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Abstract 
 

The Common Information Model (CIM) has been heavily used in electric power grids for data exchange among 

a number of auxiliary systems such as communication systems, monitoring systems and marketing systems. 

With an rapid deployment of digitalized devices in electric power networks, the volume of data continuously 

grows which makes verification of CIM data a challenging issue. This paper presents a parallel K-means for 

large scale CIM data verification based on the MapReduce computing model which has been widely taken up by 

the community in dealing with data intensive applications. By distributing the CIM data into a number of 

computers in a MapReduce cluster environment, the computation in CIM data verification is significantly 

improved. Furthermore, a load balancing scheme is designed to balance the workloads among the heterogeneous 

MapReduce computing nodes for a further improvement in computation efficiency. The performance of the 

parallel K-means clustering in CIM data verification is first evaluated in a small scale experimental MapReduce 

cluster and subsequently evaluated in a large scale simulation environment.  
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1. Introduction 
 

An electric power grid is a complex system which consists of a large number of supporting 
information and communication systems. The past few years have witnessed the employment of 
Common Information Model (CIM) as a standard way to facilitate data and information exchange 
among these heterogeneous systems in power networks. CIM can model components in power 
networks with defined properties, protocols and parameters. Not only can the power system itself be 
described using CIM but also the supporting systems can be described by the model. Each system 
generates a different set of data and transfers the dataset among the communication networks for further 
utilization such as monitoring, controlling and  maintenance. In addition, the integration of data from 
these supporting systems can significantly benefit the power network.  

CIM is an abstract model which not only can describe the electric power objects such as facilities 
like generators, switches, transmission lines, transformers, but also can describe the information of 
systems. To facilitate the design and usage of the model, CIM follows the syntax of Extended Markup 
Language (XML). As a result, being a kind of XML based data model, CIM now has become a widely 
accepted standard technology for data exchange and interoperation among multiple systems. However, 
only well-formed and strictly-validated CIM data is considered as standard modeled data in dealing 
with data heterogeneity among different systems. One CIM model may be incorrectly interpreted by 
different systems due to model misunderstanding, or the attribution tags are incorrectly selected by the 
data encapsulating applications. As a result, CIM data must be verified to ensure data to be interpreted 
correctly. As CIM is a type of XML based data model, XML verification techniques can be employed 
to verify CIM data using a tool such as Dom4J [24, 25, 27]. At present, the most frequently used 
verification approaches are based on the concept of schema. Basically schema can be considered as an 
abstract skeleton of data, which contains data attributes such as types, values, dependences. A schema 
based verification process can detect data inconsistency. However, with the rapid development of a 
variety of computer systems in the electric power grid, it has become a challenging issue to ensure a 
large amount of CIM data to be correct and consistent all the time.   

MapReduce has become a de facto standard computing model in support of data intensive 
applications [11]. The MapReduce computing model facilitates a number of important functions such as 

* Corresponding Author: Yang.Liu@scu.edu.cn 



 

 

partitioning the input data, scheduling MapReduce jobs across a cluster of participating nodes, handling 
node failures, and managing the required network communications [35]. We have implemented a 
MapReduce based parallel K-means clustering for scalable information retrieval [33]. The parallel K-
means segments the original data into a number of sub-clusters which can be processed in parallel. In 
this paper, we employ the MapReduce based parallel K-means for CIM data verification which 
distributes the computation into a number of computer nodes in a cluster environment. It should be 
pointed out that a random selection of the initial centroids would cause K-means unstable in clustering. 
To enhance the stability of the MapReduce based parallel K-means, we use Stochastic Sampling and 
Merging (SSM) technique to generate the initial centroids for K-means to stabilize in clustering. 
Although the MapReduce model supports heterogeneous environments, it does not have a sufficient 
load balancing scheme to utilize the resources with a variety of computing capabilities. For this purpose 
we have implemented a genetic algorithm based load balancing scheme to enhance the utilization of the 
computing resources of a MapReduce cluster in support of large scale information retrieval [33] and 
image annotation [34]. In this paper, the load balancing scheme is employed to enhance the scalability 
of the parallel K-means clustering for CIM data verification in heterogeneous MapReduce computing 
environments. 

The performance of the parallel K-means clustering in CIM data verification is evaluated in a small 
scale experimental MapReduce computer cluster. The scalability of the parallel K-means is further 
evaluated in large scale simulated MapReduce environments. Both the experimental and simulation 
results show that the parallel K-means reduces the CIM data verification time significantly compared 
with a standalone sequential K-means clustering  while generating a high level of precision in data 
verification. 

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 presents 

the algorithm design in detail including the parallel K-means and SSM for selection of the initial k and 

centroids in K-means. Section 4 presents a load balancing scheme based on genetic algorithm to enable 

the parallel K-means to better utilize computing resources in heterogeneous MapReduce environments. 

Section 5 evaluates the performance of the parallel K-means and analyzes the experimental results. 

Section 6 concludes this paper. 

 

2. Related Work 
 

    CIM has been widely used in many fields due to its comprehensive, consistent and object oriented 

description ability. Memon et al [16] proposed an extensible information service (CIS) with an 

underlying unified information model. The CIS model consumes data from sources and formats it 

according to CIM. It can deliver the data against XQuery requests. Memon et al successfully 

implemented a service discovery approach based on the CIS model. However, the authors pointed out 

that the CIS model has not been verified in a large-scale computing environment. Field et al [17] 

focused on one characteristic of CIM which can describe the relationships between entities within the 

electric grid infrastructure along with their semantics. A data model enables consumers of information 

to efficiently find the information they require and ensures the meanings of the information to be 

consistent with that produced by producers. The authors argued that CIM facilitates data exchange in 

heterogeneous systems. Ranzhe1 [18] discussed the necessity of CIM in enterprise environments 

which encompass information related to products, resources and management.  

    In 1990s, the US Electric Power Research Institute started a project on CIM for power systems. A 

number of studies have been done on information modeling and structuring. Wang et al [19] extended 

CIM concepts to electrical power distribution networks.  The authors stated that the electric power grid 

is an extremely large enterprise system with many computer systems and applications to complete 

both business and engineering functions, which motivates the development of efficient information 

exchanging and sharing infrastructure. This work created a common data model based on the 

extensions of standard CIM. In their small-size data tests, they claimed that their work successfully 

modeled the electrical power distribution. However, the authors admitted that the power distribution 

network has a large number of objects which can generate a large size of data which makes CIM data 

verification a challenging issue. Hargreaves et al [5] developed a novel metadata model repository 

which is used to represent knowledge of enterprise power system resources. The repository leverages 

the value of model namespaces and resource description framework technology in providing contexts 

for multiple identities referring to common power system resources. The metadata model offers a more 

realistic understanding of the network reality by merging a number of metadata models. There are a 



 

 

number of research efforts on CIM not only for modeling various information elements but also for 

data consistency verification [6][7][8]. Works presented in [1][2][3] focus on verifying the consistency 

of CIM data. Mao et al [4] defined the consistency of the data based on the OSI model. This work 

further showed the importance and necessity of verifying CIM data. Sinz et al [20] developed a CIM 

verifier to guarantee their CIM based model to work consistently in Apache Web-Server 

configurations. Although a number of studies have been conducted on CIM data verifications, Field et 

al [17] pointed out that currently the most widely used verification approach is based on data schema. 

Nevertheless, speeding up the computation process in CIM verification has attracted a significant 

research effort with a continuous growth in the datasets defined in CIM. For example, Ming et al [21] 

proposed an extended version of CIM to describe the features of a micro-power grid and focused on 

optimizing and designing a real-time database to enhance data retrieval process. Summarizing, CIM 

can greatly help to model complex systems such as power systems.  

    MapReduce has been taken up by the community in dealing with data intensive applications [10, 

31]. However, MapReduce only offers simple job scheduling schemes which may deteriorate the 

performance significantly in heterogeneous computing environments [23, 26, 30, 31]. Fan et al [28] 

proposed a reducer-phase based load balancing algorithm, however, mappers are highly time 

consuming as computational tasks are usually executed by mappers. Considering disk utilization rate, 

the work presented in [29] modeled both disk utilization and service blocking rate on each datanode. 

This work does not other factors such as processor powers, memory space and network bandwidth 

which can impact the performance on MapReduce. This paper employs genetic algorithm to optimizes 

balance the workloads in MapReduce environments. 
     
 

3.  Algorithm Design 

   Considering a CIM file, it describes a certain type of data consisting of a number of attributes. These 

attributes can be represented by a series of special keywords such as { transmission line, transformer, 

…, switch } which describes electrical devices. Let v represent a CIM file, λi represent keywords 

describing the file, n represent the number of keywords, then we have                  .  
      K-means is a clustering algorithm based on the distances between centroids and points (vectors) 

denoted by Eq.(1). 

                        
    

                              (1) 

  where  

 xi represents i
th
 points,   

 yj represents the j
th
 centroids,  

 n represents the number of points,  

 k represents the number of centroids.  

 
 

3.1 Parallelizing K-means with MapReduce 

K-means involves a number of loosely coupled iterations [10] which can be fully parallelized in the 
MapReduce cluster environment. MapReduce has two primary functions. One is the map operation 
(mapper) and the other is the reduce operation (reducer). All the data chunks in MapReduce are 
processed as  Key (K)-Value (V) pairs. A mapper processes a {K1, V1} pair and generates an 
intermediate list {K2, V2} pairs. A reducer takes all the values represented by the same key in the 
intermediate list generated by a mapper and processes them accordingly, generating a final new list 
{V2}. All the map and reduce operations can run independently in parallel. There are a number of 
MapReduce implementations including Mars [14], Phoenix [15] and Hadoop framework [13]. Hadoop 
has been widely taken up by the community due to its open source feature. 

The Hadoop framework is an open source implementation of MapReduce mainly developed in Java. 
The framework greatly enables the distributed processing of large data sets across a computer cluster 
using commodity computers. Within a Hadoop computer cluster, individual computers share a Hadoop 
Distributed File System (HDFS), in which the computers are logically cataloged into one Namenode 
and a number of Datanodes. The Namenode manages metadata of the cluster in which a Jobtracker 
frequently locates to dispatch data for the whole cluster. A Datanode is actual a processing node 



 

 

running Map and Reduce functions of MapReduce model. When a job is submitted into the Hadoop 
cluster, the data is firstly divided into small chunks and saved in the HDFS. In terms of data integrity, 
each data chunk has replications according to the cluster configuration. When a job starts, the execution 
file is copied to each Datanode, afterwards the Jobtracker running on the Namanode uses heartbeat to 
contact Tasktrackers on a Datanodes. Based on data locality mappers either copy data from a remote 
node or from a local node. The final result will be sorted, merged and generate by reducers to HDFS. 
Fig.1 shows the architecture of a typical Hadoop cluster. 

 

Fig.1. The architecture of Hadoop cluster. 

To reduce the computation overhead of K-means in clustering CIM files, the MapReduce based 

parallel K-means groups CIM data into a number of categories. The Hadoop HDFS can save the whole 

dataset using data chunks and process these data chunks in a distributed way. Therefore, each 

computer needs to process a small portion of the original data. In such a process, each mapper 

computes the distance between each point and centroids, which enables each point to be clustered into 

a certain cluster. Then, a reducer copies all the outputs of the mappers and merges the points belonging 

to the same cluster. Moreover the reducer computes the new centroids for all clusters. The iteration 

repeats until the centroids computed by the reducer become stable. Finally the reducer outputs the final 

clusters with clustered points back into HDFS. 

 

   Let  

 D represent the set of   points,                   

 P represent the set of   processors,                  , each processor runs one mapper.  

 M represent the set of   mappers,                           
 

The data set D can be represented by a set of vectors denoted by V: 

 

                  
 

    Each vector vi represents the frequency of keywords that appear in one CIM data di. The input of 

each mapper includes two parts. The first part is a centroid set of C with k initial centroids which are 

randomly selected from the vector set V: 

 

                       
 

   The second part of the input of a mapper is a portion of V denoted by Vi. The vector set V is equally 

divided into m portions according to the number of mappers. Thus Vi satisfies:  

 

     

 

   

 

 



 

 

   Each mapper mi runs on one computer pi calculating the Euclid distances between vij∈V and C 

which is denoted by dij, then  

                       
 

 
               

 

   Let dmin represent the shortest distance between vij and C, thus: 

 

                         
 
 
 
  

 

   Based on the shortest distance, the mapper selects the corresponding ci and vij to generate a key-value 

pair as one output record. The output pairs of all the mappers are ultimately fed into the reducer. The 

reducer groups the values with the same key ci into a set of clusters denoted by Clusteri: 

 

            
    

    
       

   
 

For each Clusteri  the reducer calculates a new centroid denoted by   
 : 

 

  
  

   
   

   

  
 

 

And then it outputs a set of centroids denoted by   : 

 

      
    

    
      

   
 

    Finally    is fed into the mappers for computing another set of centroids    again, until the values of 
the centroids in set    are the same as those in      In this case the reducer outputs the finally clustered 
sub-clusters denoted by Clusteri. 

 

3.2 The Selection of Initial k with Stochastic Sampling and Merging 

As each CIM data can be represented by V, the parallel K-means considers each point V as a centroid 
of one cluster, which only contains the point itself. Stochastic Sampling and Merging (SSM) is used to 
define a threshold distance r to determine if the distance of two points from different clusters is less 
than r, then the two clusters can be merged. Therefore in order to measure the distances of two points, 
Euclid distance (d) is used. Based on the following equations SSM determines if two clusters contain 
two points that should be merged. 

If d≤r, merge  

If d>r, ignore 

   The selection iteration process continues working until the distance d between any two points is less 
than the threshold r, the iteration is terminated. The un-clustered points can be clustered based on the 
minimum distance between each point and the centroid of a certain cluster using Euclid distance. The 
centroid c of a cluster is represented by Eq.(2). 

 

   
    

 
   

 
 
    

 
   

 
 
    

 
   

 
   

    
 
   

 
                            (2) 

 

where m represents the number of points in the cluster and n represents the length of point. 

 

The computation process in k selection can compute the number of clusters and the centroids of 

each cluster. However, the computation is a time consuming process as it needs to traverse all the 

points for calculating the distances. To speed up the computational process, SSM also uses sampling 

to reduce the size of data. Therefore, SSM can determine the initial values of k and centroids using Eq. 

(2). 



 

 

 

The algorithm terminates when: 

                

 

where   is threshold for terminating the algorithm. 

 
 

3.3 Parallelizing CIM Verification  
 

    Based on the algorithm proposed above, the CIM data can be clustered into a number of sub-

clusters, in which contains the points highly related to each other. This design firstly can facilitate the 

usage of categorized CIM data for different types of application systems. And secondly it potentially 

reduces the loading times of schema files for data verification since ideally only one kind of schema is 

needed for one cluster minimally.  

    In each sub-cluster, the verification works in the following way. Let Di represent the data size of 

CIM data with similar points in cluster i. Therefore each mapper of a Hadoop cluster can take each Di 

as input. And also in terms of verification, a pre-designed schema file which can verify Di is fed into 

the mapper too. As a result, the input data is read and verified using the corresponding schema file. 

The intermediate output of mappers is in the form of <point ID, verification result> key-value pair. At 

last reducer merges all the outputs copied from mappers and outputs the final results using <point ID, 

verification result> pairs in a final result list. There is one exception that if one CIM point is 

incorrectly clustered, the algorithm starts loading the other schema files and tries to verify it. Among 

the extra loaded schemas, if one schema verifies the CIM point to be correct, the verification result is 

labeled as correct. Contrarily, if no schema file reports the correctness of the CIM point, then the result 

will be labeled with an incorrect tag. Fig.2 shows the dataflow of the parallel CIM verification 

process. 
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Fig.2. The workflow of parallel CIM verification.  

 

4. Improving the Parallel K-Means Performance with Load Balancing  
     

   The CIM verification can be conducted in parallel in a Hadoop MapReduce cluster. One critical 

issue with Hadoop MapReduce is its lack of sufficient load balancing schemes in utilizing 

heterogeneous computing resources. This section presents a load balancing scheme to further improve 

the performance of the parallel K-means in computation [33]. 

The MapReduce based verification involves a number of mappers, however, only one reducer is 

needed as all results are generated in one file. And also the most time consuming verifying 

computations are carried out by the mappers. Therefore load balancing is mainly focused on the 



 

 

mapper processing phase. In Hadoop framework the total time (T) of a mapper consists of the 

following four parts: 

 

 Data copying time (tc) in copying a data chunk from Hadoop distributed file system to local 

hard disk. It depends on the available network bandwidth and the writing speed of hard disk. 

 Processor running time (tp) in processing a data chunk. 

 Intermediate data merging time (tm) in combining the output files of the mapper into one file 

for reduce operations. 

 Buffer spilling time (tb) in emptying filled buffers. 
 

Therefore: 

                                     (3) 

Let 

    be the size of the data chunk.  

    be the writing speed of hard disk in MB/second. 

    be the network bandwidth in MB/second. 

    be the speed of the processor running the mapper process in MB/second. 

    be the size of the buffer of the mapper. 

    be the ratio of the size of the intermediate data to the size of the data chunk.  

    be the number of frequencies in processing intermediate data.  

    be the number of times that buffer is filled up. 

    be the volume of data processed by the processor when the buffer is filled up.  
 s be the sort factor of Hadoop. 

 

We have: 

   
  

            
                                        

 

Here tc depends on the available resources of hard disk and network bandwidth. The slower one of 

the two factors will be the bottleneck in copying data chunks from Hadoop distributed file system to 

the local hard disk of the mapper. 

   
  

  
                                                            

 

When a buffer is filling, the processor keeps writing intermediate data into the buffer and in the 

mean time the spilling process keeps writing the sorted data from the buffer to hard disk. Therefore the 

filling speed of a buffer can be represented by         . Thus the time to fill up a buffer can be 

computed by 
  

        
. As a result, for a buffer to be filled up, the processor will generate a volume of 

intermediate data with the size of    which can be computed using Eq.(6). 

 

         
  

        
                       

 

The total amount of intermediate data generated from the original data chunk with a size of    is 

     . Therefore the number of times for a buffer to be filled up can be computed using Eq.(7). 

 

   
     

  
                                     

 

The time for a buffer to be spilled once is 
  

  
, therefore the time for a buffer to be spilled for    times 

is 
     

  
. Then we have:  

   
     

  
                                          



 

 

 

The frequencies in processing intermediate data    can be computed using Eq.(9).  

 

    
  

 
                                           

 

When the merging occurs once, the whole volume of intermediate data will be written into the hard 

disk causing an overhead of 
     

  
. Thus if the merging occurs    times, the time consumed by hard 

disk IO operations can be represented by 
        

  
. We have  

 

   
        

  
                               

 

The total time        to process data chunks in one processing wave in MapReduce Hadoop is the 

maximum time consumed by   participating mappers, where                            
 

According to divisible load theory, to achieve a minimum       , it is expected that all the mappers 

to complete data processing at the same time:                 

 

   In terms of solving the functions above, genetic algorithm is employed. For measuring the 

differences of Ti, we use mean square errors to build the fitness function.  

 

Let 

    be the processing time for the     mapper. 

    be the average time of the number of   mappers in data processing,    
   

 
   

 
 

 

Therefore the fitness function can be represented by Eq.(11). 

 

              
 

 

   

                                        

 

 

   5. Experimental Results 
 

To evaluate the performance of the parallel K-means clustering, a Hadoop cluster was built  
consisting of 3 computer nodes. The details of the experimental environments are presented in Table 1.  

Table 1: Hadoop cluster. 

Standalone node CPU Corei3-2120@3.3GHz 

MEM 8GB 

HDD 500GB 

OS Fedora12 

Namenode CPU Core2-P7750@2.6GHz 
MEM 5GB 
HDD 160GB 
OS Fedora12 

Datanode1 CPU Corei3-2120@3.3GHz 
MEM 8GB 
HDD 500GB 
OS Fedora12 

Datanode2 CPU Corei7-4770K@3.5GHz 
MEM 32GB 
SSD 256GB 
OS Fedora12 

 



 

 

5.1 Evaluating Sequential K-Means 
 

The Iris data which is a published machine learning benchmark dataset [32] was used to evaluate the 
precision, stability and efficiency of the SSM based sequential K-means in clustering.  

 

5.1.1 Precision 

 

SSM uses stochastic sampling and a threshold r, tests were conducted to find out how the volume of 

the sampling data and the value of r impact performance of the standalone K-means in clustering. The 

clustering precision p can be computed using   
  

 
, where d' represents the number of correctly 

clustered data and d represents the total number of correct data. In the first test we duplicated the 

volume of data from 4KB to 312MB. The sampling rate was set to 10% and r was set to 0.79. Fig.3 

shows that when the data size is small, the precision is low using sampling. However, The precision 

increases with an increasing size of data. When the data size is larger than 2500kB, the precision stays 

at 70%. As shown in Fig.4, a larger sampling rate can generate a higher precision in clustering. 

 

 

 

 

 

Fig.5 shows the impact of r on the precision. In the two tests the values of r were respectively set to 
0.30 and 3.00 and sampling rate was set to 10%. Firstly at the point of 20KB, it can be seen that the 
precision sharply jumps from 4% to 31%. When the volume of sampled data is not large, the distances 
of sampled points may not be close enough, thus a larger r can help to cluster points with large 
distances. As the sampled data becomes saturated, a larger r may merge more points which should have 
been separated.  
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Fig.3. The precision of SSM. 

Fig.4. The impacts of sampling rates. 



 

 

 

 

 

5.1.2 Stability 
 

   SSM is used to select the initial centroids and number of clusters. SSM was evaluated in 

comparison with standard K-means and K-medoids. As there are 3 clusters in the original data set, 

thus k was set to 3 for the two algorithms. For SSM, the sampling rate was set to 10% and r was set to 

0.79. The testing data was duplicated to 100KB. The experimental results are shown in Fig.6. It can be 

observed that due to the randomly initial centroids and medoids selection, both standard K-means and 

K-medoids algorithms fluctuate in performance with varied precisions. Contrarily, when a proper 

value of r is given, SSM is stable in all the 10 execution runs. 

 
 

 

    SSM involves iterations and samples to find the target centroids, Fig.7 shows the convergence of 

SSM. This test evaluated the merging speed of SSM in K-means clustering. It shows that during 5- 

execution runs, the number of clusters can converge to a stable number which can successfully 

determine the number of sub-clusters.  
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Fig. 5. The impact of r. 

Fig.6. The stability of the clustering algorithms. 



 

 

 
 

 

5.1.3 Computation Efficiency 

 

A number of tests were conducted to evaluate the efficiency in computation, this test conducted a 

series of figures to show the algorithm performances. Fig.8 shows the increasing overhead with an 

increasing data size. It also indicates that the overhead of SSM increases with a sampling rate 

increasing from 1% to 10% whilst r was set to 0.79. 

 

 

 

As discussed, theoretically SSM needs to traverse all the points within clusters to measure if two 
clusters need to be merged, which causes its large computational overhead. However, in the actual 
execution, when the distance of two points belonging to two clusters is close enough, the two clusters 
are merged. Therefore the overhead is reduced. From Fig.9 it can be observed that a larger data size 
contrarily has a lower ratio in decreasing overhead. 
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Fig.7: The convergence of SSM. 

Fig.8. SSM efficiency in computation. 

Fig.9. Decreasing ratio. 



 

 

 

Fig.10 shows SSM is slower than both standard K-means and k-medoids due to the time consumed 
in  traversing the clusters for merging. 

 

Fig.10. A comparison in computation overhead. 

 

5.2 Evaluating Parallel K-means in CIM Verification 
 

In this section, we evaluate 3 CIM data verification methods. The first one is the MapReduce based 
parallel K-means verification. The second one is the standalone K-means verification using a single 
computer. The last one is the standalone CIM verification without clustering and the verification was 
carried out on a single computer as well. Two CIM dataset were designed. The instances in the first 
dataset belong to 3 obviously separable clusters. Contrarily the instances in the second dataset belong to 
3 clusters but two of them are not obviously separable from each other. The sizes of both datasets were 
varied from 16MB to 512MB. 

Fig.11 shows the efficiency of the 3 CIM data verification methods in dealing with the obviously 
separable dataset. It indicates that the parallel K-means verification achieves the best performance in 
computation whereas the CIM verification without clustering is the slowest one in computation. Due to 
less IO operations, the standalone K-means for CIM verification is faster than the CIM verification 
without clustering. Fig.11 also shows that the MapReduce based parallel CIM verification cannot 
achieve the highest efficiency when the data size is less than 128MB. The reason is due to the 
initialization overhead of the Hadoop framework. The parallel CIM verification starts increasing speed 
in computation when the size of data gets large. 
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Fig.11. Computation efficiency on the first dataset. 



 

 

Fig.12 shows the computation efficiency of the 3 algorithms in dealing with the dataset in which 2 
clusters are not obviously separable. As expected, the MapReduce based parallel verification performs 
similarly on different types of data. 

 

 

 

5.3 Simulation Results 

 
We have developed HSim [9], a Hadoop simulator for simulating large scale Hadoop cluster 

environments. Him was used to further evaluate the performance of the MapReduce based parallel K-
means clustering in CIM data verification from the aspects of scalability and load balancing. 

 

5.3.1 Scalability 

 
In order to evaluate scalability, two sets of simulations were designed for homogeneous Hadoop 

environments. In the first set of simulations, the data size was set to 5120MB while the number of 
Hadoop nodes was varied. In the second set of simulations, the number of Hadoop nodes was set to 20 
with a varied size of data. In the simulations, each node was configured with 2 mappers and 1 reducer. 
The simulation results are shown in Fig.13a and Fig.13b. 
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Fig.12. Computation efficiency on the second dataset. 

a. The impact of the number of nodes. 



 

 

 

 

Fig.13. Algorithm scalability. 

 

  Fig.13a clearly indicates that the algorithm gains better efficiency with an increasing number of 
Hadoop nodes. It is worth noting that when the number of nodes increases to a certain value, the 
efficiency cannot be improved greatly. The reason is that when the number of nodes is small, a small 
number of mappers are assigned which causes a large number of processing waves. Contrarily, when 
the number of nodes is large, a large number of mappers can be assigned which results in a small 
number of processing waves. For example, consider using 2 nodes with 4 mappers (each mapper deals 

with 64MB data once) to process 512MB data. Theoretically 
   

    
   waves are needed. However, if 4 

nodes with 8 mappers are offered, the wave number equals 
   

    
  . Moreover, if 6 nodes with 12 

mappers are used to process 512MB data, due to 8 out of 12 mappers are enough for dealing with the 
data so that still one wave is needed whilst 4 mappers are kept running idle. Fig.13b shows the 
computation overhead increases linearly with an increasing size of data.  

 

5.3.2 Load Balancing 

 

To evaluate the load balancing algorithm, a cluster with 20 nodes was simulated. Each node had one 

processor with two cores, simultaneously the number of mappers equals to the number of processor 

cores. The speeds of the processors were generated based on the heterogeneities of the Hadoop cluster.     

Considering the total processing power of the cluster is       
 
    where n represents the number 

of the processors employed in the cluster and    represents the processing speed of the i
th 

processor. 

For a Hadoop cluster with a total computing capacity  , the levels of heterogeneity of the Hadoop 

cluster can be defined using Eq.(12). 

                       

                       
 

 

   

                                                        

             

   The heterogeneity of the first simulation was 0.27. The nodes' details are listed in Table 2.  

   Three scenarios were simulated including homogeneous environment, heterogeneous environment 

with load balancing and without load balancing. The simulation results are shown in Fig.14 which 

indicates that the unbalanced algorithm works the worst. When the data size reaches to 2GB, the 

executing time sharply increases above 6000 seconds. The reason is that in a simulated Hadoop cluster 

with a heterogeneity of 0.27, some extremely slow nodes may exist in the cluster. When they are 

assigned with tasks, these slow nodes may take an extremely long period of time. If the data size is not 

enough for example 1GB in this case, the slow nodes may not have chance to join the processing thus 

the job may finish with a high efficiency. This phenomenon greatly impacts the cluster performance. 
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Table 2 : Heterogeneity specification 

Nodes                                                    Simulated speed(MB/s) 

Node 1                                                   0.065 

Node 2                                                   0.582 

Node 3                                                   0.757 

Node 4                                                   0.651 

Node 5                                                   0.058 

Node 6                                                   0.099 

Node 7                                                   0.819 

Node 8                                                   0.221 

Node 9                                                   0.183 

Node 10                                                 0.010 

Node 11                                                 0.570 

Node 12                                                 0.012 

Node 13                                                 0.189 

Node 14                                                 0.027 

Node 15                                                 0.496 

Node 16                                                 0.638 

Node 17                                                 0.163 

Node 18                                                 0.043 

Node 19                                                 0.103 

Node 20                                                 0.205 

 

Fig.14 also indicates that the parallel K-means works best in the homogeneous environment as the 
load balancing scheme itself also causes some overhead in computation. 

 

 

Fig.15 shows the convergence of the genetic algorithm. The result turns stable around 500 iterations. 
Fig.16 reveals the impact of heterogeneity on the performance of the parallel K-means. It can be 
observed that when the heterogeneity is small, the balanced verification algorithm takes more time 
because of the overhead of the genetic algorithm. However, the balanced algorithm outperforms the 
unbalanced one with an increasing value in heterogeneity.  
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Fig.14. Load balancing among 20 nodes. 



 

 

 

 

. 

 

5. Conclusion 

 

In this paper we have presented a MapReduce based parallel K-means for large scale CIM data 
verifications. By partitioning the CIM data into smaller subsets, the parallel K-means clustering reduces 
the computation time significantly compared with a standalone sequential K-means clustering method. 
We introduced a genetic algorithm based load balancing scheme to balance the workloads among 
MapReduce computing nodes to optimize the performance of the parallel K-means in CIM data 
verification. 
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