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Abstract 

In this paper the role of self-validated computing for solving the energy hub-scheduling problem in 

the presence of multiple and heterogeneous sources of data uncertainties is explored and a new 

solution paradigm based on Affine Arithmetic (AA) is conceptualized. The benefits deriving from 

the application of this methodology are analysed in details, and several numerical results are 

presented and discussed. 

 

1.0 Introduction 

Traditional energy networks are today subject to many demanding challenges such as aging 

infrastructures, need for new generation facilities, network expansion to meet growing energy 

demand, distributed energy resources and reliability coordination.  

In this complex scenario, the large-scale deployment of the Energy Hub paradigm represents one of 

the most promising enabling technology aimed at supporting the evolution of traditional energy 

networks according to holistic, proactive, reconfigurable and self-healing web-based architectures 

based on distributed, self-organizing and cooperative energy resources. 

From a conceptual point of view, the energy hub can be considered as a set of interconnected 

converter and storage systems aimed at processing multiple energy carriers and providing high-

value energy services at its load ports (e.g. electricity, heating) [1-3]. A wide and heterogeneous 

spectrum of technologies can be adopted to implement an energy hub, including combined heat and 

power technology, tri-generation systems, power-electronic devices, and heat exchangers. These 

enabling technologies allow the energy hub to supply its loads by means of multiple and redundant 

paths, characterized by different combinations of energy carriers, which introduce many degree of 

freedoms in energy hub supply compared to the traditional, decoupled energy systems [4,5].  



This greater supply flexibility, if properly managed, could increase the overall efficiency of energy 

networks by: (i) supporting massive pervasion of distributed generation and storage energy systems; 

(ii) facilitating the integration of renewable energy sources; (iii) reducing system losses and 

greenhouse gas emissions; (iv) increasing the reliability of the energy supply to the customers [6,7]. 

Consequently, a significant growth in the number of geographically dispersed energy hubs 

connected to energy networks is expected in the near future.  

From this perspective, a crucial issue is how to attain a reliable and cost effective operation of the 

interconnected energy hubs by properly dispatching their input energy carriers, which could be 

characterized by different features such as cost, availability, reliability and environmental impacts. 

This operation-scheduling problem could be formalized by a non-linear constrained optimization 

problem, whose objective function measures the energy scheduling effectiveness and the problem 

constraints include both equality (e.g. the energy balance in the energy hub) and inequality (e.g. 

energy converter ratings) functions. 

Solution methods traditionally adopted to solve this problem generally assume that both the input 

data and the hub parameters are described by crisp values, which should be fixed by the analyst 

based on preliminary studies and simplified hypothesis about the energy hub under study. These 

approaches, here referred as deterministic dispatch algorithms, identify operation-scheduling 

strategies, which are deemed effective for a limited set of energy hub operation states. Thus, in the 

presence of data uncertainties, comprehensive scenario analysis, aimed at identifying the correct 

solution domain, should be implemented. 

This is a major issue in real world applications, where multiple and heterogeneous source of 

uncertainties could sensibly affect the reliable and cost effective energy hub operation, such as the 

complex dynamics of the energy costs, the random energy demand fluctuations, the uncertain power 

injections from renewable power generators and the non-idealities characterizing the operation of 

the energy hub elements. In this context, the research for reliable solution methodologies aimed at 

solving the energy hub operation-scheduling problem in the presence of uncertain data represents 



one of the most relevant issues to address [8,9]. The adoption of these methodologies allows the 

analyst to compute both the data tolerance, i.e. uncertainties characterization, and the solution 

tolerance, i.e. uncertainty propagation, providing insight into the confidence level of the operation-

scheduling strategy. Moreover, it can effectively support the analyst in computing comprehensive 

sensitivity analysis aimed at estimating the rate of change in the problem solution with respect to 

large changes of the input data. 

Conventional methodologies available in the literature address this problem by means of sampling 

and analytical techniques [8,9], which aim at modelling the variability and stochastic nature of the 

uncertain data. In particular, uncertainty analysis based on sampling based methods require several 

model runs aimed at sampling various combinations of the uncertain data, and, since the number of 

simulations may be rather large, especially in the presence of large and uncorrelated uncertain 

parameters [20,21], the required computational burden could be prohibitively expensive [10].  

Analytical techniques are computationally more effective, but they require some mathematical 

assumptions in order to simplify the problem and obtaining an effective characterization of the 

output random variables [18]. These assumptions are typically based on convolution techniques and 

fast Fourier transform. However, as discussed in [11,12], analytical techniques present various 

shortcomings, such as the statistical dependence of the input data, and the problems associated with 

accurately identifying probability distributions for some input data [22,23]. These issues are not 

infrequent in energy hub analysis, since the analyst is not always confident in translating its 

imprecise knowledge in terms of probability distributions for some input variables, such as the 

power generated by renewable power generators, due to his/her qualitative knowledge and the lack 

of sufficient data. To face this issue, the analyst makes often the assumption of normality and 

statistical independence of the input data, but experimental results show that these assumptions are 

often not supported by empirical evidence. These drawbacks may limit the use of analytical 

methods in practical applications, especially for the study of complex energy hubs [24]. 



In order to overcome some of the aforementioned limitations of sampling and analytical methods, 

more sophisticated techniques for uncertainty analysis of complex systems, based on the self-

validated computing theory, have been recently proposed in the literature [25,26]. The main 

advantage of this paradigm is that it keeps track of the accuracy of the computed quantities, as part 

of the process of computing them, without requiring information about the type of uncertainty in the 

parameters [25]. The simplest and most popular of these models is Interval Mathematics (IM), 

which allows for numerical computation where each quantity is represented by an interval of 

floating point numbers without a probability structure [26]. However, the adoption of this solution 

technique present many drawbacks derived mainly by the so called “dependency problem” and 

“wrapping effect” [25, 27], which make the solution provided by an IM method not always as 

informative as expected.  

To overcome these limitations, in this paper a more effective self-validated paradigm based on 

Affine Arithmetic (AA) is proposed to solve the energy hub operation-scheduling problem [13,14]. 

AA is an instance of self-validated computing in which all the problem variables are represented by 

means of affine combinations of certain primitive variables [15]. The main benefits of AA is that, 

unlike standard IM, it propagates the uncertainties by keeping track of their correlations, and, 

consequently, it is less affected by the loss of precision often observed in long interval computations 

[16].  

The application of AA for uncertainty representation in energy hub operation scheduling allows the 

analyst to express each decision variable by a central value and a set of partial deviations. These 

deviations are associated with as many noise variables as those describing the effect of the various 

uncertainty sources affecting the energy hub operation. 

The parameters of these affine forms can be computed by approximating the objective function and 

the equality and inequality constraints describing the operation-scheduling problem by a linear 

relaxation based on AA. Starting from this set of equations, the energy hub operation-scheduling 

problem in the presence of data uncertainty can be formalised by a linear multiobjective 



programming problem. The solution of this problem allows the analyst to assess an enclosure of the 

objective function range, which is guaranteed to contain its actual value. Moreover, the “nominal” 

energy hub dispatching strategy can be defined according to the central value of the affine forms of 

the decision variables, while the corresponding partial deviations can be used to correct the 

dispatching strategy depending by the actual energy hub operation point. These important features 

allows the analyst to solve simultaneously both the short/medium (i.e. one day ahead) and the real 

time operation-scheduling problem. 

 

2.0 Problem formulation 

 

2.1 Mathematical background 

In energy hub dispatch analysis, the energy hub is typically modelled by a multi-inputs/multi-

outputs system aimed at converting the input energy flows .1 NE ,. ,E   E , into the output energy 

flows  1 .., ML LL ,  [2,8]. Depending by the particular architecture deployed, each input energy 

flow iE  can feed in  internal converters according to certain dispatching strategies, which are 

described by the vector  1,.., in

i iE E  with 
1

i

i

n
j

i

j

E E


 . The internal converters are assumed to operate 

in steady state, and their conversion efficiencies are modelled by static algebraic equations that, for 

the j th  converter, assume the following structure: 

E
k

ij = h
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j E
i

j
(1) 

where ,

j

i k  is the nameplate efficiency in converting the input energy carrier i  to the output energy 

carrier k , while E
i

j
and E

k

ij
 are the input and output energy flow, respectively. These energy flows 

can be combined, stored and/or processed by other energy converters in order to supply the energy 

hub loads L . Consequently, the resulting energy hub model can be described by the following 

equations: 



  1 21 1 1

1 1 1 2 2... ... ... ... ... N
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where the matrix A  is called the converter coupling matrix, whose elements could be zeros, 

converter efficiencies or product of converter efficiencies. This mathematical formalization can be 

easily extended to model the energy storage systems, as  detailed described in [2,8,9]. 

Analyzing the model formalized in (2), it is worth observing as the energy hub load requirements 

can be satisfied by means of multiple energy carriers and different combinations of them. 

Consequently, a proper strategy aimed at identifying the most effective energy dispatching strategy 

is required for a reliable and cost effective energy hub operation. In particular, if the energy hub 

does not integrate energy storage systems, the overall problem can be formalized by the following 

constrained nonlinear programming problem: 
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Where, 
gn  is the number of equality constraints, hn  is the number of inequality constraints and x  is 

the vector of the decision variables defining the energy hub dispatching strategy, namely:  

1 21 1 1

1 1 2 2... ... ... ... N
T

nn n

N NE E E E E E   x (4) 

The objective function ( )f x  could integrate both technical and economic criteria including the 

minimization of the hourly energy cost, the minimization of the loss of load probability, the 

maximization of the renewable power exploitation etc. 

The inequality constraints include the minimum and maximum allowable limits for each energy 

converter, the maximum allowable limit for each input energy carrier (i.e., 
max, 1,..,i iE E i N  ) 

and the minimum and maximum allowable limits for each decision variable (namely 

min, max,

1

1,..,
N

i i i j

j

x x x i n


    ).  

In addition, the decision variables should satisfy the energy hub equations (2), which represent the 



equality constraints for problem (3). 

If the energy hub integrates storage systems, the decision variables should include the quantity of 

stored energy for each time period. In this case, the problem (3) should be solved over multiple time 

periods in order to provide decisions on energy flows to be purchased and stored at each point in 

time.  

 

2.2 Sources of Uncertainty in Energy Hub Operation Scheduling 

 

The mathematical formulation described in the previous section has all input data specified from the 

snapshot corresponding to a point in time or from a proper set of “crisp” values, e.g. the expected 

generation/load profiles, which should be fixed for the energy hub under study. Consequently, the 

corresponding solution of the operation scheduling problem is deemed representative of a limited 

set of energy hub operation states and, if the input conditions are uncertain, numerous scenarios 

need to be analysed in order to cover the entire uncertainty range. 

Numerous sources, both internal and external to the system, generate uncertainties in energy hub 

operation. Many uncertainties derive from the unpredictable dynamics of the energy prices in both 

the spot markets, which depend on the specific market structure and are typically characterised by 

high volatility, and the bilateral markets, where the parties involved fix the prices spread depending 

on the corresponding spot prices. In both cases, the effects of imbalance penalties, deriving by the 

deviations from the load/generation schedules, should be accurately considered, since it could 

compromise the cost effectiveness of the operation scheduling strategy. 

Other relevant uncertainties derive by the random dynamics of the energy hub loads, which are 

influenced by several external factors such as economic, season and weather effects. Forecasting 

these complex dynamics involves large uncertainty, especially on medium and long-term time 

scenario. 

Renewable power generators (e.g. wind, solar) induce further uncertainties, since the corresponding 

generated power profiles varies over time following the natural fluctuations of their energy sources. 



In particular, experimental studies have shown that the power generated by solar systems is highly 

influenced by the random clouds coverage, which makes short-term solar energy forecasting a very 

difficult task [28]. In addition, short-term and hourly fluctuations of wind energy systems are hard 

to predict, although their generation profiles may follow a generally well-known daily or seasonal 

pattern [29].   

Finally, the approximations errors due to the application of simplified algebraic equations in 

modelling the internal energy converters, cause further uncertainties and complex correlations in 

uncertainty propagation. 

All these uncertainties complicate the mathematical formulation of the energy hub dispatch problem 

by introducing a lack of determinism in the problem solution. In this condition, the overall problem 

can be formalized by the following constrained uncertain optimization problem: 

min
x

f (x,p)

s.t. g
i
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g

h
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(5) 

where p  is the vector of the uncertain parameters. To solve this uncertain optimization problem, it 

is necessary to design effective computational paradigms for: 

1. representing the vector of the uncertainties parameters (i.e. intervals, fuzzy numbers),  

2. processing the data uncertainties by defining proper mathematical operators (i.e. aimed at 

computing y = f (x,p)),  

3. checking the consistency of equality and inequality constraints by defining proper relational 

operators between uncertain variables (i.e. y
1
£ y

2
, y

1
= y

2
),  

4. solving linear and non-linear system of equations in the presence of data uncertainties (i.e. 

find x ' ' f (x,p) = 0, where p  is a fixed uncertain vector).  

To address these issues, in this paper an Affine Arithmetic based framework is conceptualized. 

 

3.0 Energy Hub Operation Scheduling by Affine Arithmetic  

 

3.1 Mathematical Preliminaries 

Affine Arithmetic (AA) is a range-based formalism for numerical computation, which allows to 



represent heterogeneous uncertainty sources both external and internal to the system under study 

[14,15]. In AA, each variable x  is represented by an affine form x̂ , which is a first-degree 

polynomial of the form [16,17]: 

0 1 1 2 2
ˆ .. n nx x x x x      

 

(6) 

Where, 0x  is the central value of the affine form x̂  and ix   are the corresponding partial 

deviations. The variables i , which are assumed to be “unknown but bounded” in the interval [-1,1], 

are the “noise symbols” of the affine form x̂  and may be shared between all the affine forms 

involved in the computing process.  

Affine forms may be processed by means of proper AA based mathematical operators, obtained by 

replacing the elementary real-number operators with the corresponding affine versions. This process 

is straightforward for linear mappings, since the corresponding affine extension can be obtained by 

expanding and rearranging only the noise symbols characterizing the affine forms x̂  and ŷ : 
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0 1 1 2 2
ˆ ( ) ..        Rn nx x x x x              (9) 

On the other hand, if f  is a nonlinear function, the corresponding affine extension cannot be 

described by an affine combination of the noise symbols i : 

  0 1 1 2 2 0

1 1 2 2 1 2
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.. ) *( , ,.., )

n n

n n n
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Therefore, in this case it is necessary to identify an affine function, which approximates the function 

1 2*( , ,.., )nf     over its domain: 

1 2 0 1 1( , ,.., ) ...a

n n nf z z z        (11) 

and bound the corresponding approximation error: 
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where the term 1 1n nz   represents the approximation error defined as: 

1 2 1 2 1 2*( , ,.., ) *( , ,.., ) ( , ,.., )a

n n ne f f          (13) 

The new noise 1n   introduced in (12) is distinct from all other i , and the corresponding partial 

deviation 
1nz 

   is an upper bound of the absolute magnitude of *e . 

The approximation function af  could be defined as follows: 

1 2
ˆ ˆ( , ,.., )a

nf x y        (14) 

where the unknown coefficients  ,   and ζ can be identified according to the Chebyshev’s 

approximation theorem for univariate functions [15].  

The described computing paradigm can be generalized in order to define affine form 

approximations of any N -dimensional real value function 1( ,.., )Nf x x : 
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ˆ
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where the affine form f̂  is by definition an inclusion function: 
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This important result leads to the following propositions [18]: 
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3.2 The AA based Solution Paradigm 



AA can be effectively adopted for uncertainty representation in energy hub operation scheduling. 

According to this paradigm, each decision variable is expressed by a central value and a set of 

partial deviations. These deviations are associated with as many noise variables as those which 

describe the effect of the various phenomena affecting the energy hub operation. Without loss of 

generality the uncertainties considered here are those associated with the hub loads, the energy cost 

prices and the electrical energy produced by renewable generators. Therefore, the input variables 

can be expressed by the following affine forms: 
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Where: 

– 
,0jL  and 

,1jL  are the central value and the partial deviation of the j th  hub load 

respectively; 

– 
,0jcE  and 

,1jcE  are the central value and the partial deviation of the j th  energy carrier 

cost respectively; 

– 
,0jEr  and 

,1jEr  are the central value and the partial deviation of the electrical energy 

produced by the j th  renewable generator respectively; 

– 
jL  is the noise symbol representing the uncertainty affecting the energy demanded by the 

j th  hub load; 

– 
jcE  is the noise symbol representing the uncertainty affecting the j th  energy carrier cost; 

– 
jEr  is the noise symbol representing the uncertainty affecting the electrical energy produced 

by the j th  renewable power generator. 

Consequently, the affine forms representing the decision variables are: 
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where: 

– 
0

ix  is the central value of the i -th decision variable; 

– 
j

i

Lx  is the partial deviation of the i -th decision variable due to the j -th hub load; 

– 
j

i

cEx  is the partial deviation of the i -th decision variable due to the j -th energy carrier cost ; 

– 
j

i

Erx  is the partial deviation of the i -th decision variable due to the electrical energy 

produced by the j -th renewable power generator; 

The parameters of these affine forms can be computed by approximating the mathematical 

programming problem (3) by a linear relaxation. The solution of this linear programming problem 

yields bounds or a certificate of unfeasibility of the original hub operation scheduling problem. One 

of the originality of this approach lies in how the linear relaxation is made. In particular we propose 

a linear approximation of each equation of the problem (3) based on AA.  

In particular, according to the AA computing paradigm, each inequality constraint is relaxed by one 

linear equation and each equality constraint by two linear equations: 
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Where 
x gn M N N    is the number of noise symbols describing the energy hub uncertainty 

while ˆ
kh  and ˆ

ig  are the affine approximation of ( )kh x  and ( )ig x  respectively. Moreover, it is 

important to note the presence of the new noise symbol 
1xn 
, which represents the uncertainty due 

to the affine approximation errors. 

Following the same approach we can compute the affine approximation of the objective function 

( )f x : 
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Staring form this affine function it is possible to define several criteria aimed at describing the risk 

attitude of the analyst. For example a worst case solution can be identified by minimizing the upper 

bound of f̂ , a reliable solution can be identified by minimizing the radius of f̂ , an “average” 

solution can be identified by minimizing the central value of f̂ . In our own opinion a suitable trade 

off between the “reliable” and the “average” criteria represents the most attractive solution.  

Following this direction, the energy hub operation-scheduling problem in the presence of data 

uncertainty can be formalized according to the following linear multiobjective programming 

problem: 
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To solve this problem, a two stage solution algorithm is proposed here. In the first stage, the main 

idea is to identify the central values of the unknown affine forms by first considering the energy hub 

operating at its nominal condition, which defines these central values. In this case, parameter 

uncertainties are not considered and thus the corresponding solution can be computed by solving the 

following scalar and deterministic optimization problem: 
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In the second stage, the effect of data uncertainty is considered, computing the partial deviations of 

the unknown affine forms by solving the following scalar and deterministic optimization problem: 
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The solution of these problems allows the analyst to identify the affine forms of the decision 

variables, which minimise the mean and the deviation of the objective function and satisfies the 

energy hub constraints for every operating point. The knowledge of these affine forms represents a 

strategic tool for defining effective operation scheduling strategies. 

In details, they allow the analyst to assess an enclosure of the objective function range, which is 

guaranteed to contain its actual value. Moreover, the energy hub dispatching coefficients for the 

analysed time period can be defined according to the central value of the affine forms of the 

decision variables, namely: 
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while the corresponding partial deviations can be used to correct the dispatching coefficients 

depending by the actual energy hub operation point. This can be obtained by computing the 

following discrepancy factors: 
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Where 
1 1 1[ ,.., , ,.., , ,.., ]

gM N NL L cE cE Er Er  are the actual values of the uncertain input variables. 

Then if the dispatch factors are fixed according to the following equations: 
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It follows that both the equality and inequality constraints are satisfied and the actual value of the 

cost function is guaranteed to be inside the computed range. These important features allow the 

analyst to effectively address simultaneously both the short/medium (i.e. one day ahead) and the 

real time operation-scheduling problem.  

In particular, thanks to the Invariance Theorem of Affine Arithmetic, we can argue that the adoption 

of the AA based operators allows to compute an outer estimation of the cost and constraint 

functions bounds. In other words the bounds computed by AA are guarantee to include the real 

function domains. Anyway, the approximation errors induced by the application of non-affine 

operations may leads to an overestimation of the real bounds, leading to a loss of optimality in 

satisfying the Karush–Kuhn–Tucker (KKT) conditions, which roughly depends on the number of 

non-linear functions instances characterizing the optimization problem. This is a well note problem 



characterizing any range-based method for uncertain optimization, which is not expected to pose 

critical issues for the problem under study due to the adoption of a linearized model for describing 

the input/output energy hub equations. 

Finally, it should be note that the computational costs of the proposed method sensibly depend on 

the number of noise symbols adopted for uncertainty representation, which could pose some 

computational difficulties for large-scale applications. To address this problem, advanced methods 

based on Principal Component Analysis for knowledge discovery from historical operation data-

sets are currently under investigation by the first author of this paper. The main idea is to exploit the 

capacity of PCA in detecting potential relations among a set of operation data, which allows to 

describe the evolution of a large number of statistically correlated variables by a linear combination 

of a limited number of “primitive” variables. This feature is particularly useful in solving the 

problem formalized in (24), where the hypothesis of statistically independence of the uncertain 

parameters could involve the definition of a large number of noise symbols, which increases the 

complexities of the AA-based computations. 

 

4.0 Simulation studies 

This section discusses the application of the proposed methodology in the task of solving the 

optimal scheduling problem for the energy hub schematically depicted in fig.1. The considered hub 

architecture is based on the integration of a wind generator, a power transformer, a gas furnace and 

a combined heat and power unit (CHP). It processes two energy carriers (namely the electricity, 

1 11 1E E Er   , and the natural gas, 2 21 22E E E   ), and it supplies an electrical and a thermal load, 

denoted by 1L  and 2L  respectively. The corresponding coupling matrix is defined as follow: 
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(31) 

Where the converter efficiencies are summarized in table I. 



Table I: The Converter Efficiencies 

Component Efficiency 

Power Transformer 1

11 0.98   

Combined Heat and 

Power Unit 

2 2

21 220.35 0.405    

Gas Furnace 3

22 0.612   

 

Consequently the following vector describes the energy dispatching policy: 

 11 21 22, ,E E E (32) 

 

Subject to the following inequality constraints: 

1

2

11

22

21

0 20

0 20

0 20

0 20

0 20

E

E

E

E

E

 


 


 
  


 

(33) 

 

Power 

Transformer + 

+ 

Combined Heat 

and Power Unit 

Furnace 

Electrical Energy Natural Gas Thermal Energy 

1L

2L

11E

21E

22E

1Er

 
Fig.1: The Energy Hub architecture assumed in the simulation studies 

 

As far as the data uncertainty are concerned, we consider the effect of electrical and thermal load 

forecasting uncertainty (assumed as  5% and  2% of the forecasted value respectively), wind 

energy forecasting uncertainty (assumed as  10% of the forecasted value [30]) and electrical 



energy cost uncertainty (assumed as  10% of the forecasted value [31]). The imbalance penalties 

have been modelled according to the following paradigm: 

 If the energy imbalance is positive (namely the energy hub demands more energy respect to 

the scheduled value) then a cost increase of 30% has been assumed for quantifying the 

exceeding electrical energy cost and a cost increase of 10% has been assumed for 

quantifying the exceeding natural gas cost. 

 If the imbalance is negative, then the user should pay the scheduled energy. 

The first experiment deals with the solution of the optimal scheduling problem described by the 

following affine forms: 
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Starting from these input data the proposed AA based solution methodology identifies the following 

solution: 
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Which allows us to define the following energy sourcing scheduling: 
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The corresponding energy costs are guaranteed to lie in the interval  894.62,1021.9 . 

The solution described in (35) allows to define a real time strategy aimed at managing the deviation 

of the actual input data from the forecasted values. For example if the actual electrical load 

1 10.000 L MWh  then the input energy flow to the first converter (namely the power transformer) 

should vary according to the following equation: 
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To assess the robustness of the identified solution a Monte Carlo simulation aimed at randomly 

sampling the uncertain input data (34) has been implemented. For each data sample the dispatching 

coefficients (35) have been corrected according to (29) and the corresponding energy cost has been 

computed. The estimated bounds of the energy cost after 10000 trials are  897.52,1018.0 . 

Analyzing these data it is worth observing as the proposed methodology allows us to compute a 

reliable enclosure of the cost function range. 

As far as the computational requirements are concerned, the AA based solution strategy required 

about 2 seconds (on a 1.2 GHz CPU with 2 GB of RAM) to converge to a suitable solution for this 

case study. This is about 4% of the simulation time required by the stochastic programming method. 

In order to have a term of comparison for the performance evaluation of the proposed methodology, 

the optimal scheduling problem has been solved by a stochastic programming method based on 

Monte Carlo simulations. According to this approach, the bounds of the dispatching factors are 

inferred directly from repeatedly solving the deterministic problem (3) by randomly sampling the 

uncertain input data (34).  

The analysis of the simulation results summarized in table II is based on two considerations: 

1. by definition the Monte Carlo method, being sampling based technique, do not produce any 

spurious trajectories.  

2. we make the hypothesis that the number of Monte Carlo trials is large enough to assume that 

the union of the uncertainty region described by this method is a very closed approximation 

of the correct problem solution. 

Table II: Result Comparisons 

Solution Methodology Energy Cost [CAD] 

AA [894.62,1021.9] 

Stochastic programming (1000 trials) [896.05,1000.6] 

 



Analyzing these data it is worth noting as the AA-based methodology gives fairly good 

approximations of the objective function bounds when compared to the benchmark intervals 

obtained with the Monte Carlo approach; this is mainly due to the intrinsic characteristic of AA that 

keeps track of correlations between the uncertain variables.  

Notice also that the solution bounds are slightly conservative (of the order of 1%), which is due to 

the fact that AA yields “worst case” bounds, which take into account any uncertainties in the input 

data as well as all internal truncation and round off errors. This is to be expected, since the random, 

uniformly distributed variation of parameters assumed in the Monte Carlo approach tends to 

underestimate the worst-case variations. This can be considered an advantage of the proposed 

approach, since no assumptions regarding the probability distribution of the input uncertain data are 

required. 

These benefits have been confirmed by further simulation studies aimed at solving the energy hub 

optimal scheduling problem for a 24h operating scenario characterized by the hourly ranges of the 

input data depicted in fig. 2
1
. The obtained results have been summarized in fig.3-5. In details in fig. 

3 the central value and the upper/lower bounds of the hourly input energy flows are reported. The 

corresponding ranges of the hourly energy cost are depicted in fig.4. The same figure reports also 

the bounds computed by a Monte Carlo simulation with 10000 trials. In this context it is important 

to observe that this number has been determined by considering that after 10000 simulations we 

expected a substantial saturation in the assessment of the solution bounds, as it can be argued by 

analyzing the figure 5, which depicts the evolution of the upper bound of the cost function 

estimated by the Monte Carlo algorithm versus the number of trials, for a fixed hour. 

The comparison of these two profiles confirm the effectiveness of the proposed methodology in 

solving the optimal energy hub scheduling problem also for highly variable load, generation and 

cost patterns.  

                                                 
1
 The data assumed in the simulation studies have been extrapolated by processing the evolution of the energy prices in 

the Ontario market, and by assuming the energy hub profiles defined in [8,9]. 
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Fig. 2: Hourly input data bounds: 

a) Electrical load 

b) Thermal load 

c) Wind energy 

d) Electrical energy cost 
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Fig.3: Hourly bounds of the input energy flows: 

a) Electrical energy 

b) Natural gas 



 
Fig. 4: Hourly bounds of the objective function 

 
Fig. 5: Upper bounds of the objective function estimated by the Monte Carlo based method in 

function of the number of trials for a fixed hour (e.g. 3 a.m.)  

 

5.0 Conclusive remarks 

This paper proposed a new methodology for reliable energy hub operation scheduling in the 

presence of data uncertainty based on AA, allowing to better handle uncertainty compared to the 

traditional stochastic based solution approaches.  

Based on the proposed new AA formalism, an enclosure of the objective function range, which is 

guaranteed to contain its actual value, was shown to be obtained by solving a constrained linear 



multiobjective programming problem. The solution of this problem by a two stage solution strategy 

allowed to effectively define reliable dispatching strategies aimed at simultaneously addressing both 

the short/medium and the real time energy hub operation scheduling problem.  

The presented analyses and results demonstrate that the proposed AA-based approach is well suited 

for the assessment of uncertainty propagation in energy hub operation, and we expect that it can be 

effectively applied to study interconnected energy hub systems, independent of the types and levels 

of uncertainties in the input data. 

The generalization of the proposed AA based optimization framework aimed at considering the 

effect of storage systems is currently under development by the authors. 
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