of Riccati-like difference equations
by utilizing the inductive method. Subsequently, such an uper bound
is minimized by appropriately designing the filter parametes iteratively,
where a novel matrix simplification technique is developedd handle the
challenges resulting from the sparseness of the sensor netik topology
and filter structure preserving issues. The effectivenessfdhe proposed
strategy is illustrated by a numerical simulation.

Index Terms—Distributed filtering, wireless sensor networks, event-
based mechanism, Send-on-Delta concept.

. INTRODUCTION

A wireless sensor network is composed of a large number
sensor nodes geographically distributed in certain ar@aserally,
the sensors involved in the networks are intelligent nod#s limnited
computation capability and constrained power supply, &ieg tom-
municate with each other via wireless communication chisniethe
past decades, wireless sensor networks have attractecrasing
attention from researchers due primarily to their attxactipplication
insights in a variety of real-world situations includingvennmen-
tal monitoring, interactive virtual worlds, warehouse eéntory and
integrated patient monitoring, see [18] for a survey.

An important practical problem with the wireless sensomoeks
is how to find distributed estimators or filters to extract théor-
mation about the state vectors of the target plants fromroagens
contaminated with external disturbances. It is generafigvkn that
the traditional Kalman filter algorithm [1], [2], [6], [21][22] is

stochastic sensor network systems based on the mean square e
analysis method. Furthermore, in [17], the distributedriah filter
algorithm has been developed using dynamic consensuscpisto
with applications to the target tracking problems.

It is worth pointing out that, most available results on wlistted
filtering problems have implicitly adopted the periodic commi-
cation strategy whose communication interval is desigaegtiori
to guarantee desirable performance under the worst conglitiFor
some engineering systems where the communication bartdwsdt
not a concern, the periodic strategy could be an acceptaigdefar
its simplicity in system analysis and design. Such a comoatiun
strategy, however, would probably lead to many unnecessang-
missions and therefore cause a waste of bandwidth resoufoes
example, in the case of wireless sensor networks commimricat
constraints, frequent exchanges of signals would inelyitglve rise
to serious network congestions, which might further indoeavork-
related adverse phenomena such as packet losses and caatioumni
delays.

In recent years, there have been a growing number of results
reported on event-based schedules whose aim is to decrease t
unnecessary executions of the systems [14]. In an earliek {26],
the event-based sampling strategy has been compared witintb-
driven one and it has been concluded that the former gaverbett
performance for some simple systems. Later, much resedfi@tise
bhs been devoted to the applications of the event-basegstréo
various engineering systems such as networked contragragsf7],
[23], [24] and multi-agent systems [4], [9], [25]. Unfortately, when
it comes to the state estimation problems, the availablalteen
the literature have been scattered, most of which have éocos
the practical implementation issues and there is a lack efjaate
investigation on systematic analysis on the filtering penfance. To
be specific, a Send-on-Delta (SoD) regulation has been peapo
in [15] for triggering mechanism whose effectiveness asfaiime-
driven sampling has been fully discussed. In [13], a modikathan
filter has been investigated with intermittent measuremepttates
under the framework of event-based sampling. Another esigm
problem with a SoD sampling strategy has been addresseds]n [1
without considering the communication delays and packsgds. In
[20], the hybrid update strategy has been considered toceethe

a recursive least mean square (LMS) one dealing with a singistimation error based on the assumption that the differertween
node and is optimal for linear systems with exact system isodethe present and the latest measurement values is limiteulnwét
On the other hand, to make use of the spatial information ef tihounded subset of the measurement space when no evengeréxg

sensor nodes, distributed filtering problems have recegdined
much research attention. Different from the traditionabg node, in
the distributed filtering schemes, the local filters estartae system
state based on the information not only from itself but alsanf
its neighboring sensors according to the topology of netawolp
to now, many important results have been reported in theatitee
concerning the distributed filters and several effectivategies have
been proposed, see e.g. [3], [5], [8], [11], [12], [17], [1@mong

Besides, the event-baséfl,, filtering problems have been addressed
in [10] for continuous-time systems with transmission gisla
Summarizing the above discussion, although the eventbase
timation/filtering problem has stirred some initial resgmaattention,
the correspondinglistributedfiltering problem ovemwireless sensor
networkshas not yet been adequately investigated due probably to
the difficulties in accommodating the topological inforiat of the
sensor networks. Note that the sparseness of the sensoorketw

others, theH. filter performance has gained particular researciopology and the structure of the distributed filters addstatial

attention [3], [5], [11], [19] due to its capability of ensng certain
worst-case performance with respect to external distwdsarin [12],
the robust distributed state estimation problem has beéresased for
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challenges to the filter analysis and design, not to mentlon t
difficulties brought from the event-based mechanism, aafpgevhen
the filtering error variances are required to be locally mized. As
such, we are motivated to deal with the distributed filteqingblem
over wireless sensor networks according to the event-bsisategy
by employing a SoD concept. The employed SoD principle essur
that the executions are triggered if certain signal exceedsne-
independent threshold defined as an important change ofite v
and therefore the communication load and energy consumjtio
practice can be alleviated by avoiding unnecessary tregssoms.
With the proposed strategy, the sensor broadcasts itsmiafiomn to
the neighboring nodes only when the function of its localowvation
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exceeds a fixed time-independent threshold. Obviouslypmposed for ¢ = 1,2,--- ,n, wherez;(k) € R"* is the estimation of the
strategy would reduce the number of transmissions over tredess plant state in theith sensor nodeG;; ;. is the filter parameter to
communication channel, thereby saving the resource. be designed. Besides; (k) = yi(k) — C;,x&:(k) is the innovation
The main contributions can be highlighted as follows: 1) a-di sequence exchanged via the network.
tributed filter is proposed for discrete time-varying systein the So far, to the best of the authors’ knowledge, almost alldistzed
framework of a novel event-based communication protocpla?2 results for distributed estimation problems basicallyuass that
new event indicator variable is introduced to reflect theggering the sensor nodes should broadcast their local informatioevery
information in the filter analysis with hope to reduce poksib periodic sampling instant. Such a scheme, however, wilhgaiody lead
conservatism in the filter analysis; 3) an upper bound of theriing to a great deal of unnecessary data flow passing through thenke
error variance is obtained by a recursive algorithm; and 4t thereby inevitably aggravating the burden of communicatietwork
obtained upper bound is minimized at each iteration withpgro and increasing the power consumption. In order to signifigan
filter parameters computed via a simplified matrix approach. improve the network utilization efficiency, in the follovgn we
Notations. Throughout the paper, the notation used is fairlpropose to abandon the traditional periodic paradigm.ehtst we
standard R™ and R™*™ denote then-dimensional Euclidean spaceconsider a novel event-based mechanism to suitably reyréssy
and the set of alln x m matrices, respectively. The superscripsensors communicate with each other in a highly efficient Wine
“T” denotes the transpose and the notati®&n> Y (respectively, main advantage of the modified event-based mechanism li@s in
X >Y), where X and Y are symmetric matrices, means fiat Y  capability of broadcasting the important messages onlyerathan
is positive semidefinite (respectively, positive definitelirthermore, all messages.
diag, { A;} represents the block-diagonal matditag{A,,--- , A,}.
The notationcol,, {z;} denotes the column vectdec?,--- , 27 }7.
I,, represents the identity matrix with rows andn columns.E{x}
stands for the expectation of the stochastic variable

B. Event-based distributed filter structure

For the purpose of characterizing the SoD triggering meishait
is necessary to define event generator functifs .) : R"* x R —
R (i=1,---,n) as follows:

filei(k),d:) (4)

Here,ei(k) = ri(k) —ri(k) wherer! (k) is the broadcast innovation
at latest event timer;(k) is the innovation sequence as defined
@ before, andd; is a positive scalar. The executions are triggered as
where z(k) € R is the system state and(k) € R™ is the long as the conditionfi(ei(k),d;) > 0 is satisfied. Therefore, the
sequence of process noisesy, By, are known system matrices of sequence of event triggering instamtsl so < s <--- <57 < ---
appropriate dimensions. is determined iteratively by
In this paper, a sensor network consistingrofsensor nodes is i i
investigated to measure the output of the target plant. \Wetdethe sipr = min{k € NIk > s, filei(k), 0:) > 0} ®)
topology of the network by a fixed directed gragh= (V,&,H) Bearing in mind the event-based communication strategycave
of ordern with the set of node® ={1,2,--- ,n}, the set of edges solve the distributed filtering problem via the followingps. Firstly,
& C V x V, and the weighted adjacency matri =[a;;]. The the sensors synchronically measure the system state augdmla
weighted adjacency matrix of the graph is a matrix with ngatise time sequencgkh} (k = 0,1,--- ,00) where h is the sampling
elementsa;; satisfying the property.;; > 0 <= (4,5) € &, which interval of the sensor nodes. Secondly, the event generanstructed
means that theéth node can receive the information from thith in each sensor system only utilizes its local messages tokche
node. In this case, we can say that thie nodes is the neighbor of whether the triggering rule is fulfilled. Thirdly, if the ggering condi-
the jth node. Moreover, all the neighbors of nodelus the node tion is satisfied, the sensor node transmits the estimationmation,
itself are denoted by the set a§ := {j € V|(i,j) € £}. namely, r;(k), to its adjacent nodes via wireless networks. Here,
For the:th sensor node, the model is described by: all the sensor nodes keep monitoring the wireless netwodk as
soon as receiving broadcasts or triggering pre-defined tevéine
yi(k) = Cia(k) + Dirv(k) @ corresponding sensor nodes update the input of local filters
wherey; (k) € R™ stands for the measurement output received by Remark 1:From the event generator function (4)-(5), it is indi-
sensori, and v(t) € R™ is the sequence of measurement noisesated that once the variation of the differencék) is intense enough
Cix, Di1. are known matrices of appropriate dimensions. and overweighs a certain threshold, the node has to infotritsal
Throughout the paper, the following assumptions are made.  heighboring sensor nodes of the newest messages so as takeep
Assumption 1aw(k) and v(k) are mutually uncorrelated zero- satisfactory estimation performance of the wireless senstwork.
mean Gaussian white-noise sequences with respective iaovas Remark 2:Note that the threshold; is a parameter that regulates

Consider a discrete linear time-varying system describedhke
following state-space model:

z(k+1) = Agz(k) + Brw(k)

PROBLEM FORMULATION AND PRELIMINARIES T

Qr > 0and R, > 0.
Assumption 2:The initial statez(0) has the meam, and covari-
ance Py, and is uncorrelated with botly (k) andv(k).

A. Traditional distributed filter structure

Up to now, a large number of results have been developed W{We

respect to the distributed filtering problems over the senstworks.
The traditional distributed filter structures have the gahérm as
follows:

Bi(k+1) = Apdi(k) + Y ai;Gijur;(k) ()

JEN;

the triggering frequency. The smaller threshold means tlgben
frequency of event triggering. Wheh = 0 (: = 1,2,---,n), the
event-based approach reduces to a time-driven one, wheglires
the sensor nodes to broadcast their information at everyplaagn
instant.

For simplicity, let us consider the time peridde [s}, s}, ).
sequel, the event-based filter structures are adoptéall@ss:

:ﬁz(k + 1) = Ak!ﬁz(k) + Z aile-j’kr;(k:), (6)
JEN;

fori=1,2,...n, k€ [s],si,,), whereGj; is the filter parameter
to be designed.
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It is worth mentioning that the transmission interval in ghent-
based schemes is usually larger than that in the periodisrirEssion
schemes. Obviously, compared with existing filtering sobgnthe
event-based method has its inherently attractive featfresducing
the burden of wireless network as well as the energy consampt
sensor systems, thereby helping relieve the network ctingeand
increase the lifespan of the batteries in sensor nodes.

satisfy

My < Wit (11)

Proof: It follows from (10) thatM, < Wy. Assuming, induc-
tively, that M, < Wy, we have

Remark 3:Due to the distributed nature of the filter algorithm,
each sensor node could only access the local estimation fend t

messages of its neighbors at event triggering instantscéjefor
sensor node, the current filtering messages(k) (j € N;) remain
unavailable but, instead, we could take into account thestatpdated
values from its adjacent nodes, i#€(k) (j € N;).

The dynamics of the estimation error

Zi(k+1) =zi(k+1) — &i(k + 1),

can be obtained from (1), (2) and (6) as follows

Bi(k+1) = Agdii(k) — Y ai;Gij kCj ki (k) + Brw(k)
o ™)
- Z aijGij’kej(k‘) - Z aijGijyij’kv(k).
JEN; JEN;

Myy1 < 2 (My) < 25 (Wy) = Wiga. (12)

The inductive hypothesis implies thaf, ., < Wi, is always true,
which ends the proof. [ ]

Before deriving the upper bound for the filtering error vade,
let us define the event indicator variablegk), which takes binary
values0 and1, as follows:3; (k) = 0 if the event generator conditions
are satisfied at the current instantfor node, while g;(k) = 1 if
no event is triggered. Furthermore, denote

gk = diagn{ﬂi(k’)lnvh Bk = I"l”lv - dia‘g'n{ﬂi(k)lnv}’ (13)

For the whole sensor network, we rewrite (7) in a more compact

form and arrive at the following augmented filtering errosteyn:

F(k+1) = (Ax — Z E;GyHiCy)i Z E;GyHie(k)
i=1 i=1
n ®
— > EiGrH/Dy9(k) + Brw (),
i=1
where

Z(k) = col, {Z:(k)}, e(k) =col,{ei(k)}, w(k)= col,{w(k)},

I(k) = colp{v(k)}, Gr={ Gijk }nxn, Ar =diag,{Ax},

B, = diag, {Br}, Cr =diag,{Cir}, Dr = diag,{Dixr},

H; = diag{ai1l,...,ainl}, FE;=diag{0,...,0,1,0,...,0}.
T’ N——

n—1i

The aim of the addressed distributed filtering problem isesigh

the filter parametersy;; «, in the filter (6) such that the filtering error
covariance is bounded and such a bound is subsequently inétim

iteratively by means of Riccati-like difference equations

I1l. M AIN RESULTS

In this section, we will first obtain an upper bound for thghereA — s

estimation error covariance of the system (8) and then lawkah

which, according to the triggering condtion (4)-(5), sttbble avail-
able at the current instaitfor the purpose of calculating the filtering
error covariance at the instaht+ 1.

Theorem 1:Consider the linear time-varying system (1) with the
distributed filters (6) and event generator condition &)-Let« be a
positive scalar. Fob < k < N—1, assume that there exist two sets of
real-valued matriceS; > 0 andG}, satisfying the following Riccati-
like difference equation with the initial conditioBy = Py > 0:

Sk = Zk(Zr)
=14 a)(Ax — Z E;GrHC)Zk(Ar — Z EiGrHiCr)"
i=1 i=1
A(l+a” ZEszHz ZEGkH + B QxBi

+ (Z EiGrHiDy)(BrRiBr — BkRkBk)(Z E;GyHiDy)"
i—1 i=1

(14)

1 6:. Then, the matrixgy, is the upper bound of the
estimation error covariance matrix., that is,Z, > Pj.

appropriate filter parameter;, to minimize such an upper bound at

each time-stefk.
For presentation convenience, we denote

Py ::E{fc(O)iT(O)}, P —E{ (k)& T(k)},
Q=B {wEw (1)}, Ri:=E{o(k)0" (1)},

Before proceeding further, we need to introduce the folhgwi
lemma that will be utilized in the subsequent analysis.

Lemma 1:For 0 < k < N, suppose thaiX = XT >0,V =
YT >0and Zj(.) : RMmeXnne _y RnneXnne |f

2i(X) < Zi(Y), 9)

then the solutionsiW,; and M, to the following difference
equations

Wit1 = Ze(Wh),

VX <Y,

M1 < Zu(My), Mo =Wy (10)

Proof: The estimation error covariance at time-stept 1 is
computed as follows:

Py =E[#(k + )77 (k +1)]
= (A — zn: EiGyHiCr)E{&(k)z" (k) }(Ax — zn:EinHi
x C)" iEGkH)E{e ZE GLH;)"

i=1

+ (O EiGH/Dy)E{I (k)"
i=1 i=1

+ BiE{w(k)w" (k)YBL + P + PE + L+ L8
+ B+ B+ 26+ 2+ T+ T+ S+ A

k }(Z EiGvH;Dy)"

(15)



where

Py = —(Ax = Y E:GrHiCr)E{E (k

i=1

L = —(Ar — Xn: EinHick)E{f(k)ﬁT(k)}(Xn: E:GyHiDy)",

i=1 =1

)" (B} BGrH)

Ry, = (Ar, — En:EinHiCk)E{f(k)wT(k)}BkTy

i=1

2 = (Xn: EinHi)E{e(k)ﬁT(k:)}(zn: E.GyHDy)7,

i=1 1=1

T = —(i EiGrH)E{e(k)w” (k)}BL,

i=1

S = —(zn: EiGLH;Dy)E{9(k)w” (k)}B} .
- (16)

It follows immediately from
E{#(k)9" (k)} =0, E{E(k)w’ (k)} =0,
E{e(k)w” (k)} =0, E{d(k)w’ (k)} =0,

that % = 0, % = 0, % = 0,.7x = 0. However, different from the
traditional filtering problems, the expectations of som&ssrterms in
2. and 2y, are no longer zero, which requires further investigation

First, recall the definition of the gap;(k) = r!(k) — ri(k). For
the case that the current sampling instant happens to bevéra e
triggering instant of theith node, namelyk = s!, it is obvious
that e;(k) = 0 and thereforeE{e;(k)v” (k)} = 0. Otherwise, as
ei(k) = ri(k) — (Cir&(k) + Dirv(k)), we haveE{e;(k)vT (k)} =
B{[rf(k) — (Cix# (k) + Digv(k))]vT (k)} = —D; xRy, It can now
be concluded that

7

E{e(k)9" (k)} = —DiBx Ry, (18)
where Ry, = [Ri]nxn. Subsequently, we have
D+ 2f = (Z EiGyHiDy)[BrRiBr — B RiBr — Ri]
i=1
n (19)

X (Z EszHz'Dk)T
=1
In the next step, by using the elementary inequaﬂty%M —
of%N)(a%M - a*%N)T > 0 whereM and N are matrices with
compatible dimensions, it follows from (16) that

n

=1 i=1
X GkHZCk) + Oéil(zn: ELGkHL)E{e(k‘)eT(k‘)}(zn: ELGkHZ)T
i=1 i=1
(20)

In addition, under the event-based strategy, the @#p) would be
immediately reset to zero if the triggering condition ardfitfed.
Consequently, the following inequality is always satisfied

el (k)e(k) < A, (21)

whereA = 3" | §;. Applying the properties of matrix operations,
we obtain

e(k)e” (k) < |le(k)|*I = " (k)e(k)I < AL (22)

and hence

E{e(k)e” (k)} < AL (23)
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Now, it follows from (17), (19), (20) and (23) that
Pit1 < Zi(Pr). (24)

Define a positive semidefinite matr&, = Py, and =41 can be

calculated iteratively by the Riccati-like difference atjon:

Obviously, the conditions in Lemma 1 are satisfied. Thessfdor
all 0 <k < N, we have

Py < Egya, (26)
and the proof is now complete. [ ]
Remark 4:1t is noticed that, in (14), the term

(" EiGeH) (X, EsGpH;)" > 0. Therefore, the upper
bound will increase as the threshold increases. From the
engineering viewpoint, a larger threshold would lead to wefe
number of transmissions over the network, which implieg tha
thresholdA does have a major impact on the tradeoffs between the
filtering performance and the sensor data transmission rate

Remark 5:1n the recursive calculation of thgerformance index
namely, the filtering error covariance, the triggering mfation at
the time instant is explicitly exploited in (14) in terms of the binary
variable 5;(k). This would definitely help reduce the conservatism
gnd tighten the upper bound. Comparing to the traditionanev
triggering mechanism where only the stability is the congehe
introduction of such a binary variab& (k) would play an important
role in estimating the filtering performance (i.e., the eqovariance).

Remark 6:In the case of the threshold = 0, it is not difficult to
see that the triggering rules are always fulfilled for eveamysor nodes
and the indicator3;, is a zero matrix with appropriate dimensions.
Consequently, the Riccati-like difference equation (14uid reduce
to the recursion of the estimation error covariance for taditional
distributed filtering problem.

We are now ready to minimize the upper bouBd on each
recursion by appropriately designing the filter parametBws this
purpose, the following lemma is useful.

Lemma 2:For matricesM, X, N, L with compatible dimensions,
the following are true:

itr(
X

at( at(
ax " ax "t

itr(MXNXTL) =M"L"XN" + LMXN.

0X

Furthermore, for any symmetric matrik, the following holds
0

a—Xtr{

For presentation simplicity, we denote

A =40,...,0, A,0,...,0},
N—— N—_——

9
X
MXN)=M"N",

MX")y =M, (XM)=M",

MX"'N)=NM, (27)

(MXN)P(MXN)")} =2M" MXNPN".  (28)

i—1
Gr = {Gijatnxn, G ={Girn, Gizs - Cink}
Mg =1+ a)HiCZ(HiCr)" + A(1 + o ") H; H;,
+ H;Dy(BrRiBr — B R Bi) (Hi D)™,
Nk = (1 + ) AV, (HiCy) "

n—i

(29)

Furthermore, Ietflﬁj) and/\_/i,k be the simplified matrices by remov-
ing the jth (j ¢ ;) column fromG,(f) and\; i, respectively. Also,
let M, be a simplified matrix by removing both thigh (j ¢ N;)
row andjth ( ¢ N;) column fromM; .
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Theorem 2:Consider the linear time-varying system (1) with thevhich completes the proof. [ ]
distributed filters (6) and event generator condition &))-(The Remark 7:1n Theorem 2, a novel matrix simplification technique
solutionZ;, to (14), which is an upper bound of the estimation errais developed to handle the challenges resulting from thessepass
covariance matrixP;, can be minimized at each iteration with theof the sensor network topology and preserving structure hef t
filter parameteiGy, = {Gijk }nxn given by distributed filters. By using the employed SoD principlee taxe-

~ (i -1 . cutions are triggered when certain signal exceeds a timkependent
G;) =NigMyy, forall0<i<n,0<k<N-1, (30) threshold defined as an important change of its value, anéftre
andGi;x = 0 for j ¢ N;. Here,Gg), N;.» and M, ;, are defined the communication load and energy consumption in practare e
right after (29). alleviated by avoiding unnecessary transmissions.
Proof: According to (14), one has Remark 8:In the time-invariant case, all system parameters are
constant matrices and the boundedness proble@,ofan be dealt
tr(Zpp1) = (1 + o tr{AkukAk + ZE G HiCr)E ZE G, With by examining the Schur stability of the matrix + a)'/*(A —
*_, E:GH;C). In this case, by properly designing the filter param-
eter, the estimate error can be guaranteed to be bounded.

x HiCr)" — AxZx ZE GrHiCr)" Z EiGyHiCr)Zx A, } Remark 9:In this paper, the distributed filtering problem is solved

=1 for a class of discrete time-varying systems with an evesed

1 " T T communication mechanism. By using an event indicator lgja

+A(l+a )tr{(z EiG’“Hi)(Z EiGrHi) } +tr{8’“ Bk the triggering information is included in the Riccati-likiifference
equation whose solution serves as an upper bound for therfjte

Z E;GpH; Dk)(ﬂkRkﬂk — 5k72k5k Z E;,GyH;Dy,) } error covariance which is, subsequently, minimized by appately
i=1 designing the filter parameters iteratively. Note that themresult
Resorting to the properties of trace, we have established in Theorem 2 contains all the information abitwet
system parameters, the topology information as well asrifpgering

tr {EiMEk(EjN)T} =0, if i # j, information.

where M and N are matrices with appropriate dimensions. Next,
taking the partial derivation of the trace of the mathy_; with
respect to the parametefs,, and utilizing the equation (27) and To illustrate the validity of the proposed filter design &gy, we

IV. AN ILLUSTRATIVE EXAMPLE

(28), we arrive at consider a second-order system (1) whefk) = (z1(k) z2(k))” €
P n R?, the random noisev(k) is a zero-mean Gaussian sequences with
3G ——tr{Ek1} =201 + {X;E i Ge HiCh2h (HiC) ™ ZE covarianceQy = 1, and
' n A _ [ 098+ 0.05sin(0.12) 0.4
x AkEk(HiCk)T} +20(1+a )] BiGLH H; g 0.15 —0.75
. =1 Bi=1[016 018 ]"
+2> " E:GyHi Dy (B R — BrRufi) (HiDx)" = 0. Suppose the initial value of the staté0) is uniformly distributed
i=1 over the regiorf—6, 6] so thatExz(0) = [0 0].
Subsequently, a&'”’ and A!" represent, respectively, théh row  The sensor network is represented by a directed gréph-
of matricesG, and theith row of A, we have (V,&,A) where the set of nodes = {1, 2, 3,4}, the set of edges
0 & ={(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,3), (4, 1), (4,4},
G\ Mk = Nik. (31) and the adjacency elements associated with the edges ofrdpl g
Recalling the definition, — diag{ai I, aiol, , .., s} and the are a;; = 1. The dynamics of the sensor nodes is modeled as (2)
- . . with
relation a;; = 0 (j ¢ N;), one can remove the corresponding
zero rows and zero columns froMt; ,, and the corresponding zero Ch.x = [0.82, 0.62 + 0.05cos(0.12k)],
columns from/\/i,k to obtain the S|mpI|f|ed~matr|ce$/li,k and/\/z-,k_. Capo = [0.75 + 0.05sin(0.1k), 0.80],
Let Ml,k = {Mab,k}nxn and./\/i,k = {Nb,k}lxn- Ifbe N, it .
follows that ) Cs,, = [0.74 + 0.05sin(0.1k), 0.75 + 0.05cos(0.1k)],
Y Y Cy,, = [0.75, 0.65].
Z Gz‘j,ijb,k = Nb,k~ (32) 4k [ ’ ]
j=1 In the simulation, let the measurement noigé) be a zero-mean

In other cases, the above equation is always satisfied soibesiles Gaussian white noise sequences with covaridiige= 1. Choose the

of it are zero. Becaus€;; x,j ¢ N; are chosen as zero matrices othresholdss; = 0.4 for 7 = 1,2, 3,4 and the scalarx = 0.1. The

appropriate dimensions and the corresponding rows1ef,, are also initial estimations about the plant state a€0) = ©2(0) = #3(0) =

zeros, it can be seen that 24(0) = [0 0]. The trace of mean square error for the estimation of
~() () — ) the state is averaged {90 runs of simulation. The suboptimal upper
G Mk :Ni,k ’ (33 bound and corresponding filter parametéfs can be calculated at

each iteration according to (14) and (30).

Simulation results are shown in Figs. 1-4. In Fig. 1 and Fig. 2
the trajectories for the states and respective estimatesigpicted,
from which we can see that the proposed strategy has a fdgorab
performance in estimating the state of a divergent systeesid@s,

_ compared with time-driven mechanism, the broadcast tines a
G,i” = Ni kM, (34) significantly reduced in Fig. 3, which embodies the supéyioof

whereG“ is a simplified matrix oiG\" by removingGi; i, j ¢ Ni,

" is the new column index of the simplified matrix, and(bk),/\/fi)
are theb'th column of matricesM; ., NV; 1, respectively. It is not
difficult to verify that the matrixM; ;. is positive definite and the
filter parameters can be calculated as follows:
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the event-based one. To this end, Fig. 4 shows the upper b8und
of the error covariance matrik’;,.

To evaluate the influence of event thresholds and noise ieovaas
on the communication rate (total number of communicationghe
network divided by running time), we have the following esipeen-
tal results via 500 trials:

TABLE |
THE INFLUENCE OF THRESHOLDS
o, i=1,..,4 0.1 0.2 0.4 0.8

Average Communication Rate 1.8908 1.3328 0.8160 0.5316

TABLE 1l
THE INFLUENCE OF NOISE COVARIANCES
(Qr, By) (05,05 (1,1) (2,2 (4.4
Average Communication Rate  0.3920 0.8160 1.9164 2.8608

Obviously, both the decrease of thresholds and the incedfassse
covariances would contribute to a higher communicatiogudency.

V. CONCLUSIONS

In this paper, a novel event-based distributed filter has lpe-
posed in wireless sensor networks for the sake of reducimgehsor
data transmission rate and the energy consumption. Bagsing o
SoD concept, each smart sensor node makes decisions inldepign

about when the local messages have to be broadcast. By usin@%

combination of trace properties, inductive method and eiretuced
behaviors, we have computed the upper bound for the filtezingr
covariance recursively by solving a Riccati-like matrixuatjon.
Subsequently, the distributed filter gain has been propgekigned
at every iteration to minimize such an upper bound. Finalig,
a numerical example, we have demonstrated the effectisenés
the event-based communication protocol in reducing thehsunof
transmissions over the network.
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