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Abstract

By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty,

this paper proposes a robust variable selection procedure for partially varying coefficient single-index

model based on modal regression. The proposed procedure simultaneously selects significant variables in

the parametric components and the nonparametric components. With appropriate selection of the tuning

parameters, we establish the theoretical properties of our procedure, including consistency in variable

selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and

propose a modified expectation-maximisation (EM)-type algorithm for the proposed estimation procedure.

The finite sample properties of the proposed estimators are illustrated by some simulation examples.
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1. Introduction

Partially varying coefficient single-index model (PVCSIM) combines naturally the advantages of both

the single-index models and the varying coefficient models. Ever since Wong, Ip, and Zhang (2008)

proposed the PVCSIM, studies in this class of model have raised the great interest of research in Statistics

field. We formulate a PVCSIM as

Y = ZT θ(U) + g(XTβ) + ε, (1.1)

where Y is a response variable, X and Z are of dimensions p × 1 vectors and q × 1 vectors, θ(·) =

(θ1(·), ..., θq(·))T is a vector of unknown function, β = (β1, ..., βp)
T is a vector of unknown parameters, g(·)

is an unknown link function, and ε is random error with mean zero. Due to the curse of dimensionality,

we assume, for simplicity, that U is univariate. And we also assume that ‖β‖ = 1 and sigh(β1) = 1 to

ensure identifiability, where ‖ · ‖ denotes the Euclidean metric.

Model (1.1) is quite flexible enough to cover a variety of existing statistical models. For example,

if g(·) = 0, it reduces to the standard varying-coefficient model. When θ(·) is an unknown constant
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parameter, then model (1.1) is a partially linear single-index model (Wang, Xue & Chong, 2010; Wang &

Wu, 2013). In addition, model (1.1) becomes the standard single-index model when Z = 0 or θ(·) = 0 (Wu,

Yu & Yu, 2010). Due to its flexibility and generality, model (1.1) has gained much attention in recent years.

Wang and Xue (2011) developed a stepwise approach to obtain asymptotic normality estimators of the

varying-coefficient vector and the parametric vector. Huang and Zhang (2010) constructed the confidence

region for the parameter β in model (1.1) based on the empirical likelihood technique. While Huang

(2011) used the empirical likelihood method to study the confidence regions of the varying-coefficient

parts. Huang, Lin, Feng and Pang (2013) proposed a class of efficient penalized estimating equations

to estimate the index parametric components in the PVCSIM. Feng and Xue (2013) also considered the

problem of variable selection in the PVCSIM. However, the aforementioned existing researches were mainly

built on either the least-square or empirical likelihood method, which are expected to be very sensitive to

the outliers and its efficiency may be significantly decreased for many commonly used non-normal errors.

Recently, Yao, Lindsay and Li (2012) proposed a new estimation approach based on a local modal

regression for the nonparametric model. Then, Zhang, Zhao and Liu (2013) and Zhao, Zhang, Liu and Lv

(2014) investigated the partially linear varying coefficient model based on modal regression, respectively.

And Liu, Zhang, Zhao and Lv (2013) developed a new robust and efficient estimation procedure based

on local modal regression for single index models. A distinguishing characteristic of their method is that

it introduces an additional tuning parameter which is automatically selected using the observed data to

achieve both robustness and efficiency of the resulting estimate. Namely, their method is not only robust

when there are outliers or the error distribution is heavy-tail, but as asymptotically efficient as the ordinary

least-square-based estimator when the data include no outliers and the error distribution is a Gaussian

distribution. Due to its nice property, it has attracted increasing attention. Here, we extend the modal

regression approach to the model (1.1).

Variable selection is a crucial issue in regression analysis. In practice, a number of variables are available

for inclusion in an initial analysis, but many of them may not be significant and should be excluded from

the final model to increase the accuracy of prediction. Traditional variable selection methods such as

stepwise regression and best subset selection are computationally infeasible when the number of predictors

is large. Therefore, various shrinkage methods such as the LASSO (Tibshirani 1996), the adaptive LASSO

(Zou 2006) and the SCAD (Fan & Li 2001) have gained much attention in recent years. However, the

LASSO is known to be near mini-max optimal as well as consistent under certain regularity conditions, Zou

(2006) showed that it falls short of attaining the oracle property. By this property, an estimator estimates

a zero coefficient exactly as zero with probability approaching one, while still being asymptotically normal

for the non-zero coefficients in large samples. In this respect, the LASSO is inferior to the SCAD estimator

which possesses the oracle property. So in the present paper, we prefer the SCAD of Fan and Li (2001)

since it simultaneously satisfies the mathematical conditions for unbiasedness, sparsity, and continuity.

More detail can be found in Fan and Li (2001). Since the SCAD was proposed, there has been a large

number of literature focused on its applications in many important nonparametric and semiparametric

models.
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In this paper, we investigated the variable selection for the varying coefficient function θ(·) and the

unknown parametric index β in model (1.1) based on modal regression. By combining the basis func-

tion approximate and the SCAD penalty, we develop a variable selection procedure for PVCSIM. More

specifically, we first use the B-spline functions to approximate the unknown coefficient functions and link

function in model (1.1). And then combine with the restraint ‖β‖ = 1 to construct the penalized estima-

tion function for PVCSIM based on modal regression. Under certain regularity conditions, we are able to

establish this variable selection procedure is consistent, and the estimators have oracle property. More-

over, a modified version of a modal expectation-maximisation (MEM) algorithm is proposed to obtain

the solutions for the object function. Some simulation studies show that, when data is contaminated by

outliers, the proposed variable selection procedure can perform well in finite samples.

The layout of the remainder of the paper is as follows. In Section 2, following the idea of the modal

regression approach, we propose the regularized estimation produce using basis expansion and the SCAD

penalty function. Then, Under some regularity conditions, we establish some theoretical properties of

the proposed variable selection procedure. We describe the detail of bandwidth selection and propose a

modified MEM algorithm. In addition, we give the method of choosing the tuning parameters in Section

3. In Section 4, we conduct some simulation studies to examine the finite sample performance of the

proposed procedures. Finally, in section 5 we conclude the paper. All the regularity conditions and the

technical proofs are relegated to Appendix.

2. Estimation and variable selection procedure

As a measure of centre, the median and mode have the common advantage of robustness, when there

exist outliers. Furthermore, since the modal regression focuses on the relationship between the majority

data points and summaries the “most likely”conditional values, it can provide more meaningful point

prediction than the mean regression when the error density is skewed. Suppose that {(Yi, Xi, Zi, Ui), i =

1, ..., n} is an i.i.d. sample from model (1.1). Then following the method of Yao, Lindsay and Li (2012),

the robust modal estimate of the PVCSIM is to maximize

1

n

n∑
i=1

φh

(
Yi − ZTi θ(Ui)− g(XT

i β)
)
, (2.1)

where φh(t) = h−1φ(t/h), φ(t) is a kernel density function, and the choice of φ(·) is not very important.

h is a bandwidth. For ease of computation, we use the standard normal density for φ(t) throughout the

present article.

Remark 1. The choice of kernel is not very important because it is possible to obtain estimators with

somewhat improved asymptotic properties by using different kernels (see, e.g., Eddy, 1980; Romano, 1988).

For the simplicity of the calculation, we use the Gaussian density for φ(t).

2.1. Spline-based estimation

Since θ(·) and g(·) are unknown functions in (2.1), here, we use polynomial splines to approximate

it. More specifically, let B1(u) = (B11(u), ..., B1L1
(u))T and B2(t) = (B21(t), ..., B1L2

(t))T be the B-
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spline basis functions with the order of M1 + 1 and M2 + 1, respectively, where L1 = K1 + M1 + 1

and L2 = K2 + M2 + 1, with K1 and K2 are the number of interior knots, Then θj(u) and g(t) can be

approximated by

θj(u) ≈ B1(u)T γj , j = 1, ..., q. and g(t) ≈ B2(t)T η.

Then, we can obtain γ̂, η̂ and β̂ by maximizing

1

n

n∑
i=1

φh

(
Yi −WT

i γ −B2(XT
i β)T η

)
, (2.2)

where Wi = Iq ⊗B1(Ui) · Zi with Iq is a q × q identity matrix, and γ = (γT1 , ..., γ
T
q )T .

2.2. Variable selection for PVCSIM

In this subsection, our main goal is to find zero components (i.e., θj(·) = 0 and βs = 0) in PVCSIM.

Thus, we define the following semiparametric penalized estimation for PVCSIM based on modal regression

as

L(γ, η, β) ≡ 1

n

n∑
i=1

φh

(
Yi −WT

i γ −B2(XT
i β)T η

)
−

q∑
j=1

pλ1j (‖γj‖H)−
p∑
s=1

pλ2s(|βs|), (2.3)

where pλ1j
and pλ2s

are two penalized parameters for the jth varying coefficient function and the sth

parameter component, respectively. ‖γj‖H = (γTj Hγj)
1/2 with H =

∫
B1(u)B1(u)Tdu.

Remark 2. Formulation (2.3) includes many popular variable selection methods, for example, the Lasso

(Tibshirani 1996) uses the L1 penalty with pλ1(‖ ·‖) = λ1‖ ·‖. Bridge regression (Frank & Friedman 1993)

uses the Lq penalty with pλ1
(‖ · ‖) = λ1‖ · ‖q. When 0 < q < 1 the Lq penalty is concave over (0,∞) and

nondifferentiable at zero. Fan and Li (2001) proposed the use of the SCAD penalty defined by its first

derivative as

p′λ(x) = λ
{
I(x ≤ λ) +

(aλ− x)+

(a− λ)
I(x > λ)

}
,

for some a > 2. The SCAD penalty is a spline function on an interval near zero and constant outside, so

that it can shrink small value of an estimate to zero while having no impact on a large one. As illustrated

in Fan and Li (2001), this penalty function satisfies three requirements for variable selection, namely,

asymptotic unbiasedness, sparsity and continuity of the estimated parameters. Therefore, we only focus

on the SCAD penalty function throughout of this paper.

Recalling that we assume that ‖β‖ = 1, this means that true value of β is a boundary point on the

unit sphere, which causes some difficulty since g(XT
i β) does not have a derivative at the point β. To

solve this problem, we suggest the popularly used “delete-one-component” method proposed by Yu and

Rupper (2002). The detail is as follows, without loss of generality, we assume that the true parameter β

has a positive component β1 (otherwise, consider -β1). For β = (β1, ..., βp)
T , let β(1) = (β2, ..., βp)

T be a

(p− 1)-dimensional parameter vector after deleting the 1th component β1 in β. Then, we can rewrite

β = β(β(1)) =
(
(1− ‖β(1)‖2)1/2, β2, ..., βp

)T
.
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The true parameter β(1) satisfies the constraint ‖β(1)‖ < 1. Thus, β is infinitely differential in a neighbor-

hood of β(1). Let α̃ = (γT , ηT , βT )T and α = (γT , ηT , β(1)T )T , and the Jacobian matrix is

Jβ(1) = ∂β/∂β(1) = (κ1, ..., κp)
T , (2.4)

where κs (1 < s ≤ p) is a (p − 1)-dimensional unit vector with sth component 1, and κ1 = −(1 −
‖β(1)‖2)1/2β(1).

By this reparametrization, and note that α is one dimension lower that α̃, so the objective function

(2.3) is transformed to

L(α) ≡ 1

n

n∑
i=1

φh

(
Yi −WT

i γ −B2(XT
i β(β(1)))T η

)
−

q∑
j=1

pλ1j
(‖γj‖H)−

p−1∑
s=1

pλ2s
(|β(1)

s |), (2.5)

In order to facilitate use, we note that maximizing the objective function (2.5) is equivalent to minimizing

L̃(α) ≡ − 1

n

n∑
i=1

φh

(
Yi −WT

i γ −B2(XT
i β(β(1)))T η

)
+

q∑
j=1

pλ1j (‖γj‖H) +

p−1∑
s=1

pλ2s(|β(1)
s |), (2.6)

Let γ̂, η̂ and β̂(1) be the solution by minimizing (2.6). Thus, the estimators of β, θj(u) and g(t) can

be obtained by

β̂ = (

√
1− ‖β̂(1)‖2, β̂(1)T )T , ĝ(t) = B2(t)T η̂ and θ̂j(u) = B1(u)T γ̂j , j = 1, ..., q. (2.7)

Next, we study the theoretical property of the proposed penalized estimators. We first introduce some

notations. Let β0 and θ0(·) be the true values of β and θ(·), respectively. Without loss of generality,

we assume that β0s = 0 for s = d2 + 1, ..., p, and β0s 6= 0 for s = 1, ..., d2. Similarly, we assume that

θ0j(·) = 0 for j = d1 + 1, ..., q, and θ0j(·) 6= 0 for j = 1, ..., d1. In addition, F (u, t, z, h) = E[φ′′h(ε)|U =

u,XTβ = t, Z = z] and G(u, t, z, h) = E[φ′h(ε)2|U = u,XTβ = t, Z = z]. The following theorem gives the

consistency of the proposed penalized estimators.

Theorem 1 Suppose that the regularity conditions C1∼C9 in the Appendix hold and the number of knots

K = Op(n
1/(2r+1)), Then we have

(a) ‖β̂ − β0‖ = Op(K
−r + an),

(b) ‖θ̂j(·)− θ0j(·)‖ = Op(K
−r + an), j = 1, ..., q,

where an = maxj,s{|p′λ1j
(|β0j |)|, |p′λ2s

(‖γ0s‖H)| : β0j 6= 0, γ0s 6= 0}, and r is defined in the Appendix.

Remark 3. Theorem 1 implies that, the rates of convergence of the proposed penalized estimators

depend on λ1j , λ2s and K. So the rates of convergence of the proposed penalized estimators can be

further improved to ‖β̂ − β0‖ = Op(K
−r) and ‖θ̂j(·) − θ0j(·)‖ = Op(K

−r) if λmax → 0, then an = 0.

Furthermore, under some conditions, we show that such consistent estimators must possess the sparsity

property, which is stated as follows.

Theorem 2 Suppose that the regularity conditions C1∼C9 given in the Appendix hold, and that λmax → 0
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and Krλmin →∞ as n→∞. Then with probability tending to 1, β̂ and θ̂j(·) satisfy

(a) β̂s = 0, s = d2 + 1, ..., p,

(b) θ̂j(·) = 0, j = d1 + 1, ..., q,

where λmax = maxj,s(λ1j , λ2s) and λmin = minj,s(λ1j , λ2s).

Next, we show that the estimators for nonzero coefficients in the parametric components have the same

asymptotic distribution as that based on the correct submodel. To demonstrate this, we require further

notations in order to present the oracle properties of the resulting estimators. Define γ0A = (γT01, ..., γ
T
0d1

)T

and β0A = (β01, ..., β0d2)T to be true values of γA and βA, respectively. Corresponding covariates are

denoted by WiA and GiA = g′(XT
iAβ(β

(1)
0A))JT

β
(1)
0A
XiA. In addition, let Σ = E(G(U, T, Z, h)G̃AG̃

T
A) and

Σ1 = E(F (U, T, Z, h)G̃AG̃
T
A) with G̃A = GA − ΦTΛ−1WA, where Φ = E(F (U, T, Z, h)WAG

T
A) and Λ =

E(F (U, T, Z, h)WAW
T
A ).

Theorem 3 Suppose that the regularity conditions C1∼C9 in the Appendix hold,

√
n(β̂A − β0A)

D−→ N(0, J
β
(1)
0A

Σ−1
1 ΣΣ−1

1 JT
β
(1)
0A

), (2.8)

where “
D−→” represents the convergence in distribution.

3. Bandwidth selection and estimation algorithm

The purpose of this section is twofold. we will first discuss the selection of bandwidth in theory. Then,

we will discuss a modified MEM algorithm for the PVCSIM.

3.1. Optimal bandwidth

For the sake of simplicity, we assume that the error variable independent of U , X and Z, then based

on (2.8) and the asymptotic variance of the least-square B-spline estimator(LSBS) given in Feng and Xue

(2013), we can show that the ratio of the asymptotic variance of the modal regression (MR) estimator to

that of the LSBS estimator is given by

R(h) ,
G(h)F−2(h)

σ2
, (3.1)

where G(h) = E[φ′h(ε)]2, F (h) = E[φ′′h(ε)]2 and σ2 = E(ε2). Obviously, the ratio R(h) only depends on

h, and it plays a key role in efficiency and robustness of estimators. So the ideal choice of h is

hopt = arg min
h
R(h) = arg min

h
G(h)F−2(h). (3.2)

From above, we can see that hopt does not depend on n and only depends on the conditional error

distribution of ε.
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3.2. Algorithm

In this subsection, we extend the local quadratic algorithm(LQA, Fan & Li 2001) and the MEM

algorithm (Li, Ray, & Lindsay, 2007) to maximize (2.5) in Section 2.

Since the SCAD penalty is irregular at the origin, maximizing (2.5) directly may be difficult. Here, we

use an iterative algorithm based on the local quadratic approximation of the penalty function pλ(·) as in

Fan and Li (2001). More specifically, in a neighborhood of a given nonzero u0, an approximation of the

penalty function at value u0 can be given by

pλ(|u|) ≈ pλ(|u0|) +
1

2

p′λ(|u0|)
|u0|

(u2 − u2
0).

Therefore, for the given initial φ
(0)
s (φs = β

(1)
s ) with |φ(0)

s | > 0 for s = 1, ..., d2− 1, and γ0
j with ‖γ0

j ‖H > 0

for j = 1, ..., d1 − 1, we get

pλ1j
(‖γj‖H) ≈ pλ1j

(‖γ(0)
j ‖H) +

1

2

p′λ1j
(‖γ(0)

j ‖H)

‖γ(0)
j ‖H

(‖γj‖2H − ‖γ
(0)
j ‖

2
H),

pλ2s
(|φs|) ≈ pλ2s

(|φ(0)
s |) +

1

2

p′λ2s
(|φ(0)

s |)

|φ(0)
s |

(|φs|2 − |φ(0)
s |2).

With the aid of LQA and MEM algorithm, we propose a modified MEM algorithm as follows.

Step 0. Obtain the initial estimator β̂(0) by fitting the partially varying coefficient single-index model

based on Huang et al.(2013), or the unpenalized estimator obtained by minimizing (2.6) with pλ(·) =

0. Normalize β̂(0) satisfy ‖β̂(0)‖ = 1 and impose the constraint that its first element is positive for

identifiability.

Step 1. For the index values {ti = XT
i β̂

(0), i = 1, ..., n}, obtain (γ̂, η̂) by maximizing

L(γ, η, λ1j) ≡
1

n

n∑
i=1

φh

(
Yi −WT

i γ −B2(ti)
T η
)
−

q∑
j=1

pλ1j
(‖γj‖H). (3.3)

In this step, we can use the modified MEM algorithm. First, let us define Γi = (WT
i , B

T
2 (ti))

T and

Υ = (γT , ηT )T , and set Υ(0) be the initial value and start with m = 0:

E-step: in this step, we update π1(j|Υ(m)) by

π1(j|Υ(m)) =
φh(Yi − ΓTi Υ(m))∑n
i=1 φh(Yi − ΓTi Υ(m))

, j = 1, ..., n.

M-step: Then we update Υ obtain Υ̂(m+1)

Υ̂(m+1) = arg max
Υ

(
n∑
i=1

{
π1(j|Υ(m))logφh

(
Yi − ΓTi Υ

)}
−

q∑
j=1

pλ1j
(‖γj‖H)

)
= (ΓTWΓ + Σλ1

)−1ΓTWY,
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where Γ = (Γ1, ...,Γn)T , Y = (Y1, ..., Yn)T , W is an n × n diagonal matrix with diagonal elements

π1(j|Υ(m))s, and

Σλ1 = diag

{
p′λ11

(‖γ(m)
1 ‖H)

‖γ(m)
1 ‖H

H, ...,
p′λ1q

(‖γ(m)
q ‖H)

‖γ(m)
q ‖H

H, 0, ..., 0

}
.

Step 2. Utilize the estimator γ̂ and η̂ obtained by Step 1, by maximizing

L(β(1), λ2s) ≡
1

n

n∑
i=1

φh

(
Yi −WT

i γ̂ − ĝ(XT
i β(φ̂))− ĝ′(XT

i β(φ̂))JT
φ̂
Xi(φ− φ̂)

)
−
p−1∑
s=1

pλ2s
(|β(1)

s |). (3.4)

Let φ(0) = φ̂ (φ = β(1)) be the initial value and start with m = 0:

E-step: in this step, we update π2(j|φ(m)) by

π2(j|φ(m)) =
φh

(
Yi −WT

i γ̂ − ĝ(XT
i β(φ̂))− ĝ′(XT

i β(φ̂))JT
φ̂
Xi(φ

(m) − φ̂)
)

∑n
i=1 φh

(
Yi −WT

i γ̂ − ĝ(XT
i β(φ̂))− ĝ′(XT

i β(φ̂))JT
φ̂
Xi(φ(m) − φ̂)

) , j = 1, ..., n.

M-step: Then we update φ obtain φ̂(m+1)

φ̂(m+1) = arg max
φ

(
n∑
i=1

{
π2(j|φ(m))logφh

(
Yi −WT

i γ̂ − ĝ(XT
i β(φ̂))− ĝ′(XT

i β(φ̂))JT
φ̂
Xi(φ− φ̂)

}
−
p−1∑
s=1

pλ2s
(|β(1)

s |)

)
= (G∗T W̃G∗ + Σλ2

)−1(G∗T W̃ Ỹ +G∗T W̃G∗φ̂),

where Ỹ = (Y1 − WT
1 γ̂ − ĝ(XT

1 β(φ̂)), ..., Yn − WT
n γ̂ − ĝ(XT

n β(φ̂)))T , G∗ = (G∗1, ..., G
∗
n)T with G∗i =

ĝ′(XT
i β(φ̂))XT

i Jφ̂, W̃ is an n× n diagonal matrix with diagonal elements π2(j|φ(m))s, and

Σλ2 = diag

{
p′λ21

(|φ(m)
1 |)

|φ(m)
1 |

, ...,
p′λ2p

(|φ(m)
p−1|)

|φ(m)
p−1|

}
.

Step 3. Iterate Step 1 and Step 2 until convergence, and denote the final estimators of φ, γ and η as φ̂,

γ̂ and η̂, respectively, and then obtain β̂ via the transformation.

To implement this method, the number of interior knots K1 and K2, and the tuning parameters a,

λ1j ’s and λ2s’s in the penalty functions should be chosen. Fan and Li (2001) showed that the choice of

a = 3.7 performs well in a variety of situations, therefore, we choose a = 3.7 throughout this paper. Since

it is difficult to choose too many tuning parameters and knots simultaneously, therefore, we borrow the

idea of Zhao and Xue (2009), and simplify the tuning parameters as λ1j = λ1/‖γ̂∗j ‖H and λ2s = λ2/|φ̂∗s|
with γ̂∗j and φ̂∗s are the unpenalized estimators of γj and φs, respectively. Moreover, we set the number

of interior knots K1 = K2 = K in our simulation studies. Then we choose the parameters λ and K by

8



maximizing the following cross-validation score

CV(λ1,K) =

n∑
i=1

φh

(
Yi −WT

i γ̂[−i] −B2(XT
i β(β̂(1)))T η̂[−i]

)
, (3.5)

CV(λ2) =

n∑
i=1

φh

(
Yi −WT

i γ̂ −B2(XT
i β(β̂

(1)
[−i]))

T η̂
)
, (3.6)

where γ̂[−i], η̂[−i] and β̂
(1)
[−i] are the solutions based on Equations (3.3) and (3.4) after deleting the ith

subject.

4. Simulation study

In this section, we first consider how to select the bandwidth h in practice, and then assess the

performance of the proposed procedure by some simulation studies.

4.1. Bandwidth selection in practice

In this subsection, we present the details of bandwidth selection in our simulation studies. We first need

to estimate F (h) and G(h) defined in Eq.(3.1) to obtain the optimal bandwidth hopt based on Eq.(3.2).

And F (h) and G(h) can be estimated by

F̂ (h) =
1

n

n∑
i=1

φ′′h(ε̂) and Ĝ(h) =
1

n

n∑
i=1

[φ′h(ε̂)]2, (4.1)

where ε̂ = Yi − ZTi θ̂(Ui) − ĝ(XT
i β̂) with ĝ(·), θ̂(·) and β̂ are estimated based on the pilot estimates.

Therefore, we can estimate R(h) by R̂(h) = Ĝ(h)/F̂ 2(h)σ̂2, where σ̂ is also estimated based on the pilot

estimate. However, since there is no explicit solution for h, thus, according to Yao et al. (2012), we use

grid search method. As pointed out by Yao et al. (2012) and Zhang et al. (2013), the possible grids points

for h can be h = 0.5σ̂× 1.02j , j = 0, ..., k for some fixed k. (such as k=120). Therefore, by the grid search

method, we can obtain the optimal bandwidth hopt based on Eq.(3.2).

4.2. Simulation study

In this subsection, we conduct simulation studies to assess the finite-sample performance of the proposed

procedures. We generate data from the following partially varying coefficient single-index model

Yi = ZTi θ(Ui
) + 3sin(πXT

i β) + εi, (4.2)

where β = (0.5,
√

2, 0.5, 0, 0, 0, 0, 0, 0), θ(u) = (θ1(u), θ2(u), 0, 0, 0, 0, 0) with θ1(u) = sin(2πu) and θ2(u) =

7(u− 1)2. Ui ∼ uniform (0, 1), Xi = (Xi1, ..., Xi9)T are generated from uniform distribution on (0, 1) and

Zi = (Zi1, ..., Zi7)T are generated from a standard normal distribution. We considered the following four

different error distributions: Case (1): εi ∼ N(0, 1); Case (2): εi ∼ t(3); Case (3): εi ∼ Laplace(0, 2);

Case (4): εi ∼ 0.95N(0, 1) + 0.05N(0, 102). In the following simulations, we use the cubic B-splines,

and the sample size n is set to be 100, 200 and 400. These simulations are all replicated over 500 times.
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In addition, the interior knots are taken equidistantly, the tuning parameter and the number of interior

knots are obtained by (3.5) and (3.6) in Section 3, and we choose the optimal bandwidth h based on the

introduction in subsection 4.1.

We use the generalized mean square error (GMSE), as defined in Li and Liang (2008)

GMSE = (β̂ − β)TE(XXT )(β̂ − β),

to assess the performance of variable selection procedures for the parametric component. And the perfor-

mance of estimator θ̂(·) will be assessed by using the square root of average square errors (RASE)

RASE =

{
N−1

grid

Ngrid∑
j=1

‖θ̂(uj)− θ(uj)‖2
}1/2

,

where uj , j = 1, ..., Ngrid are the regular grid points at which the function θ̂(u) is evaluated. In our

simulation, Ngrid = 201 is used.

To examine the robustness of the proposed variable selection procedure, we compare the performance

of the variable selection procedure based on modal regression (MR) proposed in this paper with that based

on the least square B-spline (LSBS) estimator used in Feng and Xue (2013). The simulated results are

reported in Table 1. The column labeled “Cβ” in Table 1 gives the average number of zero coefficients

correctly estimated to be zero for parametric β. Column “ICβ” presents the average number of nonzero

coefficients incorrectly estimated to be zero. While “Cθ(·)” and “ICθ(·)” present the average number of

zero coefficients correctly estimated to be zero and the average number of nonzero coefficients incorrectly

estimated to be zero for varying coefficient functions θ(u), respectively. Furthermore, Table 1 also presents

the median of GMSE for the parametric components and the median of RASE for the nonparametric

components.

From Table 1, we can make the following observations: (a) For given n, the penalised MR estimate

performs better than the penalised LSBS estimator method especially for the non-normal error distribution;

(b) For given error distribution, we can see that the variable selection method based on MR and LSBS both

become better and better as n increases. In addition, the performance of the variable selection method

based on MR becomes more and more closer to that based on the Oracle procedure as n increases; (c) For

the error distribution is 0.95N(0, 1) + 0.05N(0, 102), we can see that the superiority of MR becomes more

and more obvious as sample size n increases.

5. Conclusions

In this paper, we have proposed a robust variable selection procedure for PVCSIM based on modal

regression. The main contributions of the present article can be summarized as follows: (a) our procedures

are computationally efficient and theoretically reliable; (b) the variable selection procedure has the oracle

property; (c) the estimators of the single-index parametric components, which are of primary interest, are

still asymptotically normal.
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There are several possible extensions that deserve further study. In our work, we are just concerned

with the situation that the covariates are errors free, while it might be interesting to investigate the case

where the covariates are subject to measurement errors. Furthermore, Our approach described in this

paper can be easily extended to other models, such as partially linear single index model and partially

linear additive model. On another direction, it would be interesting to consider the dimensions q go to

infinity as n → ∞, the variable selection procedure proposed by this paper will not work any more, for

such high-dimensional problems, it is the subject of ongoing research.
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Appendix: Proofs

For convenience and simplicity, let C denote a positive constant that may be different at each appear-

ance throughout this paper. For any two sequences {an, bn, n = 1, 2, ...}, we write an � bn if there are

constants 0 < c1 < c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large. Before we prove our

main theorems, we list some regularity conditions that are used in this paper.

C1. The variable U has a bounded support U ([a1, b2]) and its density function fU (·) is positive and has

a continuous second derivative.

C2. The function θj(u) is the r(r > 2)th continuously differentiable on [0, 1], and the function g(t) has

bounded and continuous derivatives up to order r on [a2, b2].

C3. Let the matrices E(ZZT |U = u) and E(ZXT |U = u) be continuous with respect to u. Furthermore,

for given u, E(ZZT |U = u) and E(ZXT |U = u) are all positive definite matrix and their eigenvalues are

bounded. In addition, we also assume that maxi ‖Xi‖/
√
n = op(1) and maxi ‖Zi‖/

√
n = op(1).

C4. K1 � K2 � K.

C5. F (u, t, z) and G(u, t, z) are continuous with respect to (u, t, z). Furthermore, F (u, t, z) < 0 for any

h > 0.

C6. E(φ′h(ε)|U = u,XTβ = t, Z = z) = 0 and E(φ′′h(ε)2|U = u,XTβ = t, Z = z), E(φ′h(ε)3|U = u,XTβ =

t, Z = z) and E(φ′′′h (ε)|U = u,XTβ = t, Z = z) are continuous with respect to t at the point t0.

C7. Let tj1, ..., tjKj
be the interior knots of [aj , bj ] for j = 1, 2. Moreover, let tj0 = aj , tj,Kj+1 = bj ,

hji = cji − cj,i−1 and hj = max1≤i≤Kj+1
{hji}, Then, there exist a constant C0j satisfy

hj
min1≤i≤Kj+1

{hji}
< C0j , max{‖hj,i+1 − hji‖} = o(K−1).
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C8. Let bn = maxj,s{|p′′λ1j
(‖γ0j‖H)|, |p′′λ2s

(|β(1)
0s |)| : γ0j 6= 0, β

(1)
0s 6= 0}, then bn → 0 as n→∞.

C9. lim infn→∞ lim inf
β
(1)
s →0+ λ

−1
2s |p′λ2s

(|β(1)
s |)| > 0 and lim infn→∞ lim inf‖γj‖H→0 λ

−1
1j p
′
λ1j

(‖γj‖H) > 0,

where j = d1 + 1, ..., q, s = d2, ..., p.

These assumptions, while look a bit lengthy, in fact, are quite mild and similar assumptions can be

found in Zhao and Xue (2009), Zhao, Zhang, Liu and Lv (2013) and Feng and Xue (2013). The condition

E(φ′h(ε)|u, t, z) = 0 ensures that the proposed estimate is consistent and it is satisfied if the error density

is symmetric about zero. More detail can be found in Yao, Lindsay and Li (2012).

Proof of Theorem 1. Let δ = K−r + an and v = (vT1 , v
T
2 , v

T
3 )T . Define β(1) = β

(1)
0 + δv1, η = η0 + δv2

and γ = γ0 + δv3. Let us first show that, for any given ξ > 0, there exists a large C such that

P
{

inf
‖v‖=C

L̃(α0 + δv) > L̃(α0)
}
≥ 1− ξ. (A.1)

This implies that, with probability at least 1− ξ, there exists a local minimizer in the ball {α0 + δv :

‖v‖ ≤ C}. Using the Taylor expansion, it follows that

Dn(v) ≡ nK−1{L̃(α0 + δv)− L̃(α0)}

= K−1
n∑
i=1

{
−φh

(
Yi −WT

i γ −B2(XT
i β(β(1)))T η

)
+φh

(
Yi −WT

i γ0 −B2(XT
i β(β

(1)
0 ))T η0

)}
+ nK−1

q∑
j=1

{pλ1j (‖γj‖H)− pλ1j (‖γ0j‖H)}+ nK−1

p−1∑
s=1

{pλ2s(|β(1)
s |)− pλ2s(|β(1)

0s |)}

≥ K−1
n∑
i=1

{
−φh

(
Yi −WT

i γ −B2(XT
i β(β(1)))T η

)
+φh

(
Yi −WT

i γ0 −B2(XT
i β(β

(1)
0 ))T η0

)}
+ nK−1

d1∑
j=1

{pλ1j
(‖γj‖H)− pλ1j

(‖γ0j‖H)}+ nK−1
d2−1∑
s=1

{pλ2s
(|β(1)

s |)− pλ2s
(|β(1)

0s |)}

=
δ

K

n∑
i=1

φ′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
Qi −

δ2

2K

n∑
i=1

φ′′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
Q2
i

+
δ3

6K

n∑
i=1

φ′′′h (ςi)Q
3
i +

n

K

d2−1∑
s=1

{pλ2s
(|β(1)

s |)− pλ2s
(|β(1)

0s |)}+
n

K

d1∑
j=1

{pλ1j
(‖γj‖H)− pλ1j

(‖γ0j‖H)}

≡: I1 + I2 + I3 + I4 + I5, (A.2)

where ςi is between εi +ZTi R1(Ui) +R2(XT
i β(β

(1)
0 )) and εi +ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))− δQi, R2(t) =

g(t) − B2(t)T η, R1(u) = (R11(u), ..., R1q(u))T with R1j(u) = θj(u) − B1(u)T γ0j , j = 1, ..., q and Qi =

WT
i v3 +B2(XT

i β(β
(1)
0 ))T v2 +B′2(XT

i β(β
(1)
0 ))T η0v

T
1 J

T
β(1)Xi + δB′2(XT

i β(β
(1)
0 ))T η0v2v

T
1 J

T
β(1)Xi. Let us first

consider I1, using Taylor expansion, we obtain that

n∑
i=1

φ′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
Qi =

n∑
i=1

{
φ′h(εi) + φ′′h(εi)

(
ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
+ φ′′′h (εi)

(
ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)2}
Qi,
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where εi is between εi and εi + ZTi R1(Ui) + R2(XT
i β(β

(1)
0 )). By the condition C1, C2, C7 and Corollary

6.21 in Schumaker (1981), we have ‖R1j(u)‖ = O(K−r) and ‖R2(t)‖ = O(K−r), and |g′(XT
i β(β(1))) −

B′2(XT
i β(β(1)))η0| ≤ CK−r+1, then we can prove

n∑
i=1

φ′′h(εi)R1(Ui)
TZiQi =

n∑
i=1

φ′′h(εi)R1(Ui)
TZi

{
B2(XT

i β(β
(1)
0 ))T v2 + δB′2(XT

i β(β
(1)
0 ))T η0v2v

T
1 J

T
β(1)Xi

+
[
B′2(XT

i β(β
(1)
0 ))T η0 − g′(XT

i β(β
(1)
0 ))

]
vT1 J

T
β(1)Xi + g′(XT

i β(β
(1)
0 ))vT1 J

T
β(1)Xi

+WT
i v3

}
= Op(nK

−r‖v‖), (A.3)

using an argument similar to the above, we have
∑n
i=1 φ

′′
h(εi)R2(XT

i β(β
(1)
0 ))Qi = Op(nK

−r‖v‖), then

invoking condition C6 and C7, and some simple calculations, we obtain

n∑
i=1

φ′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
Qi = Op(nK

−r‖v‖).

Thus, we have I1 = Op(nδ
2K−1‖v‖). Similarly, we can prove that I2 = F (U, T, Z, h)Op(nδ

2K−1‖v‖2)

and I3 = Op(nδ
3K−1‖v‖3). Hence, we can choose C large enough such that I2 dominates both I1 and

I3 uniformly in ‖v‖ = C by noting that F (U, T, Z, h) < 0. Furthermore, invoking pλ(0) = 0, and by the

standard argument of the Taylor expansion, we have

I4 ≤ nK−1
d2−1∑
s=1

{
δp′λ2s(‖β

(1)
0s ‖)sgn(β

(1)
0s )‖v1s‖+ δ2p′′λ2s(‖β

(1)
0s ‖)‖v1s‖2(1 + op(1))

}
≤ n

√
d2 − 1K−1δan‖v‖+ nK−1δbn‖v‖2.

Then, it is easy to show that I4 is dominated by I2 uniformly in ‖v‖ = C. Using an argument similar to I4,

we can prove that I5 is also dominated by I2 uniformly in ‖v‖ = C. Therefore, by choosing a sufficiently

large C, A.1 holds. Namely, there exists a local minimizers β̂, γ̂ and η̂ such that

‖β̂ − β0‖ = Op(δ), ‖γ̂ − γ0‖ = Op(δ) and ‖η̂ − η0‖ = Op(δ), (A.4)

which completes the proof of part (a).

Next, we prove part (b).

‖θ̂j(u)− θ0j(u)‖2 =

∫
U

{B1(u)T γ̂j −B1(u)T γ0j +R1j(u)}2du

≤ 2

∫
U

{B1(u)T γ̂j −B1(u)T γ0j}2du+ 2

∫
U

R1j(u)2du

= 2(γ̂j − γ0j)
TH(γ̂j − γ0j) + 2

∫
U

R1j(u)2du,

where H =
∫

U B1(u)B1(u)Tdu. Then, invoking ‖H‖ = O(1) and ‖γ̂ − γ0‖ = Op(δ), after a simple

calculation yields

(γ̂j − γ0j)
TH(γ̂j − γ0j) = Op(K

−2r + a2
n). (A.5)
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Furthermore, it is easy to obtain that ∫
U

R1j(u)2du = Op(K
−2r). (A.6)

Therefore, combing A.5 and A.6, the proof of part (b) is completed.

Proof of Theorem 2. We only show part (a) as an illustration and part (b) is similar. From λmax → 0,

it is easy to show that an = 0 for large n. Then by Theorem 1, it is sufficient to show that, for any β
(1)
s

which satisfies ‖β(1)
s − β(1)

0s ‖ = Op(K
−1) for s = 1, ..., d2 − 1, and some given small ζ = CK−1, as n→∞,

with probability approaching one, we have
∂L̃(α)

∂β
(1)
s

> 0, 0 < β(1)
s < ζ, s = 1, ..., d2 − 1,

∂L̃(α)

∂β
(1)
s

< 0, − ζ < β(1)
s < 0, s = 1, ..., d2 − 1.

Note that

n∂L̃(α)

∂β
(1)
s

=

n∑
i=1

φ′h

(
Yi −WT

i γ −B2(XT
i β(β(1)))T η

)
B′2(XT

i β(β(1)))T ηΓT
β
(1)
s
Xi + np′λ2s

(|β(1)
s |)sgn(β(1)

s )

=

n∑
i=1

φ′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 )) + Ωi

)
B′2(XT

i β(β(1)))T ηΓT
β
(1)
s
Xi + np′λ2s

(|β(1)
s |)sgn(β(1)

s )

=

n∑
i=1

{
φ′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
+φ′′h

(
εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 ))

)
Ωi

+ φ′′′h (ωi)Ω
2
i

}(
[g′(XT

i β(β(1)))−B′2(XT
i β(β(1)))T η0]− g′(XT

i β(β(1))) +B′2(XT
i β(β

(1)
0 ))T (η0 − η)

+ [B′2(XT
i β(β

(1)
0 ))−B′2(XT

i β(β(1)))]T η
)
πT
β
(1)
s
Xi + np′λ2s

(|β(1)
s |)sgn(β(1)

s ), (A.7)

where π
β
(1)
s

= (−β(1)
s /

√
1− ‖β(1)‖2, 0, ..., 0, 1, 0, ..., 0)T is a p × 1 vector with the (s + 1)th component 1,

ωi is between εi + ZTi R1(Ui) +R2(XT
i β(β

(1)
0 )) and εi + ZTi R1(Ui) +R2(XT

i β(β
(1)
0 )) + Ωi, and

Ωi = WT
i (γ0 − γ) +B2(XT

i β(β
(1)
0 ))(η0 − η) + [B2(XT

i β(β
(1)
0 ))−B2(XT

i β(β(1)))]T η.

Using an argument similar to A.3, and invoking A.4, it is easy to show that

n∂L̃(α)

∂β
(1)
s

= nλ2s

{
λ−1

2s p
′
λ2s

(|β(1)
s |)sgn(β(1)

s ) +Op(λ
−1
2s K

−r)
}
,

since by the condition C9, limn→∞ lim inf
β
(1)
s →0

λ−1
2s p
′
λ2s

(|β(1)
s |) > 0 and λ2sK

r ≥ λminK
r →∞, thus, the

sign of A.7 is completely determined by that of β
(1)
s . This completes the proof of part (a).

Proof of Theorem 3. By Theorems 1 and 2, we know that, as n → ∞, with probability tending
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to 1, L̃(α) attains the minimal vale at (γ̂TA, 0)T , (β̂
(1)T
A , 0)T and η̂. Define α̂A =

(
(γ̂TA, 0)T , η̂, (β̂

(1)T
A , 0)T

)T
,

∂L̃(α̂A)

∂β
(1)
A

= − 1

n

n∑
i=1

φ′h

(
Yi −WT

iAγ̂A − ĝ(XT
iAβ(β̂

(1)
A ))

)
ĝ′(XT

iAβ(β̂
(1)
A ))JT

β̂
(1)
A
XiA

+ p′λ2
(|β(1)
A |) ∗ sgn(β

(1)
A ) = 0,

∂L̃(α̂A)

∂γA
= − 1

n

n∑
i=1

φ′h

(
Yi −WT

iAγ̂A − ĝ(XT
iAβ(β̂

(1)
A ))

)
WiA + ∆ = 0,

where “ ∗ ” denotes the Hadamard product and the sth component of p′λ2
(|β(1)
A |) is p′λ2s

(|β(1)
sA |) for s =

1, ..., d2 − 1, and

∆ =

(
p′λ11

(‖γ̂1‖H)
γ̂T1 H

‖γ̂1‖H
, ..., p′λ1d1

(‖γ̂d1‖H)
γ̂Td1H

‖γ̂d1‖H

)T
.

Using the Taylor expansion to p′λ2s
(|β̂(1)

s |), we get that

p′λ2s
(|β̂(1)

s |) = p′λ2s
(|β̂(1)

0s |) + {p′′λ2s
(|β̂(1)

0s |) + op(1)}(β̂(1)
s − β

(1)
0s ).

By condition C8, we have p′′λ2s
(|β̂(1)

0s |) = op(1), and note that p′λ2s
(|β̂(1)

0s |) = 0 as λmax → 0. Then,

from Theorems 1∼2, we have p′λ2s
(|β̂(1)

s |)sgn(β̂
(1)
s ) = op(β̂

(1)
s − β

(1)
0s ). Similarly, we can prove that

p′λ1j
(‖γ̂j‖H)(Hγ̂j/‖γ̂j‖H) = op(γ̂j − γ0j). Thus, invoking Lemma A.1 in Feng and Xue (2013), after a

simple calculation yields

0 =− 1

n

n∑
i=1

φ′h

(
εi + ZTiAR1A(Ui) + g(XT

iAβ(β
(1)
0A))− ĝ(XT

iAβ(β̂
(1)
A ))−WT

iA(γ̂A − γ0A)
)

g′(XT
iAβ(β

(1)
0A))JT

β
(1)
0A
XiA + op(β̂

(1)
A − β

(1)
0A) + op(n

−1/2), (A.8)

0 =− 1

n

n∑
i=1

φ′h

(
εi + ZTiAR1A(Ui) + g(XT

iAβ(β
(1)
0A))− ĝ(XT

iAβ(β̂
(1)
A ))−WT

iA(γ̂A − γ0A)
)

WiA + op(γ̂A − γ0A). (A.9)

To make our mathematical formula short, let Πi = ZTiAR1A(Ui) + g(XT
iAβ(β

(1)
0A)) − ĝ(XT

iAβ(β̂
(1)
A )) −

WT
iA(γ̂A − γ0A) and GiA = g′(XT

iAβ(β
(1)
0A))JT

β
(1)
0A
XiA. Applying the Taylor expansion to A.8 and A.9, we

obtain that

0 =− 1

n

n∑
i=1

{
φ′h(εi) + φ′′h(εi)Πi +

1

2
φ′′′h (ε∗i )Π

2
i

}
GiA + op(β̂

(1)
A − β

(1)
0A) + op(n

−1/2), (A.10)

0 =− 1

n

n∑
i=1

{
φ′h(εi) + φ′′h(εi)Πi +

1

2
φ′′′h (ε∗∗i )Π2

i

}
WiA + op(γ̂A − γ0A), (A.11)

where both ε∗i and ε∗∗i lie between ε and ε+ Πi.

Define Λn = n−1
∑n
i=1 φ

′′
h(εi)WiAW

T
iA, Ξn = n−1

∑n
i=1 φ

′′
h(εi)WiA[g(XT

iAβ(β
(1)
0A)) − ĝ(XT

iAβ(β̂
(1)
A ))],

Φn = n−1
∑n
i=1WiA[φ′h(εi) + φ′′h(εi)Z

T
iAR1A(Ui)] and Ψn = n−1

∑n
i=1 φ

′′
h(εi)WiAG

T
iA. Then, for A.11, by
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conditions C5∼C6, and Theorem 1∼2, we have

γ̂A − γ0A = (Λn + op(1))−1(Φn + Ξn). (A.12)

Note that

g(XT
iAβ(β

(1)
0A))− ĝ(XT

iAβ(β̂
(1)
A )) = g(XT

iAβ(β
(1)
0A))− g(XT

iAβ(β̂
(1)
A )) + g(XT

iAβ(β̂
(1)
A ))− ĝ(XT

iAβ(β̂
(1)
A ))

= GTiA(β
(1)
0A − β̂

(1)
A ) + op(β

(1)
0A − β̂

(1)
A ) +Op(K

−r). (A.13)

Substituting A.12 into A.10, and a simple calculation yields{
n−1

n∑
i=1

φ′′h(εi)GiAG̃
T
iA + op(1)

}√
n(β̂

(1)
A − β

(1)
0A) =

1√
n

n∑
i=1

{
GiAφ

′
h(εi) + φ′′h(εi)GiAZ

T
iAR1A(Ui)

+ φ′′h(εi)GiAW
T
iA(Λn + op(1))−1Φn

}
. (A.14)

Note that n−1
∑n
i=1 ΨT

nΛ−1
n WiAG̃iA = 0 with G̃iA = GTiA−WT

iAΛ−1
n Ψn, and n−1

∑n
i=1 ΨT

nΛ−1
n WiA(φ′h(εi)+

φ′′h(εi)Z
T
iAR1A(Ui)− φ′′h(εi)W

T
iAΛ−1

n Φn) = 0. Therefore, A.14 can be rewritten as follows

{
n−1

n∑
i=1

φ′′h(εi)G̃iAG̃
T
iA + op(1)

}√
n(β̂

(1)
A − β

(1)
0A) =

1√
n

n∑
i=1

{
G̃iAφ

′
h(εi) + φ′′h(εi)G̃iAZ

T
iAR1A(Ui)

+ φ′′h(εi)G̃iAW
T
iAΛ−1

n Φn

}
+op(1).

≡: L1 + L2 + L3 + op(1). (A.15)

It is easy to show that n−1
∑n
i=1 φ

′′
h(εi)G̃iAW

T
iA = 0 and by the definition of R1A(Ui), we can prove that

1√
n

∑n
i=1 φ

′′
h(εi)G̃iAZ

T
iAR1A(Ui) = op(1). Now let us deal with the first term L1, By directly calculating its

expectation and variance, we have E(L1) = 0 and cov(L1) = E(G(U, T, Z, h)G̃iAG̃
T
iA), this follows easily

by checking Linderbergs condition. In addition, by the law of large numbers, we have

n−1
n∑
i=1

φ′′h(εi)G̃iAG̃
T
iA

p−→ Σ1, (A.16)

and from the definition of J
β
(1)
0A

of Eq.(2.4), it follows (β̂A − β0A) = J
β
(1)
0A

(β̂
(1)
A − β

(1)
0A) + Op(n

−1). Thus,

we have

√
n(β̂A − β0A) = J

β
(1)
0A

Σ−1
1

1√
n

n∑
i=1

G̃iAφ
′
h(εi) + op(1).

Therefore, we have

√
n(β̂A − β0A)

D−→ N(0, J
β
(1)
0A

Σ−1
1 ΣΣ−1

1 JT
β
(1)
0A

), (A.17)

by using the Slutsky theorem. Thus, the proof of Theorem 3 is completed.
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Table 1 :Simulation results

Error distribution Method n GMSE RASE No. of zeros

Cβ ICβ Cθ(·) ICθ(·)

N(0, 1) MR 100 0.054 0.314 5.543 0.006 4.401 0.013

LSBS 0.039 0.231 5.623 0.003 4.663 0.009

MR oracle 0.035 0.265 6 0 5 0

MR 200 0.038 0.200 5.642 0 4.600 0

LSBS 0.030 0.106 5.761 0 4.762 0.001

MR oracle 0.010 0.020 6 0 5 0

MR 400 0.017 0.093 5.818 0 4.850 0

LSBS 0.017 0.083 5.877 0 4.894 0

MR oracle 0.016 0.088 6 0 5 0

t(3) MR 100 0.091 0.512 5.529 0 4.693 0.005

LSBS 0.106 0.576 5.431 0 4.587 0.012

MR oracle 0.062 0.487 6 0 5 0

MR 200 0.074 0.328 5.634 0 4.801 0

LSBS 0.081 0.351 5.578 0 4.799 0

MR oracle 0.049 0.227 6 0 5 0

MR 400 0.042 0.125 5.856 0 4.938 0

LSBS 0.053 0.150 5.765 0 4.812 0

MR oracle 0.044 0.112 6 0 5 0

Laplace(0, 2) MR 100 0.049 0.287 5.675 0 4.432 0.007

LSBS 0.068 0.308 5.613 0 4.321 0.011

MR oracle 0.037 0.197 6 0 5 0

MR 200 0.034 0.190 5.747 0 4.606 0

LSBS 0.045 0.203 5.695 0 4.532 0

MR oracle 0.029 0.138 6 0 5 0

MR 400 0.021 0.094 5.875 0 4.794 0

LSBS 0.032 0.130 5.806 0 4.685 0

MR oracle 0.019 0.085 6 0 5 0

0.95N(0, 1)+0.05N(0, 102) SMR 100 0.053 0.242 5.655 0 4.612 0

LSBS 0.182 0.496 5.428 0.019 4.218 0.065

MR oracle 0.045 0.180 6 0 5 0

MR 200 0.035 0.157 5.805 0 4.781 0

LSBS 0.106 0.303 5.503 0 4.332 0.008

MR oracle 0.032 0.101 6 0 5 0

MR 400 0.011 0.072 5.922 0 4.868 0

LSBS 0.089 0.182 5.697 0 4.593 0

MR oracle 0.010 0.061 6 0 5 0
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