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Abstract—In this paper, we present an asynchronous algorithm
to estimate the unknown parameter under an unreliable network
which allows new sensors to join and old sensors to leave, and
can tolerate link failures. Each sensor has access to partially
informative measurements when it is awakened. In addition, the
proposed algorithm can avoid the interference among messages
and effectively reduce the accumulated measurement and quan-
tization errors. Based on the theory of stochastic approximation,
we prove that our proposed algorithm almost surely converges to
the unknown parameter. Finally, we present a numerical example
to assess the performance and the communication cost of the
algorithm.

Index Terms—Broadcast gossip algorithm, distributed pa-
rameter estimation, quantized communication, unreliable sensor
network.

I. INTRODUCTION

Distributed parameter estimation is one of the fundamental
problems in wireless sensor networks (WSNs), and the first
step in a wider range of applications such as event detection
and classification. In practice, WSNs may be unreliable [1]–
[3] due to external malicious attacks, energy exhausting,
incorrect sensing and other factors. A convenient way when
dealing with agreement in unreliable networks is to exchange
messages by an asynchronous framework. The best known one
is gossip-based algorithms which have attracted considerable
recent attention [5]–[10]. In addition, limitations on the sensor
cost, bandwidth, and energy budget dictate that information
transmitted between sensors has to be quantized in practice
[11]–[14]. However, to the best of the authors’ knowledge, few
authors have considered the distributed parameter estimation
problem for unreliable WSNs by an asynchronous quantization
communication framework so far.

To overcome the challenges from unreliable network envi-
ronments, we modify the broadcast gossip algorithm [6]–[8] to
estimate the unknown parameter associated with incompletely
informative samples [4] with noise measured by local sensors
and communicated through quantization channels. In a round,
each randomly selected sensor broadcasts its quantized esti-
mate to its one-hop neighbors, then each neighbor processes its
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measurement and updates its estimate through local informa-
tion exchange if it receives only one broadcasted message, and
the remaining sensors sustain their estimates. It is shown that
by iterating this procedure, the proposed algorithm is capable
of estimating the unknown parameter with probability one.

In summary, our paper makes two main contributions.
The first contribution is to provide a simple broadcast based
gossiping algorithm for the distributed parameter estimation
problem that is fully asynchronous in spite of noise measure-
ments and estimate updates, which will effectively reduce the
accumulated measurement and quantization errors raised by
algorithms based on synchronous updates. The second one
is that the broadcasting sensors of each round are usually
probabilistic in nature and the iteration is updated by local
exchange based on radio transmission, which guarantee that
the algorithm is robust to sensor drifting in and out of the
network, message interference and link failures.

II. RELATED WORK AND DISCUSSIONS

Recently, the paper [1] proposes a distributed EM algorithm
to be implemented in a WSN with a decentralized architecture
using diffusion-like strategies. In [2], the authors design a
consensus-based algorithm for distributed estimation problem
with linear or nonlinear measurements. Further improvement
of this work is presented in [3] to handle the case: WSNs with
randomly switching topologies. Of note is that all of them
[1]–[3] are developed to deal with the unreliable environment
including only link failures based on synchronous updates
framework. Though synchronous algorithms have advantages
in convergence time, they accumulate more and more quanti-
zation and measurement noise over time, which greatly affect
the computations precision. Also, the algorithms based on
synchronous updates are unstable or fail during periods of
even modest disruption.

In comparison, the presented algorithm in this paper has
overcome these drawbacks and has the following major ad-
vantages. First, our algorithm is fully asynchronous thus can
effectively reduce the accumulated measurement and quantiza-
tion noise, and further enhance the computation precision than
algorithms based on synchronous updates [1]–[3]. In addition,
our algorithm does not require error recovery mechanisms
thus can solve gracefully distributed parameter estimation
over networks with a huge number of nodes. Second, the
broadcasting sensors of each round are usually probabilistic in
nature and the iteration is updated by local exchange based on
radio transmission, which will insure the algorithm to achieve
high stability under stress and disruptions including not only



2

common link failures but also sensor equipment failures due to
the limited computational and energy resources. In particular,
when new nodes are allowed to join in or leave from the
network, by denoting a sensor number sequence {N(t)}t≥0,
Nmin = mint{N(t)} and Nmax = maxt{N(t)}, then we
can assert that the estimate of each sensor converges to the
unknown parameter with probability one as long as at least
one sensor does not terminate finitely.

III. PRELIMINARY AND PRIMARY MOTIVATIONS

In the following, we briefly introduce the underlying graph
of the WSNs and the framework of probabilistic quantization.

Network Model: We model an unreliable WSN as a time-
varying undirected graph G(t) = {V(t), E(t)} of order N(t),
consisting of a set of nodes V(t) = {1, 2, · · · , N(t)} and a
set of edges E(t) ⊆ V(t) × V(t). An edge in graph G(t) is
denoted by eij(t) = (i, j). If there is an edge from node j to
node i, then it is said that nodes i and j can communicate
with each other reliably. The neighborhood set of node i
at time t is denoted by Ni(t) = {j|(i, j) ∈ E(t)}, and
di(t) = |Ni(t)|. As usual, we assume that there is no self-
loop in G(t), ∀t. Throughout the paper, we denote Nmax and
Nmin by maxt{N(t)} and mint{N(t)}, respectively.

Quantization Scheme: Assume that all sensors are equipped
with identical uniform probability quantizers q(·) : Rd → Qd

applied componentwise. Denote xi = (xi1, · · · , xid)⊤. For
i ∈ V(t), j ∈ {1, · · · , d}, xij ∈ R is identically uniformly
bounded to a finite interval [−U,U ]. Furthermore, we wish to
obtain a quantized message q[xij ] with length ℓ bits, where ℓ
represents the quantization precision. Therefore, we have L =
2ℓ quantization points given by the set Π = {π1, π2, · · · , πL}
where π1 = −U and πL = U . The points are uniformly spaced
such that ∆ = πk+1−πk for k ∈ {1, 2, · · · , L−1}. It follows
that ∆ = 2U/(2ℓ − 1). Now suppose xij ∈ [πk, πk+1), then
xij is quantized in a probabilistic manner

P{q[xij ] = πk+1} = r and P{q[xij ] = πk} = 1− r

where r = (xij − πk)/∆, we refer to [12] to make further
relevant comments. It is easy to see that when the variable
is exactly equal to a quantization centroid, there is zero
probability of choosing another centroid. Therefore, it follows
from [11] that the message q[xij ] is an unbiased representation
of xij , i.e., E{q[xij ]} = xij , and E

{
(q[xij ] − xij)

2
}

≤
U2/(2ℓ − 1)2 = ∆2/4.

We denote the quantization noisy by ξi = (ξi1, · · · , ξid)⊤,
where

ξij = q[xij ]− xij ,

it is then an i.i.d. sequence of uniformly distributed random
variables on [−∆/2,∆/2]. As pointed out in [12], prob-
abilistic quantization is equivalent to a “dithered quantiza-
tion” method [2]. It has been shown by Schuchman that the
subtractive dithering process yields error signal values that
are statistically independent from each other and the input.
We, therefore, conclude that {ξi(t)}t≥0 is independent of
the estimate sequence {xi(t)}t≥0, i.e., E{ξi(t)}t≥0 = 0 and
E{∥ξi(t)∥22} ≤ d∆2/4.

IV. DISTRIBUTED PARAMETER ESTIMATION VIA
ASYNCHRONOUS ALGORITHMS

In this section, we will describe the problem in this paper.
Let θ∗ ∈ Rd be an unknown d-dimensional parameter to be
estimated by a sensor network. At each time, each sensor
maintains an estimate of the unknown parameter, we denote
the estimate of sensor i at time t by xi(t) ∈ Rd. In round t,
the following events occur:

• Each sensor i ∈ V(t) is allowed to wake up, independent
with probability p. Let M(t) be the set of awakened
sensors, and |M(t)| be the cardinality of M(t);

• Each sensor m ∈ M(t) broadcasts wirelessly its estimate
information xm(t), and then the broadcasted value is
successfully received by the sensors that are within sensor
m′s communication radius;

• To efficiently avoid the interference among messages,
suppose N ∗(t) , {i ∈ V(G) : |Ni(t) ∩ M(t)| = 1}
to denote the set of sensors to receive the eligible broad-
casted value. Let m(i) ∈ M(t) be the unique sensor
index such that i ∈ N ∗(t). Then, each sensor i ∈ N ∗(t)
has local access to partially informative measurements
with noise about the unknown parameter

zi(t) = Hi(t)θ
∗ + ζi(t) ∈ Rdi , 0 < di ≤ d

where Hi(t) ∈ Rdi×d is the measurement matrix with
entries not all zero, which forms an i.i.d. sequence with
mean Hi and finite second moment, and ζi(t) is a zero
mean noise and has variance σ2.

• For all i ∈ N ∗(t), each sensor updates its estimate
according to the following equation:

xi(t+ 1) =(1− β(t))xi(t) + β(t)q[xm(i)(t)]

+ β(t)H
⊤
i (zi(t)−Hixi(t)),

where β(t) = 1/γt1−η is the stepsize with constants
γ and η. The remaining sensors maintain their prior
estimates as

xi(t+ 1) = xi(t), i /∈ N ∗(t).

• Let t = t+ 1, and all sensors fall asleep.

This procedure takes place at every clock tick, and a flow
chart is given in Fig. 1 to give a clear understanding of how it
works. From the procedure, we construct the diffusion matrix
A(t) = [aij(t)] as follows

aij(t) =


β(t), i ∈ N ∗(t), j = m(i) ∈ M(t)

1− β(t), i ∈ N ∗(t), i = j

1, i /∈ N ∗(t), i = j

0, elsewhere.

Obviously, A(t) is a row-stochastic matrix for any t.
It’s worth pointing out here that, in the each round of the

algorithm, the index of the each sensor is re-allocated, thus
each sensor needs to keep their own parameter and estimate.
To establish a uniform iterative protocol, we define H(t) =
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Fig. 1: The flow chart of the proposed algorithm.

diag{H⊤
1 , · · · , H

⊤
N(t)} and Ξ(t) = diag{δ1(t), · · · , δN(t)(t)}

with

δi(t) =

{
1, i ∈ N ∗(t),

0, i /∈ N ∗(t).

Next, we define two noise vectors: Φ(t) = [Ξ(t) ⊗
Id]H(t)ζ(t) ∈ RN(t)d, where Id is the identity matrix,
and Ψ(t) = (ψ⊤

1 (t), · · · , ψ⊤
N(t)(t))

⊤ ∈ RN(t)d with vector
components

ψi(t) =

{
ξm(i)(t), i ∈ N ∗(t),

0, i /∈ N ∗(t).

Suppose that the sequences {ξ(t)}t≥0 and {ζ(t)}t≥0 are
mutually independent, then E{Ψ(t)} = E{Φ(t)} = 0. Also, it
is easy to get

sup
t

E
{
∥Ψ(t)∥22

}
≤ Nmaxd∆

2/4, and (1)

sup
t

E
{
∥Φ(t)∥22

}
≤ Nmaxdσ

2. (2)

On the basis of the above, we now rewrite the proposed
algorithm in a uniform compact form as

x(t+ 1) =
(
A(t)⊗ Id − β(t)[Ξ(t)⊗ Id]H(t)H⊤(t)

)
x(t)

+ β(t)[Ξ(t)⊗ Id]H(t)H⊤(t)[θ∗ ⊗ 1N(t)]

+ β(t)[Ψ(t) + Φ(t)]. (3)

Ideally, the estimate xi(t) converges to the unknown param-
eter θ∗ for any i ∈ V(t), as t approaches infinity. The following
proposition states our main result, and the corresponding proof
is given in the Appendix.

Proposition 1: If the stepsize sequence is nonnegative, non-
increasing, and it satisfies β(t) = 1/γt1−η for η ∈ (0, 1/2)
and γ ≥ maxt{4,maxk[H(t)H⊤(t)]kk}, then the estimate
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Fig. 2: The network topology without node or link failure.
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Fig. 3: The MSE performance and cost versus the iteration
count. The parameters used here are: ∆ = 0.01, γ = 4 and
η = 0.495. The blue solid and dash lines denote the MSE of
DPE-AA and DPE-SA [2], respectively; the red dot and dash-
dot lines denote the measurement costs of the DPE-AA and
the DPE-SA [2], respectively.

sequence {xi(t)}t≥0 converges to the unknown parameter,
almost surely, i.e.,

P
{

lim
t→∞

xi(t) = θ∗
}
= 1, ∀i ∈ V(t).

V. NUMERICAL EXAMPLE

We simulate a sensor network with N = 50 nodes as a
random geometric graph, as shown in Fig. 2, with a com-
munication radius Rc =

√
log(N)/N on the unit square

[0, 1] × [0, 1]. Each node may wake up and broadcast its
estimate independent with probability p = 0.1. Each node is
initialized as uniformly distributed random values with support
in the [0, 1] interval and the mean x(0) is 0.5×1d, where 1d is
the d-dimensional vector of all 1. Let the unknown parameter
θ∗ be 0.5 × 1d, since it is the optimal value in terms of
convergence speed and provides a tradeoff for the MSE.
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(a) The network topology t = 1201.
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(b) The topology when t = 2401.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) The topology when t = 3601.
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(d) The topology when t = 4801.

Fig. 4: The network topology with node and link failure.
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Fig. 5: The MSE performance and cost versus the iteration
count. The parameters used here are: ∆ = 0.01, γ = 4 and
η = 0.495. The blue solid and red dash lines denote the MSE
and measurement costs of the DPE-AA, respectively.

We first take into account the MSE performance and costs of
our algorithm (DPE-AA) under the reliable network topology
without any failure, and the comparison with the algorithm
proposed in [2] (DPE-SA). To simplify the analysis, we let
d = 1, di = 1 and Hi = 1 for any i. As shown in Fig. 3, the
DPE-SA [2] has absolute advantage in convergence rate for an
equal iteration count but with enormous communication costs.
As a result, it reaches a steady state MSE at a lower precision
due to the accumulated quantization and measurement noise,
which also verifies our theoretical analysis. By contrast, the
MSE of the DPE-AA persistently decreases and will ultimately
reach a higher precision with lower communication costs. In
addition, the MSE precision of our algorithm is commensurate
with the DPE-SA [2] for an equal communication costs.

Next, we conduct the performance studies for the DPE-

AA under the unreliable WSN which admits sensors join in
and/or leave from the network. To provide an implementa-
tion independent result, we let each sensor leave from the
network with a uniform probability of 0.005% and a new
sensor join in the network with probability of 0.05%. We
occasionally draw the network topology when the iteration
satisfies t mod 1200 = 1, as shown in Fig. 4. Specifically, we
add the red and green circles around the sensors’ location to
clearly show the changes in the network topology and scaling
over time. It is still identified from the plot that the topology
in Fig. 4(d) is evolved from the initial topology in Fig. 2.
If we improve the above probability, the ultimate topology is
entirely different from the initial topology, and is likely to
further generate the isolated sub-topology.

Considered next are the performance and cost of the DPE-
AA under the above unreliable WSNs environment. To sim-
plify the analysis, we let d = 2, di = 1 and Hi = [1 1]
for any i. As shown in Fig. 5, the MSE will persistently drop
down and reach to the precision 10−6 or higher until the new
snesor joins in the network. However, the MSE will undergo
a pulse when the new sensor joins in the network. Note that
the intensity of the pulse depends on the distance between the
new node’s initial estimate and the unknown parameter. The
plot shows that it can maintain a high MSE precision for the
whole network while physical topology is changing, then we
can assert that the estimate of each sensor converges to the
unknown parameter with probability one as long as at least
one sensor does not terminate finitely.

VI. CONCLUSIONS

In this paper, a consensus-based asynchronous algorithm has
been proposed for distributed parameter estimation problem
in unreliable WSNs with possible sensor equipment and link
failures. The novelty of the proposed scheme is that the mea-
surement over the network is embedded in the iterative update
of the selected gossiping broadcast nodes. By some theoretical
analysis, the investigated algorithm achieves asymptotically
to the unknown parameter with probability one. Finally, a
numerical example is presented to evaluate the communication
and measurement costs required to achieve a given MSE
precision, and also verifies the theoretical analysis.
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APPENDIX

In the following, we will investigate the convergence of the
distributed parameter estimation algorithm. We first define v(t)
as the vector of deviations of the components of x(t) from the
unknown vector θ∗ at time t, i.e., v(t) = x(t) − θ∗ ⊗ 1N(t).
Next, we denote the natural measure of how far from conver-
gence by an Euclidean distance measurement V (t) = ∥v(t)∥22.
For any matrix A ∈ RN×N , ri[A] denotes the row sum of the
i-th row of ATA, and R[A] = diag{r1[A], · · · , rN [A]}. The
following definition is useful to study the convergence of the
algorithm, and the similar statements can be found in [15].

Definition 1: For a nonnegative stochastic matrix A =
[aij ] ∈ RN×N , the sieve constant κ[A] is defined as

κ[A] = min
m=1,··· ,N

min
∥x∥2=1

x2m +
∑
k ̸=l

akl(xk − xl)
2.

Lemma 1: For any asymmetric matrix A,

ATA = R[A] −
∑
k<ℓ

[ATA]kℓ(ek − eℓ)(ek − eℓ)
T ,

where ek means the k-th basis column vector.
Proof: Since both the matrices ATA and (ek − eℓ)(ek −

eℓ)
T are symmetric, hence both sides of the above equation

are symmetric. On one hand, the matrix (ek − eℓ)(ek − eℓ)
T

has row sums of row, and consequently both sides of the above
equation have identical row sums. On the other hand, the entry
[R[A]]ij = 0 when i ̸= j, this implies that all the {i, j}-entries
of both sides with i ̸= j are [ATA]ij . Combining the above,
it suffices to prove that all the {i, j}-entries of both sides with
i = j are the same. This completes the proof.

Lemma 2: For any asymmetric matrix A,

∥Ay∥22 = ∥y∥22 −
N∑
j=1

(1− rj [A])y
2
j −

∑
k<ℓ

[ATA]kℓ(yk − yℓ)
2.

Proof: By Lemma 1,

∥Ay∥22 =yTATAy

=yTR[A]y −
∑
k<ℓ

[ATA]kℓy
T (ek − eℓ)(ek − eℓ)

T y

=
N∑
j=1

rj [A]y
2
j −

∑
k<ℓ

[ATA]kℓ(yk − yℓ)
2.

Note that ∥y∥22 =
∑N

j=1 y
2
j , this implies the results of the

lemma and completes the proof.
Proof of Proposition 1: Subtracting θ∗ ⊗ 1N(t) from

both side of (3) and noting the fact [A(t)⊗ Id][θ
∗ ⊗ 1N(t)] =

θ∗ ⊗ 1N(t), we have

x(t+ 1)− θ∗ ⊗ 1N(t)

=W (t)[x(t)− θ∗ ⊗ 1N(t)] + β(t)[Ψ(t) + Φ(t)]

where W (t) = A(t) ⊗ Id − β(t)[Ξ(t) ⊗ Id]H(t)H⊤(t). In
order to apply Lemma 2, we need to derive the lower bound
of [WT (t)W (t)]kℓ and the upper bound of rk[WT (t)W (t)].

If i ∈ N ∗(t), j = m(i) ∈ M(t), then [W (t)]kℓ = aij(t) =
β(t) for k ∈ [(i−1)d+1, id], ℓ = k−(i−j)d; and [W (t)]kℓ =
0 for other k ̸= ℓ. Since γ ≥ max{4,maxk[H(t)H⊤(t)]kk},
we know that [W (t)]kk ≥ [1− β(t)]− β(t)[H(t)H⊤(t)]kk ≥
1/2, which means that W (t) is diagonally dominant. Then,
we have

[WT (t)W (t)]kℓ =

N(t)d∑
p=1

[W (t)]pk[W (t)]pℓ

≥ [W (t)]kk[W (t)]kℓ + [W (t)]ℓk[W (t)]ℓℓ

≥ ([W (t)]kℓ + [W (t)]ℓk)/2 ≥ β(t)/2,

where the last inequality follows from that W (t) is a non-
negative matrix, i.e., [W (t)]ℓk ≥ 0. Moreover, if k has a
measurement of θ∗ then the row sum of the k-th row of
W (t) is equal to 1 − β(t)[H(t)H⊤(t)]kk ≥ 3/4, which
implies that the k-th row sum of WT (t)W (t) is at most
1− β(t)[H(t)H⊤(t)]kk ≥ 3/4. We apply Lemma 2 to obtain

∥[x(t+ 1)− θ∗ ⊗ 1N(t)]− β(t)[Ψ(t) + Φ(t)]∥22
≤∥x(t)− θ∗ ⊗ 1N(t)∥22 − β(t)

∑
i∈M(t)

∥xi(t)− θ∗∥22

− β(t)

2

∑
i∈N∗(t),j=m(i)∈M(t),i<j

∥xi(t)− xj(t)∥22

≤[1− β(t)κ[A(t)]/2]∥x(t)− θ∗ ⊗ 1N(t)∥22.
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Expanding the left hand of the above inequality, after taking
expectations and applying the fact (a+b)2 ≤ 2a2+2b2 yields
immediately the following statement

E
{
V (t+ 1)|x(t)

}
≤[1− β(t)κ∗[A]/2]V (t)

+ [β(t)]2[2Nmaxdσ
2 +Nmaxd∆

2/2],

where κ∗[A] = mint=1,··· ,∞{κ[A(t)]}. For β(t) ∝ 1/t1−η, η ∈
(0, 1/2), it is easy to know

∞∑
t=1

β(t) = ∞,

∞∑
t=1

[β(t)]2 <∞, and sup
t≥1

β(t)

β(t+ c)
<∞

for any integer c. From Lemma 3 in Section 2.2.1 of [16],
we derive that the sequence limt→∞ E{V (t)} asymptotically
approaching zero as t → ∞. By the Lebesgue dominated
convergence theorem, one obtains E{limt→∞ V (t)} = 0. We
make use of Lemma 10 in Section 2.2.1 of [16] to complete
our proof.


