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1 Introduction

Johansen’s (2000) Bartlett corrected likelihood ratio (LR) test for linear restrictions of cointegrating vectors relies

on Gaussian innovations, but this strong assumption clashes with reality where there is rarely ground for presuming

normality. There is therefore a need to examine small sample inference procedures that work well under weaker

assumptions about the innovations.

In this paper it is proposed to use the bootstrap to approximate the finite sample expectation of the LR test in

place of the analytical Bartlett correction. This procedure, which is in the spirit of Rocke (1989), involves calculating

a number of bootstrap values for the quasi-LR test statistic and estimating the expected value of the test statistic by

the average value of the bootstrapped LR statistics. We believe that this non-parametric bootstrap based Bartlett

correction can successfully be applied in the context under consideration to generate a test statistic that does not

depend on the Gaussian assumption, the feature on which Johansen’s analytical Bartlett correction crucially depends.

If such an application were to be successful it would have significant practical implications, for several reasons. First,

the non-parametric bootstrap does not require a choice of the error distribution, and this feature may be appealing

to the applied researcher. Second, simulation results in Johansen (2000) indicate that the analytical correction factor

is useful for some parameter values but does not work well for others. As Johansen points out "the influence of the

parameters is crucial [.....], there are parameters points close to the boundary where the order of integration or the

number of cointegrating relations change where the correction does not work well" (cf. Johansen (2000) p.741). The

dependency on the parameter values may be reduced by computing the Bartlett adjustment using the non-parametric

bootstrap. Third, because the non-parametric bootstrap is used to approximate the first moment of a distribution,

the resulting procedure is computationally less demanding than using the same method to approximate the tails of

the distribution such as in the ordinary p-value bootstrap test.

The structure of the paper is as follows. Next section introduces the LR test for linear restrictions on cointegrated

space, the Bartlett correction of Johansen (2000), the proposed bootstrap based inference procedure and the p-value

bootstrap test. In Section 3, the consistency of the bootstrap based tests is considered. In Section 4, the design of

the Monte Carlo experiment is explained, and the simulation results are reported. Finally, Section 5 contains some

concluding remarks.

2 Model and Tests

Consider the p-dimensional V AR model

∆Yt = α
(
β′Yt−1 + ρ′Dt

)
+
k−1∑

i=1

Γi∆Yt−i + φdt + εt, t = 1, ..., T (1)

where Yt and εt are (p × 1) vectors with εt ∽ N(0,Ω); ∆Yt = Yt − Yt−1; α and β are (p× r); φ is (p× pd); ρ is

(pD × r) ; Γ1, ..., Γk−1 are (p× p); dt (pd × 1) and Dt (pD × 1) are deterministic terms. We focus on the hypothesis

H0 : β = Hϕ, where H (p× s) (for r ≤ s ≤ p) is a known matrix that specifies that the same restrictions are imposed

on all cointegrating vectors (r), s is the number of unrestricted parameters, and ϕ is a (s× r) matrix; see Johansen
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(1996) for a discussion of tests for other hypotheses. The test statistic for H0 is given by

Λ = −T
r∑

i=1

log
[(
1− λ̂i

)
/
(
1− λ̃i

)]
, (2)

where λ̂i and λ̃i are the usual eigenvalues implied by the maximum likelihood estimation of the restricted and

unrestricted models, respectively. The Bartlett adjustment is given by

ϑ =
Eθ (Λ)

q
= 1 +

1

T

[
1

2
(p+ s− r + 1 + 2pD) + pd + kp)

]
(3)

+
1

Tr
[(2p+ s− 3r − 1 + 2pD) v (α) + 2 (c (α) + cd (α))] ,

where θ̂ = (α̂, β̂, Ω̂), q = r(p − s), v (α) = tr

{(
α′Ω−1α

)−1∑−1

ββ

}
with

∑
ββ = V ar(β′Yt|∆Yt, ...,∆Yt−k+2),

cd (α) = pdv (α), and the constant c (α) is given in Johansen (2000). Thus, ΛB = ϑ−1Λ is the Bartlett corrected LR

statistic.

The correction in (3) is derived under the assumption that the innovations are εt ∽ N(0,Ω). Simulation results

presented by Johansen (2000) suggest that applying this type of correction to the LR test statistic dramatically

reduces the finite sample size distortion problem. However, the Bartlett correction factor is predicated under the

assumption of Gaussian innovations. When the innovations are non-normal, the correction factor needs to be mod-

ified in order to account for skewness and kurtosis of the innovations. Because of the complicated formula of the

LR statistic, deriving the asymptotic expansions needed to calculate the expectation of the test statistic can be

demanding. One way of overcoming such calculations is to use a numerical approximation in place of the analytical

Bartlett correction. By using the empirical distribution function in place of some specific parametric distribution,

the non-parametric bootstrap does not require a choice of the error distribution, and this feature may be appealing to

the applied researcher. Canepa and Godfrey (2007) propose computing the Bartlett adjustment for a quasi-LR test

using non-parametric bootstrapping as a simple method to generate a non-normality robust small sample inference

procedure in the context of ARMA models. An alternative procedure is a straightforward application of the boot-

strap p-value approach. The steps used to implement the two bootstrap based inference procedures are presented

below.

Algorithm 1: Bootstrap Bartlett Corrected Test

Step (1): Estimate the model in (2) and compute Λ and the restricted residuals

ε̂t = ∆Yt − α̂
(
ϕ̂′H ′Yt−1 + ρ̂′Dt

)
−
k−1∑

i=1

Γ̂i∆Yt−i − φ̂dt.

Step (2): Resample the residuals from (ε̂1, ..., ε̂T ) independently with replacement to obtain a bootstrap sample

(ε∗1, ..., ε
∗

T ). Generate the bootstrap sample

∆Y ∗

t = α̂
(
ϕ̂′H′Y ∗t−1 + ρ̂′Dt

)
+
k−1∑

i=1

Γ̂i∆Y
∗

t−i + φ̂dt + ε∗t ,
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recursively from (ε∗1, ..., ε
∗

T ) using the estimated restricted model given in (2).

Step (3): Compute Λ∗j using the data of Step (2) and repeat B times.

Step (4): To get the bootstrap-Bartlett correction factor, say Λ̄∗, calculate Λ̄∗ = B−1
B∑
j=1

Λ∗j . A Bartlett-type

corrected statistic is therefore

Λ∗B =
qΛ

Λ̄∗
.

The corrected statistic is then referred to a χ2 (q) distribution (with q = r (p− s)).

Algorithm 2: Bootstrap p-value test

As far as the non-parametric bootstrap p-value test is concerned, the bootstrap algorithm adopted is similar to

the procedure proposed by Gredenhoff and Jacobson (2001). This involves repeating Step (1)-(3) and then following

Step (5) below.

Step (5) Compute the bootstrap p-value function of the observed value Λ by calculating

P̂ ∗(Λ) = B−1
B∑

j=1

I
(
Λ∗j ≥ Λ

)
,

where I(·) is an indicator function that equals one if the inequality is satisfied and zero otherwise. The bootstrap

p-value test, Λ∗, is carried out by comparing P̂ ∗(Λ) with the desired critical level, γ, and rejecting the null hypothesis

if P̂ ∗(Λ) ≤ γ. Note that the subscript “∗” will be used to indicate the bootstrap analog throughout the paper.

3 Asymptotic Results

We now consider the asymptotic distribution of the bootstrap based procedures introduced in the previous section

and we show that Λ∗B and Λ∗ converge weakly in probability to the χ2q distribution. The proof relies heavily on the

fact that the mean of the squared residuals converges in probability toward Ω and that the estimators are consistent.

In the following
w→ denotes weak convergence,

P→ convergence in probability,
wp→ weak convergence in probability

as defined by Gine and Zinn (1990), P ∗ denotes the bootstrap probability and E∗ relates to the expectation under P ∗.

Moreover, for any square matrix A, |A| is used to indicate the determinant of A, the matrix A⊥ satisfies A′
⊥
A = 0,

and the norm ‖A‖ is ‖A‖ = [tr (A′A)]1/2. For any vector a, ‖a‖ denotes the Euclidean distance norm, ‖a‖ = (a′a)1/2.
Moreover, we make the following assumption:

Assumption 1:

i) Define the characteristic polynomial,

A(z) = (1− z)Ip −Πz − Γ1(1− z)z − ...− Γk−1(1− z)zk−1,

where Π = αβ′. Assume that the roots of det [A (z)] = 0 are located outside the complex unit circle or at 1. Also

assume that the matrices α and β have full rank r and that α′
⊥
Γβ⊥ has full rank p−r, where Γ = Ip−Γ1−...−Γk−1.
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ii) The innovations, εt, are independent and identically distributed with expectation 0 and covariance matrix Ω.

Assumption 1 i) ensures that the observations are I(1) variables and rules out the possibility that some of the

zeros of the estimated characteristic equation are outside the unit circle, in which case the bootstrap sample will

become explosive. Under Assumption 1 i) Theorem 4.2 in Johansen (1996) holds, so that the process Yt has the

following representation

Yt = C
t∑

i=1

(εi + ρ′Di) +C(L)(εt + αρ′Di + φdt) +A0,

where C = β⊥

(
α′
⊥

(
I −

k∑
i=1

Γi

)
β⊥

)−1
α′
⊥

and A0 is a term that depends only on the initial values and β′A0 = 0.

Assumption 1 ii) rules out the possibility that innovations are serially correlated or conditionally heteroskedastic.

Under Assumption 1 ii), the partial sum of {εt} satisfies the functional central limit theorem so that

T−1/2
[Tu]∑

t=1

εt
w→ B (u) , u ∈ [0, 1] ,

T−1
T∑

t=1

(
t−1∑

i=1

εi

)
ε′t

w→
1∫

0

B (dB)′ ,

where B = Ω1/2W is a p-dimensional Brownian motion with variance Ω and W a p-dimensional standard Brownian

motion. These results can be used to derive the asymptotic properties of Λ∗B and Λ∗.

Following the conventional notation, we define R0t and R1t as the residuals obtained by regressing ∆Yt and

(Yt−1,Dt)
′ respectively on lagged differences and dt. Moreover,

Sij = T−1
T∑

t=1

RitR
′

jt, i, j = 0, 1.

Proposition 1: Let the conditions of Assumption 1 hold. Then, under the null hypothesis, Λ∗
wP→ Λ and

Λ̄∗
P→ E (Λ) as T →∞.

Proof : Under Assumption 1, Lemma 1 in Swensen (2006) implies that the generated pseudo observations have

the representation1

Y ∗t = C
t∑

i=1

(
ε∗i + ρ̂′Di

)
+C(L)(ε∗t + α̂ρ̂′Di + φ̂dt) + T 1/2R∗t ,

where for all η > 0, P ∗ (maxt=1,...,T ‖R∗t ‖ > η)
P→ 0 as T → ∞. Moreover, Lemmas S1 and S2 in Swensen (2006)

1 Note due to the presence of a trend in Swensen (2006) the details of the derivation are slightly different. However, ergodicity for the
sequence {εt} is sufficient for the Granger representation to hold. Also, Assumption 1 implies the existence of second order moments of
{εt} . Therefore, the convergence of appropriate sums of stochastic integrals can be derived in a similar way.
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imply that

T−1/2
[Tu]∑

t=1

ε∗t
wP→ B (u) , (5)

T−1β̂
′

⊥
S∗11β̂⊥

wP→
1∫

0

F (u)F (u)′du, (6)

β̂
′

⊥

(
′S∗10 − S∗11β̂α

′

)
α⊥

wP→
1∫

0

FdB′α⊥, (7)

where F (u) := β′
⊥
CB(u) and

P ∗ (‖S∗00 −Σ00‖ > η)
P→ 0, (8)

P ∗
(∥∥∥β̂

′

S∗11β̂ −Σββ
∥∥∥ > η

)
P→ 0, (9)

P ∗
(∥∥∥β̂

′

S∗01 −Σ0β
∥∥∥ > η

)
P→ 0, (10)

where Σ00, Σββ and Σ0β are the probability limits of S00, β
′S11β and S01β, respectively. In the bootstrap algorithm

the pseudo-observations are generated under the null hypothesis using the restricted innovations. When linear restric-

tions are imposed on the parameters β̂ = Hϕ̂, a submodel is defined and the space spanned by the linear transforma-

tion z : Rp �−→ R
s with matrix representation Y ∗

t �−→ H ′Y ∗
t forms a subspace such that sp

(
β̂
)
⊂ sp (H). Given that

linear transformations preserve linear combinations of vectors it follows that if {Y ∗
t } satisfies Lemma 1 in Swensen

(2006), then {H ′Y ∗t } also satisfies the same conditions. Moreover, the random process

{
T−1/2

(
[Tu]∑
t=1

H ′ε∗i

)}
, where

[Tu] is the integer value of Tu, converges weakly toward a Brownian motion with covariance matrix H′ΩH. This

implies that the asymptotic distributions of the moment matrices are given by

T−1/2ϕ̂′⊥H
′Y ∗[Tu]

wP→ H ′F̃ (u), (11)

ϕ̂′⊥H
′S∗10α̂⊥

wP→ H ′

1∫

0

F̃ dB′α⊥, (12)

T−1ϕ̂′
⊥
H′S∗11Hϕ̂⊥

wP→ H ′

1∫

0

F̃ (u)F̃ (u)′duH. (13)

where F̃ (u) := ϕ′
⊥
CB(u). From (8)-(10) it follows that the (p− r) smallest solution of

∣∣∣λ̂ϕ̂′
(
H ′S∗11H −H ′S∗10S

∗−1
00 S∗01H

)
ϕ̂
∣∣∣ = 0,

converges to zero. Therefore, using (11)-(13) the asymptotic χ2q distribution of Λ∗ can be found by mimicking

Theorem 13.9 in Johansen (1996).

Under Assumption 1, (5)-(6) imply weak convergence of the partial sums of stochastic integrals. Moreover, from

(8)-(10) we have that S∗ij
P→ Σij and the estimators of the parameters are consistent. This trivially implies that

E∗ (Λ∗)
P→ E (Λ) in probability as T →∞. �
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Before concluding this section, a caveat regarding the use of the bootstrap Bartlett correction is discussed. The

bootstrap procedure used for approximating the finite sample expectation of the LR test is a general tool and can be

readily applied to other LR statistics. In his seminal article, Beran (1988) concluded that for asymptotically pivotal

statistics (i.e., statistics for which the limiting distribution does not depend on unknown nuisance parameters), the

p-value bootstrap test accomplishes the analytical Bartlett adjustment automatically, in the sense that the error

in rejecting probability of the two tests is of order O
(
T−3/2

)
. Approximating the finite sample expectation of the

LR test using the bootstrap involves substituting a
√
T consistent estimate of b (θ) in (1), hence the resulting test

statistic should provide accuracy of the same order. However, Beran (1988) also pointed out that for pivotal statistics

the error committed by using the p-value bootstrap test is of order O
(
T−2

)
, thus providing a further refinement

with respect to the Bartlett corrected test. It follows that for pivotal statistics the reduction in the computational

burden enjoyed by the bootstrap Bartlett corrected test does not pay off, since the error committed by the p-value

bootstrap test is lower by an extra O
(
T−1/2

)
factor.

In this paper only the consistency of bootstrap based tests is considered. Establishing the conditions which ensure

asymptotic refinements will be the subject of future research. However, given that under the i.i.d. assumption the

LR test considered in this work is only asymptotically pivotal, we may expect the two Bartlett corrected and p-value

bootstrap tests to be of an order O
(
T−1

)
smaller than the corresponding asymptotic LR test, but the error in

rejecting probability may not be O
(
T−2

)
.

4 The Monte Carlo experiment

The DGP adopted is similar to Haug (2002) and it is given by

∆Y1t = ǫ1t, (14)

∆Y2t = ǫ2t,

Y3t = Y4t + u3t, where u3t = ξu3t−1 + ǫ3t,

Y4t = −Y3t + u4t, u4t = u4t−1 + ǫ4t,

with

[
ǫjt
ǫit

]
∼ i.i.d. N






0
(2×1)

0
(2×1)


 ,




A
(2×2)

0
(2×2)

0
(2×2)

B
(2×2)





 ,

where ǫjt =
[
ǫ1t ǫ2t

]′
, ǫit =

[
ǫ3t ǫ4t

]′
, A = σ2I, and B =

(
σ2 ση
ση σ2

)
. The null hypothesis of interest is

H0 : β = Hϕ =




0
(1×3)

I
(3×3)


 ϕ
(3×1)

,

where I is an identity matrix.

The parameter space experimented with is T ∈ (50, 100, 250); ξ ∈ (0.2, 0.5, 0.8) ; η ∈ (−0.5, 0.5) ; σ = 1.
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Standardized forms of the χ2 (c) and the t (c) have been used to provide evidence of the impact of skewness

and kurtosis on the empirical sizes of the test statistics under consideration. In particular, two sets of simulation

experiments have been undertaken. In the first exercise, the effect of skewness has been investigated by systematically

increasing c from an extremely skewed χ2 (c) distribution to a random variable approaching symmetry and normality

by varying the degree of freedom (c) in the χ2 (c) distributed innovations from 3 to 30 in increments of 1. In a similar

exercise, the effect of kurtosis has been investigated by monotonically increasing c in the t (c) distribution.

The Monte Carlo experiment has been based on N = 10, 000 replications for Λ, ΛB and on N = 1, 000 replications

for Λ∗B and Λ∗. All the bootstrap distributions have been generated by resampling and calculating the test statistic

800 times.

4.1 The Monte Carlo results

Tables 1 and 2 report the simulation results on the performance of Λ, ΛB, Λ∗B and Λ∗. The finite sample significance

levels are estimated against a nominal level of 5% and all estimates are given as percentages. In Table 1 the normal

distribution serves as a benchmark and it also contains results relating to the sensitivity of the error in rejection

probability to variations of key parameters in (14). For the case with χ2 (c) and t (c) distributions, the Monte Carlo

results are summarized in Table 2 using response surface regressions.

As far as Λ is concerned, Table 1 mainly confirms previous findings that inference based on first order asymptotic

critical values is markedly inaccurate with excessively high rejection frequencies. Correcting Λ using the analytical

Bartlett factor improves the behavior of the test statistic. However, Table 1 indicates that the performance of ΛB

is highly dependent on the parameter values of the DGP . When ξ is large (i.e. the speed of adjustment to the

cointegrated equilibrium is low), the correction does not work well. The magnitude of the correlation between noises,

η, also affects the performance of the test statistic, but to a much lesser extent. By contrast, using the bootstrap

to approximate the Bartlett adjustment factor produces estimated levels that show less variation over the grid of

parameters taken under consideration.

Table 1. Empirical sizes for the 5% critical value (in percent). Case with N(0, 1) innovations.

ξ = 0.8 η = 0.5

η = −0.5 η = 0.5 ξ = 0.2 ξ = 0.5

T = 50 Λ 26.0 26.3 9.51 12.5
ΛB 14.3 14.8 4.64 9.2
Λ∗B 7.3 8.9 4.8 6.2
Λ∗ 8.0 9.1 5.3 6.3

T = 100 Λ 12.9 13.1 6.77 7.74
ΛB 8.51 8.51 4.76 4.94
Λ∗B 7.7 5.8 5.8 5.8
Λ∗ 7.8 6.0 5.7 6.0

T = 250 Λ 7.31 7.60 5.87 6.05
ΛB 6.03 6.12 4.73 4.96
Λ∗B 4.5 4.8 5.0 5.1
Λ∗ 4.5 5.0 5.1 5.1

Note: The estimated rejection probabilities of Λ∗B and Λ∗ have been calculated using Algorithm 1 and 2 in Section 2. For Λ and

ΛB the number of replications is N=10,000, for Λ∗B and Λ∗ N=1,000 and B=800. A 95% confidence interval around the nominal level

of 5% is given by (3.6, 6.4). The asymptotic distribution is χ2(1).
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To evaluate the sensitivity of Λ∗B and ΛB to departures from the Gaussian assumption, a simple Monte Carlo

experiment has been conducted with εit drawn from the χ2 (c) and the t (c) distributions. This experiment has

adopted a factorial design covering a large range of distributions from heavily fat tailed to highly skewed innovations,

but T has been fixed at 50 to control for the effect of the sample size. For each c (for c = 3, ..., 30), a Monte Carlo

experiment assessing the size distortion of each test statistic has been undertaken. Repeating this exercise for GDP s

with χ2 (c) and t (c) distributed innovations in turn, gives us a total of 3× 28× 2 = 168 Monte Carlo experiments.

The response surface analysis has been carried out using the error in rejecting probability, ERP , (calculated as the

estimated level minus the nominal level of the statistic) as the dependent variable in a multiple regression model

with a set of dummy variables as the independent variables (each dummy takes on the value 1 for a given test type

and the value 0 otherwise), log c, and, if significant, the interactions (i.e. log c ∗ ΛB, log c ∗ Λ∗B, log c ∗ Λ∗) with Λ

as the reference category. More complicated forms of model specification such as a Hendry (1984) style power-series

expansion failed to be significant.

Table 2 displays the results of the response surface analysis. The second and third columns report the estimated

coefficients for the χ2 (c) and t(c) innovations, respectively. Robust standard errors are also reported.

From Table 2 it appears that the estimated coefficients for the dummies of ΛB, Λ∗B, and Λ∗ are significantly

different from zero and have the correct signs, as we expect these tests to outperform the asymptotic test in the

base line. Overall, the ability of the regression model to fit the data is good, given the high R2 values reported

at the bottom of Table 2. As far as the estimated coefficients are concerned, three points should be noted. First,

from the constant term and the magnitude of the estimated coefficients for log c in the two regressions, it appears

that Λ is more sensitive to excess kurtosis than to skewness. Of course, this implies that all the other estimated

coefficients in the second column of Table 2 are smaller in modulus than the corresponding coefficients reported in

the third column. Similar experiments with T = 75, 100, 125, ..., 250 have shown that excess kurtosis still affects the

performance of Λ and ΛB at T = 100, but this effect vanishes at T = 150. Secondly, as one may expect, increasing

the degree of kurtosis affects the performance of ΛB to a much greater extent than it affects the two non-parametric

bootstrap tests. Third, given that the estimated parameter for log c in the second column of Table 2 is not significant,

the difference in the error in rejection probability between ΛB and Λ∗B must be attributed to the magnitude of the

parameters η and ξ in (14), that is to the fact that ΛB is more sensitive to the value of the parameters in the DGP

than its bootstrap counterpart.

Table 2. Response surface analysis for χ2 (c) and t (c) innovations.
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Regressors and Statistics χ2 (c) t (c)

ΛB −11.39
(0.09)

∗ −12.55
(0.845)

∗

Λ∗B −17.51
(0.159)

∗ −22.48
(1.094)

∗

Λ∗ −16.84∗
(0.161)

−21.38
(0.991)

∗

log c −0.165
(0.106)

−1.527
(0.237)

∗

log c ∗ ΛB − 0.30
(0.294)

log c ∗ Λ∗B − 1.33∗
(0.396)

log c∗Λ∗ − 1.24
(0.363)

∗

Constant 20.36∗
(0.293)

25.59∗
(0.677)

R2 0.9934 0.9891
F (7, 104)
[p-value]

6088.65
[0.000]

1933.1
[0.000]

(∗) Significant at 1%. Robust standard errors reported. DGP with η = 0.5 , ξ = 0.8, and T = 50.

The results of the response surface regression are perhaps more easily interpreted by plotting the actual and the

predicted ERP for each test against c. The top panel of Figure 1 shows ERP for the case of ǫit ∼ χ2 (c), whereas

in the bottom panel ERP related to εit ∼ t (c) innovations are plotted. (Note that for ease of interpretation c is

presented in levels). If the difference between the rejection frequency under the null and the level of the test was

small, then the error in rejecting probability should be close to zero and the ERP lines plotted in Figure 1 should be

close to the x-axis. Moreover, if non Gaussian innovations affect the performance of the test statistic ERP (c) should

be a decreasing function of c. From Figure 1 it appears that skewness has little effect on Λ. On the other hand,

excess kurtosis heavily affects the performance of the test in finite samples as the actual ERP is 25.3, 23.5 and 20.8

when c is equal to 3, 5, and 30, respectively. This implies that the empirical levels of Λ drop from approximately

30 when εit ∼ t (3) to approximately 26 when εit ∼ t (30) in the DGP . Looking at the simulation results for ΛB it

appears that the inference procedure is also not robust to excess kurtosis, as the actual ERP decreases from 12.7

when εit ∼ t (3) to 8.9 when εit ∼ t (30) indicating that approximately 40% of the size distortion is due to the

innovation distribution.
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Figure 1: Response surface regression: actual and predicted ERP. Note: Λ, ΛB , Λ∗B , and Λ∗ are labelled LR, B, BB, and BP

respectively. The label "Hat" indicates the predicted ERP.

Table 2 reveals that, in general, the error in the rejection probability of the test statistics is affected by the

non-normality of the innovations. Furthermore, from Table 1 it appears that the effect of Gaussian innovations on

the estimated level of the test is highly dependent on the parameter values of the DGP : it is pronounced when the

speed of adjustment is slow and it is relatively mild when the speed of adjustment is fast (e.g., ξ = 0.2). Bewley

and Orden (1994) report that Johansen’s estimator β produces outliers when the speed of adjustment is slow, while

Phillips (1994) provides a theoretical analysis showing that the finite sample distribution of β̂ is leptokurtic. The

simulations in Bewley and Orden (1994) and the theoretical results in Phillips (1994) explain why Λ behaves so

poorly when the combinations of ξ = 0.8 and the non-Gaussian distributions in Table 2 are selected:2 excess kurtosis

in the innovations magnifies the effect of the slow speed of adjustment increasing the mismatch between the finite

sample and the asymptotic reference distribution of the test statistic by moving the distribution to the left. In this

situation, ΛB can only be partially successful because the second terms of the asymptotic expansion of the mean of

Λ depend on the skewness and kurtosis of its distribution, and the conditions under which this dependence vanishes

have not yet been established. In contrast, when using Λ∗B the Gaussian distribution is replaced with the empirical

density function of the innovations. This strongly mitigates the effect of skewness and kurtosis on the finite sample

2 Note: a companion paper contains extensive simulation results including the case where innovations are heteroskedastic. For further
results see Canepa (2012).
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mean of the test and makes the finite sample distribution of Λ∗B closer to the asymptotic distribution. Table 3 reports

the simulated average values of the row and the adjusted LR statistic, labelled Λ̄, Λ̄B and Λ̄∗B respectively. If the

tests were of the correct size, then the average values of the simulated Λ̄, Λ̄B and Λ̄∗B should be near q. Once again,

εit ∼ N(0, 1) is the benchmark case and the average values of the test statistics are reported in the first row. An

examination of column Λ̄B and Λ̄∗B of Table 3 shows that the average values of Λ̄∗B are closer to q = 1 than those of

Λ̄B, explaining why Λ∗B works better in finite samples.

Table 3. Average values of the simulated Λ, ΛB and Λ∗B . Case with N(0, 1), χ2 (3) and t (3) innovations.

T = 50 T = 100 T = 250

εit Λ̄ Λ̄B Λ̄∗B Λ̄ Λ̄B Λ̄∗B Λ̄ Λ̄B Λ̄∗B

N(0, 1) 2.197 1.674 1.215 1.397 1.273 1.181 1.125 1.101 1.034

χ2(3) 3.351 2.232 1.221 1.992 1.395 1.218 1.244 1.161 1.067
t(3) 3.610 2.386 1.350 2.071 1.542 1.242 1.443 1.251 1.060

Note: DGP with η = 0.5, ξ = 0.8. The average values of the test statistics are given for Λ, ΛB and Λ∗B only, as Λ∗ does not

yield an adjusted LR test. Λ̄ and Λ̄B are calculated on N=10,000, whereas Λ̄∗B is calculated on B=800 and N=1000.

Before concluding this section a few points need to be made concerning the performance of the bootstrap proce-

dures. Clearly, Λ∗ and Λ∗B perform better in terms of ERP with respect to ΛB. However, from Figure 1 it appears

the Λ∗B slightly, but consistently outperforms Λ∗ to some extent. One possible explanation is that the Monte Carlo

design uses the same number of bootstrap replications for both bootstrap procedures. Using the delta method Rocke

(1989) proves that the bootstrap Bartlett method needs fewer bootstrap replications than the bootstrap p-value

method to obtain the same order of accuracy. Rocke (1989) quantifies the computational gains to be of a factor of

2-10, depending on the dimension of the constraints and how far out in the tails the observed value is. Generally

speaking, using the bootstrap to approximate the first moment of a distribution is computationally less demanding

than using the same method to approximate the tails of the distribution. The reason being that in the simulation

experiments the value of the statistic will occur in the tails less frequently than in the "thicker" sections of the distri-

bution. Thus, many more bootstrap trials are needed to approximate these sections. For this reason, the bootstrap

Bartlett correction method may be preferred to the bootstrap p-value approach.

4.2 On the number of bootstrap replications

The Monte Carlo simulations presented in Tables 1 and 2 are computationally intensive. Recall that 800 bootstrap

replications were performed for every 1000 Monte Carlo replications, so producing the results presented in Table 2, for

example, entailed 800, 000 replications for each case considered. As mentioned in Section 4.1, Λ∗B may require fewer

replications than Λ∗ to obtain the same order of accuracy, depending on the constraints and the desired rejection

probability under the null hypothesis. When performing a Monte Carlo evaluation of the bootstrap tests, the penalty

for using a smaller number of bootstrap replications is the loss of power. According to Davidson and MacKinnon

(2006) B = 399 is the minimum number of replications for the p-value bootstrap test at a 5% level that does not

entail loss of power. In order to investigate the claim in Section 4.1, the size and power of Λ∗B and Λ∗ have been

compared when B = 1000 and when B is reduced to the lowest acceptable number. For the experiments evaluating

the power of the tests, data has been generated under the alternative

12



H1 : β = Hϕ =

[ C
(1×3)

I
(3×3)

]
ϕ

(3×1)

,

where C=[ g 0 0 ] for g ∈ (0.5, 1, 1.5). The results of this set of experiments are reported in Table 4. Note that

in Table 4 only the results relating εt selected from t(3) and χ2(3) are reported. Simulation results for c = 4, ..., 30

(not reported) reveal that the rejection frequencies are in line with the results presented below.

Table 4. Comparing size and power of Λ∗B and Λ∗ under different number of bootstrap replications.

Size Power

g = 0.5 g = 1.0 g = 1.5

B εt Λ∗B Λ∗ Λ∗B Λ∗ Λ∗B Λ∗ Λ∗B Λ∗

T=50 400 t(3) 10.1 12.4 27.1 28.9 30.4 32.3 31.2 34.4
400 χ2(3) 8.4 9.1 39.0 41.9 44.3 47.3 45.0 38.7
1000 t(3) 9.5 11.0 28.0 30.2 31.4 34.3 32.8 45.4
1000 χ2(3) 7.2 8.3 42.8 45.2 47.6 51.0 49.3 52.7

T=100 400 t(3) 7.1 7.7 59.3 61.9 67.2 70.5 69.9 72.8
400 χ2(3) 7.4 7.6 81.6 84.2 85.6 87.6 87.3 89.4
1000 t(3) 7.0 8.1 62.6 65.1 70.1 72.4 73.2 75.4
1000 χ2(3) 5.8 6.7 83.3 82.3 88.3 90.1 89.7 90.9

T=250 400 t(3) 4.7 5.0 99.3 99.8 100 100 100 100
400 χ2(3) 5.1 5.5 100 100 100 100 100 100
1000 t(3) 5.1 4.9 99.4 99.9 100 100 100 100
1000 χ2(3) 6.1 5.5 100 100 100 100 100 100

Note: The estimated rejection probabilities of Λ∗B and Λ∗ have been calculated using algorithm 1 and 2 in Section 2. DGP with

η = 0.5, ξ = 0.8.

Results from Table 4 show that the sample size and the distance between the null and the alternative hypothesis

play an important role in determining the power of both bootstrap tests. However, comparing the power of Λ∗B

calculated using B = 400 with the power of Λ∗ estimated using 1000 bootstrap replications, it is clear that reducing

the number of trials to the minimum produces only marginal differences in the rejection frequencies under the

alternative.

To conclude this section, the results presented above show that ΛB works well under specific assumptions about

the innovations and caution has to be taken when violations of these assumptions occur. The failure of this test to

match the performance of Λ∗B implies that it would be inappropriate to compare rejection estimates derived from

experiments in which the null hypothesis is false. Thus, there is a limited scope in extending the simulation exercise

undertaken in Table 4 to compare the power of Λ, ΛB, Λ∗B and Λ∗ given that differences in finite sample null rejection

probabilities invalidate power comparisons.

5 Concluding remarks

In this paper we compare the non-parametric bootstrap Bartlett and the Bartlett corrected LR test proposed by

Johansen (2000) and find that the performance of the former is less dependent on the values of the parameters of the
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data generating process and better able to cope with violations of the Gaussian assumption about the innovations.

The bootstrap p-value test is also found to perform well.
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