
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 1



Abstract- MapReduce has become a major computing model for

data intensive applications. Hadoop, an open source

implementation of MapReduce, has been adopted by an

increasingly growing user community. Cloud computing service

providers such as Amazon EC2 Cloud offer the opportunities for

Hadoop users to lease a certain amount of resources and pay for

their use. However, a key challenge is that cloud service providers

do not have a resource provisioning mechanism to satisfy user

jobs with deadline requirements. Currently, it is solely the user's

responsibility to estimate the required amount of resources for

running a job in the cloud. This paper presents a Hadoop job

performance model that accurately estimates job completion time

and further provisions the required amount of resources for a job

to be completed within a deadline. The proposed model builds on

historical job execution records and employs Locally Weighted

Linear Regression (LWLR) technique to estimate the execution

time of a job. Furthermore, it employs Lagrange Multipliers

technique for resource provisioning to satisfy jobs with deadline

requirements. The proposed model is initially evaluated on an

in-house Hadoop cluster and subsequently evaluated in the

Amazon EC2 Cloud. Experimental results show that the accuracy

of the proposed model in job execution estimation is in the range

of 94.97% and 95.51%, and jobs are completed within the

required deadlines following on the resource provisioning scheme

of the proposed model.

Index Terms— Cloud computing, Hadoop MapReduce,

performance modeling, job estimation, resource provisioning

I. INTRODUCTION

any organizations are continuously collecting massive

amounts of datasets from various sources such as the

Mukhtaj Khan is with the Department of Electronic and Computer

Engineering, Brunel University, Uxbridge, UB8 3PH, UK. Email:

Mukhtaj.Khan@brunel.ac.uk.
Yong Jin is with the National Key Lab for Electronic Measurement

Technology, North University of China, Taiyuan 030051, China. He is a

Visiting Professor in the Department of Electronic and Computer Engineering,
Brunel University, Uxbridge, UB8 3PH, UK. Email: Yong.Jin@brunel.ac.uk.

Maozhen Li is with the Department of Electronic and Computer

Engineering, Brunel University, Uxbridge, UB8 3PH, UK. He is also with the
Key Laboratory of Embedded Systems and Service Computing, Ministry of

Education, Tongji University, Shanghai, 200092, China. Email:

Maozhen.Li@brunel.ac.uk.
Changjun Jiang and Yang Xiang are with the Department of Computer

Science & Technology, Tongji University, 1239 Siping Road, Shanghai

200092, China. Email: {cjjiang, shxiangyang}@tongji.edu.cn.

World Wide Web, sensor networks and social networks. The

ability to perform scalable and timely analytics on these

unstructured datasets is a high priority task for many

enterprises. It has become difficult for traditional network

storage and database systems to process these continuously

growing datasets. MapReduce [1], originally developed by

Google, has become a major computing model in support of

data intensive applications. It is a highly scalable, fault-tolerant

and data parallel model that automatically distributes the data

and parallelizes the computation across a cluster of computers

[2]. Among its implementations such as Mars[3], Phoenix[4],

Dryad[5] and Hadoop [6], Hadoop has received a wide uptake

by the community due to its open source nature [7][8][9][10].

One feature of Hadoop MapReduce is its support of public

cloud computing that enables the organizations to utilize cloud

services in a pay-as-you-go manner. This facility is beneficial

to small and medium size organizations where the setup of a

large scale and complex private cloud is not feasible due to

financial constraints. Hence, executing Hadoop MapReduce

applications in a cloud environment for big data analytics has

become a realistic option for both the industrial practitioners

and academic researchers. For example, Amazon has designed

Elastic MapReduce (EMR) that enables users to run Hadoop

applications across its Elastic Cloud Computing (EC2) nodes.

The EC2 Cloud makes it easier for users to set up and run

Hadoop applications on a large-scale virtual cluster. To use the

EC2 Cloud, users have to configure the required amount of

resources (virtual nodes) for their applications. However, the

EC2 Cloud in its current form does not support Hadoop jobs

with deadline requirements. It is purely the user's responsibility

to estimate the amount of resources to complete their jobs

which is a highly challenging task. Hence, Hadoop

performance modeling has become a necessity in estimating the

right amount of resources for user jobs with deadline

requirements. It should be pointed out that modeling Hadoop

performance is challenging because Hadoop jobs normally

involve multiple processing phases including three core phases

(i.e. map phase, shuffle phase and reduce phase). Moreover, the

first wave of the shuffle phase is normally processed in parallel

with the map phase (i.e. overlapping stage) and the other waves

of the shuffle phase are processed after the map phase is

completed (i.e. non-overlapping stage).

To effectively manage cloud resources, several Hadoop

performance models have been proposed [11][12][13][14].

However, these models do not consider the overlapping and

non-overlapping stages of the shuffle phase which leads to an

inaccurate estimation of job execution.

Hadoop Performance Modeling for Job

Estimation and Resource Provisioning

Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and Changjun Jiang

M

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 2

Recently, a number of sophisticated Hadoop performance

models are proposed [15][16][17][18]. Starfish [15] collects a

running Hadoop job profile at a fine granularity with detailed

information for job estimation and optimization. On the top of

Starfish, Elasticiser [16] is proposed for resource provisioning

in terms of virtual machines. However, collecting the detailed

execution profile of a Hadoop job incurs a high overhead which

leads to an overestimated job execution time. The HP model

[17] considers both the overlapping and non-overlapping stages

and uses simple linear regression for job estimation. This model

also estimates the amount of resources for jobs with deadline

requirements. CRESP [18] estimates job execution and

supports resource provisioning in terms of map and reduce

slots. However, both the HP model and CRESP ignore the

impact of the number of reduce tasks on job performance. The

HP model is restricted to a constant number of reduce tasks,

whereas CRESP only considers a single wave of the reduce

phase. In CRESP, the number of reduce tasks has to be equal to

number of reduce slots. It is unrealistic to configure either the

same number of reduce tasks or the single wave of the reduce

phase for all the jobs. It can be argued that in practice, the

number of reduce tasks varies depending on the size of the input

dataset, the type of a Hadoop application (e.g. CPU intensive,

or disk I/O intensive) and user requirements. Furthermore, for

the reduce phase, using multiple waves generates better

performance than using a single wave especially when Hadoop

processes a large dataset on a small amount of resources. While

a single wave reduces the task setup overhead, multiple waves

improve the utilization of the disk I/O.

Building on the HP model, this paper presents an improved

HP model for Hadoop job execution estimation and resource

provisioning. The major contributions of this paper are as

follows:

 The improved HP work mathematically models all the

three core phases of a Hadoop job. In contrast, the HP

work does not mathematically model the

non-overlapping shuffle phase in the first wave.

 The improved HP model employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a Hadoop job with a varied number

of reduce tasks. In contrast, the HP model employs a

simple linear regress technique for job execution

estimation which restricts to a constant number of

reduce tasks.

 Based on job execution estimation, the improved HP

model employs Langrage Multiplier technique to

provision the amount of resources for a Hadoop job to

complete within a given deadline.

 The performance of the improved HP model is initially

evaluated on an in-house Hadoop cluster and subsequently on

Amazon EC2 Cloud. The evaluation results show that the

improved HP model outperforms both the HP model and

Starfish in job execution estimation with an accuracy of level in

the range of 94.97% and 95.51%. For resource provisioning, 4

job scenarios are considered with a varied number of map slots

and reduce slots. The experimental results show that the

improved HP model is more economical in resource

provisioning than the HP model.

The remainder of paper is organized as follows. Section II

models job phases in Hadoop. Section III presents the improved

HP model in job execution estimation and Section IV further

enhances the improved HP model for resource provisioning.

Section V first evaluates the performance of the improved HP

model on an in-house Hadoop cluster and subsequently on

Amazon EC2 Cloud. Section VI discusses a number of related

works. Finally, Section VII concludes the paper and points out

some future work.

II. MODELING JOB PHASES IN HADOOP

 Normally a Hadoop job execution is divided into a map

phase and a reduce phase. The reduce phase involves data

shuffling, data sorting and user-defined reduce functions. Data

shuffling and sorting are performed simultaneously. Therefore,

the reduce phase can be further divided into a shuffle (or sort)

phase and a reduce phase performing user-defined functions.

As a result, an overall Hadoop job execution work flow consists

of a map phase, a shuffle phase and a reduce phase as shown in

Fig.1. Map tasks are executed in map slots at a map phase and

reduce tasks run in reduce slots at a reduce phase. Every task

runs in one slot at a time. A slot is allocated with a certain

amount of resources in terms of CPU and RAM. A Hadoop job

phase can be completed in a single wave or multiple waves.

Tasks in a wave run in parallel on the assigned slots.

In
p

u
t

d
a
ta

se
t

Map

Task

Map

Task

Map

Task

Map

Task

Map

Task

M
a
p

 O
u

tp
u

t
M

a
p

 O
u

tp
u

t
M

a
p

 O
u

tp
u

t

Map Phase
Intermediate

dataset

Reduce

Task

Reduce

Task

Reduce

Task

Reduce

Task

Shuffle

Phase

Reduce

Phase
R

e
d

u
c
e
 O

u
tp

u
t

R
e
d

u
c
e
 O

u
tp

u
t

F
in

a
l

O
u

tp
u

t
in

 H
D

F
S

Fig.1. Hadoop job execution flow.

 Herodotou presented a detailed set of mathematical models

on Hadoop performance at a fine granularity [19]. For the

purpose of simplicity, we only consider the three core phases

(i.e. map phase, shuffle phase and reduce phase) in modeling

the performance of Hadoop jobs. Table 1 defines the variables

used in Hadoop job performance modeling.

A. Modeling Map Phase

In this phase, a Hadoop job reads an input dataset from

Hadoop Distributed File System (HDFS), splits the input

dataset into data chunks based on a specified size and then

passes the data chunks to a user-define map function. The map

function processes the data chunks and produces a map output.

The map output is called intermediate data. The average map

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 3

output and the total map phase execution time can be computed

using Eq.(1) and Eq.(2) respectively.

Table 1. Defined variables in modeling job phases.

Variables Expressions

output

avgmD 
The average output data size of a map task.

total

m
T

The total execution time of a map phase.

input

avgmD 
The average input data size of a map task.

yselectivitM The map selectivity which is the ratio of a map output to a

map input.

mN
The total number of map tasks.

avg

mT
The average execution time of a map task.

slot

mN
The total number of configured map slots.

avgshD 

The average size of a shuffled data.

total

sh
T

The total execution time of a shuffle phase.

r
N The total number of reduce tasks.

avg

sh
T

The average execution duration of a shuffle task.

slot

rN
The total number of configured reduce slots.

1w

sh
N

The total number of shuffle tasks that complete in the first

wave.

2w

sh
N

The total number of shuffle tasks that complete in other

waves.

avg
wT 1

The average execution time of a shuffle task that

completes in the first wave.

avg
wT 2

The average execution time of a shuffle task that

completes in other waves.

output

avgrD 

The average output data size of a reduce task.

total

r
T

The total execution time of a reduce phase.

input

avgrD 

The average input size of a reduce task.

yselectivit
R

The reduce selectivity which is the ratio of a reduce
output to a reduce input.

avg
rT

The average execution time of a reduce task.

yselectivit
input

avgm
output

avgm MDD   (1)

slot

m

m

avg

mtotal

m N

NT

T


 (2)

B. Modeling Shuffle Phase

In this phase, a Hadoop job fetches the intermediate data,

sorts it and copies it to one or more reducers. The shuffle tasks

and sort tasks are performed simultaneously, therefore, we

generally consider them as a shuffle phase. The average size of

shuffled data can be computed using Eq.(3).

r
N

m

output
avgm

avgh

ND

s
D







 (3)

If ,slot
rr NN  then the shuffle phase will be completed in a

single wave. The total execution time of a shuffle phase can be

computed using Eq.(4).

slot

r

avg

shtotal

sh N

r
NT

T



 (4)

Otherwise, the shuffle phase will be completed in multiple

waves and its execution time can be computed using Eq.(5).

slot

r

w

sh

avg

w

w

sh

avg

wtotal

sh N

NTNT

T

)()(
2

2

1

1
 

 (5)

C. Modeling Reduce Phase

 In this phase, a job reads the sorted intermediate data as

input and passes to a user-defined reduce function. The reduce

function processes the intermediate data and produces a final

output. In general, the reduce output is written back into the

HDFS. The average output of the reduce tasks and the total

execution time of the reduce phase can be computed using

Eq.(6) and Eq.(7) respectively.

 yselectivit
input

avgr
output

avgr RDD   (6)

slot

r

avg

rtotal

r
N

T
T r

N
 (7)

III. AN IMPROVED HP PERFORMANCE MODEL

As also mentioned before, Hadoop jobs have three core

execution phases – map phase, shuffle phase and reduce phase.

The map phase and the shuffle phase can have overlapping and

non-overlapping stages. In this section, we present an improved

HP model which takes into account both overlapping stage and

non-overlapping stage of the shuffle phase during the execution

of a Hadoop job. We consider single Hadoop jobs without

logical dependencies.

A. Design Rationale

A Hadoop job normally runs with multiple phases in a single

wave or in multiple waves. If a job runs in a single wave then all

the phases will be completed without overlapping stages as

shown in Fig.2.

Fig.2. A Hadoop job running in a single wave (16 map tasks and 16 reduce

tasks).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 4

However, if a job runs in multiple waves, then the job will be

progressed through both overlapping (parallel) and

non-overlapping (sequential) stages among the phases as show

in Fig.3.

In the case of multiple waves, the first wave of the shuffle

phase starts immediately after the first map task completes.

Furthermore, the first wave of the shuffle phase continues until

all the map tasks complete and all the intermediate data is

shuffled and sorted. Thus, the first wave of the shuffle phase is

progressed in parallel with the other waves of the map phase as

shown in Fig.3. After completion of the first wave of the shuffle

phase, the reduce tasks start running and produce output.

Afterwards, these reduce slots will become available to the

shuffle tasks running in other waves. It can be observed from

Fig.3 that the shuffle phase takes longer to complete in the first

wave than in other waves. In order to estimate the execution

time of a job in multiple waves, we need to estimate two sets of

parameters for the shuffle phase - the average and the

maximum durations of the first wave, together with the average

and the maximum durations of the other waves. Moreover,

there is no significant difference between the durations of the

map tasks running in non-overlapping and overlapping stages

due to the equal size of data chunks. Therefore, we only

estimate one set of parameters for the map phase which are the

average and the maximum durations of the map tasks. The

reduce tasks run in a non-overlapping stage, therefore we only

estimate one set of parameters for the reduce phase which are

the average and the maximum durations of the reduce tasks.

Finally, we aggregate the durations of all the three phases to

estimate the overall job execution time.

Fig.3. A Hadoop job running in multiple waves (80 map tasks, 32 reduce tasks).

It should be pointed out that Fig.3 also shows the differences

between the HP model and the improved model in Hadoop job

modeling. The HP work mathematically models the whole map

phase which includes the non-overlapping stage of the map

phase and the stage overlapping with the shuffle phase, but it

does not provide any mathematical equations to model the

non-overlapping stage of the shuffle phase in the first wave.

Whereas the improved HP work mathematically models the

non-overlapping map phase in the first wave, and the shuffle

phase in the first wave which includes both the stage

overlapping with the map phase and the non-overlapping stage.

This can be reflected in the mathematical equations of the

improved HP model which are different from the HP model.

B. Mathematical Expressions

In this section, we present the mathematical expressions of

the improved HP work in modeling a Hadoop job which

completes in multiple waves. Table 2 defines the variables used

in the improved model.

Table 2. Defined variables in the improved HP model.

Variables Expressions

low

wmT 1

The lower bound duration of the map phase in the

first wave (non-overlapping).

up

wm
T

1

The upper bound duration of the map phase in the

first wave (non-overlapping).

1w

mN
The number of map tasks that complete in the first

wave of the map phase.

2w

mN

The number of map tasks that complete in other

waves of the map phase.

max

m
T

The maximum execution time of a map task.

low

wsh
T

1

The lower bound duration of the shuffle phase in
the first wave (overlapping with the map phase).

up

wsh
T

1

The upper bound duration of the shuffle phase in

the first wave (overlapping with the map phase).

avg

wsh

T
1

The average execution time of a shuffle task that
completes in the first wave of the shuffle phase.

max

1wsh

T


The maximum execution time of a shuffle task that

completes in the first wave of the shuffle phase.

low

wsh

T
2

The lower bound duration of the shuffle phase in

other waves (non-overlapping)

up

wsh

T
2

The upper bound duration of the shuffle phase in

other waves (non-overlapping).

avg

wsh
T

2

The average execution time of a shuffle task that

completes in other waves of the shuffle phase.

max

wsh

T
2

The maximum execution time of a shuffle task that
completes in other waves of the shuffle phase.

low

rT
The lower bound duration of the reduce phase.

up

rT
The upper bound duration of the reduce phase.

max

r

T

The maximum execution time of a reduce task.

low

jobT
The lower bound execution time of a Hadoop job.

up

jobT

The upper bound execution time of a Hadoop job.

avg

job
T

The average execution time of a Hadoop job.

In practice, job tasks in different waves may not complete

exactly at the same time due to varied overhead in disk I/O

operations and network communication. Therefore, the

improved HP model estimates the lower bound and the upper

bound of the execution time for each phase to cover the

best-case and the worse-case scenarios respectively.

We consider a job that runs in both non-overlapping and

overlapping stages. The lower bound and the upper bound of

the map phase in the first wave which is a non-overlapping

stage can be computed using Eq.(8) and Eq.(9) respectively.

map phase(non-overlapping and overlapping)

non-overlapping
shuffle phase

in the first wave

HP model

non-overlapping
map phase

in the first wave

shuffle phase in the first wave
(overlapping and non-overlapping)

Improved HP model

shuffle and reduce phases

shuffle and reduce phases

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 5

slot

m

w

m

avg

mlow

wm
N

NT

T

1

1




 (8)

slot

m

w

m
mup

wm
N

NT
T

1max

1




 (9)

In the overlapping stage of a running job, the map phase

overlaps with the shuffle phase. Specifically, the tasks running

in other waves of the map phase run in parallel with the tasks

running in the first wave of the shuffle phase. As the shuffle

phase always completes after the map phase which means that

the shuffle phase takes longer than the map phase, therefore we

use the duration of the shuffle phase in the first wave to

compute the lower bound and the upper bound of the

overlapping stage of the job using Eq.(10) and Eq.(11)

respectively.

slot

r

w

sh

avg

wshlow

wsh
N

NT
T

1

1
1


 


 (10)

slot

r

w

shwshup

wsh
N

NT
T

1max

1
1


 


 (11)

In other waves of the shuffle phase, the tasks run in a

non-overlapping stage. Hence, the lower bound and the upper

bound of the non-overlapping stage of the shuffle phase can be

computed using Eq.(12) and Eq.(13) respectively.

slot

r

w

sh

avg

wshlow

wsh
N

NT
T

2

2
2


 


 (12)

slot

r

w

shwshup

wsh
N

NT
T

2max

2
2


 

 (13)

The reduce tasks start after completion of the shuffle tasks.

Therefore, the reduce tasks complete in a non-overlapping

stage. The lower bound and the upper bound of the reduce

phase can be computed using Eq.(14) and Eq.(15) respectively.

slot

r

r

avg

rlow

r
N

NT

T



 (14)

slot

r

rrup

r
N

NT
T




max

 (15)

As a result, the lower bound and upper bound of the

execution time of a Hadoop job can be computed by combining

the execution durations of all the three phases using Eq.(16) and

Eq.(17) respectively.

low

r

low

wsh

low

wsh

low

wm

low

job TTTTT   211 (16)

up

r

up

wsh

up

wsh

up

wm

up

job TTTTT   211 (17)

 By substituting the values in Eq.(16) and Eq.(17), we have

slot

r

w

sh

avg

wsh

slot

m

w

m

avg

mlow

job
N

NT

N

NT
T

1

1

1 



 

slot

r

r

avg

r

slot

r

w

sh

avg

wsh

N

NT

N

NT 





2

2 (18)

slot

r

w

shwsh

slot

m

w

mmup

job
N

NT

N

NT
T

1max

1

1max 



 

slot

r

rr

slot

r

w

sh
wsh

N

NT

N

NT 





max
2max

2 (19)

 Finally, we take an average of Eq.(18) and Eq.(19) to estimate

the execution time of a Hadoop job using Eq.(20).

2

up

job

low

jobavg

job

TT
T


 (20)

C. Job Execution Estimation

 In the previous section, we have presented the mathematical

expressions of the improved HP model. The lower bound and

the upper bound of a map phase can be computed using Eq.(8)

and Eq.(9) respectively. However, the durations of the shuffle

phase and the reduce phase have to be estimated based on the

running records of a Hadoop job.

 When a job processes an increasing size of an input dataset,

the number of map tasks is proportionally increased while the

number of reduce tasks is specified by a user in the

configuration file. The number of reduce tasks can vary

depending on user's configurations. When the number of reduce

tasks is kept constant, the execution durations of both the

shuffle tasks and the reduce tasks are linearly increased with the

increasing size of the input dataset as considered in the HP

model. This is because the volume of an intermediate data

block equals to the total volume of the generated intermediate

data divided by the number of reduce tasks. As a result, the

volume of an intermediate data block is also linearly increased

with the increasing size of the input dataset. However, when the

number of reduce tasks varies, the execution durations of both

the shuffle tasks and the reduce tasks are not linear to the

increasing size of an input dataset.

 In either the shuffle phase or the reduce phase, we consider

the tasks running in both overlapping and non-overlapping

stages. Unlike the HP model, the improved model considers a

varied number of reduce tasks. As a result, the durations of both

the shuffle tasks and the reduce tasks are nonlinear to the size of

an input dataset. Therefore, instead of using a simple linear

regression as adopted by the HP model, we apply Locally

Weighted Linear Regression (LWLR) [20][21] in the improved

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 6

model to estimate the execution durations of both the shuffle

tasks and the reduce tasks.

 LWLR is an instance-based nonparametric function, which

assigns a weight to each instance x according to its Euclidean

distance from the query instance qx . LWLR assigns a high

weight to an instance x which is close to the query instance qx

and a low weight to the instances that are far away from the

query instance qx . The weight of an instance can be computed

using a Gaussian function as illustrated in Eq.(21).

),....,3,2,1(),
2

)),(tan(
exp(

2

2

mk
h

xxcedis
w

qk

k  (21)

where,

 kw is the weight of the training instance at location k .

 kx is the training instance at location k .

 m is the total number of the training instances.

 h is a smoothing parameter which determines the

width of the local neighborhood of the query instance.

 The value of h is crucial to LWLR. Users have the option of

using a new value of h for each estimation or a single global

value of h. However, finding an optimal value for h is a

challenging issue itself [22]. In the improved HP model, a

single global value of h is used to minimize the estimated mean

square errors.

In the improved HP model, LWLR is used to estimate the

durations of both the shuffle tasks and the reduce tasks. First,

we estimate
avg

wshT 1 , which is the average duration of the shuffle

tasks running in the first wave of the shuffle phase. To estimate
avg

wshT 1 , we define a matrix
nmX  whose rows contain the

training dataset mxxxx,,, 321 and n is the number of feature

variables which is set to 2 (i.e. the size of an intermediate

dataset and the number of reduce tasks). We define a vector

 myyyY ...,, 21 of dependent variables that are used for the

average durations of the shuffle tasks. For example, iy

represents the average execution time of the shuffle task that

corresponds to the training instance of ix . We define another

matrix qX whose rows are query instances. Each query

instance qx contains both the size of the intermediate dataset

newd and the number of reduce tasks newr of a new job. We

calculate newd based on the average input data size of a map

task, the total number of map tasks and the map selectivity

metric which is yselectivitm

avg

inputmnew MNDd   .

For the estimation of
avg

wshT 1 , we calculate the weight for

each training instance using Eq. (21) and then compute the

parameter  using Eq. (22) which is the coefficient of LWLR.

)()(1 YWXXWX TT   (22)

Here)(kwdiagW  is the diagonal matrix where all the

non-diagonal cells are 0 values. The value of a diagonal cell is

increased when the distance between a training instance and the

query instance is decreased.

 Finally, the duration of a new shuffle task running in the first

wave of the shuffle phase can be estimated using Eq. (23).

 q

avg

wsh XT 1 (23)

 Similarly, the durations of
max

wshT 1 ,
avg

wshT 2 ,
max

wshT 2 ,
avg

rT

and
max

rT can be estimated.

 The estimated values of both the shuffle phase and the

reduce phase are used in the improved HP model to estimate the

overall execution time of a Hadoop job when processing a new

input dataset. Fig.4 shows the overall architecture of the

improved HP model, which summarizes the work of the

improved HP model in job execution estimation. The boxes in

gray represent the same work presented in the HP model. It is

worth noting that the improved HP model works in an offline

mode and estimates the execution time of a job based on the job

profile.

Estimated time of first wave Estimated from profile

Job

First

wave

Other

wave

First

wave

Other

wave
Reduce

Estimate

Time
Estimated

Time

Estimated

Time

Estimated

Time

Overall Job Estimation

Job Profile

Locally

Weighted Linear

Regression

Estimated time of other wave

Estimate time of reduce tasks

Map

Phase

Shuffle

Phase

Reduce

Phase

ov
er

la
p

Fig.4. The architecture of the improved HP model.

IV. RESOURCE PROVISIONING

The improved HP model presented in Section III can

estimate the execution time of a Hadoop job based on the job

execution profile, allocated resources (i.e. map slots and reduce

slots), and the size of an input dataset. The improved HP model

is further enhanced to estimate the amount of resources for

Hadoop jobs with deadline requirements.

Consider a deadline t for a job that is targeted at the lower

bound of the execution time. To estimate the number of map

slots and reduce slots, we consider the non-lapping map phase

in the first wave, the map phase in other waves together with

the overlapped shuffle phase in the first wave, the shuffle phase

in other waves and the reduce phase. Therefore we simplify

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 7

Eq.(18) into Eq.(24) with a modification of Eq.(10) for resource

estimation.

t
r

d

r

c

rm

b

m

a



 (24)

where


low

jobTt 


1w

m

avg

m
NTa 

)(
1

1

2
()

w

sh

avg

wsh

w

m

avg

m
NTNTb 





2

2

w

sh

avg

wsh
NTc 




r

avg

r
NTd 


slot

mNm 


slot

rNr 

The method of Lagrange Multipliers [23] is used to estimate

the amounts of resources (i.e. map slots and the reduce slots) for

a job to complete within a deadline. Lagrange Multipliers is an

optimization technique in multivariable calculus that minimizes

or maximizes the objective function subject to a constraint

function. The objective function is rmrmf ),(and the

constraint function is 0),(rmg , where

t
r

d

r

c

rm

b

m

a
rmg 


),(is derived from Eq.(24). To

minimize the objective function, the Lagrangian function is

expressed as Eq.(25).

),(),(),,(rmgrmfrmL   (25)

where  is the Lagrange Multiplier. We take partial

differentiation of Eq.(25) with respect to m, r,  , we have

0
2

)(
2

1 







rm

b

m

a

m

L 
 (26)

0
2

)(

2
)(

1 










r

dc

rm

b

r

L 
 (27)

0






t

r

d

r

c

rm

b

m

aL


 (28)

Solving Eq.(26), Eq.(27), and Eq.(28) simultaneously for m

and r, we have

2

1

2)1(
1 















dc

ab
xa

x
m



2

1

2)1(
)1(















dc

ab
xa

xx
r



where

 ))1()(()1(

)1(

1

2

1














 xxdcbxxa

dc

ab
axt



and
dc

a
x




Here, the values of m and r are the numbers of map slots

and reduce slots respectively. As we have targeted at the lower

bound of the execution time of a job, the estimated amount of

resources might not be sufficient for the job to complete within

the deadline. This is because the lower bound corresponds to

the best-case scenario which is hardly achievable in a real

Hadoop environment. Therefore, we also target at the upper

bound of the execution time of a job. For this purpose we use

Eq.(19) as a constraint function in Lagrange Multipliers, and

apply the same method as applied to Eq.(18) to compute the

values of both m and r . In this case, the amounts of resources

might be overestimated for a job to complete within the

deadline. This is because the upper bound corresponds to the

worst-case execution of a job. As a result, an average amount of

resources between the lower and the upper bounds might be

more sensible for resource provisioning for a job to complete

within a deadline.

V. PERFORMANCE EVALUATION

The performance of the improved HP model was initially

evaluated on an in-house Hadoop cluster and subsequently on

Amazon EC2 cloud. In this section, we present the evaluation

results. First, we give a brief description on the experimental

environments that were used in the evaluation process.

A. Experimental Setup

We set up an in-house Hadoop cluster using an Intel Xeon

server machine. The specifications and configurations of the

server are shown in Table 3. We installed Oracle Virtual Box

and configured 8 Virtual Machines (VMs) on the server. Each

VM was assigned with 4 CPU cores, 8GB RAM and 150GB

hard disk storage. We used Hadoop-1.2.1 and configured one

VM as the Name Node and the remaining 7 VMs as Data

Nodes. The Name Node was also used as a Data Node. The data

block size of the HDFS was set to 64MB and the replication

level of data block was set to 2. Two map slots and two reduce

slots were configured on each VM. We employed two typical

MapReduce applications, i.e. the WordCount application and

the Sort application which are CPU intensive and IO intensive

applications respectively. The teraGen application was used to

generate input datasets of different sizes.

 The second experimental Hadoop cluster was setup on

Amazon EC2 Cloud using 20 m1.large instances. The

specifications of the m1.large are shown in Table 3. In this

cluster, we used Hadoop-1.2.1 and configured one instance as

Name Node and other 19 instances as Data Nodes. The Name

Node was also used as a Data Node. The data block size of the

HDFS was set to 64MB and the replication level of data block

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 8

was set to 3. Each instance was configured with one map slot

and one reduce slot.

Table 3: Experimental Hadoop cluster.

Intel Xeon Server 1

CPU 40 cores

Processor 2.27GHz

Hard disk 2TB

Connectivity 100Mbps Ethernet LAN

Memory 128GB

Amazon

m1.large instance

vCPU 2

Hard disk 420GB

Memory 7.5GB

Software

Operating System Ubuntu 12.04 TLS

JDK 1.6

Hadoop 1.2.1

Oracle Virtual Box 4.2.8

Starfish 0.3.0

B. Job Profile Information

We run both the WordCount and the Sort applications on

the two Hadoop clusters respectively and employed Starfish to

collect the job profiles. For each application running on each

cluster, we conducted 10 tests. For each test, we run 5 times and

took the average durations of the phases. Table 4 and Table 5

present the job profiles of the two applications that run on the

EC2 Cloud.

Table 4: The job profile of the WordCount application in EC2 environment.

Data

size

(GB)

Map

tasks

Map task

duration (s)

Shuffle duration(s)

in the first wave

(overlapping)

Shuffle duration(s)

in other waves

(non-overlapping)

Reduce

duration (s)

Avg. Max Avg. Max Avg. Max Avg. Max

5 80 12 23 69 73 20 22 18 25

10 160 12 24 139 143 26 29 20 32

15 240 13 23 212 215 38 44 23 35

20 320 13 23 274 278 34 39 17 26

25 400 11 25 346 350 41 47 20 27

30 480 11 24 408 411 47 57 22 41

35 560 12 27 486 489 59 71 27 42

40 640 12 24 545 549 45 52 19 30

45 720 11 23 625 629 50 58 20 32

50 800 14 24 693 696 55 65 23 37

Table 5: The profile of the Sort application in EC2 environment.

Data

Size

(GB)

Map

tasks

Map task

duration (s)

Shuffle duration(s)

in the first wave

(overlapping)

Shuffle duration(s)

in other waves

(non-overlapping)

Reduce

duration (s)

Avg.
M

ax
Avg. Max Avg. Max Avg. Max

5 80 11 15 48 50 15 18 13 24

10 160 12 24 108 111 23 32 30 42

15 240 12 20 161 165 31 41 50 68

20 320 12 22 218 221 29 35 44 63

25 400 13 22 277 281 37 63 57 73

30 480 13 33 325 330 42 56 75 112

35 560 12 27 375 378 55 82 87 132

40 640 13 26 424 428 52 74 71 104

45 720 13 26 484 488 63 94 97 128

50 800 13 29 537 541 71 102 104 144

C. Evaluating the Impact of the Number of Reduce Tasks on

Job Performance

In this section we evaluate the impact of the number of

reduce tasks on job performance. We run both the WordCount

and the Sort applications on the in-house Hadoop cluster with a

varied number of reduce tasks. The experimental results are

shown in Fig.5 and Fig.6 respectively. For both applications, it

can be observed that when the size of the input dataset is small

(e.g. 10GB), using a small number of reduce tasks (e.g. 16)

generates less execution time than the case of using a large

number of reduce tasks (e.g. 64). However, when the size of the

input dataset is large (e.g. 25GB), using a large number of

reduce tasks (e.g. 64) generates less execution time than the

case of using a small number of reduce tasks (e.g. 16). It can

also be observed that when the size of the input dataset is small

(e.g. 10GB or 15GB), using a single wave of reduce tasks (i.e.

the number of reduce tasks is equal to the number of reduce

slots which is 16) performs better than the case of using

multiple waves of reduce tasks (i.e. the number of reduce tasks

is larger than the number of reduce slots). However, when the

size of the input dataset is large (e.g. 25GB), both the

WordCount and the Sort applications perform better in the case

of using multiple waves of reduce tasks than the case of using a

single wave of reduce tasks. While a single wave reduces the

task setup overhead on a small dataset, multiple waves improve

the utilization of the disk I/O on a large dataset. As a result, the

number of reduce tasks affects the performance of a Hadoop

application.

Fig.5. The performance of the WordCount application with a varied number of

reduce tasks.

Fig.6.The performance of the Sort application with a varied number of reduce

tasks.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 9

D. Estimating the Execution Times of Shuffle Tasks and

Reduce Tasks

Both the WordCount and the Sort applications processed a

dataset on the in-house Hadoop cluster with a varied number of

reduce tasks from 32 to 64. The size of the dataset was varied

from 2GB to 20GB. Both applications also processed another

dataset from 5GB to 50GB on the EC2 Cloud with the number

of reduce tasks varying from 40 to 80. The LWLR regression

model presented in Section III.C was employed to estimate the

execution times of both the shuffle tasks and the reduce tasks of

a new job. The estimated values were used in Eq.(18) and

Eq.(19) to estimate the overall job execution time.

Fig.7 and Fig.8 show respectively the estimated execution

times of both the shuffle tasks and the reduce tasks for both

applications running on the Hadoop cluster in EC2. Similar

evaluation results were obtained from both applications

running on the in-house Hadoop cluster. We can observe that

the execution times of both the shuffle tasks (non-overlapping

stage) and reduce tasks are not linear to the size of an input

dataset. It should be noted that the execution times of the

shuffle tasks that run in an overlapping stage are linear to the

size of an input dataset because the durations of these tasks

depend on the number of map waves, as shown in Table 4 and

Table 5.

Fig.7.The estimated durations of both the shuffle phase (non-overlapping stage)

and the reduce phase in the WordCount application. The points represent the

actual execution time and dashed lines represent the estimated durations.

Fig.8. The estimated durations of both the shuffle phase (non-overlapping

stage) and the reduce phase in the Sort application. The points represent the

actual execution time and dashed lines represent the estimated duration.

E. Job Execution Estimation

A number of experiments were carried out on both the

in-house Hadoop cluster and the EC2 Cloud to evaluate the

performance of the improved HP model. First, we evaluated the

performance of the improved HP model on the in-house cluster

and subsequently evaluated the performance of the model on

the EC2 Cloud.

For the in-house cluster, the experimental results obtained

from both the WordCount and the Sort applications are shown

in Fig.9 and Fig.10 respectively. From these two figures we can

observe that the improved HP model outperforms the HP model

in both applications. The overall accuracy of the improved HP

model in job estimation is within 95% compared with the actual

job execution times, whereas the overall accuracy of the HP

model is less than 89% which uses a simple linear regression. It

is worth noting that the HP model does not generate a straight

line in performance as shown in [17]. This is because a varied

number of reduce tasks was used in the tests whereas the work

presented in [17] used a constant number of reduce tasks.

Fig.9. The performance of the improved HP model in job estimation of running

the WordCount application on the in-house cluster.

Fig.10. The performance of the improved HP model in job estimation of
running the Sort application on the in-house cluster.

Next, we evaluated the performance of the improved HP

model on the EC2 Cloud. The experimental results in running

both applications are shown in Fig.11 and Fig.12 respectively.

It can be observed that the improved HP model also performs

better than the HP model. The overall accuracy of the improved

HP model in job estimation is over 94% compared with the

actual job execution times, whereas the overall accuracy of the

HP model is less than 88%. The HP model performs better on

small datasets but its accuracy level is decreased to 76.15%

when the dataset is large (e.g. 40GB). The reason is that the HP

model employs a simple linear regression which cannot

accurately estimate the execution times of the shuffle tasks and

the reduce tasks which are not linear to the size of an input

dataset.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 10

Fig.11. The performance of the improved HP model in job estimation of

running the WordCount application on the EC2 Cloud.

Fig.12. The performance of the improved HP model in job estimation of

running the Sort application on the EC2 Cloud.

Finally, we compared the performance of the improved HP

model in job estimation with that of both Starfish and the HP

model collectively. Fig.13 and Fig.14 show the comparison

results of the three models running the two applications on the

EC2 Cloud respectively.

Fig.13. A performance comparison among the improved HP model, the HP

model and Starfish in running the WordCount application on the EC2 Cloud.

 It can be observed that the improved HP model produces the

best results in job estimation for both applications. Starfish

performs better than the HP model on the Sort application in

some cases as shown in Fig.14. However, Starfish

overestimates the job execution times of the WordCount

application as shown in Fig.13. This is mainly due to the high

overhead of Starfish in collecting a large set of profile

information of a running job. The Starfish profiler generates a

high overhead for CPU intensive applications like WordCount

because the Starfish uses Btrace to collect job profiles which

requires additional CPU cycles [16]. Starfish performs better on

the Sort application because Sort is less CPU-intensive than the

WordCount application.

Fig.14. A performance comparison among the improved HP model, the HP

model and Starfish in running the Sort application on the EC2 Cloud.

We have validated the LWLR regression model in job

execution estimation using 10-fold cross validation technique.

We considered the execution of an entire job with three phases

(i.e. map phase, shuffle phase and reduce phase). The mean

absolute percentage errors of the WordCount application and

the Sort application are 2.37% and 1.89% respectively which

show high generalizability of the LWLR in job execution

estimation. Furthermore, the R-squared values of the two

applications are 0.9986 and 0.9979 respectively which reflects

the goodness of fit of LWLR.

F. Resource Provisioning

In this section, we present the evaluation results of the

improved HP model in resource provisioning using the

in-house Hadoop cluster. We considered 4 scenarios as shown

in Table 6. The intention of varying the number of both map

slots and reduce slots from 1 to 4 was twofold. One was to

evaluate the impact of the resources available on the

performance of the improved HP model in resource estimation.

The other was to evaluate the performance of the Hadoop

cluster in resource utilization with a varied number of map and

reduce slots.

Table 6: Scenario configurations.

Scenarios Number of map

slots on each VM

Number of reduce slots

on each VM

1 1 1

2 2 2

3 3 3

4 4 4

 To compare the performance of the improved HP model with

the HP model in resource estimation in the 4 scenarios, we

employed the WordCount application as a Hadoop job

processing 9.41GB input dataset. In each scenario, we set 7

completion deadlines for the job which are 920, 750, 590, 500,

450, 390 and 350 in seconds. We first built a job profile in each

scenario. We set a deadline for the job, and employed both the

HP model and the improved HP model to estimate the amount

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 11

of resources (i.e. the number of map slots and the number of

reduce slots). We then assigned the estimated resources to the

job using the in-house Hadoop cluster and measured the actual

upper bound and the lower bound execution durations. We took

an average of an upper bound and a lower bound and compared

it with the given deadline. It should be noted that for resource

provisioning experiments we configured 16VMs to satisfy the

requirement of a job. Therefore, we employed another Xeon

server machine with the same specification of the first server as

shown in Table 3. We installed the Oracle Virtual Box and

configured 8 VMs on the second server. Fig.15 to Fig.18 show

the results in resource provisioning of the 4 scenarios

respectively.

Fig.15. Resource provisioning in Scenario 1.

Fig.16. Resource provisioning in Scenario 2.

 From the 4 scenarios we can see that overall the improved

HP model slightly performs better than the HP model in

resource provisioning due to its high accuracy in job execution

estimation. Both models perform well in the first two scenarios

especially in Scenario 1 where the two models generate a near

optimal performance. However, the two models over-provision

resources in both Scenario 3 and Scenario 4 especially in the

cases where the job deadlines are large. The reason is that when

we built the training dataset for resource estimation, we run all

the VMs in the tests. One rationale was that we consider the

worst cases in resource provisioning to make sure all the user

job deadlines would be met. However, the overhead incurred in

running all the VMs was high and included in resource

provisioning for all the jobs. As a result, for jobs with large

deadlines, both models over estimate the overhead of the VMs

involved. Therefore, both models over-provision the amounts

of resources for jobs with large deadlines which can be

completed using a small number of VMs instead of all the VMs.

Fig.17. Resource provisioning in Scenario 3.

 It is worth noting that all the job deadlines are met in the 4

scenarios except the last job deadline in Scenario 4 where

t=350. This could be caused by the communication overhead

incurred among the VMs running across the two server

machines. Although both the improved HP model and the HP

model include communication overhead in resource

provisioning when the training dataset was built, they only

consider static communication overhead. It can be expected

that the communication overhead varies from time to time due

to the dynamic nature of a communication network.

Fig.18. Resource provisioning in Scenario 4.

 Table 7 summarizes the resources estimated by both the HP

model and the improved HP model in the 4 scenarios. It can be

observed that the HP model recommends more resources in

terms of map slots, especially in Scenario 3. This is because the

HP model largely considers the map slots in resource

provisioning. As a result, the jobs following the HP model are

completed quicker than the jobs following the improved HP

model but with larger gaps from the given deadlines. Therefore,

the improved HP model is more economical than the HP model

in resource provisioning due to its recommendations of less

map slots.

VI. RELATED WORK

Hadoop performance modeling is an emerging topic that

deals with job optimization, scheduling, estimation and

resource provisioning. Recently this topic has received a great

attention from the research community and a number of models

have been proposed.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 12

Table 7: The amounts of resources estimated by the HP model and the improved HP model.

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Deadlines
HP model

(m, r)

Improved

HP model

(m, r)

HP model
(m, r)

Improved

HP model

(m, r)

HP model
(m, r)

Improved

HP model

(m, r)

HP model
(m, r)

Improved

HP model

(m, r)

920 (5,1) (4,4) (8,2) (6,5) (18,4) (11,5) (20,5) (19,5)

750 (5,2) (5,5) (9,3) (7,6) (22,5) (12,6) (24,6) (23,6)

590 (7,2) (6,6) (12,4) (9,8) (28,5) (16,8) (30,6) (29,8)

500 (8,2) (7,7) (14,4) (10,9) (33,6) (19,9) (36,7) (34,10)

450 (9,3) (8,8) (15,5) (11,10) (37,7) (21,10) (40,8) (39,10)

390 (10,3) (9,9) (18,5) (13,11) (42,8) (24,12) (46,9) (44,11)

350 (11,3) (10,10) (20,6) (14,13) (47,9) (27,13) (51,10) (49,13)

Legends: m= map slots, r= reduce slots

 Morton et al. proposed the parallax model [24] and later

the ParaTimer model [25] that estimate the performance of the

Pig parallel queries, which can be translated into series of

MapReduce jobs. They use debug runs of the same query on

input data samples to predict the relative progress of the map

and reduce phases. This work is based on simplified

suppositions that the durations of the map tasks and the reduce

tasks are the same for a MapReduce application. However, in

reality, the durations of the map tasks and the reduce tasks

cannot be the same because the durations of these tasks are

depended on a number of factors. More importantly, the

durations of the reduce tasks in overlapping and

non-overlapping stages are very different. Ganapathi et al. [26]

employed a multivariate Kernel Canonical Correlation

Analysis (KCCA) regression technique to predict the

performance of Hive query. However, their intention was to

show the applicability of KCCA technique in the context of

MapReduce.

Kadirvel et al. [27] proposed Machine Learning (ML)

techniques to predict the performance of Hadoop jobs.

However, this work does not have a comprehensive

mathematical model for job estimation. Lin et al. [11] proposed

a cost vector which contains the cost of disk I/O, network

traffic, computational complexity, CPU and internal sort. The

cost vector is used to estimate the execution durations of the

map and reduce tasks. It is challenging to accurately estimate

the cost of these factors in a situation where multiple tasks

compete for resources. Furthermore, this work is only

evaluated to estimate the execution times of the map tasks and

no estimations on reduce tasks are presented. The later work

[12] considers resource contention and tasks failure situations.

A simulator is employed to evaluate the effectiveness of the

model. However, simulator base approaches are potentially

error-prone because it is challenging to design an accurate

simulator that can comprehensively simulate the internal

dynamics of complex MapReduce applications.

 Jalaparti et al. [13] proposed a system called Bazaar that

predicts Hadoop job performance and provisions resources in

term of VMs to satisfy user requirements. The work presented

in [14] uses the Principle Component Analysis technique to

optimize Hadoop jobs based on various configuration

parameters. However, these models leave out both the

overlapping and non-overlapping stages of the shuffle phase.

There is body of work that focuses on optimal resource

provisioning for Hadoop jobs. Tian et al. [28] proposed a cost

model that estimates the performance of a job and provisions

the resources for the job using a simple regression technique.

Chen et al. [18] further improved the cost model and proposed

CRESP which employs the brute-force search technique for

provisioning the optimal cluster resources in term of map slots

and reduce slots for Hadoop jobs. The proposed cost model is

able to predict the performance of a job and provisions the

resources needed. However, in the two models , the number of

reduce tasks have to be equal to the number of reduce slots

which means that these two models only consider a single wave

of the reduce phase. It is arguable that a Hadoop job performs

better when multiple waves of the reduce phase are used in

comparison with the use of a single, especially in situations

where a small amount of resources is available but processing a

large dataset. Lama et al. [29] proposed AROMA, a system that

automatically provisions the optimal resources and optimizes

the configuration parameters of Hadoop for a job to achieve the

service level objectives. AROMA uses clustering techniques to

group the jobs with similar behaviors. AROMA uses Support

Vector Machine to predict the performance of a Hadoop job

and uses a pattern search technique to find the optimal set of

resources for a job to achieve the required deadline with a

minimum cost. However, AROMA cannot predict the

performance of a Hadoop job whose resource utilization pattern

is different from any previous ones. More importantly,

AROMA does not provide a comprehensive mathematical

model to estimate a job execution time as well as optimal

configuration parameter values of Hadoop.

There are a few other sophisticated models such as

[15][16][17][30] that are similar to the improve HP model in

the sense that they use the previous executed job profiles for

performance prediction. Herodotou et al. proposed Starfish [15]

which collects the past executed jobs profile information at a

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 13

fine granularity for job estimation and automatic optimization.

On the top of the Starfish, Herodotou et al. proposed Elasticiser

[16] which provisions a Hadoop cluster resources in term of

VMs. However, collecting detailed job profile information with

a large set of metrics generates an extra overhead, especially for

CPU-intensive applications. As a result, Starfish overestimate

the execution time of a Hadoop job. Verma et al. [30]

presented the ARIA model for job execution estimations and

resource provisioning. The HP model [17] extends the ARIA

mode by adding scaling factors to estimate the job execution

time on larger datasets using a simple linear regression. The

work presented in [31] divides the map phase and reduce phase

into six generic sub-phases (i.e. read, collect, spill, merge,

shuffle and write), and uses a regression technique to estimate

the durations of these sub-phases. The estimated values are then

used in the analytical model presented in [30] to estimate the

overall job execution time. In [32] , Zhang et al. employed the

bound-based approach [30] in heterogeneous Hadoop cluster

environments.

It should be pointed out that the aforementioned models are

limited to the case that they only consider a constant number of

the reduce tasks. As a result, the impact of the number of reduce

tasks on the performance of a Hadoop job is ignored. The

improved HP model considers a varied number of reduce tasks

and employs a sophisticated LWLR technique to estimate the

overall execution time of a Hadoop job.

VII. CONCLUSION

 Running a MapReduce Hadoop job on a public cloud such as

Amazon EC2 necessitates a performance model to estimate the

job execution time and further to provision a certain amount of

resources for the job to complete within a given deadline. This

paper has presented an improved HP model to achieve this goal

taking into account multiple waves of the shuffle phase of a

Hadoop job. The improved HP model was initially evaluated on

an in-house Hadoop cluster and subsequently evaluated on the

EC2 Cloud. The experimental results showed that the improved

HP model outperforms both Starfish and the HP model in job

execution estimation. Similar to the HP model, the improved

HP model provisions resources for Hadoop jobs with deadline

requirements. However, the improved HP model is more

economical in resource provisioning than the HP model.

 Both models over-provision resources for user jobs with

large deadlines in the cases where VMs are configured with a

large number of both map slots and reduce slots. One future

work would be to consider dynamic overhead of the VMs

involved in running the user jobs to minimize resource

over-provisioning. Currently the improved HP model only

considers individual Hadoop jobs without logical

dependencies. Another future work will be to model multiple

Hadoop jobs with execution conditions.

ACKNOWLEDGEMENT

 This research is partially supported by the 973 project on

Network Big Data Analytics funded by the Ministry of Science

and Technology, China. No. 2014CB340404.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified

data processing on large clusters,” Commun. ACM, vol.

51, no. 1, pp. 107–113, 2008.

[2] R. Lämmel, “Google’s MapReduce programming

model — Revisited,” Sci. Comput. Program., vol. 70,

no. 1, pp. 1–30, 2008.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T.

Wang, “Mars: a MapReduce framework on graphics

processors,” in Proceedings of the 17th international

conference on Parallel architectures and compilation

techniques - PACT ’08, 2008, p. 260.

[4] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa,

“Phoenix: a parallel programming model for

accommodating dynamically joining/leaving

resources,” in SIGPLAN Not., 2003, vol. 38, no. 10, pp.

216–229.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,

“Dryad: distributed data-parallel programs from

sequential building blocks,” ACM SIGOPS Oper. Syst.

Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007.

[6] “Apache Hadoop.” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 21-Oct-2013].

[7] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The

Performance of MapReduce: An In-depth Study,”

Proc. VLDB Endow., vol. 3, no. 1–2, pp. 472–483, Sep.

2010.

[8] U. Kang, C. E. Tsourakakis, and C. Faloutsos,

“PEGASUS: Mining Peta-scale Graphs,” Knowl. Inf.

Syst., vol. 27, no. 2, pp. 303–325, May 2011.

[9] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo,

“PLANET: Massively Parallel Learning of Tree

Ensembles with MapReduce,” Proc. VLDB Endow.,

vol. 2, no. 2, pp. 1426–1437, Aug. 2009.

[10] A. Pavlo, E. Paulson, and A. Rasin, “A comparison of

approaches to large-scale data analysis,” in SIGMOD

’09 Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data,

2009, pp. 165–178.

[11] X. Lin, Z. Meng, C. Xu, and M. Wang, “A Practical

Performance Model for Hadoop MapReduce,” in

Cluster Computing Workshops (CLUSTER

WORKSHOPS), 2012 IEEE International Conference

on, 2012, pp. 231–239.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 14

[12] X. Cui, X. Lin, C. Hu, R. Zhang, and C. Wang,

“Modeling the Performance of MapReduce under

Resource Contentions and Task Failures,” in Cloud

Computing Technology and Science (CloudCom), 2013

IEEE 5th International Conference on, 2013, vol. 1, pp.

158–163.

[13] J. Virajith, B. Hitesh, C. Paolo, K. Thomas, and R.

Antony, “Bazaar: Enabling Predictable Performance in

Datacenters,” Microsoft Reasearch, MSR-TR-

2012-38, [Online].Available:

http://research.microsoft.com/apps/pubs/default.aspx?i

d=162192.

[14] H. Yang, Z. Luan, W. Li, D. Qian, and G. Guan,

“Statistics-based Workload Modeling for

MapReduce,” in Parallel and Distributed Processing

Symposium Workshops PhD Forum (IPDPSW), 2012

IEEE 26th International, 2012, pp. 2043–2051.

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu, “Starfish: A Self-tuning System

for Big Data Analytics,” in In CIDR, 2011, pp.

261–272.

[16] H. Herodotou, F. Dong, and S. Babu, “No One

(Cluster) Size Fits All: Automatic Cluster Sizing for

Data-intensive Analytics,” in Proceedings of the 2nd

ACM Symposium on Cloud Computing (SOCC ’11),

2011, pp. 1–14.

[17] A. Verma, L. Cherkasova, and R. H. Campbell,

“Resource provisioning framework for mapreduce jobs

with performance goals,” in Proceedings of the 12th

ACM/IFIP/USENIX international conference on

Middleware, 2011, pp. 165–186.

[18] K. Chen, J. Powers, S. Guo, and F. Tian, “CRESP:

Towards Optimal Resource Provisioning for

MapReduce Computing in Public Clouds,” IEEE

Transcation Parallel Distrib. Syst., vol. 25, no. 6, pp.

1403 – 1412, 2014.

[19] H. Herodotou, “Hadoop Performance Models,” 2011.

[Online]. Available:

http://www.cs.duke.edu/starfish/files/hadoop-models.p

df. [Accessed: 22-Oct-2013].

[20] W. S. Cleveland and S. J. Delvin, “Locally Weighted

Regression: An Approach to Regression Analysis by

Local Fitting.,” J. Am. Stat. Assoc., vol. 83, no. 403, pp.

596–610, 1988.

[21] M. Rallis and M. Vazirgiannis, “Rank Prediction in

graphs with Locally Weighted Polynomial Regression

and EM of Polynomial Mixture Models,” in Advances

in Social Networks Analysis and Mining (ASONAM),

2011 International Conference on, 2011, pp. 515–519.

[22] J. Fan and I. Gijbels, Local Polynomial Modelling and

Its Applications: Monographs on Statistics and Applied

Probability 66. CRC Press, 1996.

[23] A. George, W. Hans, and H. Frank, Mathematical

Methods for Physicists, 6th ed. Orlando, FL: Academic

Press, 2005, p. 1060.

[24] K. Morton, A. Friesen, M. Balazinska, and D.

Grossman, “Estimating the progress of MapReduce

pipelines,” in Data Engineering (ICDE), 2010 IEEE

26th International Conference on, 2010, pp. 681–684.

[25] K. Morton, M. Balazinska, and D. Grossman,

“ParaTimer: A Progress Indicator for MapReduce

DAGs,” in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data,

2010, pp. 507–518.

[26] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D.

Patterson, “Statistics-driven workload modeling for the

Cloud,” in Data Engineering Workshops (ICDEW),

2010 IEEE 26th International Conference on, 2010, pp.

87–92.

[27] S. Kadirvel and J. A. B. Fortes, “Grey-Box Approach

for Performance Prediction in Map-Reduce Based

Platforms,” in Computer Communications and

Networks (ICCCN), 2012 21st International

Conference on, 2012, pp. 1–9.

[28] F. Tian and K. Chen, “Towards Optimal Resource

Provisioning for Running MapReduce Programs in

Public Clouds,” in 2011 IEEE 4th International

Conference on Cloud Computing, 2011, pp. 155–162.

[29] P. Lama and X. Zhou, “AROMA: Automated Resource

Allocation and Configuration of Mapreduce

Environment in the Cloud,” in Proceedings of the 9th

International Conference on Autonomic Computing,

2012, pp. 63–72.

[30] A. Verma, L. Cherkasova, and R. H. Campbell,

“ARIA: automatic resource inference and allocation for

MapReduce environments.,” in 8th ACM International

conference on autonomic computing, 2011, pp.

235–244.

[31] Z. Zhang, L. Cherkasova, and B. T. Loo,

“Benchmarking Approach for Designing a Mapreduce

Performance Model,” in Proceedings of the 4th

ACM/SPEC International Conference on Performance

Engineering, 2013, pp. 253–258.

[32] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance

Modeling of MapReduce Jobs in Heterogeneous Cloud

Environments,” in Proceedings of the 2013 IEEE Sixth

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 15

International Conference on Cloud Computing, 2013,

pp. 839–846.

Mukhtaj Khan received his MSc in Mobile Computer System from

Staffordshire University, UK in 2006. He is currently a PhD student in the

School of Engineering and Design at Brunel University, UK. The PhD study is
sponsored by Abdul Wali Khan University Mardan, Pakistan. His research

interests are focused on high performance computing for big data analysis.

Yong Jin received the PhD from North University of China in 2013. He is an

Associate Professor in the School of Information and Communication

Engineering at North University of China. He is also a Visiting Professor in the
School of Engineering and Design at Brunel University, UK. His research

interests are in the areas of image processing, online inspections and big data

analytics.

Maozhen Li is currently a Professor in the Department of Electronic and
Computer Engineering at Brunel University London, UK. He received the PhD

from Institute of Software, Chinese Academy of Sciences in 1997. He was a

Post-Doctoral Research Fellow in the School of Computer Science and
Informatics, Cardiff University, UK in 1999-2002. His research interests are in

the areas of high performance computing (grid and cloud computing), big data

analytics and intelligent systems. He is on the Editorial Boards of Computing
and Informatics journal and journal of Cloud Computing: Advances, Systems

and Applications. He has over 100 research publications in these areas. He is a

Fellow of the British Computer Society.

Yang Xiang received the PhD degree from Harbin Institute of Technology,

China in 1999. He completed his Post-Doctoral research at Dalian University of
Technology, China in 2003. He is now a Professor in the Department of

Computer Science and Technology, Tongji University, Shanghai, China. His

research interests are in the areas of machine learning, semantic web, and big
data analytics.

Changjun Jiang received the PhD degree from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in 1995 and conducted

postdoctoral research at the Institute of Computing Technology, Chinese

Academy of Sciences, in 1997. Currently, he is a professor with the Department
of Computer Science and Engineering, Tongji University, Shanghai. He is also

a council member of China Automation Federation and Artificial Intelligence

Federation, the director of Professional Committee of Petri Net of China
Computer Federation, and the vice director of Professional Committee of

Management Systems of China Automation Federation. He was a visiting

professor of Institute of Computing Technology, Chinese Academy of Science;
a research fellow of the City University of Hong Kong, Kowloon, Hong Kong;

and an information area specialist of Shanghai Municipal Government. His
current areas of research are concurrent theory, Petri net, and formal

verification of software, concurrency processing and intelligent transportation

systems. He is a senior member of the IEEE.

