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Abstract. Detecting salient objects from images and videos has many useful applications in computer
vision. In this paper, a novel spatiotemporal salient region detection approach is proposed. The proposed
approach computes spatiotemporal saliency by estimating spatial and temporal saliencies separately. The
spatial saliency is computed estimating of color contrast cue and color distribution cue by exploiting
patch level and region level image abstractions in a unified way. The aforementioned cues are fused to
compute an initial spatial saliency map, which is further refined to emphasize saliencies of objects
uniformly, and to suppress saliencies of background noises. The final spatial saliency map is computed by
integrating the refined saliency map with center prior map. Temporal saliency is computed based on local
and global temporal saliencies estimations using patch level optical flow abstractions. Both local and
global temporal saliencies are fused to compute the temporal saliency. Finally, spatial and temporal
saliencies are integrated to generate a spatiotemporal saliency map. The proposed temporal and
spatiotemporal salient region detection approaches are extensively experimented on challenging salient
object detection video datasets. The experimental results show that the proposed approaches achieve an
improved performance than several state-of-the-art saliency detection approaches. In order to compensate
different needs in respect of the speed/accuracy tradeoff, faster variants of the spatial, temporal and
spatiotemporal salient region detection approaches are also presented in this paper.

Keywords: Salient region detection, temporal saliency, optical flow abstraction, spatiotemporal saliency
detection, saliency map.

1. Introduction

Detecting salient regions from images and videos that captures the attention of Human Visual System
is an interesting and difficult multi-disciplinary problem. Many computational visual attention models
have been proposed over the years, to resemble the mechanism of the Human Visual System’s remarkable
ability to fixate conspicuous/salient regions from a visual scene. The field has gained considerable
attention in the recent years, and has become an active area of research in computer vision due to its
applications in object detection [1], object recognition [2], adaptive image and video compression [3],
image retargeting [4,5], summarization of photo collections [4] and video summarization [6], where
saliency detection is considered as an essential step towards achieving a vision goal.
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Existing works on visual saliency detection can be roughly categorized into bottom-up and top-down
approaches. Most of the earlier bottom-up approaches model humans’ instinctive, stimulus-driven
attention to distinct low level visual features such as color, intensity and orientation [7]. Recent bottom-up
saliency detection approaches estimate saliency based on local, regional and global contrast [8,9,10].
Saliency computed by contrast-based bottom-up approaches is considered as low-level saliency. Top-
down saliency detection approaches [11] simulate humans’ task-driven attention driven by their
knowledge, expectations, and current goals, thus it is considered high-level saliency. Goal-driven saliency
is achieved by incorporating prior knowledge on visual features statistics and object level semantic
features such as text, faces, etc. Some prior work [11,12] combines both bottom-up and top-down
mechanisms into a unified framework for visual saliency detection. Due to their computational efficiency,
adaptability and unsupervised nature, bottom-up approaches are widely used for saliency detection.

Bottom-up saliency is often computed by pixel/patch level contrast estimation, which is defined as
the pixel’s or patch’s state of being different from its surroundings. Local contrast based saliency
detection approaches [7,13] estimate saliency using multi-scale low level image feature analysis based on
a biologically motivated saliency theory called center-surround difference mechanism [7], which makes it
suitable for detection of human eye fixations in images. This further motivated global contrast based
approaches [9,10], that operate on either patch level [5,10] or region level [2,9,14,15] image abstractions.
When compared to the local contrast based approaches, global contrast estimation is computationally
more efficient, and accurate for salient region detection. This has established global contrast estimation as
a promising mechanism for salient object detection and segmentation.

Since a salient object comprises unique visual elements which cannot be represented well by their
surroundings, the rarity of features is also widely used for saliency detection. The rarity of an image’s
element can be measured using self-information [16], graphic models [17], log-spectrum [3,18,19] and
feature sparsity models [20]. The rarity of an image’s features is measured in a global context most of the
time. Saliency maps generated by these global rarity based saliency detection methods exhibit significant
amount of blurriness. Moreover, these methods often emphasize small scale globally rare image elements
which most of the time might be considered as noise by humans. More recent rarity-based visual saliency
detection approaches belong to RARE algorithms family - RARE2007 [21], RARE2011 [22] and
RARE2012 [23] effectively predict human gazes in the images with less background noises. The
aforementioned local contrast-based and rarity-based visual saliency detection methods are more suitable
for predicting human eye fixations rather than detecting salient objects in images. A comprehensive
survey on recent state-of-the-art approaches in visual attention modeling, and a detailed study on
comparison metrics for human gaze prediction can be found in [24] and [25] respectively.

Recent salient region detection approaches [5,10,15] have begun estimating another important cue for
saliency called color distribution. Since color components of a salient object are always spatially compact
rather than widely spread around the image, a lower spatial distribution of a color component indicates its
higher spatial saliency, and vice versa. Apart from these two low-level saliency cues, another widely used
high-level saliency cue is center prior [5,8,11,12,14,26]. The center prior gives more importance to
regions that are near to image center, since salient objects are placed near the image center most of the
time. The spatial salient region detection approach presented in this paper is based on our previous work
in [27], which computes the aforementioned color contrast and color distribution cues by exploiting patch
and region abstractions in a unified way. Usually, images patches are compared with each other to
compute color contrast and color distribution cues for salient region detection. In our previous work, we
have shown that the color contrast and color distribution of patches can also be efficiently computed by
comparing them with a relatively low number of region abstractions.

Despite the significant progress made towards modeling visual saliency detection, most of the visual
attention models have only a spatial saliency detection component, thus they work only on images.
Relatively few spatiotemporal saliency detection models have been proposed for saliency detection in
videos. Similar to spatial saliency detection, some research efforts adopted local motion contrast for
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temporal saliency detection [28,29,30]. However, similar to that of local contrast based spatial saliency
detection, the saliency maps produced based on local motion contrast often tend to emphasize boundaries
of salient object in videos.

For temporal saliency detection, some models [3,31] simply include motion channel into the saliency
detection framework. The motion channel of a video frame is computed as a temporal gradient [3,31],
which is the intensity difference between two successive video frames. Detecting temporal saliency in this
way works well as long as the camera is static. However, for videos with the presence of high background
motion and camera motion, these methods often fail to detect salient objects accurately due to noises in
temporal gradient. Most of these local motion contrast-based methods for spatiotemporal saliency
detection need multi-scale feature analysis, thus they suffer from high computational complexity.

Optical flow computed between two consecutive videos frames is often treated as motion channel for
temporal saliency detection [8,32,33]. Some of these works [8,32] directly incorporate the motion
information computed using optical flow estimation into the saliency detection framework. However,
high camera and background motions in a visual scene degrade the performance of optical flow based
temporal saliency detection. Hence optical flow is abstracted at patch level to compute global motion
contrast present in a visual scene [33]. Nonetheless, the histogram based patch level motion abstraction
[33] suffers from high computational complexity and low discriminability.

In order to solve the aforementioned problems characteristic of spatiotemporal saliency detection, this
paper proposes a novel and robust approach for temporal saliency detection in videos. The proposed
method makes use of an efficient optical flow based patch level motion abstraction approach for
computing local and global temporal saliencies. The local temporal saliency is computed as the center-
surround difference of patch motions, where the global temporal saliency is estimated as the global rarity
of a patch’s motion. These two cues are fused to compute the temporal saliency which is then integrated
with the spatial saliency for estimating the spatiotemporal saliency of a visual scene. Applications of
spatial saliency detection such as image thumbnail generation, bounding box based object extraction,
image retargeting, and video summarization do not need pixel accurate saliency maps, but require high
speed saliency estimation [34]. To meet this requirement, faster variants of the proposed salient region
detection methods are also presented in this paper.

The main contributions of this paper are summarized as follows:

1. In contrast to most of the biologically inspired spatiotemporal saliency detection approaches
which are highly suitable for human eye fixation prediction, this paper proposes a novel and
unified framework for spatiotemporal salient region detection from the view point of detection
and segmentation of salient objects present in videos. Unlike most of the spatiotemporal saliency
detection approaches which simply include motion channel into the saliency detection framework
for estimating temporal saliency, the proposed approach separately estimates spatial and temporal
saliencies by exploiting different salient region detection theories in a novel and unified way.

2. A novel and unified approach for temporal salient region detection is proposed in this paper. The
proposed approach computes local and global temporal saliencies using a novel optical flow
based patch level motion abstraction approach which makes the temporal saliency estimation
robust to dynamic camera and background motions. The proposed multi-level center-surround
differencing based local temporal saliency detection approach can be extended into spatial
domain for salient object detection and human eye fixation prediction.

3. For spatiotemporal saliency-based applications that need a different speed/accuracy tradeoff,
faster variants of the proposed temporal and spatiotemporal salient region detection approaches
are also presented in this paper. The variants of the proposed approaches present a faster and
more robust salient object detection performance, which also outperform the other methods in
some cases.
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The rest of the paper is organized as follows. Section 2 discusses related work on spatial, temporal
and spatiotemporal saliency detections. Sections 3 and 4 introduce the approaches for spatial salient
region detection and temporal salient region detection respectively. Experimental results of the proposed
temporal and spatiotemporal approaches compared to the state-of-the-art methods are presented in section
5. Finally, section 6 concludes the paper with future work.

2. Related Work

A comprehensive survey on salient object detection can be found in [35]. However, this section
briefly reviews the previous literature on bottom-up visual saliency detection and salient object detection,
which is accordingly categorized into spatial, temporal and spatiotemporal saliency detection.

2.1 Spatial Saliency Detection

A Dbiologically inspired early representation model for visual saliency detection was proposed by
Koch and Ulman [36]. This further inspired Itti et al. [7] to propose a highly influential computational
method which performs local center-surrounded difference analysis of image features such as color,
intensity and orientation across multiple scales. The center-surround differencing mechanism is
performed using the Difference of Gaussian (DoG) approach. Saliency maps generated by biologically
inspired approaches are blurry and often contain highly emphasized small local features in the image
which might be considered as noises.

Several approaches were proposed to improve Itti’s model [7] including a fuzzy growing model [37]
that estimates pixel-level dissimilarity in an image for saliency estimation. Liu et al. [8] proposed a color
histogram-based computation of region-based center-surround difference mechanism. A graph-based
saliency detection method using random walk is presented by Harel et al. [17]. Saliency maps produced
by these methods often tend to overemphasize saliency near the edges rather than highlighting the salient
region uniformly. Most of these biologically motivated local contrast based approaches require multi-
scale feature analysis which makes them computationally infeasible for applications that need faster
performance.

While almost all the saliency detection approaches work in the spatial domain of an image, purely
computational models that work in the frequency domain of an image were also proposed in recent years.
For instance, Hou et al. [18] proposed saliency detection using spectral residual in the amplitude spectrum
of Fourier transformed image. Jung et al. [19] further extended [18] for local contrast detection, and
combined the global and local saliencies into a unified approach. However, Guo et al. [3] showed that the
Phase spectrum of the Quaternion Fourier Transform (PQFT) can be utilized for better saliency
estimation. Despite these methods being considerably faster compared to the saliency detection methods
operating in the spatial domain, they generate undesirable blurry saliency maps with saliency values
highlighted near edges, corners and object boundaries.

Global contrast based approaches estimate saliency of an image element by computing its contrast
with respect to the rest of the image elements in a global manner. Achanta et al. [38] proposed a
frequency-tuned method for pixel-level saliency estimation defined as the dissimilarity between the
Gaussian blurred image and the mean color of the image. This method often suffers from cluttered and
textured image background, however. Goferman et al. [4] proposed a patch based global saliency
detection by combining local and global contrast estimations. Since their approach needs multi-scale
analysis, it suffers from high computational cost. Similar to the local contrast based methods, this
approach also produces saliency maps with overemphasized object contours. Duan et al. [39] handles the
combinatorial complexity behind global contrast estimation using dimensionality reduction. They defined
saliency of a patch as spatially weighted dissimilarity in a reduced dimension space, which often results in
significant loss of potential saliency details in the salient maps.
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Cheng et al. [9] proposed a spatially weighted region-based global contrast estimation approach for
saliency detection. Their global contrast based method often highlights background clutters, and detects
only some parts of the salient object. Fu et al. [14] proposed a cluster based global contrast estimation for
saliency detection. Since a cluster consists of disconnected pixels spread over the image, this approach
does not consider the spatial distance between clusters for contrast computation. Determining the number
of clusters is also a typical problem with this approach, by which saliency detection is often affected by
an insufficient/unsuitable number of clusters. Moreover, the formulation of color distribution cue for
saliency is difficult these two approaches. Ren et al. [2] clustered superpixels by Gaussian Mixture Model
for saliency detection. In their work, saliency of a cluster is defined as its compactness which is estimated
as the inter-cluster distance between clusters. Since region-based methods compute and assign saliency at
region level, imprecise segmentation of regions always leads to degraded performance.

Recent approaches [5,10,15,40] estimate both color contrast cue and color distribution cue for a
unified solution to salient object detection. Perazzi et al. [10] segmented an image into superpixels and
computed color contrast and color distribution cues using an efficient high dimensional Gaussian filtering
mechanism. However, their method sometimes highlights only some parts of the salient object. Fu et al.
[5] proposed a superpixel-based saliency detection approach which uses spatially weighted color contrast,
and color distribution estimations. Sometimes, their method fails to segment the salient object from a
cluttered background. Gopalakrishnan et al. [40] also proposed a color and orientation distribution based
spatial salient region detection approach. The color distribution based saliency is computed as the
compactness and the isolation of a color cluster using a Gaussian mixture model (GMM) in the hue-
saturation (H-S) space. The orientation distribution based saliency is estimated as the spatial variance of
global orientation and orientation entropy contrast using orientation histogram of a local patch. In related
work, Cheng et al. [15] employed a Gaussian Mixture Model based image abstraction approach for
detecting salient regions, where the abstractions were used to estimate both color contrast and color
distribution cues.

The existing saliency detection approaches work on either patch level [510] or region level
[2,9,14,15] image abstractions. Each of these abstractions has their advantages. However, saliency
detection with patch level image abstractions often suffers from quadratic runtime complexity. Also, the
patch level saliency estimation often fails to highlight salient objects uniformly, and labels non-salient
background noises as salient. On the other hand, region-based saliency estimation methods uniformly
highlight the saliency of objects and suppress background saliencies with comparatively lower runtime
complexity. However, region-based saliency detection methods totally depend upon the performance of
the method used for image segmentation. Thus, imprecise segmentation or insufficient number of regions
often results in poor performance.

Based on our previous work in [27], the spatial salient region detection approach presented in this
paper combines both patch level and region level image abstractions which were separately considered for
salient region detection in many others’ works. Furthermore, a computationally efficient saliency
refinement approach is presented to solve the saliency assignment issues in patch level saliency detection.
In addition, faster variants of the method are also presented to achieve high speed saliency estimation in
images.

2.2 Temporal Saliency Detection

Several temporal saliency detection models have been proposed over the years for detecting
background regions in a visual scene, which is a complementary mechanism of saliency detection.
Distribution of pixel intensities is represented by probability density function to predict the probability of
background pixels in newly arrived video frames. Gaussian Mixture Model (GMM) is a most widely used
probabilistic models for background modeling [41]. Since these models need exquisite tuning of several
parameters that are involved, Elgammal et al. [42] proposed a parameter free probabilistic model for
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background detection. Heikkild et al. [43] proposed patch level texture based background modeling using
histogram of Local Binary Pattern (LBP). This method is often affected by small scale textured image
noises. In order to solve this problem, Liao et al. [44] proposed a novel texture descriptor called Scale
Invariant Local Ternary Pattern (SILTP) for background modeling. These probabilistic models usually
need a training phase in order to learn statistics of the background features. Background probability based
temporal saliency detection often fails to work on videos with dynamic background or moving camera.

Optical flow estimation is often adopted for suppressing noises induced by the aforementioned
problems. Wixson et al. [45] estimated temporal saliency of a video by computing directionally-consistent
optical flows over successive video frames. Bugeau et al. [46] proposed an approach for removing
background pixels using camera compensation, and used the mean shift algorithm for segmenting the
foreground region of a salient motion. However, sometimes the salient motion detected by these methods
might belong to the background, since these methods do not consider spatial saliency for detecting salient
objects from videos. Moreover, the approaches for temporal saliency detection and the background
modeling do not work efficiently on videos captured with significant camera motion.

2.3 Spatiotemporal Saliency Detection

Only a few models for saliency detection comprise components for both spatial and temporal saliency
detections, thus they can work in images as well as videos. Zhai et al. [47] computed correspondence
between keypoints of successive video frames for estimating temporal saliency. They used histogram
based pixel level global contrast estimation for spatial saliency detection. Since this method uses
keypoints for estimating temporal saliency, exact localization and segmentation of salient regions from a
video frame becomes difficult. Inspired by retina mechanism, Marat et al. [28] computed spatiotemporal
saliency by applying spatial and temporal filters in video frame. However saliency detection considering
only local context results in degraded performance. Seo et al. [29] proposed to measure saliency as the
center-surround contrast based on a pixel's resemblance to its surroundings. Since their approach works
on downscaled images, the method results in highly blurred saliency maps. Mahadevan et al. [30]
proposed a probabilistic approach for discriminant center-surround spatiotemporal saliency detection by
using patch level dynamic textures. A common problem with these local motion contrast based methods is
that they often emphasize saliency near object boundaries, thus they need multiscale feature analysis to
reduce this effect which is computationally expensive.

Some of the spatiotemporal saliency detection models [3,31] compute temporal saliency by including
motion channel into the saliency estimation strategy, in addition to color, intensity and orientation
channels. These models use temporal gradients calculated from the intensity difference of two successive
video frames. Kim et al. [31] computed temporal saliency as the sum of center surround difference of
temporal gradients of the patches. Similar to the aforementioned local motion contrast based models, the
saliency maps produced this method also often emphasize saliency near object boundaries. Guo et al. [3]
simply incorporated motion channel into the Fourier Transform based saliency detection framework.
Computing temporal saliency by treating temporal gradients as motion channel works well as long as the
camera is static. Otherwise, the temporal saliency map for visual scene with high camera motion and
dynamic background tends to contain much noise, rather than salient objects.

To overcome these issues, optical flow estimation is often adopted for computing motion contrast in a
visual scene for measuring temporal saliency. Chen et al. [32] detected space-time interest points by a
spatiotemporal Harris corner detector, which are fused with optical flow for spatiotemporal saliency
detection. Liu et al. [8] computed spatial saliency by estimating multi-scale contrast, center-surround
histogram and color distribution in local, regional and global manner. Their method computed temporal
saliency by including SIFT flow based 2D motion vectors into the saliency detection framework.
However their saliency maps often contain saliency values are spread around the image than being
spatially compact. In related work, Wu et al. [33] computed temporal saliency as global motion contrast
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using patch level histogram based optical flow abstraction called as Histogram of Average Optical Flow
(HOAOF). This motion abstraction reduces the influence of high camera and background motions in
optical flow. However, this histogram based motion contrast estimation is computationally expensive, and
is less discriminative to different motions since it uses a smaller number of quantized flow orientations.

In order to solve these aforementioned issues, this paper proposes a novel approach for temporal
saliency detection. The proposed approach computes local and global temporal saliencies separately, and
fuses them to obtain temporal saliency map. Local and global temporal saliencies proposed in this paper
are inspired from the work proposed in [13]. In their work, sparse coding based patch level image
abstraction is used for local and global spatial saliency detection. They exploited both local and global
considerations for saliency detection, which had been regarded separately by many works. Their method
is proposed for spatial saliency detection which is experimented with human eye fixation prediction. In
this paper, however, the saliency of a patch in local and global context is employed for temporal salient
region detection, which is experimented with standard salient object detection video datasets.

Figure 1 depicts the proposed spatiotemporal salient region detection framework". Usually, most of
the biologically inspired visual saliency detection approaches compute spatial saliency by operating on
different image channels such as color, intensity, orientation, etc. Those models are further extended to
detect temporal saliency in videos just by incorporating motion channel into the saliency detection
framework. Nonetheless, the proposed approach separately computes spatial and temporal saliencies
based on different salient region detection theories in spatial and temporal domain, thus it can be
considered as a unified framework for spatiotemporal salient region detection.
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! The prototype sottware of the proposed approaches is submitted as a part ofthe supplementary material.



3. Spatial Salient Region Detection

The spatial salient region detection method is described in this section. Figure 2 depicts the main
phases involved in the spatial salient region detection approach.

(d) Color contrast (e) Color distribution

(f) Fused Saliency (9) Refined saliency (h) Center prior map (i) Final saliency map (j) Ground truth
Fig. 2. Main phases of the spatial salient region detection approach. First an image (a) is abstracted at patch level (b).
The patch level abstractions are used for region level image abstraction (c). Both of these abstractions are further
used for color contrast estimation (d) and color distribution estimation (e). These two cues are fused to compute
saliency of an image (f) which is further refined adaptively (g). Lastly, center prior map (h) is integrated to generate
the final saliency map (i).

3.1 Patch Level Image Abstraction

Saliency computation with pixel-level comparisons [47] on an image with thousands of pixels is
computationally expensive. Moreover, saliency estimation on down-sampled images produce highly
blurred saliency maps, thus localization or segmentation of salient objects becomes difficult. To reduce
the computational complexity experienced in pixel-level saliency estimation, as in [2,5,10], the given
image | is segmented into small scale edge preserving regions called superpixels.

Since the computational cost of a superpixel segmentation algorithm is directly proportional to the
number of pixels in an image, larger dimensions of the input image degrade the computation time of patch
segmentation. Also, the video frames with higher dimensions increase the time required for optical flow
estimation used in the proposed temporal saliency detection approach. In order to maintain size
uniformity among different images/video frames and to reduce the computational overhead experienced
with the images with large dimensions, the given image/video frame in an arbitrary size is resized with
the maximum image dimension being 400 pixels. For applications such as image segmentation and image
retargeting, the final saliency maps are again resized into the original image resolution. So, the input
images are not resized with very lower resolution even though resizing input images with very smaller
dimensions can fasten the superpixel segmentation and optical flow estimation.

The SLIC superpixel segmentation [48] is employed to achieve patch level image segmentation,
which produces highly compact and edge preserving homogenous superpixels. The number of superpixels
N is set to 500 for the experiments. Each superpixel s; is represented by a mean color sc; (in CIELab color
space) and a spatial position sp; (x and y image coordinates).

SLIC abstracts an image effectively, albeit it suffers from slow computation speed. To accomplish
faster patch level image abstraction, the image is segmented into equal sized non-overlapping square
patches of size wxw. Since, the image dimensions might not be exactly divisible by w, an image is resized
into a size that is both divisible by w and has a minimal change in the aspect ratio of the original image.
Similar to N, the parameter w determines the tradeoff between speed and accuracy in saliency detection.
Smaller sized patches abstract an image better than larger sized patches, because larger patches might
contain pixels from both the foreground and background. However, smaller sized square patches increase
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the computational complexity in saliency detection. To balance both speed and accuracy, w is empirically
set to 15, which segments a 400=300 image into 540 square patches. Similar to superpixels, each square
patch is also represented by a mean color and a spatial position. Figure 3 depicts the saliency maps
computed with superpixel-based and uniform sampling-based patch segmentations. This shows that
superpixel-based saliency maps are more accurate than square patch-based saliency ones.

3.2 Region Level Image Abstraction

¥ ¥

(a) Source image (b) Superpixel based (c) Square patch (d) Ground Truth
saliency map based saliency map
Fig. 3. (a) Source image, (b) and (c) saliency maps estimated with superpixel based patch segmentation, and
uniform sampling based patch segmentation, (d) ground truth.

The segmented superpixels are grouped into regions by employing a spectral clustering algorithm
[49]. Let G = {V, E} be a weighted undirected graph, having nodes V = {sy, S, S3...Sx} corresponding to
the set of superpixels