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ABSTRACT 

Friedreich ataxia (FRDA) is caused by homozygosity for FXN alleles containing an 

expanded GAA triplet-repeat (GAA-TR) sequence. This expanded GAA-TR sequence is 

unstable in somatic cells of FRDA patients, showing age-dependent expansions in 

dorsal root ganglia (DRG), the tissue where pathology occurs earliest and is most 

significant. This is thought to be the basis for the progressive, tissue-specific pathology 

seen in FRDA, but the mechanism(s) for this somatic instability is unknown. We show 

that transgenic mice containing the expanded GAA-TR sequence (190 or 82 triplets) in 

the context of the human FXN locus show tissue-specific and age-dependent somatic 

instability that mimics the human condition. Small pool PCR analysis, which allows 

quantitative analysis of instability by assaying individual transgenes in vivo, showed 

age-dependent expansions specifically in the cerebellum and DRG. The (GAA)190 allele 

showed some instability by 2 months, progressed at about 0.3 – 0.4 triplets/week, 

resulting in a significant number of expansions by 12 months. Repeat length determined 

the age of onset of somatic instability, and the rate and magnitude of expansion. 

Whereas the GAA-TR was unstable in the context of the human FXN locus, pure GAA-

TR sequences at other genetic loci in the human and murine genomes showed no 

instability. These data indicate that somatic instability of the GAA-TR sequence in the 

human FXN gene is determined by a combination of unique cis and trans-acting factors. 

This mouse model will serve as a useful tool to delineate the mechanism(s) of disease-

specific somatic instability in FRDA.                 
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INTRODUCTION 

 Friedreich ataxia (FRDA) is characterized by progressive sensory ataxia, 

dysarthria, reduced tendon reflexes, loss of position and vibration senses, and extensor 

plantar responses (1, 2). These neurological manifestations result from primary 

degeneration of the dorsal root ganglia (DRG), associated with axonal degeneration in 

the posterior columns, spinocerebellar tracts, and the corticospinal tracts of the spinal 

cord, and large myelinated fibers in the peripheral nerves (3). In later stages, the 

cerebellum is affected, but other regions of the nervous system remain unaffected. 

FRDA is an autosomal recessive disease caused by inheriting two copies of the FXN 

gene containing an expanded GAA triplet-repeat (GAA-TR) sequence in intron 1 (E 

alleles). Approximately 1% of the Indo-European population are heterozygous carriers 

of E alleles, and since de novo expansions of premutation to E alleles are rare, this 

results in an incidence of 1-2 / 50,000. E alleles are associated with a length-dependent 

deficiency of FXN transcript, and this manifests clinically with an earlier age of onset 

and rapid progression of disease in patients with longer E alleles.  

 E alleles show a remarkable degree of somatic instability in vivo. Small pool PCR 

analysis of tissues from FRDA patients has shown that somatic instability is length-

dependent, tissue-specific and age-dependent. Somatic instability of GAA-TR alleles in 

peripheral leukocytes initiates when the length is ≥44 triplets, with shorter E alleles 

(<250 triplets) showing a slight expansion bias, and long E alleles (>500 triplets) 

showing a strong tendency to contract. We recently showed that the mutation load in 

peripheral leukocytes from patients increases with age. We also noted a tendency for E 

alleles to undergo further large expansions (>20% over the original length) specifically in 
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the DRG, a tissue that shows the earliest and most significant pathology in FRDA. More 

significantly, we detected an age-dependent increase in the frequency of these large 

expansions in DRG of patients. Similar large expansions, albeit at lower frequency, 

were also seen in the cerebellum. Thus, it seems that this progressive expansion of E 

alleles in the DRG and cerebella of FRDA patients may contribute to the specific and 

progressive tissue pathology seen in FRDA. Therefore, determining the mechanisms of 

the age-dependent and tissue-specific instability would be important to the 

understanding of disease pathogenesis, and perhaps even for identifying potential 

strategies to slow the progression of disease.    

 Whereas FRDA is the only disease caused by expansion of a GAA repeat 

sequence, several diseases, including myotonic dystrophy (DM) and Huntington 

disease (HD) are caused by abnormal expansion of CTG/CAG repeats at their 

respective genetic loci. Expanded CTG/CAG repeats also show tissue-specific and age-

dependent expansions in tissues affected in the disease process. Indeed, several 

transgenic mouse models have been created to reproduce the somatic instability of 

CTG/CAG repeats seen in patients. With some exceptions, these mouse models of 

instability also showed age-dependent, tissue-specific, expansion-biased repeat 

instability. Somatic instability did not correlate with the proliferative capacity of tissues, 

but was dependent on the flanking genomic sequence context, and the genetic 

background of the host.  

 These transgenic mice are clearly important for the analysis of CTG/CAG 

instability, but given the differences in the type of somatic instability displayed by 

expanded GAA-TR sequences in humans, we previously created two transgenic mouse 
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lines with expanded GAA-TR alleles in the context of the human FXN locus (YG8 & 

YG22 []). They were previously reported to have germline instability and increasing 

“smearing” of the GAA repeat upon conventional PCR analysis of cerebellar DNA []. 

Here, we performed a detailed quantitative analysis of multiple tissues from both these 

mouse lines using SP-PCR and found that they recapitulate the age-dependent 

expansions in cerebellum and DRG. We also present data that support the existence of 

cis-acting sequence elements at the human FXN locus which are essential for somatic 

instability.   
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RESULTS 

Tissue-specific instability characterized by expansions in cerebellum and DRG 

 The YG8 and YG22 mice were made by randomly integrating a YAC transgene 

containing the entire human FXN locus with a (GAA)190 sequence []. Whereas the YG22 

line has a single copy (GAA)190 insert, the YG8 line has the (GAA)190 transgene but also 

contains another YAC in tandem with a (GAA)82 repeat tract. These transgenic mice 

were used to test tissue-specific instability of two lengths of GAA-TR sequences in the 

context of the human FXN locus.  

 Small pool PCR (SP-PCR) is a powerful technique that allows the study of repeat 

lengths in individual genes (molecules) represented in an appropriately diluted  sample 

of genomic DNA. We used SP-PCR to analyze somatic instability of the (GAA)190 tract 

in multiple tissues from twelve-month old mice derived from both transgenic lines (Fig. 

1). Over 2000 molecules, representing individual somatic transgenes, were analyzed 

from each transgenic line [a total of 4315 individual (GAA)190 molecules]. Mutation load 

and the frequencies of expansion and contraction were measured for each allele in 

several tissues (see Materials & Methods). While we did see some instances of 

expansion and contraction in most tissues, the (GAA)190 sequence was most unstable in 

cerebellum and DRG (Fig. 1). The mutation load in cerebellum was 20.4% and 39.4% in 

YG8 and YG22, respectively, and in DRG of YG8 it was 8.3% (DRG was not analyzed 

in YG22). By comparison, the combined mutation loads of the other tissues (i.e., 

excluding cerebellum and DRG) were only 1.4% and 4.3% in the YG8 and YG22 lines, 

respectively (P<0.001 in both lines). Somatic instability in cells derived from actively 
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proliferating tissues such as peripheral blood and sperm was also much lower than in 

the cerebellum and DRG (P<0.001; Fig. 1).  

 A significant expansion bias was noticed in all tissues, with at least an 8-fold 

greater frequency of expansions over contractions in both lines (P<0.001 in both lines; 

Fig. 2). Again, most of the expansions were noted in the cerebellum and DRG, which 

accounted for 75% and 44% (92 / 122 and 68 / 154) of all expansions seen in the YG8 

and YG22 lines, respectively. It is noteworthy that the same frequency of expansions 

was noted for the (GAA)190 transgene in both YG8 and YG22 mice (P=0.7; Fig. 2). The 

magnitude of expansions was comparable for the two lines (Fig. 3), with maximum 

expansions in cerebellum of 50+ triplets noted in both lines [representing an increase of 

>30%]. Similar instances of expansion by 50+ triplets, although less frequent than in 

cerebellum, were also noted for the (GAA)190 transgene in DRG. 

  

Somatic instability is age-dependent 

 Next we compared the levels of somatic instability in tissues derived from young 

(2 month old; 2400 individual molecules) versus old (12 month old; 2000 individual 

molecules) littermates of YG8 transgenic mice (Table 1; DRG was analyzed at 3 months 

and 14 months). Through 2 months of age, the (GAA)190 allele showed low levels of 

somatic instability (≤1%) including in the cerebellum and DRG (Table 1, Fig. 4A). The 

(GAA)82 allele was completely stable through 2 months, indicating that repeat length 

may determine the age of onset of somatic instability (Fig. 5). In older littermates we 

noted a significant increase in mutation load, which was mainly due to the accumulation 

of expansions. The (GAA)190 allele showed a significant age-dependent increase in the 
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frequency of expansions in DRG and cerebellum (P<0.001 for each tissue; Table 1). 

The (GAA)82 allele showed a similar age-dependent increase in mutation load, which at 

12 months was indistinguishable from the (GAA)190 allele in terms of the proportion of 

mutant molecules (P=0.12 for all tissues [Fig. 5], and P=0.36 for cerebellum only). No 

appreciable increase in the mutation load was noted up to 12 months in blood and 

sperm (proliferative cells), spinal cord (another region of the central nervous system), 

and kidney (the tissue showing maximal instability for CTG/CAG repeats in transgenic 

mouse models). 

 We then tested if the age-dependent increase in expansions seen in the 

cerebellum of YG8 mice was reproduced in the YG22 mice. The (GAA)190 allele, which 

was only slightly unstable at 2 months (data not shown) and 5 months (4.3% of 325 

individual molecules), showed a significant increase in mutation load (39.3% of 211 

individual molecules; P<0.001 compared with 2 or 5 months), and an expansion bias 

(4.5-fold greater frequency of expansions over contractions; P<0.001) by 12 months 

(Fig. 4B). 

 As a semi-quantitative measure of the dynamics of expansions, we determined 

the “median rate of expansion” as previously described by Gomes-Pereira et al. The 

(GAA)190 allele showed comparable median rates of expansion in YG8 cerebellum, YG8 

DRG, and YG22 cerebellum (+0.33, +0.44, and +0.41 triplet/week, respectively). The 

cerebellar expansion rate of the (GAA)82 allele was +0.21 triplet/week, i.e. ~40 – 60% 

less than the cerebellar expansion rate of the (GAA)190 allele. Thus, despite similar 

frequencies of mutation, the slower rate of mutation resulted in smaller magnitude of 

cerebellar expansions of (GAA)82 [median: 10 triplets; range: 4 – 25] versus (GAA)190 
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[median: 16 triplets; range: 2 – 64] by 12 months of age (P<). These data indicate that 

the length of the repeat determines the age of onset of somatic instability, the rate of 

and magnitude of expansion, but not the total number of molecules with mutations 

(indicated by the proportion of mutant molecules; Fig. 5). 

 

Locus-specific somatic instability of GAA triplet-repeat sequences 

 The YG8 and YG22 mice have a significant amount of flanking sequence from 

the human FXN locus, and it is therefore not surprising that there was no difference in 

the pattern of somatic instability in the two transgenic lines despite the random 

integration of their individual transgenes. To test if flanking DNA sequence alters the 

level of somatic instability of the GAA-TR sequence in vivo, thus acting as a cis-acting 

modifier, we sought to identify other naturally occurring long and pure GAA-TR 

sequences in the human and mouse genomes. We decided to use the previously 

determined “minimum threshold length” for the initiation of instability at the FXN locus 

(≥44 pure GAA triplets, without any flanking G/A-island sequence) as a quantitative 

measure of the level of somatic instability. Following a comprehensive search of both 

genomes we identified several human loci with long GAA tracts [], however, sequencing 

of all potential loci to identify suitable alleles (≥44 pure GAA triplets, without any flanking 

G/A-island sequence, which we have shown to result in stabilization of adjacent GAA-

TR sequences) led to the identification of only one human locus (5q23). In the mouse 

genome we identified only two out of 107 loci with (GAA)40+ sequences to have ≥44 

pure GAA triplets without any flanking G/A-island sequence (1e2.3 and 8b3.3). Both 

human and murine loci did not map within known or predicted transcriptional units. On 
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screening of ~100 “normal” human controls we identified suitable alleles at 5q23 that 

ranged from 59 to 71 pure GAA triplets. Sequencing of the two murine loci showed 

allele lengths of 48 and 53 pure GAA triplets.  

 SP-PCR analysis of five human alleles at 5q23 (1701 individual molecules) and 

the two mouse alleles (688 individual molecules) showed negligible somatic instability 

(Figure 6; Table 2). The human DNA samples were derived from blood samples from an 

anonymous panel of normal controls and so we do not know their individual ages, 

except that they were all adults (≥18 years). However, in the case of the mouse, we 

tested 12-month old cerebellum (shown in Fig. 6E,F) which was completely stable. In 

comparison, alleles of similar length at the human FXN locus (also from blood DNA) 

were significantly more unstable (P<0.001; Table 2). We similarly tested several long 

GAA-TR sequences which had flanking G/A-island sequences at other loci the human 

genome, and some additional shorter pure alleles in the mouse genome, and did not 

detect any somatic instability (data not shown). Taken together, these data suggest the 

existence of cis-acting determinants of somatic instability at the human FXN locus which 

function in human and transgenic mouse cells. 
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DISCUSSION 

 We previously showed that FRDA patients have age-dependent expansions in 

DRG and to a lesser extent in cerebellum, which we believe to be the basis for the 

selective and progressive pathology in DRG, and the later involvement of cerebellum. 

Our transgenic mice recapitulate the age-dependent accumulation of GAA expansions 

seen in DRG and cerebellum of FRDA patients, although they show greater cerebellar-

specific expansions. Despite this subtle quantitative difference, the specific involvement 

of sites of nervous system pathology in FRDA indicate that these mice may serve as 

useful models to investigate the mechanistic basis of tissue-specific expansions, and 

perhaps also for testing interventional strategies in the context of a complex organism. 

The absence of large contractions in peripheral blood and sperm commonly seen in 

FRDA patients is most likely due to the smaller size of the GAA-TR sequence in our 

transgenic mice (190 versus >500 triplets in typical E alleles).  

 Indeed, the lower level of somatic mutations seen blood and sperm versus non-

proliferative tissues such as cerebellum and DRG indicate that DNA replication per se is 

unlikely to be a major cause for the age-dependent expansions. This is consistent with 

similar observations indicating that DNA replication alone is unlikely to explain the age-

dependent, tissue-specific expansions seen in transgenic mice carrying expanded 

CTG/CAG tracts. It is still unknown if components of the mismatch repair pathway will 

play a critical role in the genesis of somatic instability in our mice as is known for 

instability of CTG/CAG repeats. What is striking is the remarkable difference in the 

tissue distribution of somatic instability displayed in mice carrying transgenes with 

expanded GAA or CTG/CAG repeats. The CTG/CAG repeat, in several genomic 
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contexts, consistently shows the highest instability in kidney and the striatum, but very 

low levels of instability in the cerebellum. In contrast, our mice showed the highest level 

of instability in the cerebellum (striatum was not analyzed), and kidney showed the least 

instability (in YG8 we found no detectable instability even at 12 months). The cause(s) 

for this difference remains unknown, but the specific involvement of disease-specific 

tissues (DRG and cerebellum in FRDA; muscle, brain and eyes in DM; striatum in HD) 

is provocative, and suggests the role of cell type-specific, trans-acting factors that 

modify specific triplet-repeat sequences. In fact, Fortune et al. showed that specific 

fractions of cells within the kidney have a tendency to remain stable or to expand with 

age. In our mice we observed that the length of the GAA repeat determines the age of 

onset of somatic instability and the rate of expansions, but not the proportion of mutant 

molecules (expanded transgenes). This supports the notion that only a specific fraction 

of cells initially develops expansions, which then subsequently continue to expand as 

the mouse ages, with longer repeats undergoing faster expansion. It should be noted 

that while we saw maximal expansions amounting to increases in length by 30 – 40%, 

we did not observe the very large changes (300 – 500%) that others have seen in 

transgenic mice with long CTG/CAG repeats. However, this is consistent with what is 

seen in the corresponding human disease states; very large expansions are seen in 

somatic tissues of DM and HD patients, and in contrast the large expansions we have 

seen in the DRG of FRDA patients typically represent length gains of 20 – 40%.    

 We also found that the genomic context flanking the GAA-TR sequence can 

modify its somatic instability, and therefore there must be cis-acting elements in addition 

to the above mentioned trans-acting factors. Despite a comprehensive search, we were 
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unsuccessful in identifying any naturally occurring GAA-TR sequences in the human or 

mouse genomes that is as unstable as the FXN locus. Indeed, integrating the entire 

human FXN locus along with the expanded GAA-TR sequence into the mouse genome 

at two random loci recapitulated the tissue-specific instability seen in human tissues. 

Furthermore, the two transgenic lines showed a very similar distribution of expansions 

versus contractions, tissue-specificity of somatic instability, and the magnitude and rate 

of expansions, indicating that the genomic context afforded by the human FXN locus 

presents the necessary cis-acting elements for somatic instability in the appropriate cell 

type (and is not / less dependent on the mouse genomic sequence flanking the site of 

transgenic integration). Our data concerning the GAA repeat are consistent with the 

observation that the appropriate flanking genomic context is also required for somatic 

instability of CTG/CAG repeats. Indeed, somatic instability was either absent or highly 

dependent on the transgenic insertion site when very little or no human flanking 

genomic sequence was used. Somatic instability of CTG/CAG repeats was consistently 

observed when either a large amount of human flanking sequence was used or the 

repeat tract was specifically “knocked-in” into the homologous murine locus. It is 

nevertheless intriguing, notwithstanding the obvious role of cis-acting elements, that the 

sequence motif (GAA versus CTG/CAG) itself seems to also determine the type of 

instability in specific tissues.        

 In summary, we describe a transgenic mouse model that recapitulates the 

disease-related, tissue-specific expansions of GAA repeats seen in tissues from FRDA 

patients. We suggest that both cis and trans-acting factors regulate the tissue-specific 

and age-dependent somatic instability. This mouse model will serve as a useful 



 14

resource to delineate the mechanism(s) of somatic instability seen in FRDA patients, 

and perhaps also as an animal model to test potential interventional strategies.  
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MATERIALS AND METHODS 

DNA Purification: Genomic DNA from all tissues (except sperm) was purified using the 

Qiagen tissue extraction kit. Sperm DNA was purified using a protocol [] that exploits the 

differential lysis of sperm tails and non-sperm cells (discarded) and sperm heads 

(used), in order to ensure that we were analyzing instability in germline cells. Multiple 

tissues were analyzed in YG8 (at 12 months: blood, sperm, kidney, spinal cord, brain 

stem, cerebellum; at 2 months: same tissues except kidney; DRG was analyzed at 3 

and 14 months) and YG22 (at 12 months: pancreas, heart, skeletal muscle, cerebrum, 

and cerebellum; at 2 and 5 months: only cerebellum).    

Small pool PCR analysis: This was performed as described previously []. Briefly, serial 

dilutions of genomic DNA, ranging from 6 – 600 pg, were prepared in siliconized 

microfuge tubes. PCR was performed using primers 147F (5’-

GAAGAAACTTTGGGATTGGTTGC-3’) and 602R (5’-AGGACCATCATGGCCACACTT-

3’), which allowed accurate sizing of alleles used in the present study. PCR products 

were resolved by electrophoresis on 1% agarose gels, and bands detected by Southern 

blotting using an end-labeled (TTC)9 oligonucleotide probe. The calculation of the 

average number of individual molecules per reaction was performed by Poisson 

analysis as described previously []. For each genomic DNA sample multiple reactions 

were performed using “small pools” of 2.5 – 25 individual molecules (typically 5 – 10) 

per reaction to detect mutations. Mutation load was calculated as the proportion of 

amplified molecules that differed by >5% in length from the constitutional (most 

common) allele determined by conventional PCR. Although no significant inter-tissue 

variability was noted in the size of the constitutional alleles within the same individual, 
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all calculations of mutation load and measurement of altered allele sizes were 

performed following accurate sizing of the constitutional alleles in each tissue.  
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FIGURE LEGENDS 

Figure 1. SP-PCR analysis showing somatic instability of the GAA triplet-repeat 

sequence in multiple tissues from YG8 and YG22 transgenic mice. Representative gels 

are shown for the indicated tissues. The locations of the original (GAA)190 and (GAA)82 

alleles, as determined by conventional PCR, are indicated by arrowheads. Each lane 

typically contains 5 – 10 individual molecules (transgenes; see Material & Methods). 

Note that cerebellum and DRG show higher levels of instability.   

 

Figure 2. Somatic instability of the (GAA)190 allele in tissues from YG8 and YG22 

transgenic mice shows a significant bias for expansions. Note that both transgenic mice 

show a >8-fold excess of expansions over contractions. 

 

Figure 3. Similar magnitude of cerebellar expansions of the (GAA)190 allele in YG8 and 

YG22 transgenic mice. Bars represent the frequency of expansions with the indicated 

increase in repeat length (measured in triplets). 

 

Figure 4. Somatic instability of the (GAA)190 and (GAA)82 alleles is age-dependent. 

Representative gels are shown for cerebellar DNA, and the locations of the original 

(GAA)190 and (GAA)82 alleles, as determined by conventional PCR, are indicated by 

arrowheads. Each lane contains a comparable number (5 – 10) of individual molecules 

(transgenes; see Material & Methods). Note the increase in instability and bias for 

expansion, seen in 12 month versus 2 or 5 month old cerebellum. 
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Figure 5. Somatic instability of the (GAA)190 and (GAA)82 alleles is age-dependent. The 

graph shows a significant increase in somatic instability (mutation load; see Materials 

and Methods) of the (GAA)190 and (GAA)82 alleles in (all tissues of) 12 month versus 2 

month old littermates of YG8 transgenic mice (DRG was collected 13 and 3 months 

instead). 

 

Figure 6. Somatic instability of the GAA triplet-repeat sequence is seen in the context of 

the human FXN locus. Representative gels are shown for pure GAA triplet-repeat 

sequences at various genetic loci in the human [(A,B) FXN locus [9q21] and (C,D) an 

extragenic sequence at 5q23) and mouse [(E) 1e2.3 and (F) 8b3.3] genome. The 

locations of the original (GAA)40+ alleles, as determined by conventional PCR, are 

indicated by arrowheads. Each lane typically contains 5 – 10 individual molecules 

(genes). Note that the GAA triplet-repeat at the human FXN locus (A,B) shows higher 

levels of instability than alleles of similar sequence and length at other loci (C-F). A rare 

mutation at 5q23 is indicated by an asterisk (C).   
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TABLES 

 

Table 1. Age-dependent and expansion biased somatic instability of the (GAA)190 allele 

in the YG8 transgenic mouse. 

n/a = not analyzed; aDRG was analyzed at 3 and 14 months instead. 

 

Table 2. Locus-specific instability of the GAA triplet-repeat sequence. 

aPreviously published data from Refs X and Y 

bHuman genomic locus 

cNovel data; potentially unstable GAA repeats in human and mouse genomes 

dMouse genomic locus     
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Table 1.  
 

 2 month 12 month 

Tissues ML (%) Molecules 
analyzed Con. Esp. ML (%) Molecules 

analyzed Con. Esp. 

Blood 0 898 0 0 0.6 711 0 4 

Sperm 0 121 0 0 2.3 216 0 5 

Kidney N/A N/A N/A N/A 0 189 0 0 

Spinal Cord 1 100 0 1 2.4 42 0 1 

Brain Stem 0.65 306 0 2 5.5 161 2 7 

DRG 0.9 112 1 0 8.3 180 2 13 

Cerebellum 0.35 862 0 3 20.4 501 10 92 

 
 



Table 2.  
 

Locus GAA size Mutation 
Load (%) 

Molecules 
analyzed 

FXN 39 0 1150 

 44 6.3 2304 

 66 30 1230 

5q23 59 <1 555 

 61 <1 291 

 61 <1 334 

 65 <1 223 

 71 <1 298 

1e2.3 48 0 392 

8b3.3 53 0 296 
 
 


