
Frias-Martinez , E., & Gobet, F. (in press). Automatic generation of cognitive theories

using genetic programming. Minds & Machines. (The original publication is available

at www.springerlink.com.)

Automatic Generation of Cognitive Theories
using Genetic Programming

ENRIQUE FRIAS-MARTINEZ
Department of Information Systems & Computing , Brunel University, Uxbridge, UB8 3PH, U.K.

FERNAND GOBET
Centre for Cognition and Neuroimaging, Brunel University, Uxbridge, UB8 3PH, U.K.

Abstract. Cognitive neuroscience is the branch of neuroscience that studies the neural mecha-

nisms underpinning cognition and develops theories explaining them. Within cognitive neuro-

science, computational neuroscience focuses on modeling behavior, using theories expressed as

computer programs. Up to now, computational theories have been formulated by neuroscien-

tists. In this paper, we present a new approach to theory development in neuroscience: the

automatic generation and testing of cognitive theories using genetic programming. Our ap-

proach evolves from experimental data cognitive theories that explain “the mental program”

that subjects use to solve a specific task. As an example, we have focused on a typical neurosci-

ence experiment, the delayed-match-to-sample (DMTS) task. The main goal of our approach is

to develop a tool that neuroscientists can use to develop better cognitive theories.

Key Words: Cognitive Neuroscience, Computational Neuroscience, Automatic Generation

of Cognitive Theories, Genetic Programming (GP), Delayed-Match-To-Sample (DMTS).

1 Introduction

Cognitive neuroscience is the branch of neuroscience that studies the neural mecha-

nisms of cognition; that is, it is concerned with understanding how mental processes

take place in the brain (Gazzaniga, 1999).1 Cognitive neuroscience uses methods from

cognitive psychology, functional neuroimaging, neuropsychology, and behavioral

neuroscience. An influential theoretical approach within cognitive neuroscience is

computational neuroscience, which draws on neuroscience, computer science and

applied mathematics. It uses mathematical and computational techniques to understand

the function of the nervous system (Dayan and Abbott, 2001). In traditional computa-

tional neuroscience, the generation of a cognitive theory typically follows the follow-

ing steps: (1) a set of experiments are run and data on the behavior to be modeled

(time, error percentage, etc.) are collected and stored; (2) a neuroscientist generates a

cognitive theory of the behavior; (3) the cognitive theory is implemented in the form

of a computer program; (4) the computer program is run through the same experi-

ments; and (5), if the output of the computational model is reasonably similar to the

values produced by the experiments, the theory is considered valid.

1 In this paper we use ‘cognitive neuroscience’ as a generic term covering neuroscience, cogni-

tive science, and cognitive psychology.

The second step, in which a neuroscientist generates a cognitive theory, is a good

example of scientific discovery in action. Scientific discovery can be described as

heuristic search in combinatorial spaces (Langley et al., 1996; Simon, 1977). In this

context combinatorial means that at each point, several decisions are possible, and

also that the search space outgrows human capacities to explore it. To avoid these

limits, artificial intelligence has developed different search techniques that can devise

laws, theories and concepts. These techniques can be used either autonomously or

semi-autonomously, and they have been successfully applied in science (Bollobas and

Riordan, 1998; Valdes-Perez, 1999). One important class of computational search

techniques consists of evolutionary computation, which includes genetic algorithms

(Holland, 1992; Mitchell, 1996) and genetic programming (Koza, 1992; Koza, 1994).

Genetic Programming (GP) evolves entire computer programs in the form of hierar-

chical trees using a set of operators and terminals by first generating an initial popula-

tion of random trees and applying natural selection, crossover, and mutation to breed

the following generations. The key of the process is the fitness function used to evalu-

ate the fitness of each program against the desired output. At the end, GP outputs the

program that verifies some conditions regarding its fitness value.

GP has become very popular in recent years due to its ability to automatically de-

sign complex structures using a tree representation. As evolutionary computation is

not as sensitive to local minima and initial conditions as other hill-climbing methods

(Koza, 1992), and as it can explore large search spaces efficiently and in parallel, it is

ideal in problems where the information is noisy and subject to uncertainty. Evolu-

tionary computation in general and GP in particular have already been used for a wide

variety of applications including digital hardware design and optimization (Jackson,

2005), analog hardware design and optimization (Dastidar et al., 2005), solving multi-

objective problems (Whigham and Crapper, 2001), design of classifiers (Muni et al.,

2004), and also some neuroscientific applications like diagnostic discovery (Kentala et

al., 1999), neuromuscular disorders assessment (Pattichis and Schizas, 1996), and

interpretation of magnetic-resonance brain images (Sonka et al. 1996).

Considering that the hierarchical tree structure produced by GP is convenient for

simulating human mental programs, as we discuss later, and that the generation of

cognitive theories is another example of heuristic search within a combinatorial space,

we propose to use GP to generate cognitive theories automatically. Our approach uses

the experimental data traditionally used to validate theories as a means to compute the

fitness of a given model, and thus to control the evolution process. Nevertheless, the

automatic generation of cognitive theories using GP faces some problems:

• Lack of standard set of operators. In general, when using GP for typical problems

the set of operators used are known, well defined and accepted. In cognitive neuro-

science, the set of primitives of the mind, with some minor exceptions, are not

known, or generally accepted. This implies uncertainty as to whether the set of

primitives used is correct and sufficient to model a given behavior.

• The data used to compute the fitness function have an inherent error due to their

empirical nature, because the original experiments were carried out with humans as

subjects2. This implies that the operators should also have some error value when

being executed, to mimic this non-deterministic behavior. The experimental data

usually capture this variability using the standard deviation (std) of the results.

• Availability of fitness data. In most previous applications, the desired behavior

that is used to evolve GP is well defined and known (for example, when automati-

cally designing hardware, the desired outputs for each input are well defined). This

is not the case for cognitive neuroscience, where the information needed to evolve

programs is not well defined (for example, different authors can report different re-

sults for the same experiment) and is widely dispersed.

In this paper, we present a novel strategy to automatically generate cognitive theo-

ries using a combination of GP and experimental data found in the literature. The goal

of our work is to help neuroscientists elaborate more complex and veridical explana-

tions of behavior. In order to illustrate our strategy we present a simple application

example using a task commonly used in neuroscience, the delayed-match-to-sample

(DMTS) task.

The outline of this paper is as follows: In Section 2 we give a brief introduction to

Genetic Programming, focusing on how the different characteristics affect its applica-

tion to the generation of cognitive theories. In Section 3 we present the basic strategy

used to automatically evolve cognitive theories. In Section 4 the environment designed

and implemented for the evolution of theories is detailed. Section 5 presents an appli-

cation of our method, using the delayed-match-to-sample task; we also discuss the

cognitive theories generated by our approach. The paper finishes with conclusions and

a discussion of future work.

2. Introduction to Genetic Programming

GP is an evolutionary computational technique based on reproduction of the fittest

that evolves a population of computer programs based on some requirements (Banzhaf

et al., 1998; Angeline and Pollack, 1992; Koza, 1994). By operating on variable size

digital chromosomes (Mitchell, 1992), GP removes some of the limitations of genetic

algorithms, mainly the necessity to use fixed-length chromosomes, the difficulty in

representing hierarchical structures, and the lack of dynamic variability (Koza, 1992).

Each individual program in GP is expressed using a hierarchical tree composed of

terminals and operators, and has associated a fitness value that indicates the program

quality with respect to the goal of the evolution. The evolution process is implemented

using three genetic operators (reproduction, crossover and mutation), which control

which individuals pass from one generation to the next one. The evolution process in

2 The same is true for experiments done with animals, for which the concepts presented in this

paper also apply.

GP comprises the following steps:

• Step 1: Selection of admissible set of Operators (O), set of Terminals (T),

fitness function and GP parameters. The set of operators O is composed by the

operations and functions available to the GP system, and, in traditional applica-

tions it contains logical operators or arithmetic and mathematical functions. The

set of terminals T is composed by the inputs of the system and constants. The set

{O, T} must have two properties: (1) closure and (2) completeness. Closure re-

quires that the output of any member of {O, T} can be the input to any member of

O, i.e. that there are no restrictions in the combinations of terminals and opera-

tors. Completeness requires that {O, T} provides enough functionality to present

a solution to the problem. When working in environments where O is not well es-

tablished, such as computational neuroscience, the design of these elements can

be complex. Regarding the fitness function, it is defined as a mathematical func-

tion that obtains the fitness between the program being evaluated and the desired

behavior. Typically, this is some form of distance between the output produced

by the program and the desired behavior. Regarding the GP parameters, there are

a number of parameters that need to be defined before starting the evolution. Ta-

ble I presents these parameters.

• Step 2: Generation of initial population of trees. Using {O, T} a set of N

trees is randomly generated. These trees can be of different sizes and shapes, and

can be generated: (1) fully randomly, (2) as set of initial programs given by the

designer, (3) as random variation of plausible programs, or (4) a combination of

the previous methods. With fully random generation, there are different tech-

niques: full, grow, and half-and-half (Koza, 1992). In a neuroscience context, the

possibility of feeding the system with existing explanations (i.e., programs) can

be very useful to obtain more elaborated cognitive theories.

Table I. Set of variables that define GP evolution [9].

Parameter Content

N Population of each generation

M Maximum number of generations

MDNI Max depth of new individuals

MDIAC Max depth of individuals after crossover

FRF Fitness reproduction fraction

CAPF Crossover at any point fraction

CAFPF Crossover at function point fraction

MDNS Max depth for new subtrees in mutants

MS Method of selection

MIG Method of initial generation of the population

MS Method or combination of methods used to Stop the

evolution procedure

RS Seed used by GP for modelling randomness

• Step 3: Calculation of the fitness of each program. The fitness is com-

puted based on the performance of each program on a set of fitness cases, where

both the input and the output are known. There are several measures for fitness

typically used: raw fitness, standardized fitness, and normalized fitness, among

others. With cognitive programs, the fitness cases consist of behavioral data of

humans performing some tasks, where the fit is the amount of variance in the

empirical data accounted for by the cognitive program.

• Step 4: Probabilistic application of the genetic functions of selection,

crossover, or mutation. The selection of one of the methods is given by the prob-

abilistic values defined in the first step of the process. The selection function rep-

licates one individual in the new population. The most typical selection function

is fitness-proportionate, where the probability for an individual to be selected

depends on its fitness compared with others in the population. The crossover

function refers to producing two offspring from a random point in each of the

two parents and swapping the resultant subtrees. Fig. 1 presents an example of

crossover. The two programs used for crossover are chosen according to their

fitness, and the two resulting programs are passed onto the new generation. The

mutation function consists in replacing a subtree below a random point by a ran-

domly created subtree. The mutated solution is passed onto the new generation.

Mutation helps to maintain diversity.

• Step 5: Repetition of the process. Once we have the new generation, steps

three and four are repeated until a solution is found. GP does not necessarily

converge, so, in general, the process stops once the number of maximum genera-

tions has been reached or a program with fitness value smaller that a predefined

value is produced.

For the implementation of the system and the experiments described in this paper, we

have used the standard Lisp implementation of GP detailed by Koza (1992). GP for

modeling theories of cognitive behavior faces some limitations:

Figure 1. Example of Crossover

• (1) Tree Structure. In general, the basic hierarchical tree structure is

enough for representing the programs needed, but in some cases more complex

structures are needed; in that case, several techniques exist to implement cyclic

or recursive function calls, such as automatically defined functions (Koza, 1994;

Angeline and Pollack, 1992). Regarding the representation of cognitive theories,

it is assumed that simple systems, both natural and artificial, are more likely to

evolve into complex systems if they are organized as modules and hierarchies

(Simon, 1992). Hierarchical organizations have been proposed for brain struc-

tures (Churchland and Sejnowski, 1992), cognitive processes (Kosslyn and

Koenig, 1992) and knowledge representations (Gobet, 2001). While the assump-

tion of modularity has sometimes been disputed (Elman et al., 1996), it can be

said that it is accepted by mainstream neuroscience (Shallice, 1990). This implies

that the hierarchical tree structure may be considered sufficient to model cogni-

tive behavior models.

• (2) Bloating. Bloating is an inherent GP problem and represents the ac-

celerated growth of the trees in successive generations (Langdon and Poli, 1998;

Lones and Tyrrell, 2002). This problem also relates to the execution time prob-

lem, because larger programs consume more resources. It also has other conse-

quences, especially to contribute towards the overfitting of the solution (Burke et

al., 2004). This problem is of special relevance with modeling cognitive behav-

ior, because as a general rule simpler and smaller behavior explanations are con-

sidered better solutions. Nevertheless, it also has some positive aspects; mainly

the fact that because the brain is a highly redundant structure, this redundancy

can be introduced by the bloating of the structures generated. In our context

bloating is to some extent a good property that needs to be controlled to avoid

overfitting of the solution and control the execution time of the cognitive theories

generated. A possible solution to this problem is to limit the depth of the trees

generated.

3. Strategy for Automatic Generation of Cognitive Theories

In order to generate cognitive theories of behavior, an environment that evaluates

theories needs to be defined. The Theory Evaluation Environment (TEE), presented in

Fig. 2, is composed by two elements: (1) a Cognitive Architecture and (2) a Task

Environment. TEE is designed to evaluate a behavior theory implemented in the Cog-

nitive Architecture for an experiment presented by the Task Environment.

The Cognitive Architecture defines the elements and connections that take place in

the human brain. Designing a cognitive architecture is an open research field with

different approaches, mainly symbolic (Anderson et al., 2004) and connectionist

(O’Reilly, 1998). In our approach, we consider a very basic cognitive architecture that

only presents the main blocks taking part in the execution of mental programs in hu-

mans. The Cognitive Architecture presents four main elements: (1) Visual Processor,

Task Environment

Manual Motor

Processor

Visual

Processor

Cognitive Memory

STM LTM

Cognitive Processor

Task Protocol

Set of Inputs

Cognitive Architecture

Output Storage &

Summarization

Theory Evaluation Environment

Figure 2. Basic Cognitive Architecture and Task Environment.

(2) Cognitive Memory, (3) Cognitive Processor, and (4) Manual Motor Processor.

• Visual Processor. The Visual Processor comprises all the mechanisms necessary

to generate an image and the mental image that is produced after “seeing” an object.

• Cognitive Memory. The Cognitive Memory groups the components and processes

that store information, including their interactions. Typically two elements are de-

fined, Long-Term Memory (LTM) and Short-Term Memory (STM). The literature

presents a considerable number of studies about their definition, interactions, and

learning processes (Cowan, 2001; Anderson, 1983; Eichenbaum, 2002).

• Cognitive Processor. The Cognitive Processor runs the cognitive program using

data from the Cognitive Memory.

• Manual Motor Processor. The Manual Motor Processor, which receives the input

from the Cognitive Processor, controls the manual actions taken by the individual

running the task.

The Task Environment is defined as the set of elements necessary to define an ex-

periment. This includes not only material elements (screen, keyboard, stimuli used by

the experiments, etc.) but also the description and the protocol of the experiment. The

Task Environment also summarizes the outputs produced for each input in order to

present them in a compact way, typically by presenting the mean and standard devia-

tion (std).

The stages of our approach for automatically generating cognitive theories are:

• Step 1: Define set of operators O and Terminals T, GP parameters, and Fitness

Function. The experiment implemented in the Task Environment will define which

kind of operators are needed. These operators (such as access to STM, inhibition of

visual information, or matching two visual pieces of information) are to some extent

documented in the literature. The set of terminals basically specify the inputs of the

Experimental

Data
Set of Operators

+ Terminals

Set of Initial

Theories

GP Algorithm

Theory Evaluation Environment

Cognitive

Theory

Program Results P
o

st
 p

ro
ce

ss
in

g

Figure 3. Environment for automatic generation of cognitive theories.

experiment, and if needed, the set of constants used. Regarding GP parameters and

the fitness function, typical values can be used, although some experimentation can

be useful to obtain better solutions.

• Step 2: Codification of current knowledge of the cognitive task being modeled.

The translation of current theories into formal programs using the set of predefined

operators O and terminals T (defined on the first step) might produce a large number

of different programs, which might reveal inconsistencies across authors or even

within authors. These programs can be used as the initial seed of population and also

for testing that the set of operators O and terminals T are sufficient for carrying out

the task.

• Step 3: Construction of a database containing empirical results of the task being

modeled. Testing the fitness of the theories requires the creation of a database of re-

sults from human studies of the behavior being modeled. It is then possible to com-

pute the fitness of a given theory by comparing the predictions of the theory with the

empirical data. The database will contain, among others, the description of the ele-

ments used in the experiments, the set of inputs used and the results obtained in each

case. A formal description of the database is presented later.

• Step 4: Use of genetic-programming techniques to evolve the theories. The final

stage uses evolutionary computation to optimize the search through the spaces of

programs. GP receives as inputs: (1) the database of experimental data, which will

be used to test the fitness of each program, (2) the set of primitives, which will be

used to evolve behavior models, and (3) the set of initial behavior theories, that can

be used as seeds to evolve more refined theories. Fig. 3 presents the interconnections

between these elements. TEE receives each program generated by GP, executes the

experiments defined in the Task Environment using the received program as part of

the Cognitive Processor, collects the empirical results, and sends them to GP for fit-

ness evaluation.

• Step 5: Post-processing of the generated theories. Theories generated by GP will

in general contain branches that are not relevant, functions that repeat actions, or

functions that cancel the action of each other. In order to better present and study the

behavior of a theory, the generated theories are simplified. The simplification rules

are dependant of the task and the set of operators.

Due to the inherent fuzziness of human behavior, this proposed approach faces some

problems, which are presented in the following section.

4. Environment for automatic generation of cognitive theories

The environment, presented in Fig. 3, comprises three main elements: (1) Database

of Experimental Data, (2) Set of Operators and Terminals, and (3) Theory Evaluation

Environment.

4.1 Database of Experimental Data

The database of experimental data contains all the relevant information regarding

the experiments for which a behavior model is going to be evolved. The information

for each experiment includes: the name of the input variables, the name of the output

variables, the communication protocol between the Task Environment and the Cogni-

tive Architecture, the set of inputs given to the system, the set of outputs obtained for

each input, the number of subjects used for the experiments, the number of trials per

subject, and a vector of results, which typically include mean and standard deviation

(std) of accuracy.

Fig. 4 presents a formal representation of the structure of the cognitive database,

,1 , () ,1 , ()

,1 , ()

()

((...) (...)), 1,...,

((...)(

i i n i i i n i i

i i l i i

Output Output i m

NameInput NameInput OutputName

=

= =

=

1 m

i i i

Experiments Experiment ...Experiment

Experiment Prototype Protocol Input Input Values

Prototype ,1 , ()

,1 , ,1 ,

1 ()

,

...))

(((... |)...(... |))

)

 (...)

(

i o i

i i z i i f

s i

i j

OutputName

NameInput NameInput IDLE NameInput NameInput IDLE

t t

St

=

=

=

i

i

i

Protocol

 ExposureTime

ExposureTime

Input , ,1 , , ()...), 1,..., , 1,..., ()

()

()

i j i j l i

i

i i i

imulus Stimulus i m j n i

NumberOfSubjects

Accuracy stdAccuracy

= =

=

=

i iValues Results

Results

Figure 4. Formal definition of the Experimental Data Database.

{ }

i

, () ,1 , ()

=

 =(ExecutionError),i=1,...,o

 =((...)(...))

o

i,1 i n i i i o iInputName InputName OutputName OutputName

1

i i i

i

O Operator ...Operator

Operator Prototype OperatorDefinition

Prototype

{ }

i

1

 =(LISP code)

 ExecutionError [0,1]

T = Terminal ...Terminal
t

∈

iOperatorDefinition

Figure 5. Formal definition of the Set of Operators Database.

with m the number of experiments described, l(i) the dimension of experiment i (i.e. its

number of inputs), with i=1,…,m, NumberofSubjects the number of subjects that took

part in each experiment, and n(i) the number of trials of each subject. The protocol is

described by the order in which the input variables are presented and their exposure

time. This database provides the information needed by the Task Environment of TEE

to define its parameters, and by the GP algorithm to calculate the fitness function.

Creating such a database for a specific experiment can be very complex, because

the description of the experiments in the neuroscience literature does not necessarily

contain the required information. Section V presents an example of the database we

created for the delayed-match-to-sample task, a typical neuroscience task both with

animals and humans.

4.2 Set of Operators (O) and Terminals (T)

The set of operators and terminals can also be expressed in the form of a database.

The set of operators needed to solve a task can be present to some extent in the exist-

ing literature. When designing this set of operators O, closure and completeness prop-

erties have to be verified. Regarding the set of terminals T, in general they are the

names of the set of input variables of the task.

Fig. 5 presents the formal definition of O and T, where o is the number of operators

and t is the number of terminals. Each operator contains: (1) a prototype that defines

the number and name of inputs and output, (2) the implementation of the operator in

Lisp, and (3) the execution error. The execution error is a very important parameter,

and its goal is to model the inherent fuzziness of empirical data with humans. Each

operator has an ExecutionError parameter that indicates the probability that this op-

erator is incorrectly executed. This parameter enables us to model human errors due to

imperfections in the motor processor, distractions from the environment, or incom-

plete understanding of the instructions. When an operator is executed with error, it

outputs a random but valid value. Fig. 6 presents the basic pseudo-code for imple-

menting a generic operator. We have not found references of possible error rates of

i

i

Function Operator ()

 Obtain using

 If

 return ()

 else

 Operator .OperatorDefinition(

i

Inputs

Error ExecutionError

Error

random_valid_value

Inputs)

 return ()

 end_if

end_Function

Output

Figure 6. Pseudo-code for a generic Operator.

basic neuroscience operators. Not all operators should have the same execution error,

it is sensible for example to assign and execution error of 0 to infrastructural opera-

tors. In Fig. 3, TEE access this database to obtain the definition of the operators in

order to execute the programs evolved and GP to access the set of O and T.

4.3 Theory Evaluation Environment

The Theory Evaluation Environment (TEE), which has been implemented in Lisp,

produces, for a given program and a given experiment, the values that describe the

results of the experiment. In neuroscience, the output values of a theory are quite stan-

dard, and, for example, describe to which extent the model carries out a task correctly

(Accuracy) or the variability of correct performance (StdAccuracy). The output of

TEE is returned to the GP environment which will use this value to obtain the fitness

of that specific program by comparing the values received with the experimental data

contained in the experimental database.

Fig. 7 presents the basic pseudocode implemented by TEE. For each one of the ex-

periments of the database i=1,…,m, TEE runs for each subject, for

S=1,…,NumberOfSubjects, and for each input the program, for L=1,…,n(i), and

checks if the solution provided is the same one as the one contained in the experimen-

tal database. Once the loops have been executed, the system calculates a mathematical

description of the behavior suitable to be used for evolution purposes. The key func-

tion of the process is the “Execute” function. When this function is given a theory in

the form of a program, a set of input values, and O (which provides the Lisp code for

the primitives), it obtains the output of the system. The execution of the program is

Input: Program, ,

Output: , 1,..,

For each , 1,...,

 Load

 For each

i i

i

i

i

Experiments O

Accuracy , StdAccuracy i m

Experiment i m

Protocol

S = 1 to NumberofSubjects

NumberOfCorrectSolu

=

=

,

 For 1 to

 =Execute(Program)

 If

S

S

i L

tions = 0

 TotalExecutionTime = 0

L n(i)

OutputE , , O, Protocol

OutputE = Ou

=

Input

,

 End_If

 End_for

 End_for

 =mean(

i L

S S

i

tput

 NumberOfCorrectSolutions = NumberofCorrectSolutions +1

Accuracy Num

1 1

)

 =std()

End_for

return(

1 NumberOfSubjects

i 1 NumberOfSubjects

berOfCorrectSolutions ,...,NumberOfCOrrectSolutions

StdAccuracy NumberOfCorrectSolutions ,...,NumberOfCOrrectSolutions

Accuracy , StdAccuracy ,...,)

m m
 Accuracy , StdAccuracy

Figure 7. Pseudo-code for the Theory Evaluation Environment.

easily done by implementing it as a S-expression in Lisp.

In TEE the problem of execution time, present in any GP problem, is made worse

by the number of loops that have to be run to evaluate the fitness of each program.

5. Automatic Generation of Delayed-Match to Sample (DMTS)

Cognitive Theories

This section implements the previous ideas for a well-known neuroscience task,

DMTS. It also compares how a traditional approach of generating theories will work,

and shows how the GP approach can help neuroscientists generate cognitive theories.

5.1 Experiment Description

As an example of the previous ideas we have considered the delayed match to sam-

ple (DMTS) task. In this task a stimulus is first presented for a given amount of time,

followed by a delay. Then, two stimuli are presented, and the task is to select which of

these two stimuli matches the stimulus presented first, where one of them always

matches the first one. Fig. 8 presents an example of the chain of stimuli presented by

DMTS with pictures of tools as stimuli. The experiment usually takes place on a com-

puter, so that the subject receives the stimuli through the screen and the outputs of the

subject are received using the computer keyboard. A substantial number of studies

focus on this task (e.g., Chao et al, 1999; Elliot and Dollan, 1999; Grady et al., 1998;

Habeck et al., 2003; Mecklinger and Pfeifer, 1996; Zubicaray et al., 2001), ranging

from comparison of results under different conditions to identifying which areas of

DELAY

time

Figure 8. Example of stimuli presented by DMTS when using “tools” as the generic type.

Photographs courtesy of www.freeimages.co.uk.

the brain take part in the process.

In this example, we used the data of Chao, Haxby and Martin (1999). Their paper

focuses on the areas of the brain that are activated while executing a DMTS task using

different conditions, while at the same time providing results for mean and standard

deviation of accuracy for each task. The conditions on which the authors focused

were: (1) pictures of animals and (2) pictures of tools. The first element is presented

for 1 second in the center of the screen, then there is a delay of 0.5 seconds, after

which the two elements are presented for 2 seconds, one on the left and the other on

the right of the screen. During these two seconds, the individual participating in the

experiment has to select which of the two elements, the one on the right or the one in

the left, is the same as the first element presented. A failure to respond within those

two seconds is considered as an incorrect answer. The task was run for each condition

by four subjects, each one running 60 trials. The paper gave no details about which

exact pictures of animals and tools were used. With animals, the mean percentage of

correct answers was 97% with an std of 1.4%, and with tools, it was 95%, with an std

of 1.2%. Here, we are not interested in the difference between the two conditions

(which were not statistically significant) but in the absolute values of the mean and

standard deviations.

The reason for choosing this study is the simplicity of the experiment. This allows

us to make some very relevant assumptions:

- The experiment only deals with known elements (animals and tools). This

characteristic makes it possible to focus on the process of comparing elements

more that on the process of actually learning the elements of the experiment.

We assume that all the elements presented to a subject during the experiment

are known to that subject (i.e., they are already in LTM), which implies that no

learning takes place. The process of accessing LTM can thus be waived; the

subject will always find the elements and put them in STM.

- The whole process, for a given set of inputs, takes place in 3.5 seconds. This

allows another important assumption: STM can retain information perfectly

within this period of time. Hence, no modeling of STM decay is needed.

5.2 Traditional Computational Neuroscience Approach

In this section we generate a behavior model for DMTS in a traditional way. In order

to facilitate the comparison with a GP-generated theory, we also present the human-

generated theory in the form of a program. First, we start by defining the cognitive

memory: we assume that no LTM is needed and that STM works as a queue with four

elements (Cowen, 2001; Gobet and Clarkson, 2004). Regarding the program of the

cognitive processor our theory consists in the following steps:

Step 1) The first input, called I1 and presented in the center of the screen, is processed

by the Visual Processor and stored in STM.

Step 2) During the delay, no action is taken.

Step 3) The second input, called I2 and presented in the left part of the screen, is proc-

essed by the Visual Processor and stored in STM.

Step 4) The third input, called I3 and presented in the right part of the screen, is proc-

essed by the Visual Processor and stored in STM.

Step 5) During the 2 seconds that I2 and I3 are presented in the screen, the following

process takes place: If I1 is equal to I2, the same element is the one the left,

and if not, the same element is the one on the right. Considering that STM

works as a queue, we are actually comparing the third position of the queue

(where I1 is stored) with the second position (where I2 is stored).

Step 6) The result of the comparison is passed to the Manual Motor Processor, which

selects “left” or “right” accordingly.

Using a traditional computational neuroscience approach, the previous theory first

needs to be expressed in the form of a program, and, then be validated by comparing

its output (mean and standard deviation of accuracy) to the experimental data reported

by the authors. In order to present the previous DMTS theory in the form of a tree, we

need to define the inputs and the functions of the program (something that actually

will be very useful later to define O and T). The theory has three inputs, I1, I2 and I3,

and one output with two possible values: “left” or “right”. Regarding the functions, it

is clear from the previous steps that we need an operator to write in STM (WSTM),

and another one, called AdvancedCompare, that compares the third and the second

position of STM and outputs “left” or “right” depending on the result of the compari-

son. In order to be able to express the program in the form of a tree, we also need an

operation to express sequentiality, called Sequence, which outputs the value received

from the last parameter executed. The program can be expressed as:

(sequence (sequence (WSTM I1) (WSTM I2) (WSTM I3)) AdvanceCompare) (1)

Fig. 9 graphically presents the program tree that expresses our theory, where squares

indicate inputs, ovals indicate operators or functions, and arrows indicate the flow of

information. In order to check the validity of our human-generated theory, the program

of Fig. 9, in the form of a Lisp S-expression, was evaluated in TEE.

AdvanceCompare

WSTM WSTM

I1 I2

WSTM

I3

Sequence

Sequence

“right” or “left”

Figure 9. Tree implementation of the human-generated DMTS theory.

Table II. Set of operators defined for O1.

Operator Description

Progn2

Function: executes two inputs sequentially.

Input: Input1, Input2.

Output: The output produced by Input2.

putSTM

Function: Writes the input in STM.

Input: Input1.

Output: The element written in STM (Input1).

Compare12

Function: Compares positions 1 and 2 of STM and returns NIL if

they are not equal or the element if they are equal.

Input: None.

Output: NIL or the element being compared.

Compare13 As Compare 12 but with elements 1 and 3 of the STM.

Compare23 As Compare 12 but with elements 2 and 3 of the STM.

Table III. Set of operators defined for O2.

Operator Description

Progn2

Function: executes two inputs sequentially.

Input: Input1, Input2.

Output: The output produced by Input2.

putSTM

Function: Writes the input parameter in STM.

Input: Input1.

Output: The element written in STM.

Compare12

Function: Compares elements 1 and 2 of STM and returns NIL or TRUE.

Input: None.

Output: NIL or TRUE.

Compare13 As Compare12 but with elements 1 and 3 of the STM.

Compare23 As Compare12 but with elements 2 and 3 of the STM.

OpNIL

Function: Produces and returns NIL

Input: None

Output: NIL

AccessSTM1

Function: Reads the element 1 of STM and outputs it.

Input: None

Output: Value contained in position 1 of STM

AccessSTM2 As AccessSTM1 but with position 2.

AccessSTM3 As AccessSTM1 but with position 3.

If_condition

Function: Evaluates a condition and executes input2 if it is TRUE or

INPUT3 if it is NIL.

Input: Condition, Input2, Input3

Output: The value produced by Input2 or input3 depending on the value of

condition.

Each function was assigned an error factor (ExecutionError) of 0.02%, and in order

to have reliable data we executed the experiment and collected the results ten times.

This gave us a total of ten values for Accuracy and StdAccuracy, which averaged to

95.7% and 1.8% for animals, and 96.6% and 1.38% for tools. When compared with

the experimental values of 97% and 1.4% for animals and 95% and 1.2% for tools, our

human-generated theory explains at an acceptable level the cognitive process under-

taken by humans to solve the DMTS task. The next section solves the same problem

but using the GP approach.

5.3 GP Theory Generation Approach

This section follows the strategy defined in Section III to automatically generate

theories that solve DMTS. As in our example of a theory generated by the traditional

computational neuroscience approach, there is no LTM, and STM is a four-element

queue.

 5.3.1 Definition of Operators (O), Terminals(T), GP parameters and Fitness

Function

When defining the set of operators O, several factors need to be taken into account:

(1) the cognitive architecture, (2) existing theories found in the literature, and (3) the

definition of the task to be modeled. Also O should verify completeness and closure.

In general, in an environment such as neuroscience, completeness can only be estab-

lished via experimentation. By contrast, the problem of closure can be solved when

designing the operators. In our case, we have designed all primitives to have as inputs

and outputs either “False” (the Lisp value NIL) or one of the values of the inputs. In

DMTS, the simulation has to output “right” of “left” depending on which element is

equal to the first one, and in our case this has been solved by using “False” to indicate

“left” and any element of the experiment (not false) to indicate “right”.

 Considering the previous factors we have defined two sets of operators, O1 and

O2. Table II and Table III present the operators defined. In both cases all the opera-

tors have been assigned an execution error (ExecutionError) of 0.02. The two sets of

operations represent very different philosophies about how to model DMTS. While

O1 is a high level approach with complex operators, like Compare, that actually con-

tains a condition and an access to STM in it, O2 has a lower granularity with simpler

operators. Both approaches have their advantages and disadvantages: O2 will generate

Table IV. Parameters used for evolution.

Parameter Value

MDNI 10

MDIAC 12

FRF 0.1

CAPF 0.2

CAFPF 0.2

MDNS 1

MS Fitness proportionate

MIG Ramped half and half

RS 0.8

models of behavior with smaller granularity, which will be more difficult to under-

stand, and will define a higher dimensional search space, but it also makes it possible

to design operators that can be used to model other tasks. O1 produces a smaller di-

mensional space, which implies that solutions could be found in a smaller amount of

time, and because of the high granularity the behavior of the models will be easier to

understand. Nevertheless, operations as complex as Compare in O1 will likely be

useful only for DMTS, which reduces the applicability of the results obtained.

Regarding the set of terminals T for both sets of operators, in this case only three

variables (I1, I2 and I3) and no constants are needed. Regarding the fitness function,

we have decided to use a very simple measure based on the distance between the ele-

ments that describe the desired behavior and the behavior of the program being evalu-

ated. With (Accuracy1 stdAccuracy1 Accuracy2 stdAccuracy2) being the desired behav-

ior expressed by Chao et al. (1999) for faces (experiment 1) and tools (experiment 2),

with values (0.95 1.4 0.97 1.4), and (GPAccuracy1 GPstdAccuracy1 GPAccuracy2

GPstdAccuracy2) the vector returned by TEE after evaluating a theory in both experi-

ments, the standardized fitness F is defined as:

2

1

2

1

j j
j

j j
j

F Accuracy GPAccuracy

StdAccuracy GPStdAccuracy

=

=

= ∑ − +

∑ −

(2)

Table IV presents the parameters used for the GP evolution; M and N are tested

with different values. The rest of values, unless noted, are constant for all the evolu-

tions. The Method of Stop (MS) is one of the following: either (1) M reaches its limit

value, or (2) the following two conditions are verified at the same time:

2

1

0.1j j
j

Accuracy GPAccuracy
=

∑ − < (3)

2

1

0.05j j
j

StdAccuracy GPStdAccuracy
=

∑ − < (4)

This implies that we consider values for accuracy acceptable if the difference is

smaller that 10% for the means and smaller that 5% for std. We consider that a solu-

tion has been found only if GP stops because (3) and (4) are verified.

5.3.2 Construction of a Database of Experimental Data

In this step, a database containing the experimental data described in (Chao et al.,

1999) has been constructed. Fig. 10 presents an instantiation of the data structure

defined in Fig. 4 that contains the experimental data needed for the experiment with

faces and tools. It contains the protocol and the time exposures, which are the same in

both cases, the number of trials, 60, the number of subjects, 4, and the values obtained

in each experiment. Inputs and Outputs have not been detailed for space purposes, but

they were generated using a pseudo-random sequences of digits.

5.3.3 GP-generated Cognitive Theories for DMTS: Analysis of Results

This section details the solutions obtained when using GP with the experimental data

for the DMTS task. The theories presented have already been postprocessed to better

present their behavior. The environment produced a variety of solutions when using

O1 and O2. Both sets of operators were executed ninety times, with N=20, 40, 60 and

M=50, 80, 100 and for ten values of RS (the random seed used by GP). Fig. 11 pre-

sents the theory generated, expressed in the form of a tree, when using O1 and N=20

and M=50. Fig. 12 presents the theory produced when using O1 and N=60 and M=80.

Fig. 13 is the theory produced with O1 and N=40 and M=80, and Fig. 14 with O2 and

N=60 and M=80. Other combinations of N and M did not produce any solution. As

can be seen, any of the theories generated basically represent the same behavior: writ-

ing the inputs in STM and then comparing them.

,1 ,60

,1 ,60

 (...)

 (...))

i i

i iOutput Output

Animals Tools

Animals Animals Animals

Animals

Experiments =(Experiment ,Experiment)

Experiment =(Prototype Protocol Input Input

Values

Prototy

,1 ,60

(()())

(4 (0.97 1.4))

 (...)

i i

I1 I2 I3 O1

((I1) (IDLE) (I2 I3)) (1 0.5 2))

=

=

=

Animals

Animals

Animals

Tools Tools Tools

pe

Protocol

Values

Experiment =(Prototype Protocol Input Input

,1 ,60 (...))

(()())

(4 (0.95 1.2))

i iOutput Output

I1 I2 I3 O1

((I1) (IDLE) (I2 I3)) (1 0.5 2))

=

=

=

Tools

Tools

Tools

Tools

Values

Prototype

Protocol

Values

Figure 10. Experimental Database for DMTS task.

Compare12

putSTM

I1

putSTM

I2

progn2

progn2

“right” or “left”

Figure 11. Tree of the GP generated theory with O1, N=20 and M=50.

Compare12

putSTM putSTM

I3

progn2

progn2

“right” or “left”

I1

Figure 12. Tree of the GP generated theory with O1, N=60 and M=80.

Compare13

putSTM

progn2

progn2

“right” or “left”

putSTM

I3

putSTM

I2

progn2

I1

Figure 13. Tree of the GP generated theory with O1, N=40 and M=80.

The goal of our system is to help neuroscientists find some interesting characteris-

tics of the behavior that is being modeled, which would be far more difficult if a tradi-

tional approach was used. For example, in our case, the GP approach enabled to find

that it is not necessary to write the three inputs in STM, but that it is enough to encode

I1 and one of the other two inputs, I2 or I3 (see the theories presented in Fig. 11 and

Fig. 12). That is, if one element is not the same as the original, the other must be equal

to it. Thus, in order to solve the problem when using O1, the minimum set of operators

is {progn2, putSTM} and one of the operators Compare12 or Compare13, the other

two operators not being necessary. Some readers of a previous version of this paper

found this explanation counter-intuitive. Surprising and counter-intuitive explanations

are not necessarily a bad thing in science, and they can indeed lead to important dis-

coveries (Simon, 1977). While we do not know any empirical data that directly sup-

port the proposed GP-theories, we do not know of any study that directly refutes this

explanation either. Thus, an unexpected if modest contribution of this paper is to pro-

pose a hypothesis about behavior in the DMTS task that can be tested by further em-

pirical studies.

The solution obtained with O2, although basically producing the same behavior as

the one obtained with O1, produces a more complex tree because of the lower granu-

larity of its operators. When using O2, the lower granularity of the operators affects

the dimensionality of the search space and the density of the solutions. As a result,

only one in ninety evolutions of O2 produced a solution, compared to three in ninety

when using O1. Although having operators with lower granularity has its advantages,

these results also show that it is important to balance the level of granularity with the

complexity of the search space.

6. Conclusions and Future Work

 Cognitive neuroscience has typically used a traditional scientific research approach

in which neuroscientists generate a theory and use experimental data to validate it.

With the introduction of computational neuroscience, computers have been used to

model data and help develop theories. In this paper, we have presented an environ-

ment to automatically generate cognitive theories by using GP, where the evolution

process was guided by the experimental data. Our approach had three characteristics

that differentiate it from traditional GP applications: (1) lack of standard operators, (2)

 “right” or “left”

putSTM

I3

putSTM

I2

progn2

progn2

putSTM

I1

progn2

OpNIL Compare13

If_condition

AccessSTM1

Figure 14. Tree of the GP generated theory with O2, N=60 and M=80.

construction of experimental databases, and (3) simulation of human behavior. We

have designed an environment and a strategy for generating cognitive theories and

have applied it to a typical neuroscience task, the delayed-match-to-sample task. Our

results show that the system can automatically generate cognitive theories, and that

these theories can help neuroscientists in the process of understanding how the mind

works.

We acknowledge that the task used in this paper (the DMTS task) is very simple

and that we used few data points for computing fitness. Thus, it is an open question as

to whether our technique applies to more complex tasks. While our study can be seen

as an existence proof, there are obviously important issues that must be answered

before being confident of the generality of our methodology. However, establishing

that our technique is successful with simple tasks is an important first step. We also

note that some of the generated theories are counter-intuitive and thus scientifically

interesting, leading to predictions that can be tested empirically. Finally, our approach

raises difficult technical and conceptual issues, including the need for heuristics filter-

ing the generated theories and methods enabling humans to make sense of these theo-

ries.

We plan to apply our approach to generate cognitive theories to other typical neuro-

science tasks, especially tasks involving learning, in order to further establish the

benefits of using an automatic approach. The inclusion of additional information, such

as the response time needed to make a decision, would help select better theories.

Neuroscience is not only interested in explaining behavior but also in identifying in

which areas of the brain cognitive operators are executed. Actually, the best part of

experimental data found in the literature for a given task focus on this topic, more than

in generating cognitive theories. We think that by widening our strategy and our envi-

ronment to include information about the localization of brain activity for a given task,

we will be able to evolve not only behavior theories, but also the mapping between

these primitives and brain structures (Gobet and Parker, 2005).

ACKNOWLEDGMENT

We thank Guillermo Campitelli for providing advice on the delayed-match-to-sample

task, as well as Veronica Dark and anonymous referees for useful comments.

REFERENCES

Anderson, J. R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C. and Qin, Y.L. (2004), ‘An

integrated theory of the mind’, Psychological Review 111, pp. 1036-1060.

Anderson, J.R. (1983), ‘Retrieval of long-term memory information’, Science 220, pp. 25-30.

Angeline P.J. and Pollack, J.B., (1992),’The evolutionary induction of subroutines’, in Proc. Of

the fourteenth Annual Conference of the Cognitive Science Society.

Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D., (1998), Genetic Programming: An

Introduction on the Automatic Evolution of Computer Programs, New York: PWS.

Bollobas, B. and Riordan, O., (1998), ‘On some conjectures of Graffiti’, Discrete Mathematics

179, pp. 223-230.

Burke, E.K., Gustafson, S. and Kendall, G. (2004), ‘Diversity in genetic programming: An

analysis of measures and correlation with fitness’, IEEE Transactions on Evolutionary

Computation, Vol. 8, pp. 47-62.

Chao, L.L., Haxby, J.V. and Martin, A. (1999),’Attribute-based neural substrates in temporal

cortex for perceiving and knowing about objects’, Nature Neuroscience, 2, pp. 913-920.

Churchland, P.S. and Sejnowski, T.J. (1992), The Computational Brain, MIT Press.

Cowan, N. (2002), ‘The magical number 4 in short-term memory: A reconsideration of mental

storage capacity’, Behavioral and Brain Sciences, 24, pp. 87-114.

Cowen, N. (2001), ‘The magical number 4 in short-term memory: A reconsideration of mental

capacity’, Behavioral and Brain Sciences 24, pp. 87-114.

Dastidar, T.R., Chakrabarti, P.P. and Ray, P. (2005),’A Synthesis system for analog circuits

based on evolutionary search and topological reuse’, IEEE Transactions on evolutionary

computation, Vol. 9, No. 2, pp. 211-224.

Dayan, P. and Abbott, L.F. (2001), Theoretical Neuroscience: Computational and Mathemati-

cal Modeling of Neural Systems, New York: MIT Press.

Eichenbaum, H. (2002), The cognitive neuroscience of memory, Oxford University Press.

Elliott, R. and Dollan, R.J. (1999),’Differential Neural Responses during Performance of

Matching and Nonmatching to Sample Tasks at Two Delay Intervals’, The Journal of Neu-

roscience, 19, pp. 5066-5073.

Elman, J.L., Bates, E.A., Johnson, M.H. , Karmiloff-Smith, A., Parisi, D. and Plunkett, K.

(1996), Rethinking innateness, A connectionist perspective on development, MIT Press.

Gazzaniga, M.S. (1999), Conversations in the Cognitive Neurosciences. New York: MIT Press.

Gobet, F. (2001), ‘Is experts’ knowledge modular?’, in Proc. of the 23rd Meeting of the Cogni-

tive Science Society, pp. 336-431.

Gobet, F. and Clarkson, G. (2004), ‘Chunks in expert memory: Evidence for the magical num-

ber four …or is it two?’, Memory 12, pp. 732-747.

Gobet, F. and Parker, A. (2005), ‘Evolving structure-function mappings in cognitive neurosci-

ence using genetic programming’, Swiss Journal of Psychology 64, pp. 231-239.

Grady, C. L., McIntosh, A.R., Bookstein, F., Horwitz, B., Rapoport, S.I. and Haxby, J.V.

(1998), ‘Age-related changes in regional cerebral blood flow during working memory for

faces’, NeuroImage 8, pp. 409–425.

Habeck, C., Hilton, J., Zarahn, E., Flynn, J., Moeller, J.R. and Stern, Y. (2003), ‘Relation of

cognitive reserve and task performance to expression of regional covariance networks in an

event-related fMRI study of non-verbal memory’, NeuroImage 20, pp. 1723– 1733.

Holland, J.H. (1992), Adaptation in natural and artificial systems, Cambridge: MIT Press.

Jackson, D. (2005), ‘Evolution of processor microcode’, IEEE Transactions on Evolutionary

Computation, Vol. 9., No. 1, pp. 44-59.

Kentala, E., Laurikkala, J.,Pyykko, I. and Juhola, M., (1999),’Discovering diagnostic rules from

a neurologic database with genetic algorithms’, Annals of Otology, Rhinology and Laryn-

gology 108, pp. 948-954.

Kosslyn, S.M. and Koenig, O. (1992), Wet Mind, New York Free Press.

Koza, J. (1992), Genetic Programming: On the programming of computers by means of natu-

ral selection, MIT Press.

Koza, J. (1994), Genetic Programming II, MIT Press.

Langdon, W.B. and Poli, R. (1998), ‘Fitness causes bloat: Mutation’, in Proc. of the 1st Euro-

pean Workshop on Genetic Programming, pp. 222-230.

Langley, P., Simon, H., Bradsaw, G.L. and Zytkow, J.M. (1996), Scientific Discovery, New

York: MIT Press.

Lones, M.A. and Tyrrell, A.M. (2002),’Crossover and bloat in the functionality model of ge-

netic programming’, in Proc. 2002 Congress on Evolutionary Computation, pp. 986-991.

Mecklinger, A. and Pfeifer, E. (1996), ’Event-related potentials reveal topographical and tem-

poral distinct neuronal activation patterns for spatial and object working memory’, Cognitive

Brain Research 4 (3), pp. 211-224.

Mitchell, M. (1996), An introduction to genetic algorithms, New York MIT Press.

Muni, D.P., Pal, N.R. and Das, J. (2004),’A novel approach to design classifiers using genetic

programming’, IEEE Trans. on Evolutionary Computation, Vol. 8, No. 2, pp. 183-195.

O'Reilly, R.C. (1998), ‘Six principles for biologically based computational models of cortical

cognition’, Trends in Cognitive Sciences 2, pp. 455-462.

Pattichis, C.S. and Schizas, C.N., (1996),’Genetics-based machine learning for the assessment

of certain neuromuscular disorders’, IEEE Transactions on Neural Networks 7, pp. 427-439.

Shallice, T., (1990), From neuropsychology to mental structure. Cambridge University Press.

Simon, H. A., (1996), The Sciences of the artificial (3rd Ed.), Cambridge, MA: MIT Press.

Simon, H.A. (1977), Models of discovery and other topics in the methods of science,

Dordrecht: Reidel.

Sonka, M., Tadikonda, S.K. and Collins, S.M., (1996), ‘Knowledge-based interpretation of MR

brain images’, IEEE Transactions on Medical Imaging 15, pp.443-452.

Valdes-Perez, R.E. (199), ‘Principles of human-computer collaboration for knowledge discov-

ery in science’, Artificial Intelligence 107, pp. 335-346.

Whigham, P.A. and Crapper, P.F. (2001), ‘Modeling rainfall runoff using genetic program-

ming’, Math. Comput. Model. 33, pp.707-721.

Zubicaray, G. I. de, McMahon, K., Wilson, S.J. and Muthiah, S. (2001), ‘Brain activity during

the encoding, retention and retrieval of stimulus representations’, Learning & Memory 8(5),

pp. 243-251.

