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Abstract A novel Cellular Automata (CA)  Controllable CA (CCA) is proposed in this paper. 

Further, CCA are applied in Pseudorandom Number Generation. Randomness test results on CCA 

Pseudorandom Number Generators (PRNGs) show that they are better than 1-d CA PRNGs and can be 

comparable to 2-d ones. But they do not lose the structure simplicity of 1-d CA. Further, we develop 

several different types of CCA PRNGs. Based on the comparison of the randomness of different CCA 

PRNGs, we find that their properties are decided by the actions of the controllable cells and their 

neighbors. These novel CCA may be applied in other applications where structure non-uniformity or 

asymmetry is desired.  
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1. Introduction 

A central problem in any stream cipher scheme is to generate long, unpredictable key sequences. 

Since real random numbers can be obtained from some physical phenomena only, they are difficult to 

be employed in real applications. Hence, pseudorandom numbers generated by artificial design patterns 

have to be used instead. One commonly used type of Pseudorandom Number Generators is based on 
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Cellular Automata. Cellular Automata (CA) was initiated in the early 1950s as a general framework for 

modeling complex structures capable of self-reproduction and self-repair.  

In 1986, Wolfram first applied CA in pseudorandom number generation [18]. The intensive interest 

in this field can be attributed to the phenomenal growth of the VLSI technology that permits cost-

effective realization of the simple structure of local-neighborhood CA. Wolfram’s work in [18] proved 

that the randomness of the patterns generated by maximum-length CA is significantly better than other 

widely used methods, such as Linear Feedback Shift Registers (LFSRs).  

In the last decade, one-dimensional (1-d) CA Pseudorandom Number Generators (PRNGs) have 

been extensively studied [2,5,6,8,9,11,12,13,16,17]. Recent interest is more focused on two-

dimensional (2-d) CA PRNGs [3,10] since it seems that their randomness is much better than that of 1-

d CA PRNGs. But taking into account the design complexity and computation efficiency, it is quite 

difficult to conclude which one is better. Compared to 2-d CA PRNGs, 1-d PRNGs are easier to be 

implemented in a large scale. In this paper, we propose a family of novel CA PRNGs that obtain the 

same randomness as that of 2-d CA PRNGs without losing the structure simplicity of 1-d CA PRNGs.  

In the following, we first give an overview on CA and CA PRNGs in section 2. Then in section 3, 

we present the definition and properties of a set of novel CA PRNGs  Controllable CA PRNGs.  

Section 4 compares Controllable CA PRNGs to 1-d and 2-d CA PRNGs. Section 5 delineates a set of 

Controllable CA PRNGs and compares their properties. Finally, we end the paper with a short 

discussion and conclusion in section 6 and 7. 

 

2. Related Work  

2.1 Introduction to Randomness Tests 
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Real random numbers can only be obtained from some physical phenomenon. The random numbers 

generated by PRNGs are not truly random, but only pseudo-random. Although this assertion is 

inevitable, we would still like to obtain sequences that behave as if they were random. Thus, the 

problem is how to decide whether the sequences are random enough? Statistical (empirical) test could 

be a good solution in this respect.  If a sequence passed a number of quantitative tests, we could assert 

that the sequence is random. But we should also note that there are no guarantees, only predictions in 

numerical practice are possible. Following, we introduce two widely used randomness test suites 

ENT test and DIEHARD. The former is designed according to the criteria set by Knuth [1]; the latter is 

devised by G. Marsaglia [4]. Detailed introduction to these two tests is given in appendix. 

 

2.2 Cellular Automata Background 

A cellular automaton is an array of cells where each cell is in any one of its permissible states. At 

each discrete time step (clock cycle) the evolution of a cell depends on its transition rule (the 

combinatorial logic), which is a function of the present states of its k neighbors for a k-neighborhood 

CA. The cellular array (grid) is n-dimensional, where n=1,2,3 is used in practice. We define the state of 

a CA at time t to be the n-tuple formed from the states of the individual cells, ( )tx = ( ) ( )[ ]txtx n,...,1 . The 

next-state function of a 3-neighborhood (r=1) CA is computed as: 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )[ ],...,,,...,,,01 11211 txtxtxftxtxftxftx iiii +−
==+ . When each if  is a linear function, f is also a 

linear function, mapping n-tuples to n-tuples. The evolution of the i-th cell in a one-dimensional, 3-

neighborhood CA can be represented as a function of the present states of the (i-1)-th, (i)-th, and (i+1)-

th cells as: ( ) ( ) ( ) ( )( )txtxtxftx iiiii 11 ,,1
+−

=+ , where if  represents the transition rule for the (i)-th cell.  
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Some definitions used extensively to characterize the properties of CA are noted below.  

Definition 1. If the rules of a CA cell involve only XOR logic, then it is called a linear rule. Rules 

involving XNOR logic are referred to as complemented rules. A CA with all the cells having linear 

rules is called a linear CA, whereas a CA having a combination of XOR and XNOR rules is called an 

additive CA. 

Definition 2. If all the CA cells obey the same rule, then the CA is said to be a uniform CA; 

otherwise, it is a non-uniform CA.  

Definition 3. A CA is said to be a Periodic Boundary CA (PBCA) if the extreme cells are adjacent 

to each other. A CA is said to be an Intermediate Boundary CA (IBCA) if the next state of the left- 

(right-) most cell depends on itself, its right (left) neighbor, and the one next to (before) it. A CA is said 

to be a null-boundary CA if the extreme cells are only connected to its left (right) cell. 

Programmable CA (PCA) is initially mentioned in 

[17]. It is a non-uniform CA that allows different 

rules to be used at different time steps on the same 

cell. Compared to uniform CA, PCA allows several 

control lines per cell. Through these control lines, 

different functions (rules) can be applied to the same 

cell at different time steps according to the rule control signals. Fig. 1 is an additive PCA cell structure. 

Applying such a cell structure to each cell in an N-cell PCA, all the possible additive non-

complemented rule combinations can be achieved to realize any non-uniform additive PCA. Such an 

N-cell PCA can implement 8
N

 different CA configurations.  

Rule 

Control                                                         

Signals 

   From left     From right 

Fig. 1 An additive PCA cell structure 
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Generally, transition rule is one of the critical factors that decide the property of CA, whether it is 

uniform CA or PCA. Since there is a lot of work done to explore the properties of different rules, we 

only use those rules that have been proved to be good in random number generations in our work. Here 

we give the Boolean form of these rules and their numbers are given in accordance with Wolfram’s 

convention. 

Rule 30: ( ) ( )txtx ii 11
−

=+  XOR ( ( )txi  OR ( )txi 1+
) 

Rule 90: ( ) ( )txtx ii 11
−

=+  XOR ( )txi 1+
 

Rule 150: ( ) ( )txtx ii 11
−

=+  XOR ( )txi  XOR ( )txi 1+
  

Rule 165: ( ) ( )txtx ii 11
−

=+  XNOR ( )txi 1+
 

Rule 105: ( ) ( )txtx ii =+1  XNOR ( ( )txi 1−
 XOR ( )txi 1+

) 

 

2.3 CA Pseudorandom Number Generators 

In this section, we discuss several 1-d and 2-d CA PRNGs proposed since the last decade. Before 

we proceed to introduce the generators, we first investigate what properties of CA will affect the 

randomness of the sequences generated by CA PRNGs.  

In general, there are four aspects of CA configuration affecting the randomness: 

• Boundary conditions  null boundary or periodic boundary: generally periodic boundary 

condition is better than null boundary condition in random number generation. 

• Length of a CA  the total number of cells in a CA: A CA formed from N cells with a 

single rule generally has a cycle length much shorter than 2
N
-1. As the length of the CA 

increases the maximum possible cycle length of the pseudorandom sequence increases.  
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• Initial seed  the initial state configuration in CA: Generally, the effect of initial seed on 

randomness is trivial. To counteract its effect, in the following work, we apply the 

randomness test on a set of randomly generated initial seeds instead of only one.  

• Transition rule  Obviously, the randomness of the sequences generated by different rules 

varies a lot. 

 

2.3.1 1-d CA PRNGs 

Rule-30 uniform CA has been extensively studied by Wolfram in 1986 [18]. It is the first time that 

scientists applied CA in random number generation. Wolfram’s work on rule-30 CA demonstrated its 

ability to produce highly random, temporal bit sequences [19]. Wolfram also suggested that rule-30 CA 

can be efficiently implemented in parallel. A study in [13] shows that in rule-30 CA, the correlation 

dies out and a bit stream 3-4 cells away is no longer correlated. Therefore, the auto- and cross-

correlation of a rule 30 CA is less than that of a parallel LFSR (Linear Feedback Shift Register) 

generator. Later, other rules are also applied in uniform CA PRNGs. Tomassini et al. concluded in [9] 

that according to the DIEHARD test results, rule 105 is the best RNG, followed by rules 165, 90 and 

150, with rule 30 coming in last.  

Following the idea of uniform CA PRNGs, more researchers focus their interest on non-uniform 

CA PRNGs since non-uniform CA PRNGs are better than uniform ones in general. The first non-

uniform CA PRNG was proposed by P. D. Hortensius in 1989 [12]. This non-uniform CA uses rule 90 

and 150.  This CA PRNG is referred to hence as PCA 90-150. Surprisingly, the combination of these 

two simple linear rules yields maximum length cycles. Unlike uniform rule-30 CA, adjacent cells in 

non-uniform CA are not correlated in both time and space [12]. However, the binary sequences 



 

 

 

 

 

                                                                
                                                               

Page 7  

produced by some cells in a non-uniform CA fail some random number tests because of distribution 

problems. Another non-uniform CA PRNG which uses the combination of rules 30 and 45 was also 

proposed by P. D. Hortensius [13]. This generator can evolve to a random pattern of outputs, but its bit 

sequence correlation is much higher than that of the PCA 90-150 [13].  

Later in 1996, Sipper and Tomassini [11] evolved a 50-cell CA with a mélange of rules 90, 150 and 

165. This CA is referred to henceforth as PCA 90-165. Based on their work, Tomassini et al. [9] 

evolved another 50-cell CA with the rule combination 90, 165,150 and 105 in 1999. This CA is 

referred to henceforth as PCA 90-105. These two CA are evolved using cellular programming 

evolution algorithm while those two CA proposed by P. D. Hortensius are handcrafted. The DIEHARD 

test results show that these two non-uniform CA PRNGs are better than those designed by P. D. 

Hortensius in [12,13]. But they still cannot pass some of the tests in DIEHARD and are inferior to the 

classical generators. 

 

2.3.2 2-d CA PRNGs 

Work on 1-d CA PRNGs not only shows the suitability of CA in random number generation but 

also raises another question: is it possible to further improve the randomness of CA PRNGs? 

Chowdhury et al. [3] described a methodology for producing pseudorandom numbers by 2-d CA in 

1994. Their results suggest that 2-d CA are superior to 1-d ones of the same size in pseudorandom 

number generation. Following his idea, Marco Tomassini et al. evolved several 8×8 2-d CA PRNGs 

with rule 15, 63, 31 and 47. DIEDARD test results show that some of the evolved CA PRNGs can pass 

all the tests in DIEHARD. And based on the observation of these evolved 2-d CA PRNGs, they can 

handcraft even better PRNGs.  
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Although 2-d CA PRNGs are better than 1-d CA PRNGs in random number generation, they lose 

the structure simplicity and computation efficiency of 1-d CA PRNGs. Therefore, how to find a set of 

CA PRNGs which not only can pass all the DIEHARD test but also have the merit of 1-d CA PRNGs 

becomes an important problem. Under this motivation, we propose a novel CA in the next section.  

 

3. Controllable CA PRNGs 

3.1 Controllable CA 

Following the idea of PCA in which a rule control line is added into each cell to improve the 

randomness of CA PRNGs, we add more control lines on CA cells to control the neighborhood relation 

and updating of states to further improve the randomness of 1-d CA PRNGs. This results in a new type 

of CA  Controllable Cellular Automata. In this section, the structure and properties of CCA are  

presented. To explain the scheme explicitly, several new concepts are defined first to identify the CCA 

properties.  

 

 

 

 

 

 

 

 

Cell # i 

Cell control signal 

Rule control signal 

From left From right 

Cell # i 

Cell control signal 

From left From right 

Fig. 2 A controllable cell structure 

(a) Programmable controllable cell   (b) Non-programmable controllable cell 
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Definition 4. A Controllable CA (CCA) is a CA in which some cells can be controlled via cell 

control signals.  

Definition 5. If a cell is under the control of a cell control signal, it is a controllable cell; otherwise 

it is a basic cell. CCA is the combination of controllable cells and basic cells. Both controllable cells 

and basic cells could have rule control signals. Fig. 2 shows the non-programmable/programmable 

controllable cell structure. In this paper, we will discuss programmable controllable cells only. 

The status of a controllable cell refers to how its state will be computed in the current time step. It 

is decided by its current cell control signal. The status of a controllable cell can be active or inactive. If 

the state of a controllable cell is computed as usual (only according to the current rule control signals 

and the states of its neighbors), it is an active cell and the states of its neighbors are computed as usual 

too. If the state of a controllable cell is not updated (its state will remain stable or be complemented) in 

the current time step, it is an inactive cell. The inactive controllable cell is referred to henceforth as an 

idle cell. How the states of its neighbors will be computed is decided by certain rules.  And these rules 

decide the property of CCA.  

 

 

 

 

 

The structure of a CCA is shown in Fig. 3. All the cells in a CCA have rule control lines while only 

those controllable cells (i.e. cell #i and cell #j) have cell control lines. Compared to a PCA in the same 

size, CCA has several more cell control lines. The number of cell control lines is the same as that of 

… … 

Rule control signals 

Cell control signals 

Cell #1 Cell # j Cell # N Cell # i … … … 

Fig. 3 The structure of a CCA 
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controllable cells in CCA. In our work, the rule (or cell) control signals are generated by a rule (or cell) 

control CA. In the next sub-section, we will present several basic CCA PRNGs and discuss their 

properties. Randomness tests show that CCA PRNGs are good in random number generation.  

The usage of controllable cells in CCA differentiates itself from PCA in which only rule control 

signals exist. Once the actions of controllable cells and basic cells are specified, the setting of 

controllable cells will decide the performance of CCA. The common idea in PCA and CCA is that they 

both use some control lines on the CA cells to make the CA transition more unpredictable and flexible. 

The difference is that in PCA all the cells have uniform structures while obviously in CCA the 

structure of controllable cells are not the same as that of basic cells. 

 

3.2 Basic Controllable CA PRNGs 

The simplest example we can easily think of is that when a controllable cell is inactive, it keeps its 

latest state and the states of its neighbors are computed as usual. In this way, the controllable cell will 

affect the state computation of its neighbors during the current time step in the same way as the 

previous time step. This model is referred to as CCA0. Note that the one-bit memory of the inactive 

controllable cell is somehow wasted as we don’t change its content, we can have a variation: when the 

controllable cell is inactive, its state is complemented. This model is referred to as CCA1. These two 

models are quite easy to be implemented in hardware and we even can find a PCA to simulate each. 

We may wonder that if so, what’s the difference between a CCA0 (or CCA1) PRNG and PCA PRNG. 

To answer this question, we design the following randomness test on CA PRNGs. The ENT test is used 

to evaluate the randomness of CA PRNGs. The final result is a real number that is referred to 
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henceforth as randomness value. This value is calculated based on the test results of Entropy, SCC and 

Chi-square test using a function F: 

F = (Entropy –6) * 20% + (1-|SCC|) * 20% + f (Chi-square)*60% 

 

f (Chi-square) =  

 

The reason why we adjust the original test values is to ensure that the final randomness value falls 

into [0,1] and a higher value represents better randomness. The objective of this test is to compare not 

only the randomness of CCA PRNGs and PCA PRNGs but also the randomness of controllable cells 

and basic cells. CA PRNGs generate random number sequence as following: each cell generates a 

random bit sequence. In each time step, the state of a cell is recorded. A cell’s randomness value is the 

ENT test result on the sequence it generated. This test is repeated 100 times with 100 randomly 

generated initial seeds (for rule control CA and cell control CA, tested CA). The average randomness 

value is recorded as the final result and the variance of these 100 tests are recorded in the meantime. In 

all the figures presented in this paper, the randomness value is the average value. Fig. 4 shows the test 

result on CCA PRNGs and PCA 90-150 PRNGs. L is the length of CA; M is the number of cycles CA 

runs through. 

The tested CCA0 and CCA1 both have only one controllable cell (cell 8). The rule combination and 

rule control signals for PCA, CCA0 and CCA1 are identical. As shown in Fig. 4 (a), all the PCA cells 

obtain a randomness value about 0.68. The basic cells in CCA0 have a randomness value about 0.84 

while the controllable cell gets a much lower value which is nearly the same as that of PCA cells. Note 

that CCA0 and CCA1 get similar test result, we can derive that the ‘complement’ action of a 

controllable cell is not useful to improve its randomness in this case. Although the randomness of a 

0; if Chi-square >90% or <10% 

 

 

1; if 10% < Chi-square < 90%  
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controllable cell is much worse than that of a basic cell, it improves the overall randomness of CCA0 

and CCA1.  Referring to Fig. 4 (b), we can see that the variance of CCA0 and CCA1 cells, whether 

they are basic cells or controllable cells, is much lower than that of PCA cells. It means that the 

controllable cell can also improve the overall performance stability of CCA0 and CCA1 PRNGs.   

 

 

 

 

 

 

 

 

 

The shortcoming of CCA0 and CCA1 is that the randomness of controllable cells is much worse 

than that of basic cells. To solve this problem, we design another CCA  where the neighbors of a 

controllable cell will bypass it when it is inactive. That means the inactive controllable cell won’t be 

involved in the state computation of its neighbors. In this way, the neighborhood relationship is 

dynamically changed during the CA computation process. This type of CCA is referred to henceforth 

as CCA2 or Neighbor-changing CA (NCA). Note that CCA2 cannot be simulated by a PCA due to its 

neighbor-changing behavior. The randomness test result of CCA2 PRNG is also shown in Fig. 4. We 

can see that for CCA2, the randomness of a controllable cell is similar to that of a basic cell.  

         (a) Randomness value        (b) Randomness value variance 

  Fig. 4 Comparison of PCA/CCA0/CCA1/CCA2  (L=16 bits, M=800 cycles) 

Note: Definition of CCA2 is in the next page 
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Till now, all the random number sequences are sequentially generated by one cell of CA PRNGs. 

But generally CA PRNGs generate pseudorandom numbers in parallel. To evaluate the randomness of 

parallel CCA PRNGs, we design the following test: All the tested CA PRNGs have a length of 16. For 

each generator, an 8-bit integer is generated as the output random number during each time step. Each 

CA PRNG runs M cycles to generate a sequence of M random numbers. This sequence is evaluated 

with the ENT test. For each CA PRNG, this test is repeated 100 times with 100 randomly generated 

initial seeds. The pass rate in the Chi-square test is the percentage of tests whose Chi-square test result 

is between 10% and 90%. The entropy and SCC value are the arithmetic mean of all the 100 tests. 

Table 1 shows the test results on PCA, CCA0, CCA1 and CCA2 PRNGs. All the CCA PRNGs can 

pass the Chi-square test at 100% while PCA PRNGs get a much lower pass rate of 70%. CCA2 gets the 

highest entropy and SCC value among all the tested CA PRNGs. Therefore, we can say that CCA2 

PRNG is the best among them. Since CCA0 and CCA1 get similar results in all the following tests, we 

will only discuss CCA0 in the following work to represent both of them. In the next section, we 

compare the randomness of CCA0/CCA2 PRNGs with that of 1-d PCA PRNGs and 2-d CA PRNGs.   

 

  Chi-square (pass rate) Entropy (average value) SCC (average value) 

PCA 90-150 70% 6.101210 0.121479 

CCA0 100% 6.241210 0.049906 

CCA1 100% 6.268758 

 

0.040313 

CCA2 100% 6.423856 0.008055 

Table 1 ENT test results of PCA/CCA0/CCA1/CCA2 PRNGs 
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4. Controllable CA PRNGs vs 1-d/2-d CA PRNGs 

4.1 CCA0 PRNGs vs 1-d CA PRNGs 

We have shown in the last section that according to the ENT test results, CCA PRNGs are better 

than PCA 90-150 PRNGs. To confirm this, we use a more complete test suite  DIEHARD in the 

following work. The tests in DIEHARD require a large binary file of random integers to be tested. In 

our work, all the random number sequences generated by CA PRNGs are 10M bytes. Table 2 shows 

the DIEHARD test results on PCA 90-150 and CCA PRNGs. The lengths of all the tested PRNGs are 

fixed as 64 cells. The rule combination, rule control signals and cell control signals are identical for all 

tested CA PRNGs. Rule combination is 90 and 150. Rule control CA uses rule 105. Cell control CA 

uses rule 165.  In CCA PRNGs, the controllable cells are averagely distributed among basic cells. Site 

(cell) spacing and time spacing are used in PCA and CCA PRNGs to remove correlation. The site 

spacing parameter ss is the number of sites between outputs in CA. The time spacing parameter ts is 

the number of time steps between output numbers.  

We first test the CA PRNGs without time spacing. To find a suitable site spacing parameter, we 

tested 3 different values: ss = 1, 2 or 3. Referring to Table 2, we can see that when ss=2, both CCA0 

and PCA 90-150 PRNGs get the best results. But they still cannot pass all the testes in DIEHARD. M. 

Tomassini suggested in [9] that time spacing is crucial to generate a very high quality random number 

sequence. Our test results are in accord with his suggestion. With a time spacing of 1, CCA0 PRNGs 

can pass all the tests in DIEHARD. Since under all the circumstance, CCA0 PRNGs pass more tests 

than PCA 90-150 PRNGs, we can conclude with confidence that CCA0 is better than PCA 90-150 in 

random number generation.  
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In [9], Marco Tomassini et al. showed the DIEHARD test results of PCA 90-165 and PCA 90-105 

(in their work, these two CA are referred to as Sipper and Tomassini, and Tomassini et al., 

respectively). Table 3 shows the test results of their CA PRNGs and ours. Without time spacing, both 

PCA 90-165 and PCA 90-105 PRNGs fail at least 5 tests while CCA0/CCA2 PRNGs only fail one test. 

With a time spacing of 2, both PCA and CCA0/CCA2 PRNGs can pass 13 tests while they did not 

P=32, ss=1, ts=0 P=16, ss=2, ts=0 P=8, ss=3, ts=0 P=16, ss=2, ts=1 Test name 

PCA 

90-

150 

CCA0 

/CCA2 

ccn=8  

PCA 

90-

150 

CCA0 

/CCA2 

ccn=8 

PCA 

90-

150 

CCA0 

/CCA2 

ccn=8 

PCA 

90-

150 

CCA0 

/CCA2 

ccn=8 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Perm. 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Fail 

Fail 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Fail 

Pass 

Pass 

Fail 

Pass 

 

12 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Fail 

Pass 

 

14 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

 

15 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

 

17 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Fail 

Fail 

Pass 

 

13 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

 

16 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

17 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass  

 

18 

Table 2 DIEHARD test result on PCA/CCA0 (L=64) 

P=32/16/8-bit integer; p1: averagely interleaving 

ss: site spacing; ts: time spacing; ccn: number of controllable cells 

   count the ones 1: count the ones for specific bytes; 

count the ones 2: count the ones for a stream of bytes 
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provide the test results on the other 5 tests. Hence, we can conclude here that CCA0/CCA2 PRNGs are 

comparable to or better than PCA 90-105 and PCA 90-165 PRNGs. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Considering that CCA use more control lines than PCA, we may suspect that whether we can 

further improve PCA’s random quality with more control lines? 2-bit PCA PRNGs, which use two 

control lines per programmable cell, may be a good example to be compared with CCA PRNGs. In a 2-

bit PCA, 4 rules are available for each cell during CA computation. Here, rules 90, 150, 165 and 105 

are chosen. Table 4 presents the DIEHARD test results of PCA 90-150, CCA0, CCA2 and 2-bit PCA 

L=50, ts=0, ss=2 L=50, ts=1, ss=2  Test name 

CCA0/

CCA2  

PCA 

90-165 

PCA 

90-105 

CCA0/

CCA2 

 PCA 

90-165 

PCA 

90-105 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

 

17 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Fail 

Fail 

 

 

Pass 

Pass 

Fail 

Pass 

Pass 

 

 

 

 

8 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Fail 

Fail 

 

 

Pass 

Pass 

Fail 

Pass 

Pass 

 

 

 

 

8 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

  Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

 

Pass 

Pass 

Pass 

Pass 

Pass 

 

 

 

 

13 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

 

Pass 

Pass 

Pass 

Pass 

Pass 

 

 

 

 

13 

Table 3 DIEHARD test results of PCA 90-105/PCA 90-165/CCA0/CCA2 

PRNGs (L=50 cells) 
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with 50 cells. It shows that with a time spacing of 1 and site spacing of 2, both CCA0/CCA2 and 2-bit 

PCA PRNGs can pass all the tests in DIEHARD while PCA 90-150 PRNGs fail one test.  

L=50, P=16, 

ss=2, ts=1 

L=32, P=16,  

ss=1, ts=1 

L=16, P=8, 

ss=1,ts=1 

Test name 

PCA 

90-150 

2-bit 

PCA 

CCA0/

CCA2 

PCA 

90-150 

2-bit 

PCA 

CCA0/

CCA2 

PCA 

90-150 

2-bit 

PCA 

CCA0/

CCA2 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

 

17 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

 

9 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Fail 

 

12 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

Fail 

 

13 
 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

 

0 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

 

3 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

 

3 

 

Table 4 also presents the DIEHARD test results of CA PRNGs where L=16 and 32. Since the 

length of CA is critical to its randomness, we can say that a CA with less than 32 cells cannot generate 

good random number sequences. Under all the circumstance, CCA0/CCA2 PRNGs get better 

randomness than PCA 90-150 PRNGs. When the length of CA is 32, CCA0/CCA2 PRNGs can pass 

one more test than 2-bit PCA PRNGs. Further we apply the ENT test on CCA0, CCA2 and 2-bit PCA 

PRNGs. The test results are shown in Table 5. All of them can pass the Chi-square test at 100%. In the 

Table 4 DIEHARD test results of 2-bit PCA/CCA0/CCA2 PRNGs 
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SCC and entropy test, CCA2 PRNG gets better result than 2-bit PCA and CCA0 gets similar result as 

2-bit PCA.  

 

 

 

 

 

 

 

 

 

 

 

To examine the behavior of PCA 90-150, CCA0 and 2-bit PCA, we present the two-dimensional 

time-space diagram as shown in Fig. 5. Each generator has 50 cells and runs 200 time steps. The x-axis 

is from cell 1 to 50; the y-axis is from time step 0 to 200 (from top to bottom).  Obviously, PCA 90-150 

has some patterns inside. CCA0, CCA2 and 2-bit PCA have no such patterns in their diagrams.   

  Chi-square (pass rate) Entropy (average value) SCC (average value) 

CCA0 100% 6.241210 0.049906 

2-bit PCA 100% 6.308587 

 

0.030309 

CCA2 100% 6.423856 0.008055 

     Table 5 ENT test results of 2-bit PCA/CCA0/CCA2 

Fig. 5 Time-space diagram of PCA 90-150, CCA0 and 2-bit PCA 

 

 PCA 90-150    2-bit PCA CCA0  CCA2 
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Fig. 6 shows the randomness value of each cell in a 2-bit PCA PRNG where the randomness value 

function is defined as in section 3.2. The results show that a 2-bit PCA PRNG gets similar result as 

CCA2 PRNG and slightly better result than CCA0 PRNG. According to the 

DIEHARD/ENT/randomness value test results and the time-space diagram, we can conclude that 

CCA2 is better than 2-bit PCA and 2-bit PCA is comparable to CCA0 in random number generation. 

While considering the high wiring cost of 2-bit PCA, it is hard to say which one is better between 

CCA0 and 2-bit PCA PRNGs.   

 

 

 

 

 

 

 

 

 

4.2 CCA PRNG vs 2-d CA PRNG  

We have introduced in section 2.3 that Marco Tomassini et al. evolved several 2-d CA PRNGs. In 

[10], they showed that some of the evolved 8×8 2-d CA PRNGs could pass all the tests in DIEHARD. 

Referring to Table 2, we can see that CCA0 PRNG with a time spacing of 2 can pass all the tests in 

DIEHARD too. Thus, we may say that according to the DIEHARD test results, CCA0 PRNGs can 

compete with 2-d CA PRNGs. Except statistical tests, cycle length (the length of a CA’s state cycle) is 

(a) Randomness value     (b) Randomness value variance 

Fig. 6 Comparison of PCA/CCA0/CCA2/2-bit PCA  (L=16, M=800) 
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also important to determine whether a CA is suitable for random number generation. Table 6 shows the 

cycle length of PCA 90-150, 2-bit PCA, CCA0, CCA1 and 2-d CA. The results are calculated as 

average values over 20 random initial seeds. The results show that the average length of PCA 90-150 is 

the smallest. The average cycle length of CCA0 is slightly greater than 2-bit PCA, but less than CCA2. 

This matches the conclusion we have derived from the ENT test that CCA2 is better than CCA0 in 

random number generation. The average cycle length of 2-d CA is greater than CCA0 but less than 

CCA2. It means that CCA PRNGs can be better than or comparable to 2-d CA PRNGs and their 

performance depends on their configurations.  

Type(No. of cells) Avg. cycle length Max cycle length Max/Avg. Log2 (Avg. cycle) 

PCA 90-150 (16) 

2-bit PCA (16) 

CCA0 (16) 

CCA2 (16) 

2-d CA (4×4) 

2521 

2943 

3179 

15411 

4778 

65536 

65536 

65536 

65536 

65536 

26.0 

25.8 

20.6 

4.25 

13.72 

11.3 

11.4 

11.6 

13.96 

12.22 

 

 

5. Discussions 

We have introduced CCA0, CCA1 and CCA2 in the last two sections. In this section, we discuss 

various issues in CCA configurations. We first discuss the usage of controllable cells in CCA0/CCA2 

PRNGs. 

 

5.1 Number of Controllable Cells in CCA0/CCA2 PRNGs 

From the view of hardware design, the shortcoming of a controllable cell is that it needs one more 

control line than a basic cell. Too many controllable cells will increase design complexity and lose the 

merit of structure simplicity. On the other hand, if too few controllable cells are used, it may take a 

Table 6 Average and maximum cycle length of CA PRNGs 
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long time for controllable cells to affect the other basic cells in the CA computation process. Thus, the 

problem lies in the choice of a suitable ratio of controllable cells to basic cells in CCA. 

 

 

 

 

 

 

 

 

 

 

 

 

To compare the randomness of parallel CCA0/CCA2 PRNGs in various configurations, we apply 

the DIEHARD test on three CCA0/CCA2 configurations: all CCA0/CCA2 PRNGs have 64-cells; each 

configuration may have one controllable cell, 8 or 64 controllable cells. The test condition is the same 

as that in Table 2. Table 7 shows the test results. In CCA0, the first two configurations exhibit similar 

randomness quality and pass all the tests in DIEHARD; the third one with 64 controllable cells can 

only pass one test in DIEHARD. It shows that in CCA0 too many controllable cells will degrade the 

overall randomness of CCA0 PRNGs. In CCA2, the first two configurations can pass all the tests in 

CCA0 L=64, P=16, ss=2, ts=1 CCA2 L=64, P=16, ss=2, ts=1 Test name 

ccn=1 ccn=8 ccn=64 ccn=1 ccn=8 ccn=64 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

 

1 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 

 

14 

 Table 7 DIEHARD test results of CCA0/CCA2 with different number of controllable cells  



 

 

 

 

 

                                                                
                                                               

Page 22  

DIEHARD too; the third one can pass 14 tests. It shows that too many controllable cells in CCA2 will 

also degrade the overall randomness quality. Comparing to the test results of CCA0 in which the third 

configuration can only pass one test, obviously CCA2 gets better test results than CCA0 under this 

configuration. It means that the randomness of CCA2 has less dependency on their controllable cell 

configurations than CCA0. In other words, we can say that CCA2 is more stable than CCA0 in random 

number generation. 

 

5.2 Choice of Output Cells in CCA 

We have shown in the last subsection that a suitable ratio of controllable cells in CCA is important 

to generate good random number sequences. Assuming that we have already found a good ratio of 

controllable cells, we would face another problem  which cells should be chosen to generate the 

output?  A cell that generates output bits is called an output cell. Generally, not all the cells in a CCA 

will generate output bits in each time step because the correlation of connected cells is larger than that 

of those unconnected ones. Thus, how to choose the output cells is a critical issue in CCA PRNGs. We 

have pointed out that for CCA0, the randomness of a controllable cell is much worse than that of a 

basic cell. Therefore, in this paper, we only use the basic cells as output cells in CCA0. In CCA2, the 

controllable cells get similar randomness value as basic cells. Thus, all the cells in CCA2 are eligible to 

generate output bits. To decrease the correlation of connected cells, we use site spacing when choosing 

output cells. Referring to Table 2, we can see that a suitable site spacing parameter improves the 

randomness of CCA PRNGs.  

 

5.3 Randomness Value Function Variations 



 

 

 

 

 

                                                                
                                                               

Page 23  

 We have introduced a function F in section 3.2 to calculate the randomness value of cells based on 

the ENT test results. In that function, 60%, 20% and 20% have been chosen as the weightage of the 

Chi-Square, SCC and Entropy test results to derive the final randomness value. The reason for having 

this ratio is that the Chi-Square test is the most important one among the three tests. A higher ratio of 

the Chi-square test result in the randomness value may help us to better in differentiating good random 

sequence from bad ones. Later test results show that the randomness value of cells is generally higher 

than 0.6, which means that most of the tested sequences get 1 in the original Chi-Square test results. 

Under this situation, the 0.6 value seems to be a waste since almost all sequences can get it. We have 

tried different weightages of the Chi-Square, SCC and entropy test results like 4:3:3 or even 3.3: 

3.3.5:3.3.5, however, the results remain the same. 

 

6. Conclusion 

In this paper, we have discussed several CCA PRNGs and compare them with PCA PRNGs and 2-

d CA PRNGs. We find that CCA PRNGs are better in random number generation than PCA PRNGs.  

They can compete with 2-d CA PRNGs while their design complexity and wiring cost will be lower 

than that of the 2-d ones. We have also discussed several different types of CCA PRNGs. CCA0 and 

CCA1 have the simplest configurations. CCA2 gets the best randomness value among all the tested 

generators. All of them can pass the entire tests in DIEHARD. Further, these CCA PRNGs may be 

applied in applications other than random number generation where structure non-uniformity or 

asymmetry is desired.  

 
REFERENCES 



 

 

 

 

 

                                                                
                                                               

Page 24  

[1] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, Mass.: 

Addison-Wesley, 1998. 

[2] De la Guaz-Martinez and Amparo Fuster-Sabater, Cryptographic design based on cellular automata, In 

Proceedings of 1997 IEEE International Symposium on Information Theory, 1997, pp. 180. 

[3] D. R. Chowdhury, I. S. Gupta and   P. Pal Chaudhuri, A class of two-dimensional cellular automata and 

applications in random pattern testing, Journal of Electrical Testing: Theory and Applications, Vol. 5, 1994, pp. 

65-80. 

[4] G. Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, 1998. 

[5] I. Kokolakis, I. Andreadis and Ph. Tsalids, Comparison between cellular automata and linear feedback shift 

registers based pseudo-random number generators, Microprocessors and Microsystems, Vol. 20, 1997, pp. 643-

658. 

[6] M. Matsumoto, Simple cellular automata as pseudorandom m-sequence generators for built-in self-test, 

ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, 1998, pp. 31-42. 

[7] M. Mihaljevic, Security examination of a cellular automata based pseudorandom bit generator using an 

algebraic replica approach, In Proceedings of Applied Algebra, Algorithms and Error Correcting Codes, Lecture 

notes in Computer Science, Vol. 1255, 1997, pp. 250-262. 

[8] M. Mihaljevic and Hideki IMAI, A family of fast keystream generators based on programmable linear 

cellular automata over GF(q) and time-variant table, IEICE Trans. Fundamentals, Vol. E82-A, No. 1, 1999, pp. 

32-39. 

[9] Marco Tomassini, Moshe Sipper, Mose Zolla and Mathieu Perrenoud, Generating high-quality random 

numbers in parallel by cellular automata, Future Generation Computer Systems, Vol. 16, 1999, pp. 291-305. 

[10] Marco Tomassini, Moshe Sipper and Mathieu Perrenoud, On the generation of high-quality random 

numbers by two-dimensional cellular automata, IEEE Trans. Comput., Vol. 49, 2000, pp. 1146-1151. 



 

 

 

 

 

                                                                
                                                               

Page 25  

[11] Moshe Sipper and Marco Tomassini, Generating parallel random number generators by cellular 

programming, International Journal. Modern Physics, Vol. 7, No.2, 1996, pp.181-190. 

[12] P. D. Hortensius, R.D. Mcleod, and H.C. Card, Parallel random number generation for VLSI system using 

cellular automata, IEEE Trans. Comput., Vol. 38, 1989, pp. 1466-1473. 

[13] P. D. Hortensius, R. D. Mcleod, Werner Pries, D. Michael Miller and H. C. Card, Cellular automata-based 

pseudorandom number generators for built-in self-test, IEEE Transactions on Computer-Aided Design, Vol. 8, 

No. 8, 1989, pp. 842-859. 

[14] P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chattopadhyay, Additive cellular automata: theory and 

applications, Vol. 1, Los Alamitos, Calif.: IEEE CS Press, 1997. 

[15] Palash Sarkar, A brief history of cellular automata, ACM Computing Surveys, Vol. 32, No. 1, 2000, pp. 80-

107. 

[16] Paul H. Bardell, Analysis of cellular automata used as pseudorandom pattern generators, In Proceedings of 

International Test Conference (1990), 1990, pp. 762-768. 

[17] S. Nandi, B. K. Kar, and P. Pal Chaudhuri, Theory and applications of cellular automata in cryptography, 

IEEE Trans. Comput. 43, 1994, pp. 1346-1357. 

[18] S. Wolfram, Cryptography with cellular automata, Advances in Cryptography: Proceedings of CRTPTO 85, 

Lecture Notes in Computer Science, Vol. 218, 1985, pp. 429-432. 

[19] S. Wolfram, Theory and Applications of Cellular Automata: Including Selected Papers 1983-1986, World 

Scientific publishing Co., Inc., River Edge, NJ. 1986. 

[20] W. Pries, A. Thanailakis, and H.C. Card. Group properties of cellular automata and VLSI applications, 

IEEE Trans. Comput., Vol. C-35, 1986, pp. 1013-1024. 

[21] ENT test suite, http://www.fourmilab.ch/random 

 

 



 

 

 

 

 

                                                                
                                                               

Page 26  

APPENDIX 

1. ENT Test 

ENT is a Pseudorandom Number Sequence Test Program, which applies various tests to sequences 

of bytes stored in files and reports the results of those tests [21].  This program is useful for evaluating 

pseudorandom number generators for encryption. ENT performs a variety of tests on the input stream 

of bytes in in_file and produces output as follows on the standard output stream: 

• Entropy: the information density of the contents of the file, expressed as a number of bits of 

character. The optimal value is 8. Larger value means better randomness. 

• Chi-square Test: the most commonly used test for the randomness of data, sensitive to 

errors in pseudorandom sequence generators. This test is calculated for the stream of bytes 

in the file and expressed an absolute number and a percentage that indicates how frequently 

a truly random sequence would exceed the value calculated. “Good” results are between 

10%-90%, with extremities on both sides representing non-satisfactory random sequences. 

• Serial Correlation Coefficient (SCC): measures the extent to which each byte in the file 

depends upon the previous byte. For random sequences, this value should be close to 0. 

Whether the value is positive or negative does not affect the randomness and smaller 

absolute value means better randomness. 

 

2. DIEHARD 

DIEHARD seems to be the most powerfully general test for randomness. Generally, a PRNG which 

can pass DIEHARD can be considered good. The DIEHARD battery of test consists of 18 different, 

independent statistical tests. Results of tests are so called “P-value” which is a real number between 0 

and 1. For any given test, smaller P-value means better test result with the exception that a P value less 

than 0.025 or larger than 0.975 means that the PRNG has failed the test at the .05 level. A complete 

description of all the tests in DIEHARD is available in [4]. 


