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 

Abstract- MapReduce has become a major computing model for 

data intensive applications. Hadoop, an open source 

implementation of MapReduce, has been adopted by an 

increasingly growing user community. Cloud computing service 

providers such as Amazon EC2 Cloud offer the opportunities for 

Hadoop users to lease a certain amount of resources and pay for 

their use. However, a key challenge is that cloud service providers 

do not have a resource provisioning mechanism to satisfy user 

jobs with deadline requirements. Currently, it is solely the user's 

responsibility to estimate the required amount of resources for 

running a job in the cloud. This paper presents a Hadoop job 

performance model that accurately estimates job completion time 

and further provisions the required amount of resources for a job 

to be completed within a deadline. The proposed model builds on 

historical job execution records and employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the execution 

time of a job. Furthermore, it employs Lagrange Multipliers 

technique for resource provisioning to satisfy jobs with deadline 

requirements. The proposed model is initially evaluated on an 

in-house Hadoop cluster and subsequently evaluated in the 

Amazon EC2 Cloud. Experimental results show that the accuracy 

of the proposed model in job execution estimation is in the range 

of 94.97% and 95.51%, and jobs are completed within the 

required deadlines following on the resource provisioning scheme 

of the proposed model.  

  

Index Terms— Cloud computing, Hadoop MapReduce, 

performance modeling, job estimation, resource provisioning  

 

I. INTRODUCTION 

any organizations are continuously collecting massive 

amounts of datasets from various sources such as the 
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World Wide Web, sensor networks and social networks. The 

ability to perform scalable and timely analytics on these 

unstructured datasets is a high priority task for many 

enterprises. It has become difficult for traditional network 

storage and database systems to process these continuously 

growing datasets. MapReduce [1], originally developed by 

Google, has become a major computing model in support of 

data intensive applications. It is a highly scalable, fault-tolerant 

and data parallel model that automatically distributes the data 

and parallelizes the computation across a cluster of computers 

[2]. Among its implementations such as  Mars[3], Phoenix[4], 

Dryad[5] and Hadoop [6], Hadoop has received a wide uptake 

by the community due to its open source nature [7][8][9][10].  

One feature of Hadoop MapReduce is its support of public 

cloud computing that enables the organizations to utilize cloud 

services in a pay-as-you-go manner. This facility is beneficial 

to small and medium size organizations where the setup of a 

large scale and complex private cloud is not feasible due to 

financial constraints. Hence, executing Hadoop MapReduce 

applications in a cloud environment for big data analytics has 

become a realistic option for both the industrial practitioners 

and academic researchers. For example, Amazon has designed 

Elastic MapReduce (EMR) that enables users to run Hadoop 

applications across its Elastic Cloud Computing (EC2) nodes. 

The EC2 Cloud makes it easier for users to set up and run 

Hadoop applications on a large-scale virtual cluster. To use the 

EC2 Cloud, users have to configure the required amount of 

resources (virtual nodes) for their applications. However, the 

EC2 Cloud in its current form does not support Hadoop jobs 

with deadline requirements. It is purely the user's responsibility 

to estimate the amount of resources to complete their jobs 

which is a highly challenging task. Hence, Hadoop 

performance modeling has become a necessity in estimating the 

right amount of resources for user jobs with deadline 

requirements. It should be pointed out that modeling Hadoop 

performance is challenging because Hadoop jobs normally 

involve multiple processing phases including three core phases 

(i.e. map phase, shuffle phase and reduce phase). Moreover, the 

first wave of the shuffle phase is normally processed in parallel 

with the map phase (i.e. overlapping stage) and the other waves 

of the shuffle phase are processed after the map phase is 

completed (i.e. non-overlapping stage).  

To effectively  manage cloud resources, several Hadoop 

performance models have been proposed [11][12][13][14].  

However, these models do not consider the overlapping and 

non-overlapping stages of the shuffle phase which leads to an 

inaccurate estimation of job execution. 

Hadoop Performance Modeling for Job 

Estimation and Resource Provisioning 
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Recently, a number of  sophisticated Hadoop performance 

models are proposed [15][16][17][18]. Starfish [15] collects a 

running Hadoop job profile at a fine granularity with detailed 

information for job estimation and optimization. On the top of 

Starfish, Elasticiser [16] is proposed for resource provisioning 

in terms of virtual machines. However, collecting the detailed 

execution profile of a Hadoop job incurs a high overhead which 

leads to an overestimated job execution time. The HP model 

[17] considers both the overlapping and non-overlapping stages 

and uses simple linear regression for job estimation. This model 

also estimates the amount of resources for jobs with deadline 

requirements. CRESP [18] estimates job execution and 

supports resource provisioning in terms of map and reduce 

slots. However, both the HP model and CRESP ignore the 

impact of the number of reduce tasks on job performance. The 

HP model is restricted to a constant number of reduce tasks, 

whereas CRESP only considers a single wave of the reduce 

phase. In CRESP, the number of reduce tasks has to be equal to 

number of reduce slots. It is unrealistic to configure either the 

same number of reduce tasks or the single wave of the reduce 

phase for all the jobs. It can be argued that in practice, the 

number of reduce tasks varies depending on the size of the input 

dataset, the type of a Hadoop application (e.g. CPU intensive, 

or disk I/O intensive) and user requirements. Furthermore, for 

the reduce phase, using multiple waves generates better 

performance than using a single wave especially when Hadoop 

processes a large dataset on a small amount of resources. While 

a single wave reduces the task setup overhead, multiple waves 

improve the utilization of the disk I/O.   

Building on the HP model, this paper presents an improved 

HP model for Hadoop job execution estimation and resource 

provisioning. The major contributions of this paper are as 

follows: 

 

 The improved HP work mathematically models all the 

three core phases of a Hadoop job. In contrast, the HP 

work does not mathematically model the 

non-overlapping shuffle phase in the first wave. 

 The improved HP model employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a Hadoop job with a varied number 

of reduce tasks. In contrast, the HP model employs a 

simple linear regress technique for job execution 

estimation which restricts to a constant number of 

reduce tasks. 

 Based on job execution estimation, the improved HP 

model employs Langrage Multiplier technique to 

provision the amount of resources for a Hadoop job to 

complete within a given deadline. 

 

 The performance of the improved HP model is initially 

evaluated on an in-house Hadoop cluster and subsequently on 

Amazon EC2 Cloud. The evaluation results show that the 

improved HP model outperforms both the HP model and 

Starfish in job execution estimation with an accuracy of level in 

the range of 94.97% and 95.51%. For resource provisioning, 4 

job scenarios are considered with a varied number of map slots 

and reduce slots. The experimental results show that the 

improved HP model is more economical in resource 

provisioning than the HP model. 

The remainder of paper is organized as follows. Section II 

models job phases in Hadoop. Section III presents the improved 

HP model in job execution estimation and Section IV further 

enhances the improved HP model for resource provisioning. 

Section V first evaluates the performance of the improved HP 

model on an in-house Hadoop cluster and subsequently on 

Amazon EC2 Cloud. Section VI discusses a number of related 

works. Finally, Section VII concludes the paper and points out 

some future work.  

II. MODELING JOB PHASES IN HADOOP  

 Normally a Hadoop job execution is divided into a map 

phase and a reduce phase. The reduce phase involves data 

shuffling, data sorting and user-defined reduce functions. Data 

shuffling and sorting are performed simultaneously. Therefore, 

the reduce phase can be further divided into a shuffle (or sort) 

phase and a reduce phase performing user-defined functions. 

As a result, an overall Hadoop job execution work flow consists 

of a map phase, a shuffle phase and a reduce phase as shown in 

Fig.1. Map tasks are executed in map slots at a map phase and 

reduce tasks run in reduce slots at a reduce phase. Every task 

runs in  one slot at a time. A slot is allocated with a certain 

amount of resources in terms of CPU and RAM. A Hadoop job 

phase can be completed in a single wave or multiple waves. 

Tasks in a wave run in parallel on the assigned slots. 
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Fig.1. Hadoop job execution flow. 

 

 Herodotou presented a detailed set of mathematical models 

on Hadoop performance at a fine granularity [19]. For the 

purpose of simplicity, we only consider the three core phases 

(i.e. map phase, shuffle phase and reduce phase) in modeling 

the performance of Hadoop jobs. Table 1 defines the variables 

used in Hadoop job performance modeling. 

 

A. Modeling Map Phase  

In this phase, a Hadoop job reads an input dataset from 

Hadoop Distributed File System (HDFS), splits the input 

dataset into data chunks based on a specified size and then 

passes the data chunks to a user-define map function. The map 

function processes the data chunks and produces a map output. 

The map output is called intermediate data. The average map 
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output and the total map phase execution time can be computed 

using Eq.(1) and Eq.(2) respectively.  

 
Table 1. Defined variables in modeling job phases. 

Variables Expressions 

output

avgmD   
The average output data size of a map task. 

total

m
T  

The total execution time of a map phase. 

input

avgmD   
The average input data size of a map task. 

yselectivitM  The map selectivity which is the ratio of a map output to a 

map input. 

mN  
The total number of map tasks. 

avg

mT  
The average execution time of a map task. 

slot

mN  
The total number of configured map slots. 

avgshD 
 

The average size of a shuffled data. 

total

sh
T  

The total execution time of a shuffle phase. 

r
N  The total number of reduce tasks. 

avg

sh
T  

The average execution duration of a shuffle task. 

slot

rN  
The total number of configured reduce slots. 

1w

sh
N  

The total number of shuffle tasks that complete in the first 

wave. 

2w

sh
N  

The total number of shuffle tasks that complete in other 

waves. 

avg
wT 1  

The average execution time of a shuffle task that 

completes in the first wave. 

avg
wT 2

 

The average execution time of a shuffle task that 

completes in other waves. 

output

avgrD 
 

The average output data size of a reduce task. 

total

r
T

 

The total execution time of a reduce phase. 

input

avgrD   

The average input size of a reduce task.  

yselectivit
R

 

The reduce selectivity which is the ratio of a reduce 
output to a reduce input. 

avg
rT

 

The average execution time of a reduce task. 

 

yselectivit
input

avgm
output

avgm MDD             (1)
 

slot

m

m

avg

mtotal

m N

NT

T


                       (2) 

B. Modeling Shuffle Phase  

In this phase, a Hadoop job fetches the intermediate data, 

sorts it and copies it to one or more reducers. The shuffle tasks 

and sort tasks are performed simultaneously, therefore, we 

generally consider them as a shuffle phase. The average size of 

shuffled data can be computed using Eq.(3).  

r
N

m

output
avgm

avgh

ND

s
D







                   (3) 

If ,slot
rr NN  then the shuffle phase will be completed in a 

single wave. The total execution time of a shuffle phase can be 

computed using Eq.(4). 

slot

r

avg

shtotal

sh N

r
NT

T



                          (4) 

Otherwise, the shuffle phase will be completed in multiple 

waves and its execution time can be computed using Eq.(5).      

slot

r

w

sh

avg

w

w

sh

avg

wtotal

sh N

NTNT

T

)()(
2

2

1

1
 

                       (5)  

C. Modeling Reduce Phase  

 In this phase, a job reads the sorted intermediate data as 

input and passes to a user-defined reduce function. The reduce 

function processes the intermediate data and produces a final 

output. In general, the reduce output is written back into the 

HDFS. The average output of the reduce tasks and the total 

execution time of the reduce phase can be computed using 

Eq.(6) and Eq.(7) respectively.  

  

   yselectivit
input

avgr
output

avgr RDD                    (6) 

slot

r

avg

rtotal

r
N

T
T r

N
                     (7) 

III. AN IMPROVED HP PERFORMANCE MODEL 

As also mentioned before, Hadoop jobs have three core 

execution phases – map phase, shuffle phase and reduce phase. 

The map phase and the shuffle phase can have overlapping and 

non-overlapping stages. In this section, we present an improved 

HP model which takes into account both overlapping stage and 

non-overlapping stage of the shuffle phase during the execution 

of a Hadoop job. We consider single Hadoop jobs without 

logical dependencies. 

A. Design Rationale 

A Hadoop job normally runs with multiple phases in a single 

wave or in multiple waves. If a job runs in a single wave then all 

the phases will be completed without overlapping stages as 

shown in Fig.2.  

Fig.2. A Hadoop job running in a single wave (16 map tasks and 16 reduce 

tasks). 
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However, if a job runs in multiple waves, then the job will be 

progressed through both overlapping (parallel) and 

non-overlapping (sequential) stages among the phases as show 

in Fig.3.  

In the case of multiple waves, the first wave of the shuffle 

phase starts immediately after the first map task completes. 

Furthermore, the first wave of the shuffle phase continues until 

all the map tasks complete and all the intermediate data is 

shuffled and sorted. Thus, the first wave of the shuffle phase is 

progressed in parallel with the other waves of the map phase as 

shown in Fig.3. After completion of the first wave of the shuffle 

phase, the reduce tasks start running and produce output. 

Afterwards, these reduce slots will become available to the 

shuffle tasks running in other waves. It can be observed from 

Fig.3 that the shuffle phase takes longer to complete in the first 

wave than in other waves. In order to estimate the execution 

time of a job in multiple waves, we need to estimate two sets of 

parameters for the shuffle phase - the average and the 

maximum durations of the first wave, together with the average 

and the maximum durations of the other waves. Moreover, 

there is no significant difference between the durations of the 

map tasks running in non-overlapping and overlapping stages 

due to the equal size of data chunks. Therefore, we only 

estimate one set of parameters for the map phase which are the 

average and the maximum durations of the map tasks. The 

reduce tasks run in a non-overlapping stage, therefore we only 

estimate one set of parameters for the reduce phase which are 

the average and the maximum durations of the reduce tasks. 

Finally, we aggregate the durations of all the three phases to 

estimate the overall job execution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig.3. A Hadoop job running in multiple waves (80 map tasks, 32 reduce tasks).   
  

It should be pointed out that Fig.3 also shows the differences 

between the HP model and the improved model in Hadoop job 

modeling. The HP work mathematically models the whole map 

phase which includes the non-overlapping stage of the map 

phase and the stage overlapping with the shuffle phase, but it 

does not provide any mathematical equations to model the 

non-overlapping stage of the shuffle phase in the first wave. 

Whereas the improved HP work mathematically models the 

non-overlapping map phase in the first wave, and the shuffle 

phase in the first wave which includes both the stage 

overlapping with the map phase and the non-overlapping stage. 

This can be reflected in the mathematical equations of the 

improved HP model which are different from the HP model.  
 

B. Mathematical Expressions 

In this section, we present the mathematical expressions of 

the improved HP work in modeling a Hadoop job which 

completes in multiple waves. Table 2 defines the variables used 

in the improved model.  

 
Table 2. Defined variables in the improved HP model. 

Variables Expressions 

low

wmT 1
 

The lower bound duration of the map phase in the 

first wave (non-overlapping). 

up

wm
T

1
 

The upper bound duration of the map phase in the 

first wave (non-overlapping). 

1w

mN  
The number of map tasks that complete in the first 

wave of the map phase. 

2w

mN
 

The number of map tasks that complete in other 

waves of the map phase. 

max

m
T  

The maximum execution time of a map task. 

low

wsh
T

1
 

The lower bound duration of the shuffle phase in 
the first wave (overlapping with the map phase). 

up

wsh
T

1
 

The upper bound duration of the shuffle phase in 

the first wave (overlapping with the map phase). 

avg

wsh

T
1

 

The average execution time of a shuffle task that 
completes in the first wave of the shuffle phase.  

max

1wsh

T


 

The maximum execution time of a shuffle task that 

completes in the first wave of the shuffle phase. 

low

wsh

T
2

 

The lower bound duration of the shuffle phase in 

other waves (non-overlapping) 

up

wsh

T
2  

The upper bound duration of the shuffle phase in 

other waves (non-overlapping). 

avg

wsh
T

2
 

The average execution time of a shuffle task that 

completes in other waves of the shuffle phase. 

max

wsh

T
2

 

The maximum execution time of a shuffle task that 
completes in other waves of the shuffle phase.  

low

rT  
The lower bound duration of the reduce phase. 

up

rT  
The upper bound duration of the reduce phase. 

max

r

T  

The maximum execution time of a reduce task. 

low

jobT  
The lower bound execution time of a Hadoop job. 

up

jobT
 

The upper bound execution time of a Hadoop job. 

avg

job
T

 

The average execution time of a Hadoop job. 

 

In practice, job tasks in different waves may not complete 

exactly at the same time due to varied overhead in disk I/O 

operations and network communication. Therefore, the 

improved HP model estimates the lower bound and the upper 

bound of the execution time for each phase to cover the 

best-case and the worse-case scenarios respectively.  

We consider a job that runs in both non-overlapping and 

overlapping stages. The lower bound and the upper bound of 

the map phase in the first wave which is a non-overlapping 

stage can be computed using Eq.(8) and Eq.(9) respectively.   

map phase(non-overlapping and overlapping)

non-overlapping 
shuffle phase  

in the first wave 

HP model

non-overlapping 
map phase

in the first wave 

shuffle phase in the first wave 
(overlapping  and non-overlapping)

Improved HP model

shuffle and reduce phases

shuffle and reduce phases
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slot

m

w

m

avg

mlow

wm
N

NT

T

1

1




             (8) 

slot

m

w

m
mup

wm
N

NT
T

1max

1




                         (9) 

 

In the overlapping stage of a running job, the map phase 

overlaps with the shuffle phase. Specifically, the tasks running 

in other waves of the map phase run in parallel with the tasks 

running in the first wave of the shuffle phase. As the shuffle 

phase always completes after the map phase which means that 

the shuffle phase takes longer than the map phase, therefore we 

use the duration of the shuffle phase in the first wave to 

compute the lower bound and the upper bound of the 

overlapping stage of the job using Eq.(10) and Eq.(11) 

respectively.  

 

slot

r

w

sh

avg

wshlow

wsh
N

NT
T

1

1
1


 


                          (10) 

slot

r

w

shwshup

wsh
N

NT
T

1max

1
1


 


                         (11) 

 

In other waves of the shuffle phase, the tasks run in a 

non-overlapping stage. Hence, the lower bound and the upper 

bound of the non-overlapping stage of the shuffle phase can be 

computed using Eq.(12) and Eq.(13) respectively. 

 

slot

r

w

sh

avg

wshlow

wsh
N

NT
T

2

2
2


 


             (12)

 

slot

r

w

shwshup

wsh
N

NT
T

2max

2
2


 

                       (13) 

 

The reduce tasks start after completion of the shuffle tasks. 

Therefore, the reduce tasks complete in a non-overlapping 

stage. The lower bound and the upper bound of the reduce 

phase can be computed using Eq.(14) and Eq.(15) respectively.  

 

slot

r

r

avg

rlow

r
N

NT

T



                 (14) 

     
slot

r

rrup

r
N

NT
T




max

                (15) 

 

As a result, the lower bound and upper bound of the 

execution time of a Hadoop job can be computed by combining 

the execution durations of all the three phases using Eq.(16) and 

Eq.(17) respectively. 

 

 
low

r

low

wsh

low

wsh

low

wm

low

job TTTTT   211          (16) 

    
up

r

up

wsh

up

wsh

up

wm

up

job TTTTT   211               (17) 

  

 By substituting the values in Eq.(16) and Eq.(17), we have  

 

slot

r

w

sh

avg

wsh

slot

m

w

m

avg

mlow

job
N

NT

N

NT
T

1

1

1 



    

                                                                                      

 
slot

r

r

avg

r

slot

r

w

sh

avg

wsh

N

NT

N

NT 





2

2                                 (18) 

 

slot

r

w

shwsh

slot

m

w

mmup

job
N

NT

N

NT
T

1max

1

1max 



 

 

slot

r

rr

slot

r

w

sh
wsh

N

NT

N

NT 





max
2max

2                                     (19) 

  

 Finally, we take an average of Eq.(18) and Eq.(19) to estimate 

the execution time of a Hadoop job using Eq.(20). 

 

2

up

job

low

jobavg

job

TT
T


                                  (20)  

 

C. Job Execution Estimation  

  In the previous section, we have presented the mathematical 

expressions of the improved HP model. The lower bound and 

the upper bound of a map phase can be computed using Eq.(8) 

and Eq.(9) respectively. However, the durations of the shuffle 

phase and the reduce phase have to be estimated based on the 

running records of a Hadoop job. 

 When a job processes an increasing size of an input dataset, 

the number of map tasks is proportionally increased while the 

number of reduce tasks is specified by a user in the 

configuration file. The number of reduce tasks can vary 

depending on user's configurations. When the number of reduce 

tasks is kept constant, the execution durations of both the 

shuffle tasks and the reduce tasks are linearly increased with the 

increasing size of the input dataset as considered in the HP 

model. This is because the volume of an intermediate data 

block equals to the total volume of the generated intermediate 

data divided by the number of reduce tasks. As a result, the 

volume of an intermediate data block is also linearly increased 

with the increasing size of the input dataset. However, when the 

number of reduce tasks varies, the execution durations of both 

the shuffle tasks and the reduce tasks are not linear to the 

increasing size of an input dataset.  

 In either the shuffle phase or the reduce phase, we consider 

the tasks running in both overlapping and non-overlapping 

stages. Unlike the HP model, the improved model considers a 

varied number of reduce tasks. As a result, the durations of both 

the shuffle tasks and the reduce tasks are nonlinear to the size of 

an input dataset. Therefore, instead of using a simple linear 

regression as adopted by the HP model, we apply Locally 

Weighted Linear Regression (LWLR) [20][21] in the improved 
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model to estimate the execution durations of both the shuffle 

tasks and the reduce tasks.  

 LWLR is an instance-based nonparametric function, which 

assigns a weight to each instance x  according to its Euclidean 

distance from the query instance qx . LWLR assigns a high 

weight to an instance x which is close to the query instance qx  

and a low weight to the instances that are far away from the 

query instance qx . The weight of an instance can be computed 

using a Gaussian function as illustrated in Eq.(21).  

 

),....,3,2,1(),
2

)),(tan(
exp(

2

2

mk
h

xxcedis
w

qk

k          (21) 

where, 

 kw is the weight of the training instance at location k . 

 kx  is the training instance at location k .  

 m is the total number of the training instances.  

 h  is a smoothing parameter which determines the 

width of the local neighborhood of the query instance.  

 The value of h is crucial to LWLR. Users have the option of 

using a new value of h for each estimation or a single global 

value of h. However, finding an optimal value for h is a 

challenging issue itself [22]. In the improved HP model, a 

single global value of h is used to minimize the estimated mean 

square errors.   

In the improved HP model, LWLR is used to estimate the 

durations of both the shuffle tasks and the reduce tasks. First, 

we estimate
avg

wshT 1 , which is the average duration of the shuffle 

tasks running in the first wave of the shuffle phase. To estimate
avg

wshT 1 , we define a matrix 
nmX   whose rows contain the 

training dataset mxxxx .....,,, 321  and n  is the number of feature 

variables which is set to 2 (i.e. the size of an intermediate 

dataset and the number of reduce tasks). We define a vector 

 myyyY ...,, 21 of dependent variables that are used for the 

average durations of the shuffle tasks. For example, iy

represents the average execution time of the shuffle task that 

corresponds to the training instance of ix . We define another 

matrix qX  whose rows are query instances. Each query 

instance qx contains both the size of the intermediate dataset 

newd  and the number of reduce tasks newr  of a new job. We 

calculate newd  based on the average input data size of a map 

task, the total number of map tasks and the map selectivity 

metric which is yselectivitm

avg

inputmnew MNDd   .  

For the estimation of
avg

wshT 1 , we calculate the weight for 

each training instance using Eq. (21) and then compute the 

parameter  using Eq. (22) which is the coefficient of LWLR. 

         

    )()( 1 YWXXWX TT                           (22)                

 

Here )( kwdiagW   is the diagonal matrix where all the 

non-diagonal cells are 0 values. The value of a diagonal cell is 

increased when the distance between a training instance and the 

query instance is decreased.           

 Finally, the duration of a new shuffle task running in the first 

wave of the shuffle phase can be estimated using Eq. (23). 

  

 q

avg

wsh XT 1                      (23)                       

  

 Similarly, the durations of
max

wshT 1 ,
avg

wshT 2 , 
max

wshT 2 ,
avg

rT  

and 
max

rT can be estimated. 

 The estimated values of both the shuffle phase and the 

reduce phase are used in the improved HP model to estimate the 

overall execution time of a Hadoop job when processing a new 

input dataset. Fig.4 shows the overall architecture of the 

improved HP model, which summarizes the work of the 

improved HP model in job execution estimation. The boxes in 

gray represent the same work presented in the HP model. It is 

worth noting that the improved HP model works in an offline 

mode and estimates the execution time of a job based on the job 

profile. 
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Fig.4. The architecture of the improved HP model. 

 

IV. RESOURCE PROVISIONING 

The improved HP model presented in Section III can 

estimate the execution time of a Hadoop job based on the job 

execution profile, allocated resources (i.e. map slots and reduce 

slots), and the size of an input dataset. The improved HP model 

is further enhanced to estimate the amount of resources for 

Hadoop jobs with deadline requirements.  

Consider a deadline t for a job that is targeted at the lower 

bound of the execution time. To estimate the number of map 

slots and reduce slots, we consider the non-lapping map phase 

in the first wave, the map phase in other waves together with 

the overlapped shuffle phase in the first wave, the shuffle phase 

in other waves and the reduce phase. Therefore we simplify 
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Eq.(18) into Eq.(24) with a modification of Eq.(10) for resource 

estimation. 

t
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                (24) 
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The method of Lagrange Multipliers [23] is used to estimate 

the amounts of resources (i.e. map slots and the reduce slots) for 

a job to complete within a deadline. Lagrange Multipliers is an 

optimization technique in multivariable calculus that minimizes 

or maximizes the objective function subject to a constraint 

function. The objective function is rmrmf ),(  and the 

constraint function is 0),( rmg , where 

t
r

d

r

c

rm

b

m

a
rmg 


),(  is derived from Eq.(24). To 

minimize the objective function, the Lagrangian function is 

expressed as Eq.(25). 

 

),(),(),,( rmgrmfrmL            (25) 

 

where  is the Lagrange Multiplier. We take partial 

differentiation of Eq.(25) with respect to m, r,  , we have 
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Solving Eq.(26), Eq.(27), and Eq.(28) simultaneously for m 

and r, we have 
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Here, the values of m  and r are the numbers of map slots 

and reduce slots respectively. As we have targeted at the lower 

bound of the execution time of a job, the estimated amount of 

resources might not be sufficient for the job to complete within 

the deadline. This is because the lower bound corresponds to 

the best-case scenario which is hardly achievable in a real 

Hadoop environment. Therefore, we also target at the upper 

bound of the execution time of a job. For this purpose we use 

Eq.(19) as a constraint function in Lagrange Multipliers, and 

apply the same method as applied to Eq.(18) to compute the 

values of both m  and r . In this case, the amounts of resources 

might be overestimated for a job to complete within the 

deadline. This is because the upper bound corresponds to the 

worst-case execution of a job. As a result, an average amount of 

resources between the lower and the upper bounds might be 

more sensible for resource provisioning for a job to complete 

within a deadline.  

V. PERFORMANCE EVALUATION  

The performance of the improved HP model was initially 

evaluated on an in-house Hadoop cluster and subsequently on 

Amazon EC2 cloud. In this section, we present the evaluation 

results. First, we give a brief description on the experimental 

environments that were used in the evaluation process. 

A. Experimental Setup 

We set up an in-house Hadoop cluster using an Intel Xeon 

server machine. The specifications and configurations of the 

server are shown in Table 3. We installed Oracle Virtual Box 

and configured 8 Virtual Machines (VMs) on the server. Each 

VM was assigned with 4 CPU cores, 8GB RAM and 150GB 

hard disk storage. We used Hadoop-1.2.1 and configured one 

VM as the Name Node and the remaining 7 VMs as Data 

Nodes. The Name Node was also used as a Data Node. The data 

block size of the HDFS was set to 64MB and the replication 

level of data block was set to 2. Two map slots and two reduce 

slots were configured on each VM. We employed two typical 

MapReduce applications, i.e. the WordCount application and 

the Sort application which are CPU intensive and IO intensive 

applications respectively. The teraGen application was used to 

generate input datasets of different sizes.  

 The second experimental Hadoop cluster was setup on 

Amazon EC2 Cloud using 20 m1.large instances. The 

specifications of the m1.large are shown in Table 3. In this 

cluster, we used Hadoop-1.2.1 and configured one instance as 

Name Node and other 19 instances as Data Nodes. The Name 

Node was also used as a Data Node. The data block size of the 

HDFS was set to 64MB and the replication level of data block 
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was set to 3. Each instance was configured with one map slot 

and one reduce slot.  

 
Table 3: Experimental Hadoop cluster. 

Intel Xeon Server 1 

CPU 40 cores 

Processor 2.27GHz 

Hard disk 2TB  

Connectivity 100Mbps Ethernet LAN 

Memory 128GB 

Amazon 

m1.large instance 

vCPU 2 

Hard disk 420GB 

Memory 7.5GB 

Software 

Operating System Ubuntu 12.04 TLS 

JDK 1.6 

Hadoop 1.2.1 

Oracle Virtual Box 4.2.8 

Starfish 0.3.0 

 

B. Job Profile Information 

We run both the WordCount and the Sort applications on 

the two Hadoop clusters respectively and employed Starfish to 

collect the job profiles. For each application running on each 

cluster, we conducted 10 tests. For each test, we run 5 times and 

took the average durations of the phases. Table 4 and Table 5 

present the job profiles of the two applications that run on the 

EC2 Cloud. 
 

Table 4:  The job profile of the WordCount application in EC2 environment. 

Data 

size 

(GB) 

Map 

tasks 

Map task    

duration (s) 

Shuffle duration(s)  

in the first wave 

(overlapping) 

Shuffle duration(s) 

in other waves 

(non-overlapping) 

Reduce 

duration (s) 

Avg. Max Avg. Max Avg. Max Avg. Max 

5 80 12 23 69 73 20 22 18 25 

10 160 12 24 139 143 26 29 20 32 

15 240 13 23 212 215 38 44 23 35 

20 320 13 23 274 278 34 39 17 26 

25 400 11 25 346 350 41 47 20 27 

30 480 11 24 408 411 47 57 22 41 

35 560 12 27 486 489 59 71 27 42 

40 640 12 24 545 549 45 52 19 30 

45 720 11 23 625 629 50 58 20 32 

50 800 14 24 693 696 55 65 23 37 

 

Table 5:  The profile of the Sort application in EC2 environment. 

Data 

Size 

(GB) 

Map 

tasks 

Map task    

duration (s) 

Shuffle duration(s) 

in the first wave 

(overlapping) 

Shuffle duration(s) 

in other waves 

(non-overlapping) 

Reduce 

duration (s) 

Avg. 
M

ax 
Avg. Max Avg. Max Avg. Max 

5 80 11 15 48 50 15 18 13 24 

10 160 12 24 108 111 23 32 30 42 

15 240 12 20 161 165 31 41 50 68 

20 320 12 22 218 221 29 35 44 63 

25 400 13 22 277 281 37 63 57 73 

30 480 13 33 325 330 42 56 75 112 

35 560 12 27 375 378 55 82 87 132 

40 640 13 26 424 428 52 74 71 104 

45 720 13 26 484 488 63 94 97 128 

50 800 13 29 537 541 71 102 104 144 

C. Evaluating the Impact of the Number of Reduce Tasks on 

Job Performance 

In this section we evaluate the impact of the number of 

reduce tasks on job performance. We run both the WordCount 

and the Sort applications on the in-house Hadoop cluster with a 

varied number of reduce tasks. The experimental results are 

shown in Fig.5 and Fig.6 respectively. For both applications, it 

can be observed that when the size of the input dataset is small 

(e.g. 10GB), using a small number of reduce tasks (e.g. 16) 

generates less execution time than the case of using a large 

number of reduce tasks (e.g. 64). However, when the size of the 

input dataset is large (e.g. 25GB), using a large number of 

reduce tasks (e.g. 64) generates less execution time than the 

case of using a small number of reduce tasks (e.g. 16). It can 

also be observed that when the size of the input dataset is small 

(e.g. 10GB or 15GB), using a single wave of reduce tasks (i.e. 

the number of reduce tasks is equal to the number of reduce 

slots which is 16) performs better than the case of using 

multiple waves of reduce tasks (i.e. the number of reduce tasks 

is larger than the number of reduce slots).  However, when the 

size of the input dataset is large (e.g. 25GB), both the 

WordCount and the Sort applications perform better in the case 

of using multiple waves of reduce tasks than the case of using a 

single wave of reduce tasks. While a single wave reduces the 

task setup overhead on a small dataset, multiple waves improve 

the utilization of the disk I/O on a large dataset. As a result, the 

number of reduce tasks affects the performance of a Hadoop 

application.   

 

 
Fig.5. The performance of the WordCount application with a varied number of 

reduce tasks. 

 
 

 
Fig.6.The performance of the Sort application with a varied number of reduce 

tasks. 
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D. Estimating the Execution Times of Shuffle Tasks and 

Reduce Tasks 

Both the WordCount and the Sort applications processed a 

dataset on the in-house Hadoop cluster with a varied number of 

reduce tasks from 32 to 64. The size of the dataset was varied 

from 2GB to 20GB. Both applications also processed another 

dataset from 5GB to 50GB on the EC2 Cloud with the number 

of reduce tasks varying from 40 to 80. The LWLR regression 

model presented in Section III.C was employed to estimate the 

execution times of both the shuffle tasks and the reduce tasks of 

a new job. The estimated values were used in Eq.(18) and 

Eq.(19) to estimate the overall job execution time.  

Fig.7 and Fig.8 show respectively the estimated execution 

times of both the shuffle tasks and the reduce tasks for both 

applications running on the Hadoop cluster in EC2. Similar 

evaluation results were obtained from both applications 

running on the in-house Hadoop cluster.  We can observe that 

the execution times of both the shuffle tasks (non-overlapping 

stage) and reduce tasks are not linear to the size of an input 

dataset. It should be noted that the execution times of the 

shuffle tasks that run in an overlapping stage are linear to the 

size of an input dataset because the durations of these tasks 

depend on the number of map waves, as shown in Table 4 and 

Table 5.      

 
Fig.7.The estimated durations of both the shuffle phase (non-overlapping stage) 

and the reduce phase in the WordCount application. The points represent the 

actual execution time and dashed lines represent the estimated durations. 

 
Fig.8. The estimated durations of both the shuffle phase (non-overlapping 

stage) and the reduce phase in the Sort application. The points represent the 

actual execution time and dashed lines represent the estimated duration. 
 

E. Job Execution Estimation 

A number of experiments were carried out on both the 

in-house Hadoop cluster and the EC2 Cloud to evaluate the 

performance of the improved HP model. First, we evaluated the 

performance of the improved HP model on the in-house cluster 

and subsequently evaluated the performance of the model on 

the EC2 Cloud.  

For the in-house cluster, the experimental results obtained 

from both the WordCount and the Sort applications are shown 

in Fig.9 and Fig.10 respectively. From these two figures we can 

observe that the improved HP model outperforms the HP model 

in both applications. The overall accuracy of the improved HP 

model in job estimation is within 95% compared with the actual 

job execution times, whereas the overall accuracy of the HP 

model is less than 89% which uses a simple linear regression. It 

is worth noting that the HP model does not generate a straight 

line in performance as shown in [17]. This is because a varied 

number of reduce tasks was used in the tests whereas the work 

presented in [17] used a constant number of reduce tasks. 

 

 

Fig.9. The performance of the improved HP model in job estimation of running 

the WordCount application on the in-house cluster. 

 

 
Fig.10. The performance of the improved HP model in job estimation of 
running the Sort application on the in-house cluster. 

 

Next, we evaluated the performance of the improved HP 

model on the EC2 Cloud. The experimental results in running 

both applications are shown in Fig.11 and Fig.12 respectively. 

It can be observed that the improved HP model also performs 

better than the HP model. The overall accuracy of the improved 

HP model in job estimation is over 94% compared with the 

actual job execution times, whereas the overall accuracy of the 

HP model is less than 88%. The HP model performs better on 

small datasets but its accuracy level is decreased to 76.15% 

when the dataset is large (e.g. 40GB). The reason is that the HP 

model employs a simple linear regression which cannot 

accurately estimate the execution times of the shuffle tasks and 

the reduce tasks which are not linear to the size of an input 

dataset.  
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Fig.11. The performance of the improved HP model in job estimation of 

running the WordCount application on the EC2 Cloud. 

Fig.12. The performance of the improved HP model in job estimation of 

running the Sort application on the EC2 Cloud. 

 

Finally, we compared the performance of the improved HP 

model in job estimation with that of both Starfish and the HP 

model collectively. Fig.13 and Fig.14 show the comparison 

results  of the three models running the two applications on the 

EC2 Cloud respectively.  

 

Fig.13. A performance comparison among the improved HP model, the HP 

model and Starfish in running the WordCount application on the EC2 Cloud. 

 

 It can be observed that the improved HP model produces the 

best results in job estimation for both applications. Starfish 

performs better than the HP model on the Sort application in 

some cases as shown in Fig.14. However, Starfish 

overestimates the job execution times of the WordCount 

application as shown in Fig.13. This is mainly due to the high 

overhead of Starfish in collecting a large set of profile 

information of a running job. The Starfish profiler generates a 

high overhead for CPU intensive applications like WordCount 

because the Starfish uses Btrace to collect job profiles which 

requires additional CPU cycles [16]. Starfish performs better on 

the Sort application because Sort is less CPU-intensive than the 

WordCount application. 

 

 
Fig.14. A performance comparison among the improved HP model, the HP 

model and Starfish in running the Sort application on the EC2 Cloud. 

  

We have validated the LWLR regression model in job 

execution estimation using 10-fold cross validation technique. 

We considered the execution of an entire job with three phases 

(i.e. map phase, shuffle phase and reduce phase). The mean 

absolute percentage errors of the WordCount application and 

the Sort application are 2.37% and 1.89% respectively which 

show high generalizability of the LWLR in job execution 

estimation. Furthermore, the R-squared values of the two 

applications are 0.9986 and 0.9979 respectively which reflects 

the goodness of fit of LWLR. 

  

F. Resource Provisioning 

In this section, we present the evaluation results of the 

improved HP model in resource provisioning using the 

in-house Hadoop cluster. We considered 4 scenarios as shown 

in Table 6. The intention of varying the number of both map 

slots and reduce slots from 1 to 4 was twofold. One was to 

evaluate the impact of the resources available on the 

performance of the improved HP model in resource estimation. 

The other was to evaluate the performance of the Hadoop 

cluster in resource utilization with a varied number of map and 

reduce slots. 

 
Table 6: Scenario configurations. 

Scenarios Number of map 

slots on each VM 

Number of reduce slots  

on each VM 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

 

 To compare the performance of the improved HP model with 

the HP model in resource estimation in the 4 scenarios, we 

employed the WordCount application as a Hadoop job 

processing 9.41GB input dataset. In each scenario, we set 7 

completion deadlines for the job which are 920, 750, 590, 500, 

450, 390 and 350 in seconds. We first built a job profile in each 

scenario. We set a deadline for the job, and employed both the 

HP model and the improved HP model to estimate the amount 
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of resources (i.e. the number of map slots and the number of 

reduce slots). We then assigned the estimated resources to the 

job using the in-house Hadoop cluster and measured the actual 

upper bound and the lower bound execution durations. We took 

an average of an upper bound and a lower bound and compared 

it with the given deadline. It should be noted that for resource 

provisioning experiments we configured 16VMs to satisfy the 

requirement of a job. Therefore, we employed another Xeon 

server machine with the same specification of the first server as 

shown in Table 3. We installed the Oracle Virtual Box and 

configured 8 VMs on the second server. Fig.15 to Fig.18 show 

the results in resource provisioning of the 4 scenarios 

respectively.  

 

 
Fig.15. Resource provisioning in Scenario 1. 

 

 
 

Fig.16. Resource provisioning in Scenario 2. 

 

 From the 4 scenarios we can see that overall the improved 

HP model slightly performs better than the HP model in 

resource provisioning due to its high accuracy in job execution 

estimation. Both models perform well in the first two scenarios 

especially in Scenario 1 where the two models generate a near 

optimal performance. However, the two models over-provision 

resources in both Scenario 3 and Scenario 4 especially in the 

cases where the job deadlines are large. The reason is that when 

we built the training dataset for resource estimation, we run all 

the VMs in the tests. One rationale was that we consider the 

worst cases in resource provisioning to make sure all the user 

job deadlines would be met. However, the overhead incurred in 

running all the VMs was high and included in resource 

provisioning for all the jobs. As a result, for jobs with large 

deadlines, both models over estimate the overhead of the VMs 

involved. Therefore, both models over-provision the amounts 

of resources for jobs with large deadlines which can be 

completed using a small number of VMs instead of all the VMs.  

  

 
Fig.17. Resource provisioning in Scenario 3. 

 

 It is worth noting that all the job deadlines are met in the 4 

scenarios except the last job deadline in Scenario 4 where 

t=350. This could be caused by the communication overhead 

incurred among the VMs running across the two server 

machines. Although both the improved HP model and the HP 

model include communication overhead in resource 

provisioning when the training dataset was built, they only 

consider static communication overhead. It can be expected 

that the communication overhead varies from time to time due 

to the dynamic nature of a communication network. 

 

 
Fig.18. Resource provisioning in Scenario 4. 

 

 

 Table 7 summarizes the resources estimated by both the HP 

model and the improved HP model in the 4 scenarios. It can be 

observed that the HP model recommends more resources in 

terms of map slots, especially in Scenario 3. This is because the 

HP model largely considers the map slots in resource 

provisioning. As a result, the jobs following the HP model are 

completed quicker than the jobs following the improved HP 

model but with larger gaps from the given deadlines. Therefore, 

the improved HP model is more economical than the HP model 

in resource provisioning due to its recommendations of less 

map slots. 

VI. RELATED WORK 

Hadoop performance modeling is an emerging topic that 

deals with job optimization, scheduling, estimation and 

resource provisioning. Recently this topic has received a great 

attention from the research community and a number of models 

have been proposed.  
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Table 7: The amounts of resources estimated by the HP model and the improved HP model. 

  

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Deadlines 
HP model        

(m, r) 

Improved  

HP model 

(m, r) 

HP model        
(m, r) 

Improved  

HP model 

(m, r) 

HP model        
(m, r) 

Improved  

HP model 

(m, r) 

HP model        
(m, r) 

Improved  

HP model 

(m, r) 

920 (5,1) (4,4) (8,2) (6,5) (18,4) (11,5) (20,5) (19,5) 

750 (5,2) (5,5) (9,3) (7,6) (22,5) (12,6) (24,6) (23,6) 

590 (7,2) (6,6) (12,4) (9,8) (28,5) (16,8) (30,6) (29,8) 

500 (8,2) (7,7) (14,4) (10,9) (33,6) (19,9) (36,7) (34,10) 

450 (9,3) (8,8) (15,5) (11,10) (37,7) (21,10) (40,8) (39,10) 

390 (10,3) (9,9) (18,5) (13,11) (42,8) (24,12) (46,9) (44,11) 

350 (11,3) (10,10) (20,6) (14,13) (47,9) (27,13) (51,10) (49,13) 

Legends: m= map slots, r= reduce slots 

 

 

   Morton et al. proposed the parallax model [24]  and later 

the ParaTimer model [25] that estimate the performance of  the 

Pig parallel queries, which can be translated into series of 

MapReduce jobs. They use debug runs of the same query on 

input data samples to predict the relative progress of the map 

and reduce phases. This work is based on simplified 

suppositions that the durations of the map tasks and the reduce 

tasks are the same for a MapReduce application. However, in 

reality, the durations of the map tasks and the reduce tasks 

cannot be the same because the durations of these tasks are 

depended on a number of factors. More importantly, the 

durations of the reduce tasks in overlapping and 

non-overlapping stages are very different. Ganapathi et al. [26] 

employed a multivariate Kernel Canonical Correlation 

Analysis (KCCA) regression technique to predict the 

performance of Hive query. However, their intention was to 

show the applicability of KCCA technique in the context of 

MapReduce.   

Kadirvel et al. [27] proposed Machine Learning (ML) 

techniques to predict the performance of Hadoop jobs. 

However, this work does not have a comprehensive 

mathematical model for job estimation. Lin et al. [11]  proposed 

a cost vector which contains the cost of disk I/O, network 

traffic, computational complexity, CPU and internal sort. The 

cost vector is used to estimate the execution durations of the 

map and reduce tasks. It is challenging to accurately estimate 

the cost of these factors in a situation where multiple tasks 

compete for resources. Furthermore, this work is only 

evaluated to estimate the execution times of the map tasks and 

no estimations on reduce tasks are presented. The later work 

[12] considers resource contention and tasks failure situations. 

A simulator is employed to evaluate the effectiveness of the 

model. However, simulator base approaches are potentially 

error-prone because it is challenging to design an accurate 

simulator that can comprehensively simulate the internal 

dynamics of complex MapReduce applications. 

 Jalaparti et al. [13] proposed a system called Bazaar that 

predicts Hadoop job performance and provisions resources in 

term of VMs to satisfy user requirements. The work presented 

in [14] uses the Principle Component Analysis technique to 

optimize Hadoop jobs based on various configuration 

parameters. However, these models leave out both the 

overlapping and non-overlapping stages of the shuffle phase.  

There is body of work that focuses on optimal resource 

provisioning for Hadoop jobs. Tian et al. [28] proposed a cost 

model that estimates the performance of a job and provisions 

the resources for the job using a simple regression technique. 

Chen et al. [18] further improved the cost model and proposed 

CRESP which employs the brute-force search technique for 

provisioning the optimal cluster resources in term of map slots 

and reduce slots for Hadoop jobs. The proposed cost model is 

able to predict the performance of a job and provisions the 

resources needed. However, in the two models , the number of 

reduce tasks have to be equal to the number of reduce slots 

which means that these two models only consider a single wave 

of the reduce phase. It is arguable that a Hadoop job performs 

better when multiple waves of the reduce phase are used in 

comparison with the use of a single, especially in situations 

where a small amount of resources is available but processing  a 

large dataset. Lama et al. [29] proposed AROMA, a system that 

automatically provisions the optimal resources and optimizes 

the configuration parameters of Hadoop for a job to achieve the 

service level objectives. AROMA uses clustering techniques to 

group the jobs with similar behaviors. AROMA uses Support 

Vector Machine to predict the performance of a Hadoop job 

and uses a pattern search technique to find the optimal set of 

resources for a job to achieve the required deadline with a 

minimum cost. However, AROMA cannot predict the 

performance of a Hadoop job whose resource utilization pattern 

is different from any previous ones. More importantly, 

AROMA does not provide a comprehensive mathematical 

model to estimate a job execution time as well as optimal 

configuration parameter values of Hadoop. 

There are a few other sophisticated models such as 

[15][16][17][30] that are similar to the improve HP model in 

the sense that they use the previous executed job profiles for 

performance prediction. Herodotou et al. proposed Starfish [15] 

which collects the past executed jobs profile information at a 



1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2405552, IEEE Transactions on Parallel and Distributed Systems

 13 

fine granularity for job estimation and automatic optimization. 

On the top of the Starfish, Herodotou et al. proposed Elasticiser 

[16] which provisions a Hadoop cluster resources in term of 

VMs. However, collecting detailed job profile information with 

a large set of metrics generates an extra overhead, especially for 

CPU-intensive applications. As a result, Starfish overestimate 

the execution time of a Hadoop job.  Verma  et al. [30] 

presented the ARIA model for job execution estimations and 

resource provisioning. The HP model [17]  extends the ARIA 

mode by adding scaling factors to estimate the job execution 

time on larger datasets using a simple linear regression. The 

work presented in [31] divides the map phase and reduce phase 

into six generic sub-phases (i.e. read, collect, spill, merge, 

shuffle and write), and uses a regression technique to estimate 

the durations of these sub-phases. The estimated values are then 

used in the analytical model presented in [30] to estimate the 

overall job execution time. In [32] , Zhang et al. employed the 

bound-based approach [30] in heterogeneous Hadoop cluster 

environments.  

It should be pointed out that the aforementioned models are 

limited to the case that they only consider a constant number of 

the reduce tasks. As a result, the impact of the number of reduce 

tasks on the performance of a Hadoop job is ignored. The 

improved HP model considers a varied number of reduce tasks 

and employs a sophisticated LWLR technique to estimate the 

overall execution time of a Hadoop job.  

 

VII. CONCLUSION 

 Running a MapReduce Hadoop job on a public cloud such as 

Amazon EC2 necessitates a performance model to estimate the 

job execution time and further to provision a certain amount of 

resources for the job to complete within a given deadline. This 

paper has presented an improved HP model to achieve this goal 

taking into account multiple waves of the shuffle phase of  a 

Hadoop job. The improved HP model was initially evaluated on 

an in-house Hadoop cluster and subsequently evaluated on the 

EC2 Cloud. The experimental results showed that the improved 

HP model outperforms both Starfish and the HP model in job 

execution estimation. Similar to the HP model, the improved 

HP model provisions resources for Hadoop jobs with deadline 

requirements. However, the improved HP model is more 

economical in resource provisioning than the HP model.  

 Both models over-provision resources for user jobs with 

large deadlines in the cases where VMs are configured with a 

large number of both map slots and reduce slots. One future 

work would be to consider dynamic overhead of the VMs 

involved in running the user jobs to minimize resource 

over-provisioning. Currently the improved HP model only 

considers individual Hadoop jobs without logical 

dependencies. Another future work will be to model multiple 

Hadoop jobs with execution conditions. 
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