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Event-Based H∞ Filter Design for A Class of
Nonlinear Time-Varying Systems with Fading

Channels and Multiplicative Noises
Hongli Dong, Zidong Wang, Steven X. Ding and Huijun Gao

Abstract—In this paper, a general event-triggered framework
is developed to deal with the finite-horizon H∞ filtering problem
for discrete time-varying systems with fading channels, ran-
domly occurring nonlinearities and multiplicative noises. An
event indicator variable is constructed and the corresponding
event-triggered scheme is proposed. Such a scheme is based on
the relative error with respect to the measurement signal in
order to determine whether the measurement output should be
transmitted to the filter or not. The fading channels are described
by modified stochastic Rice fading models. Some uncorrelated
random variables are introduced, respectively, to govern the
phenomena of state-multiplicative noises, randomly occurring
nonlinearities as well as fading measurements. The purpose of
the addressed problem is to design a set of time-varying filter
such that the influence from the exogenous disturbances onto
the filtering errors is attenuated at the given level quantified
by a H∞-norm in the mean square sense. By utilizing stochastic
analysis techniques, sufficient conditions are established to ensure
that the dynamic system under consideration satisfies the H∞ fil-
tering performance constraint, and then a recursive linear matrix
inequality (RLMI) approach is employed to design the desired
filter gains. Simulation results demonstrate the effectiveness of
the developed filter design scheme.

Index Terms—Event-triggered mechanism; Finite-horizon fil-
tering; Fading measurements; Multiplicative noise; Nonlinear
time-varying systems.

I. INTRODUCTION

For decades, filtering or state estimation techniques have
been playing an important role in a variety of application areas
such as target tracking, image processing, signal processing
and control engineering, and a great number of important
results have been reported in the literature, see, for example
[1], [9], [13], [16], [17], [25], [30] and the references therein.
Among the existing filtering methods, the H∞ filtering ap-
proach is closely related to many robustness problems such as
stabilization and sensitivity minimization of uncertain systems,
and has therefore gained persistent research attention. For
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example, the H∞ filtering problem has been investigated for a
variety of complex dynamic systems including linear uncertain
systems [3], Markovian jumping systems [20], fuzzy systems
[18], time-delay systems [9], [10], stochastic systems [21]
and nonlinear systems [24], etc. It is worth pointing out that,
although fruitful results have been available for H∞ filter
design, most of them have been concerned with time-invariant
systems only. On the other hand, virtually almost all models
for real-time systems are time-varying over a finite-horizon
and the corresponding filtering process could provide a better
transient performance especially when the noise inputs are
nonstationary [4], [24], [28]. As such, it makes more sense
to consider filter design problems for time-varying systems
over a finite-horizon.

Nonlinear control has been a mainstream of research topics
due primarily to the fact that nonlinearity is a ubiquitous
feature in a large class of practical systems and, if not properly
coped with, the nonlinearity would inevitably degrade the
system performance or even lead to the instability of the
controlled systems. As discussed in [6], [7], [29], in today’s
popular networked systems such as the internet-based three-
tank system for leakage fault diagnosis, the occurrence of
nonlinearities is often of random nature resulting from sudden
environment changes, intermittent transmission congestion,
random failure and repairs of components, etc. Accordingly,
the so-called randomly occurring nonlinearities (RONs) have
started to gain some research interest and several initial results
have been reported on the filtering problems subject to additive
noises, see e.g. [4], [24]. Note that many plants may be
modeled by systems with multiplicative noises and some
characteristics of nonlinear systems can be closely approx-
imated by models with multiplicative noises rather than by
linearized models. In the context of nonlinear finite-horizon
H∞ filtering, the results on state-multiplicative noises have
been very few, and this constitutes partial motivation for the
present research on the H∞ filtering issue for the time-varying
stochastic systems with RONs, exogenous disturbance and
state-multiplicative noises.

So far, most available filter algorithms have implicitly
adopted the time-triggered strategy whose communication in-
terval is designed a priori to reduce the complexity for analysis
and design. Such a communication strategy, however, does not
consider efficient usage of limited communication resources
such as channel bandwidth or capacity in the network envi-
ronment. To alleviate the unnecessary waste of computation
and communication resources in a conventional time-triggered
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strategy, the event-triggered strategy has recently been pro-
posed in [19] where the signal is transmitted only when certain
conditions are satisfied. In comparison with conventional time-
triggered communication, event-triggering allows a consider-
able reduction of the network resource occupancy while main-
taining the guaranteed filtering performance. Clearly, when
energy saving becomes a concern, the event-triggered strategy
stands out as a competent candidate because of its capability
of reducing the data communication frequency and network
bandwidth usages. In the past few years, a growing number of
results have been reported on the applications of event-based
strategies to various engineering systems such as networked
control systems [15], [19], sensor networks [26] and neural
networks [22], etc. However, when it comes to the filtering or
state estimation problems, the corresponding results have been
relatively few, most of which have been concerned with the
implementation problems rather than the system analysis and
synthesis issues.

On another active research front, due to the rapid develop-
ment of network technologies, network-induced phenomena
such as packet dropouts [21], [28], communication delays
[9] and signal quantization [12] have been well studied for
filtering and control problems of networked systems. However,
the network-induced channel fading problem has received
little attention despite its practical significance in wireless
mobile communications. Generally speaking, the main causes
for fading effects are the multi-path propagation and the
shadowing from obstacles, which are widely regarded as a
kind of channel unreliability described by a random process
reflecting the random changes of amplitude and phase of
the transmitted signal. If not dealt with adequately, the phe-
nomenon of network-induced channel fading would inevitably
deteriorate the filtering performance of systems under inves-
tigation. To date, some pioneering work has appeared in the
literature concerning networked control systems with fading
channels, see [5] and the references therein. Nevertheless,
the corresponding event-triggered filtering problem for time-
varying systems with fading measurements has not yet been
fully investigated, not to mention the case when the combined
influences from both the RONs and the state-multiplicative
noises are also involved. It is, therefore, the main purpose of
this paper to shorten such a gap by addressing the event-based
finite-horizon filtering problem for nonlinear time-varying
systems with fading channels and multiplicative noises.

Motivated by the above discussions, in this paper, we aim to
provide a systematic approach to the understanding, analysis
and design of the event-based filters for time-varying systems
with fading channels, RONs and multiplicative noise. The
event-triggered scheme is based on the relative error with
respect to the measurement signal and the fading channels
are described by modified stochastic Rice fading models.
Several uncorrelated random variables are introduced to cater
for the random occurrences of the state-multiplicative noises,
RONs and fading measurements. Some sufficient conditions
are established, via intensive stochastic analysis, to guarantee
the existence of the desired filter gains, and then such finite-
horizon filter gains are obtained by solving sets of recursive
matrix inequalities. A simulation example is finally presented

to illustrate the effectiveness of the proposed design scheme.
The main contributions of this paper are highlighted as
follows:

1) An event indicator variable is introduced to reflect the
event-triggered information in the filter analysis with the
hope of decreasing the data transmission frequency and
also reduce conservatism in the filter design.

2) The event-triggered filter algorithm is proposed for dis-
crete time-varying nonlinear stochastic systems with fad-
ing channels, randomly occurring nonlinearities and mul-
tiplicative noise. The system model addressed is quite
comprehensive, hence reflecting reality more closely.

3) The developed finite-horizon filter design algorithm is
recursive and is thus suitable for online applications.

The rest of this paper is organized as follows: In Sec-
tion II, the discrete time-varying nonlinear stochastic system
with fading channels, randomly occurring nonlinearities and
multiplicative noise is introduced and the problem under
consideration is formulated. In Section III, the design problem
of the event-based finite-horizon filtering problem is solved
and a simulation example is given in Section IV to demonstrate
the main results obtained. Finally, we conclude the paper in
Section V.

Notation. The notation used here is standard except where
otherwise stated. Rn and Rn×m denote, respectively, the n-
dimensional Euclidean space and the set of all n × m real
matrices. The notation X ≥ Y (respectively, X > Y ), where
X and Y are real symmetric matrices, means that X − Y
is positive semi-definite (respectively, positive definite). MT

represents the transpose of the matrix M . 0n (or simply
0) represents n-dimensional zero matrix. The n-dimensional
identity matrix is denoted as In or simply I , if no confusion
is caused. diag{· · · } stands for a block-diagonal matrix. E{x}
and E{x| y} will, respectively, denote expectation of the
stochastic variable x and expectation of x conditional on y.
Prob{·} means the occurrence probability of the event “·”.
In symmetric block matrices, “∗” is used as an ellipsis for
terms induced by symmetry. The symbol ⊗ denotes the Kro-
necker product. 1n = [1, 1, . . . , 1]T ∈ Rn. Matrices, if they
are not explicitly specified, are assumed to have compatible
dimensions.

II. PROBLEM FORMULATION

Consider a discrete time-varying nonlinear stochastic system
described by the following state-space model:

x(k + 1) =
(
A(k) +

r∑
i=1

wi(k)Ai(k)
)
x(k) + α(k)g(k, x(k))

+D1(k)v(k)

ỹ(k) = C(k)x(k) +D2(k)v(k)

z(k) = L(k)x(k)
(1)

where x(k) ∈ Rnx represents the state vector; ỹ(k) ∈ Rny

is the process output; z(k) ∈ Rnz is the signal to be
estimated; wi(k) ∈ R (i = 1, 2, ..., r) with wi(k) ∼ N (0, 1);
v(k) ∈ Rnv is a deterministic disturbance noise that belongs
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to l2([0, N ] where l2[0, N ] denotes the space of square-
summable sequences; A(k), Ai(k), C(k), D1(k), D2(k) and
L(k) are known, real, time-varying matrices with appropriate
dimensions.

The nonlinear vector-valued function g : [0, N ] × Rnx →
Rnx is continuous, and satisfies g(k, 0) = 0 and the following
sector-bounded condition:[

g(k, x)− g(k, y)− Φ(k)(x− y)
]T [

g(k, x)− g(k, y)

−Ψ(k)(x− y)
]
≤ 0 (2)

for all x, y ∈ Rnx , where Φ(k) and Ψ(k) are real matrices
with appropriate dimensions.

The variable α(k) in (1), which accounts for the randomly
occurring nonlinearity phenomena, is a Bernoulli distributed
white sequences taking values on 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1− ᾱ, (3)

where ᾱ ∈ [0, 1] is a known constant.
In this paper, we consider an unreliable wireless network

medium utilized for the signal transmission. In this case, the
fading channels become a concern and the actually measured
output y(k) is described by

y(k) =

lk∑
s=0

βs(k)ỹ(k − s) +D3(k)ξ(k) (4)

where lk = min{l, k} with l being the given number of
paths, ξ(k) ∈ l2[0, N ] is an external disturbance, and βs(k)
(s = 0, 1, · · · , lk) are the channel coefficients that are mutually
independent random variables taking values on the interval
[0, 1] with E

{
βs(k)

}
= β̄s and Var

{
βs(k)

}
= νs.

For simplicity, we set {ỹ(k)}k∈[−l,−1] = 0,
C(k)k∈[−l,−1] = 0 and [vT (k) ξT (k)]k∈[−l,−1] = 0.

Remark 1: The Rice fading model (4), which is capa-
ble of accounting for channel fading, time-delay and data
dropout simultaneously, has been widely utilized in the area
of signal processing and remote control. Also, it can be
seen from (1) that both the parameter system matrices Ai(k)
(i = 1, 2, . . . , r) and the nonlinear function g(k, x(k)) enter
the system in probabilistic ways depicted by the random
variable wi(k) and α(k), separately. As such, the system
model described in (1)-(4) could better reflect the engineering
practice in networked environments.

For the purpose of reducing data communication frequency,
the event generator is constructed which uses the previously
measurement output to determine whether the newly measure-
ment output will be sent out to the filter or not. In this paper,
such an event generator function f(., .) is defined as follows:

f(σ(k), δ) = σT (k)Ωσ(k)− δyT (k)Ωy(k) (5)

where σ(k) := y(ki)−y(k) with y(ki) being the measurement
at the latest event time ki and y(k) is the current measurement.
Ω is a symmetric positive-definite weighting matrix and δ ∈
[0, 1) is the threshold.

The execution (i.e. the transmission of the measurement
output to the filter) is triggered as long as the condition

f(σ(k), δ) > 0 (6)

is satisfied. Therefore, the sequence of event-triggered instants
0 ≤ k0 ≤ k1 ≤ · · · ≤ ki ≤ · · · is determined iteratively by

ki+1 = inf{k ∈ N|k > ki, f(σ(k), δ) > 0}. (7)

Accordingly, any measurement data satisfying the event con-
dition (6) will be transmitted to the filter.

Remark 2: Different from the traditional filtering problems,
in this paper, the event trigger is adopted in order to reduce the
data communication frequency and network bandwidth usages.
With the event trigger applied here, unnecessarily frequent
transmission could be avoided when the change rate of the
measurement signals is relatively small. Obviously, the set
of event instants is only a subset of the time sequences, i.e.,
{k0, k1, k2, . . .} ∈ {0, 1, 2, . . .}. Note that, when δ = 0, all the
measurement sequences would be transmitted, and the problem
addressed reduces to the traditional filtering one.

For system (1), the following time-varying filter structure is
proposed:



x̂(k + 1) = A(k)x̂(k) + ᾱg(k, x̂(k))−K(k)

(
y(ki)

−
l∑

s=0

β̄sC(k − s)x̂(k − s)

)
ẑ(k) = L(k)x̂(k)

(8)

where x̂(k) ∈ Rnx is the estimate of the state x(k), ẑ(k) ∈
Rnz represents the estimate of the output z(k), and K(k) is
the filter gain matrix to be designed.

By letting e(k) = x(k)− x̂(k), η(k) =
[
xT (k) eT (k)

]T
,

z̃(k) = z(k) − ẑ(k), ϖ(k) =
[
vT (k) ξT (k)

]T
, ḡ(k) =[

gT (k, x(k)) gT (k, x(k))− gT (k, x̂(k))
]T

, α̃(k) = α(k) −
ᾱ and β̃s(k) = βs(k)− β̄s, we have the following augmented
system to be investigated:



η(k + 1) = Yl(k) +

( r∑
i=1

wi(k)Āi(k) + β̃0(k)C̄2(k)

)
× η(k) + β̃0(k)D̄2(k)ϖ(k) + α̃(k)S1ḡ(k)

+

l∑
s=1

β̃s(k)C̄2(k − s)η(k − s)

+
l∑

s=1

β̃s(k)D̄2(k − s)ϖ(k − s)

z̃(k) = L̄(k)η(k)
(9)
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where

Yl(k) = Ā(k)η(k) + ᾱḡ(k) +

l∑
s=1

β̄sC̄1(k − s)η(k − s)

+ K̄(k)σ(k) +
l∑

s=1

β̄sD̄2(k − s)ϖ(k − s)

+ D̄1(k)ϖ(k),

S1 =

[
I 0
I 0

]
, C̄2(k − s) =

[
0 0

K(k)C(k − s) 0

]
,

D̄1(k) =

[
D1(k) 0

D1(k) + β̄0K(k)D2(k) K(k)D3(k)

]
,

K̄(k) =

[
0

K(k)

]
, D̄2(k − s) =

[
0 0

K(k)D2(k − s) 0

]
,

Ā(k) = diag{A(k), A(k) + β̄0K(k)C(k)},

C̄1(k−s) = diag{0,K(k)C(k − s)},
Āi(k) = 12 ⊗

[
Ai(k) 0

]
, L̄(k) =

[
0 L(k)

]
.

Our objective of this paper is to design a time-varying
filter of the form (8) such that, for the given positive scalar
γ, the dynamic system (9) satisfies the following filtering
performance requirement:

J := E

{
N−1∑
k=0

(
∥z̃(k)∥2 − γ2∥ϖ(k)∥2U

)}
− γ2

0∑
i=−l

E
{
ηT (i)

× Viη(i)
}
< 0 (∀{ϖ(k)}, η(i) ̸= 0) (10)

where U and Vi are some given positive definite weighted
matrices. ∥ϖ(k)∥2U = ϖT (k)Uϖ(k).

III. MAIN RESULTS

In this section, let us investigate both the event-based
filtering performance analysis and filter design problems for
system (9). Firstly, we propose the following event-based
filtering performance analysis results for a class of nonlinear
time-varying systems with multiplicative noises and fading
channels.

Theorem 1: Consider the discrete time-varying nonlinear
stochastic system described by (1)–(4). Let the disturbance
attenuation level γ > 0, the positive definite weighted matrices
U > 0, Vi > 0 (i = −l,−l + 1, . . . , 0), the event weighted
matrix Ω > 0, the scalar δ ∈ [0, 1) and the filter gain
matrix {K(k)}k∈[0, N−1] in (8) be given. For the augmented
system (9), the performance criterion (10) is guaranteed for
all nonzero ϖ(k) if there exist families of positive scalars
{λ(k)}k∈[0, N−1], positive definite matrices {P (k)}k∈[0, N ] >
0 and {Q(i, j)}i∈[−l, N ],j∈[1, l] > 0 satisfying

Γ(k) = Γ̄(k) +

[
T11(k) ∗
T21(k) T22(k)

]
< 0 (11)

with the initial condition

γ2V0 − P (0) > 0, γ2V−i −
l∑

j=i

Q(−i, j) > 0

(i = 1, 2, . . . , l) (12)

where

T11(k) =

 Γ11(k) ∗ ∗
δβ̄0(Λβ C̄l(k))TΩC̄(k) Γ22(k) ∗

Γ31(k) Γ32(k) Γ33(k)

 ,

T21(k) =

δβ̄0(ΛβD̄l(k))
TΩC̄(k) Γ42(k) Γ43(k)

λ(k)U1(k) 0 0
0 0 0

 ,

T22(k) = diag{Γ44(k),−λ(k)I,−ΩI},
U1(k) = I ⊗ (Φ(k) + Ψ(k))/2,

U2(k) = I ⊗ (ΦT (k)Ψ(k) + ΨT (k)Φ(k))/2,

Γ̄(k) =
[
Γ̄ij(k)

]
{i=1,2,...,6;j=1,2,...,6} ,

Q̄(k, l) = diag{Q(k − 1, 1), Q(k − 2, 2), · · · , Q(k − l, l)},
Γ̄11(k) = ĀT (k)P (k + 1)Ā(k)− P (k) + ν0C̄

T
2 (k)

× P (k + 1)C̄2(k) +

r∑
i=1

ĀT
i (k)P (k + 1)Āi(k),

+

l∑
j=1

Q(k, j), P̄ (k + 1) = Il ⊗ P (k + 1),

Γ̄21(k) = (Λβ C̄1l(k))TP (k + 1)Ā(k),

Γ̄22(k) = (Λβ C̄1l(k))TP (k + 1)Λβ C̄1l(k)− Q̄(k, l)

+ (Λ̄γ C̄2l(k))T P̄ (k + 1)Λ̄γ C̄2l(k),
Γ̄31(k) = D̄T

1 (k)P (k + 1)Ā(k) + ν0D̄
T
2 (k)P (k + 1)C̄2(k),

Γ̄32(k) = D̄T
1 (k)P (k + 1)Λβ C̄1l(k),

Γ̄33(k) = D̄T
1 (k)P (k + 1)D̄1(k) + ν0D̄

T
2 (k)P (k + 1)D̄2(k),

Γ̄41(k) = (ΛβD̄2l(k))
TP (k + 1)Ā(k),

Γ̄42(k) = (ΛβD̄2l(k))
TP (k + 1)Λβ C̄1l(k)

+ (Λ̄γD̄2l(k))
T P̄ (k + 1)Λ̄γ C̄2l(k),

Γ̄43(k) = (ΛβD̄2l(k))
TP (k + 1)D̄1(k),

Γ̄44(k) = (ΛβD̄2l(k))
TP (k + 1)ΛβD̄2l(k) + (Λ̄γD̄2l(k))

T

× P̄ (k + 1)Λ̄γD̄2l(k),

Γ̄51(k) = ᾱP (k + 1)Ā(k), Γ̄52(k) = ᾱP (k + 1)Λβ C̄1l(k),
Γ̄53(k) = ᾱP (k + 1)D̄1(k), Γ̄54(k) = ᾱP (k + 1)ΛβD̄2l(k),

Γ̄55(k) = ᾱ2P (k + 1) + ᾱ(1− ᾱ)ST
1 P (k + 1)S1,

Γ̄61(k) = K̄T (k)P (k + 1)Ā(k),

Γ̄62(k) = K̄T (k)P (k + 1)Λβ C̄1l(k),
Γ̄63(k) = K̄T (k)P (k + 1)D̄1(k),

Γ̄64(k) = K̄T (k)P (k + 1)ΛβD̄2l(k),

Γ̄65(k) = ᾱK̄T (k)P (k + 1),

Γ̄66(k) = K̄T (k)P (k + 1)K̄(k),

Γ11(k) = −λ(k)U2(k) + L̄T (k)L̄(k)

+ δ(β̄2
0 + ν0)C̄

T (k)ΩC̄(k),

Γ22(k) = δ(Λβ C̄l(k))TΩΛβ C̄l(k) + δ(Λ̄γ C̄l(k))TΩΛ̄γ C̄l(k),

Γ31(k) = δ
(
(β̄2

0 + ν0)D̄(k) + β̄0D̄3(k)
)T

ΩC̄(k),

Γ32(k) = δ(β̄0D̄(k) + D̄3(k))
TΩΛβ C̄l(k),
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Γ33(k) = − γ2

l + 1
U + δ

(
β̄0D̄(k) + D̄3(k)

)T
Ω
(
β̄0D̄(k)

+ D̄3(k)
)
+ δν0D̄

T (k)ΩD̄(k),

Γ42(k) = δ(ΛβD̄l(k))
TΩΛβ C̄l(k) + δ(Λ̄γD̄l(k))

TΩΛ̄γ C̄l(k),
Γ43(k) = δ(ΛβD̄l(k))

TΩ(β̄0D̄(k) + D̄3(k)),

Γ44(k) = − γ2

l + 1
Il ⊗ U + δ(ΛβD̄l(k))

TΩΛβD̄l(k)

+ δ(Λ̄γD̄l(k))
TΩΛ̄γD̄l(k),

C̄1l(k) = diag{C̄1(k − 1), C̄1(k − 2), . . . , C̄1(k − l)},
D̄2l(k) = diag{D̄2(k − 1), D̄2(k − 2), . . . , D̄2(k − l)},
C̄2l(k) = diag{C̄2(k − 1), C̄2(k − 2), . . . , C̄2(k − l)},
D̄l(k) = diag{D̄(k − 1), D̄(k − 2), . . . , D̄(k − l)},
C̄l(k) = diag{C̄(k − 1), C̄(k − 2), . . . , C̄(k − l)},
D̄3(k) =

[
0 D3(k)

]
, C̄(k − s) =

[
C(k − s) 0

]
,

D̄(k − s) =
[
D2(k − s) 0

]
,Λβ =

[
β̄1I β̄2I · · · β̄lI

]
,

Λ̄γ = diag{
√
ν1I,

√
ν2I, . . . ,

√
νlI}.

Proof: Consider the following Lyapunov functional can-
didate for system (9):

V (k) = V1(k) + V2(k)

= ηT (k)P (k)η(k) +
l∑

j=1

k−1∑
i=k−j

ηT (i)Q(i, j)η(i) (13)

where P (k) > 0 and Q(i, j) > 0 are symmetric positive
definite matrices with appropriate dimensions. Calculate the
difference of V (k) along the solution of system (9) and take
the mathematical expectation. Then, we have

E {∆V1(k)} = E {V1(k + 1)− V1(k)}

=E
{(

YT
l (k)P (k + 1)Yl(k) + ᾱ(1− ᾱ)ḡT (k)ST

1 P (k + 1)

× S1ḡ(k) + ηT (k)

( r∑
i=1

ĀT
i (k)P (k + 1)Āi(k)

)
η(k)

+
l∑

s=0

νs

(
C̄2(k − s)η(k − s) + D̄2(k − s)ϖ(k − s)

)T

× P (k + 1)

(
C̄2(k − s)η(k − s) + D̄2(k − s)ϖ(k − s)

)
− ηT (k)P (k)η(k)

}
(14)

Similarly, by noting the equation (13), one has

E {∆V2(k)}

=E
{ l∑

j=1

ηT (k)Q(k, j)η(k)− ηTl (k)Q̄(k, l)ηl(k)

}
(15)

where ηl(k) =
[
ηT (k − 1) ηT (k − 2) · · · ηT (k − l)

]T
.

Therefore, by denoting

ϖl(k) =
[
ϖT (k − 1) · · · ϖT (k − l)

]T
,

η̃(k) =
[
ηT (k) ηTl (k) ϖT (k) ϖT

l (k) ḡT (k) σT (k)
]T

and combining (13)–(15), one immediately obtains

E {∆V (k)} = E
{
η̃T (k)Γ̄(k)η̃(k)

}
. (16)

Moreover, it follows from the constraint (2) that[
ḡ(k)−(I⊗Φ(k))η(k)

]T [
ḡ(k)−(I⊗Ψ(k))η(k)

]
≤ 0. (17)

Then, substituting (17) into (16) results in

E {∆V (k)} ≤ E
{
η̃T (k)Γ̄(k)η̃(k)− λ(k)

[
ḡ(k)− (I ⊗ Φ(k))

× η(k)
]T [

ḡ(k)− (I ⊗Ψ(k))η(k)
]}

. (18)

Considering the event condition (6), we have

E {∆V (k)}
≤ E

{
η̃T (k)Γ̄(k)η̃(k)− λ(k)

[
ḡ(k)− (I ⊗ Φ(k))η(k)

]T
×
[
ḡ(k)− (I ⊗Ψ(k))η(k)

]
− σT (k)Ωσ(k)

+δyT (k)Ωy(k)
}
. (19)

Due to {ϖ(k)}k∈[−l, −1] = 0, adding the zero term

z̃T (k)z̃(k)− γ2ϖT (k)Uϖ(k)− (z̃T (k)z̃(k)

−γ2ϖT (k)Uϖ(k)) (20)

to (19) results in

E {∆V (k)}

≤E
{
η̃T (k)Γ(k)η̃(k)

}
+ E

{
γ2

l + 1

l∑
s=0

∥ϖ(k − s)∥2U

− γ2∥ϖ(k)∥2U

}
− E

{
∥z̃(k)∥2 − γ2∥ϖ(k)∥2U

}
. (21)

Summing up (21) on both sides from 0 to N − 1 with respect
to k, we obtain

N−1∑
k=0

E {∆V (k)}

≤E
{N−1∑

k=0

η̃T (k)Γ(k)η̃(k)
}
+ E

{
γ2

l + 1

l∑
s=0

N−1∑
k=0

(∥ϖ(k − s)∥2U

− ∥ϖ(k)∥2U )

}
− E

{
N−1∑
k=0

(∥z̃(k)∥2 − γ2∥ϖ(k)∥2U )

}
(22)

It can be obtained from (11) and (12) that

E

{
N−1∑
k=0

(
γ2∥ϖ(k)∥2U − ∥z̃(k)∥2

)
+ γ2

0∑
i=−l

ηT (i)Viη(i)

}

> E {V (N)}+ E

{
γ2

0∑
k=−l

ηT (i)Viη(i)− V (0)

}
≥ 0

(23)

which is equivalent to (10), and the proof is now complete.
Based on the analysis results, we are now ready to solve the

filter design problem for system (9) in the following theorem.
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For convenience of later analysis, we denote

Γ̂11(k) =

T11(k) ∗ ∗
T21(k) −Q̄(k, l) + Γ22(k) ∗
Γ31(k) Γ32(k) Γ33(k)

 ,

T11(k) = −P (k) +
l∑

j=1

Q(k, j) + Γ11(k),

T21(k) = δβ̄0(Λβ C̄l(k))TΩC̄(k),

Γ̂21(k) =

δβ̄0(ΛβD̄l(k))
TΩC̄(k) Γ42(k) Γ43(k)

λ(k)U1(k) 0 0
0 0 0

 ,

Γ̂22(k) = diag
{
Γ44(k),−λ(k)I,−ΩI

}
,

Γ̂32(k) =
[
ΛβK̂(k)D̄l(k) ᾱI H0K(k)

]
,

Γ̂31(k) =
[
T311(k) D̂0(k) +H0K(k)D̂3(k)

]
,

T311(k) =
[
Â0(k) + β̄0H0K(k)Ĉ0(k) ΛβK̂(k)Ĉ0l(k)

]
,

Γ̂41(k) =

C (k) 0 D(k)

0 ΛβK̂(k)Ĉ0l(k) 0

0 Λ̄γK̂(k)C̄l(k) 0

 ,

C (k) =
√
ν0H0K(k)C̄(k), D(k) =

√
ν0H0K(k)D̄(k),

Γ̂44(k) = diag
{
−R(k + 1),−R(k + 1),−R̄(k + 1)

}
,

Γ̂51(k) =
[
Γ̂511(k) Γ̂512(k) 0

]
, K̂(k) = Il ⊗H0K(k),

Γ̂511(k) =
[
0 0 ĀT

r (k)
]T

, R̄(k + 1) = Il ⊗R(k + 1),

Γ̂512(k) =
[(
Λ̄γK̂(k)C̄l(k)

)T
0 0

]T
,

Γ̂52(k) = diag{Λ̄γK̂(k)D̄l(k),
√
ᾱ(1− ᾱ)S1, 0},

Γ̂55(k) = diag{−R̄(k + 1),−R(k + 1),−R̂(k + 1)},

Ār(k) =
[
ĀT

1 (k) ĀT
2 (k) · · · ĀT

r (k)
]T

,

Â0(k) = I2 ⊗A(k), R̂(k + 1) = Ir ⊗R(k + 1),

Ĉ0(k) =
[
0 C(k)

]
, D̂0(k) = 12 ⊗

[
D1(k) 0

]
,

D̂3(k) =
[
β̄0D2(k) D3(k)

]
, H0 =

[
0 I

]T
,

Ĉ0l(k) = diag

{
Ĉ0(k − 1), Ĉ0(k − 2), . . . , Ĉ0(k − l)

}
.

(24)

Theorem 2: Consider the discrete time-varying nonlinear
stochastic system (1) with the time-varying filter (8). For
the given disturbance attenuation level γ > 0, the positive
definite weighted matrices U > 0, Vi > 0 (i = −l,−l +
1, . . . , 0), the event weighted matrix Ω > 0 and the scalar
δ ∈ [0, 1), the filtering error z̃(k) satisfies the perfor-
mance criterion (10) if there exist families of positive scalars
{λ(k)}k∈[0,N−1], positive definite matrices {P (k)}k∈[0,N ] >
0, {Q(i, j)}i∈[−l,N ],j∈[1,l] > 0, {R(k)}k∈[0,N ] > 0 and real-
valued matrices K(k)k∈[0,N−1] satisfying

Γ̂(k) =


Γ̂11(k) ∗ ∗ ∗ ∗
Γ̂21(k) Γ̂22(k) ∗ ∗ ∗
Γ̂31(k) Γ̂32(k) −R(k + 1) ∗ ∗
Γ̂41(k) 0 0 Γ̂44(k) ∗
Γ̂51(k) Γ̂52(k) 0 0 Γ̂55(k)


< 0 (25)

and the initial condition

γ2V0 − P (0) > 0, γ2V−i −
l∑

j=i

Q(−i, j) > 0

(i = 1, 2, . . . , l) (26)

with the parameters updated by P (k + 1) = R−1(k + 1).
Proof: In order to avoid partitioning the positive de-

fine matrices {P (k)}k∈[0,N ], {Q(i, j)}i∈[−l,N ],j∈[1,l] and
{R(k)}k∈[0,N ], we rewrite the parameters in Theorem 1 in
the following form:

Ā(k) = Â0(k) + β̄0H0K(k)Ĉ0(k), C̄1l(k) = K̂(k)Ĉ0l(k),
C̄1(k − s) = H0K(k)Ĉ0(k − s), C̄2l(k) = K̂(k)C̄l(k),
C̄2(k − s) = H0K(k)C̄(k − s), D̄2l(k) = K̂(k)D̄l(k),

D̄1(k) = D̂0(k) +H0K(k)D̂3(k), K̄(k) = H0K(k),

D̄2(k) = H0K(k)D̄(k − s). (27)

Noticing (27) and using the Schur Complement Lemma [2],
(25) can be obtained by (11) after some straightforward
algebraic manipulations. The proof of this theorem is now
complete.

Remark 3: Theorem 1 presents sufficient conditions for the
existence of admissible filters. It is worth noting that the
technique used for deriving these conditions is quite different
from the previous results in the filtering area, e.g. [10], [23],
[24]. In this paper, to reduce the design conservatism, the pos-
itive definite matrices {P (k)}k∈[0,N ], {Q(i, j)}i∈[−l,N ],j∈[1,l]

and {R(k)}k∈[0,N ] remain in its original form. Therefore, the
difficulty of dilating positive definite matrices does not occur
in our result. Besides, it can be observed from Theorem 2 that
the main results established contain all the information of the
addressed general systems including the time-varying systems
parameters, multiplicative noise, the threshold of event trigger,
the occurrence probabilities of the random nonlinearity as well
as the statistics characteristics of the channel coefficients. In
the next section, a simulation example is provided to show the
effectiveness of the proposed finite-horizon filtering technique.

For implementation purpose and based on Theorem 2,
we can summarize the Finite-Horizon Filter Design (FHFD)
algorithm at the top of the next page.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we aim to demonstrate the effectiveness and
applicability of the proposed method. The system model is
concerned with one of the test runs of an aircraft which is
powered by energy from two F-404 engines. Both engines are
mounted close together in the aft fuselage. We are interested
in tracking such an aircraft through wireless communications
subject to fading channels and multiplicative noises. In this
simulation, the nominal system matrix A and the measurement
output matrix C are taken from the linearized model of an F-
404 aircraft engine system in [8]:

A(k) =

 −1.4600 0 2.4280
0.1643 −0.4000 −0.3788
0.3107 0 −2.2300

 ,

C(k) =

[
1 0 0
0 1 0

]
.
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The Finite-Horizon Filter Design (FHFD) Algorithm:
Step 1. Given the disturbance attenuation level γ, the positive definite weighted matrices U > 0, Vi > 0 (i = −l,−l +

1, . . . , 0), the event weighted matrix Ω > 0 and the saclar δ ∈ [0, 1).
Step 2. Set k = 0. Solve the matrix inequalities (25) and the recursive matrix inequalities (12) to obtain the values of

matrices P (0),
∑l

j=i Q(−i, j) (i = 1, 2, . . . , l), R(1) and the filter gain matrix K(0).
Step 3. Set k = k + 1, update the matrices P (k + 1) = R−1(k + 1) and then obtain the filter gain matrix K(k) by

solving the recursive matrix inequalities (25).
Step 4. If k < N , then go to Step 3, else go to Step 5.
Step 5. Stop.

Setting the sampling time T = 0.5s, we obtain the following
discretized nominal system matrices

A(k) =

 0.5227 0 0.5009
0.0458 0.8187 −0.0783
0.0641 0 0.3638

 ,

C(k) =

[
0.6487 0 0

0 0.6487 0

]
.

As discussed in [27], virtually all aircraft engine systems are
in some way disturbed by uncontrolled external forces. The
disturbances may assume a myriad of forms such as wind
gusts, gravity gradients, structural vibrations, or sensor and
actuator noise, and may enter the systems in many different
ways. These perturbations generally degrade the performance
of the system and, in some cases, may even jeopardize the
outcome of the engineering task. For example, the random
vibration of an aircraft engine system would have a major
impact on the accurate fatigue analysis as well as the design
of engine control systems [14]. As in [11], we suppose that
the motion of the F-404 aircraft engine can be determined by
the system of stochastic differential equations derived from
the basic aerodynamics, and the stochastic part of the motion
is due to the changing wind.

In the F-404 aircraft engine model, x1(k) and x2(k) rep-
resent the horizontal position and x3(k) is the altitude of the
aircraft. Our purpose is to design a time-varying filter in the
form of (8) in a network environment. The movement of the
aircraft is affected by the wind that acts as stochastic distur-
bances. In fact, when modeling the aircraft engine system,
there exist modeling errors (state-multiplicative noises) and
linearization errors (nonlinear disturbances). Moreover, in the
scenario of tracking the aircraft through wireless communica-
tions, both fading channels and multiplicative noises are often
unavoidable. To this end, the corresponding parameters are
given as follows:

A1(k) =

0.05 −0.1 0
0 0.02 sin(k) 0.1

0.01 0 0.2

 ,

A2(k) =

0.05 sin(k) 0 0
0 0.02 0
0.1 0.01 0.02

 ,

D1(k) =
[
0.2 −0.05 0.01

]T
, L(k) =

[
1 1 1

]
,

D2(k) =
[
0.3 −0.05

]T
, D3(k) =

[
0 0.1

]T
.

To track the state of the F-404 aircraft engine system, the
RONs should be taken into account due to the unpredictable
changes of the environmental circumstances. In practice, the
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Fig. 1. The measurement y(k) and the measurement y(ki) for event-
triggered instants when δ = 0.6

probability α(k) can be determined beforehand thorough sta-
tistical tests. In this illustrative example, the probability of
randomly occurring nonlinearities is taken as ᾱ = 0.7 and the
nonlinear vector-valued function g(k, x(k)) is chosen as

g(k, x(k)) =

−0.5x1(k) + 0.4x2(k) + 0.1x3(k)

0.1x1(k) +
sin x1(k)√

x2
1(k)+x2

2(k)+10

0.5x2(k)


where xi(k) (i = 1, 2, 3) denotes the i-th element of the
system state x(k). It is easy to see that the constraint (2) is
met with

Φ(k) =

−0.2 0.4 0.1
0.05 0 0
0 0.2 0

 , Ψ(k) =

−0.8 0.4 0.1
0.15 0 0
0 0.8 0

 .

The order of the fading model is l = 1 and the probability
density functions of channel coefficients are as follows{

ϱ(β0(k)) = 0.0005(e9.89β0(k) − 1), 0 ≤ β0(k) ≤ 1,
ϱ(β1(k)) = 8.5017e−8.5β1(k), 0 ≤ β1(k) ≤ 1.

The mathematical expectation β̄s and variance νs (s = 0, 1)
can be obtained as 0.8991, 0.1174, 0.0133 and 0.01364,
respectively.

The H∞ performance level γ, the positive definite weighted
matrices U , Vi (i = −1, 0) are chosen as γ = 1, U = I ,
V−1 = V0 = 5I , respectively. Choose event weighted matrix
Ω = I and the threshold δ = 0.6. As long as it goes beyond
the established threshold, updates are triggered such that the
value ∥σ(k)∥ is reset to zero again. By applying Algorithm
FHFD, the desired filter parameters are obtained and listed in
Table I.
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TABLE I
THE FILTER PARAMETERS K(k)

k 0 1 2 · · · 50

K(k)

 0.3376 0.4775
0.4476 0.4285
0.4575 0.4726

  0.3302 0.4091
0.4149 0.2967
0.4657 0.4363

  0.1377 0.0046
0.2056 −0.0236
0.3276 0.0040

 · · ·

 0.1270 −0.1241
0.3614 −0.2708
0.1956 −0.1346
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Fig. 2. The output z(k) and its estimation when δ = 0.6
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Fig. 3. The estimation error z̃(k) when δ = 0.6
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Fig. 4. The measurement y(k) and the measurement y(ki) for event-
triggered instants when δ = 0
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Fig. 5. The output z(k) and its estimation when δ = 0
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Fig. 6. The estimation error z̃(k) when δ = 0

In the simulation, the initial value of the state is x(0) =[
−0.55 −0.16 0

]T
and the exogenous disturbance inputs

are selected as

ξ(k) = 0.5e−2k sin(4k), v(k) =
4

k + 20
sin(k). (28)

Fig. 1 plots the measurement y(k) and the measurement
y(ki) for event-triggered instants, and the outputs z(k) and
the filtering errors z̃(k) are depicted in Fig. 2 and Fig. 3,
respectively.

For δ = 0, that is, no event triggering happens, Fig. 4
plots the measurement y(k) and the measurement y(ki) for
event-triggered instants. The corresponding outputs z(k) and
the filtering errors z̃(k) are depicted in Fig. 5 and Fig. 6,
respectively. It can be seen from the simulation results that
the larger δ the worse the filtering performance, which is in
agreement with the fact that event triggering is based on the
relative error with respect to the output signal. Clearly, the
bandwidth utilization cannot be reduced too much in order
to guarantee certain filtering performance. All the simulation
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results confirm that the approach addressed in this paper
provides a satisfactory filtering performance.

V. CONCLUSION

In this paper, we have dealt with the event-based filter-
ing problem for time-varying systems with fading channels,
randomly occurring nonlinearities and multiplicative noise.
An event indicator variable has been constructed and the
corresponding event-triggered scheme has been proposed to
determine whether the measurement output is transmitted to
the filter or not. The event-triggered scheme has been based on
the relative error with respect to the measurement signal, and
the fading channels have been described by modified stochastic
Rice fading models. Some uncorrelated random variables have
been introduced, respectively, to govern the phenomena of
state-multiplicative noises, randomly occurring nonlinearities
and fading measurements. By employing the stochastic analy-
sis techniques, some sufficient conditions have been provided
to ensure that the dynamic system under consideration satisfies
the filtering performance constraint. Furthermore, the explicit
expression of the desired filter gains have been derived in terms
of solving recursive matrix inequalities. Finally, an illustrative
example has highlighted the effectiveness of the event-based
filtering technology presented in this paper.
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