

A MapReduce based Parallel K-Means Clustering

for Large Scale CIM Data Verification

Chuang Deng, Yang Liu*, Lixiong Xu, Jie Yang, Junyong Liu

School of Electrical Engineering and Information, Sichuan University, 610065, Chengdu, China

Maozhen Li

Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UB8 3PH, UK

Abstract

The Common Information Model (CIM) has been heavily used in electric power grids for data exchange among

a number of auxiliary systems such as communication systems, monitoring systems and marketing systems.

With an rapid deployment of digitalized devices in electric power networks, the volume of data continuously

grows which makes verification of CIM data a challenging issue. This paper presents a parallel K-means for

large scale CIM data verification based on the MapReduce computing model which has been widely taken up by

the community in dealing with data intensive applications. By distributing the CIM data into a number of

computers in a MapReduce cluster environment, the computation in CIM data verification is significantly

improved. Furthermore, a load balancing scheme is designed to balance the workloads among the heterogeneous

MapReduce computing nodes for a further improvement in computation efficiency. The performance of the

parallel K-means clustering in CIM data verification is first evaluated in a small scale experimental MapReduce

cluster and subsequently evaluated in a large scale simulation environment.

Keywords: CIM verification, stochastic sampling, clustering, MapReduce, load balancing

1. Introduction

An electric power grid is a complex system which consists of a large number of supporting
information and communication systems. The past few years have witnessed the employment of
Common Information Model (CIM) as a standard way to facilitate data and information exchange
among these heterogeneous systems in power networks. CIM can model components in power
networks with defined properties, protocols and parameters. Not only can the power system itself be
described using CIM but also the supporting systems can be described by the model. Each system
generates a different set of data and transfers the dataset among the communication networks for further
utilization such as monitoring, controlling and maintenance. In addition, the integration of data from
these supporting systems can significantly benefit the power network.

CIM is an abstract model which not only can describe the electric power objects such as facilities
like generators, switches, transmission lines, transformers, but also can describe the information of
systems. To facilitate the design and usage of the model, CIM follows the syntax of Extended Markup
Language (XML). As a result, being a kind of XML based data model, CIM now has become a widely
accepted standard technology for data exchange and interoperation among multiple systems. However,
only well-formed and strictly-validated CIM data is considered as standard modeled data in dealing
with data heterogeneity among different systems. One CIM model may be incorrectly interpreted by
different systems due to model misunderstanding, or the attribution tags are incorrectly selected by the
data encapsulating applications. As a result, CIM data must be verified to ensure data to be interpreted
correctly. As CIM is a type of XML based data model, XML verification techniques can be employed
to verify CIM data using a tool such as Dom4J [24, 25, 27]. At present, the most frequently used
verification approaches are based on the concept of schema. Basically schema can be considered as an
abstract skeleton of data, which contains data attributes such as types, values, dependences. A schema
based verification process can detect data inconsistency. However, with the rapid development of a
variety of computer systems in the electric power grid, it has become a challenging issue to ensure a
large amount of CIM data to be correct and consistent all the time.

MapReduce has become a de facto standard computing model in support of data intensive
applications [11]. The MapReduce computing model facilitates a number of important functions such as

* Corresponding Author: Yang.Liu@scu.edu.cn

partitioning the input data, scheduling MapReduce jobs across a cluster of participating nodes, handling
node failures, and managing the required network communications [35]. We have implemented a
MapReduce based parallel K-means clustering for scalable information retrieval [33]. The parallel K-
means segments the original data into a number of sub-clusters which can be processed in parallel. In
this paper, we employ the MapReduce based parallel K-means for CIM data verification which
distributes the computation into a number of computer nodes in a cluster environment. It should be
pointed out that a random selection of the initial centroids would cause K-means unstable in clustering.
To enhance the stability of the MapReduce based parallel K-means, we use Stochastic Sampling and
Merging (SSM) technique to generate the initial centroids for K-means to stabilize in clustering.
Although the MapReduce model supports heterogeneous environments, it does not have a sufficient
load balancing scheme to utilize the resources with a variety of computing capabilities. For this purpose
we have implemented a genetic algorithm based load balancing scheme to enhance the utilization of the
computing resources of a MapReduce cluster in support of large scale information retrieval [33] and
image annotation [34]. In this paper, the load balancing scheme is employed to enhance the scalability
of the parallel K-means clustering for CIM data verification in heterogeneous MapReduce computing
environments.

The performance of the parallel K-means clustering in CIM data verification is evaluated in a small
scale experimental MapReduce computer cluster. The scalability of the parallel K-means is further
evaluated in large scale simulated MapReduce environments. Both the experimental and simulation
results show that the parallel K-means reduces the CIM data verification time significantly compared
with a standalone sequential K-means clustering while generating a high level of precision in data
verification.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 presents

the algorithm design in detail including the parallel K-means and SSM for selection of the initial k and

centroids in K-means. Section 4 presents a load balancing scheme based on genetic algorithm to enable

the parallel K-means to better utilize computing resources in heterogeneous MapReduce environments.

Section 5 evaluates the performance of the parallel K-means and analyzes the experimental results.

Section 6 concludes this paper.

2. Related Work

 CIM has been widely used in many fields due to its comprehensive, consistent and object oriented

description ability. Memon et al [16] proposed an extensible information service (CIS) with an

underlying unified information model. The CIS model consumes data from sources and formats it

according to CIM. It can deliver the data against XQuery requests. Memon et al successfully

implemented a service discovery approach based on the CIS model. However, the authors pointed out

that the CIS model has not been verified in a large-scale computing environment. Field et al [17]

focused on one characteristic of CIM which can describe the relationships between entities within the

electric grid infrastructure along with their semantics. A data model enables consumers of information

to efficiently find the information they require and ensures the meanings of the information to be

consistent with that produced by producers. The authors argued that CIM facilitates data exchange in

heterogeneous systems. Ranzhe1 [18] discussed the necessity of CIM in enterprise environments

which encompass information related to products, resources and management.

 In 1990s, the US Electric Power Research Institute started a project on CIM for power systems. A

number of studies have been done on information modeling and structuring. Wang et al [19] extended

CIM concepts to electrical power distribution networks. The authors stated that the electric power grid

is an extremely large enterprise system with many computer systems and applications to complete

both business and engineering functions, which motivates the development of efficient information

exchanging and sharing infrastructure. This work created a common data model based on the

extensions of standard CIM. In their small-size data tests, they claimed that their work successfully

modeled the electrical power distribution. However, the authors admitted that the power distribution

network has a large number of objects which can generate a large size of data which makes CIM data

verification a challenging issue. Hargreaves et al [5] developed a novel metadata model repository

which is used to represent knowledge of enterprise power system resources. The repository leverages

the value of model namespaces and resource description framework technology in providing contexts

for multiple identities referring to common power system resources. The metadata model offers a more

realistic understanding of the network reality by merging a number of metadata models. There are a

number of research efforts on CIM not only for modeling various information elements but also for

data consistency verification [6][7][8]. Works presented in [1][2][3] focus on verifying the consistency

of CIM data. Mao et al [4] defined the consistency of the data based on the OSI model. This work

further showed the importance and necessity of verifying CIM data. Sinz et al [20] developed a CIM

verifier to guarantee their CIM based model to work consistently in Apache Web-Server

configurations. Although a number of studies have been conducted on CIM data verifications, Field et

al [17] pointed out that currently the most widely used verification approach is based on data schema.

Nevertheless, speeding up the computation process in CIM verification has attracted a significant

research effort with a continuous growth in the datasets defined in CIM. For example, Ming et al [21]

proposed an extended version of CIM to describe the features of a micro-power grid and focused on

optimizing and designing a real-time database to enhance data retrieval process. Summarizing, CIM

can greatly help to model complex systems such as power systems.

 MapReduce has been taken up by the community in dealing with data intensive applications [10,

31]. However, MapReduce only offers simple job scheduling schemes which may deteriorate the

performance significantly in heterogeneous computing environments [23, 26, 30, 31]. Fan et al [28]

proposed a reducer-phase based load balancing algorithm, however, mappers are highly time

consuming as computational tasks are usually executed by mappers. Considering disk utilization rate,

the work presented in [29] modeled both disk utilization and service blocking rate on each datanode.

This work does not other factors such as processor powers, memory space and network bandwidth

which can impact the performance on MapReduce. This paper employs genetic algorithm to optimizes

balance the workloads in MapReduce environments.

3. Algorithm Design

 Considering a CIM file, it describes a certain type of data consisting of a number of attributes. These

attributes can be represented by a series of special keywords such as { transmission line, transformer,

…, switch } which describes electrical devices. Let v represent a CIM file, λi represent keywords

describing the file, n represent the number of keywords, then we have .
 K-means is a clustering algorithm based on the distances between centroids and points (vectors)

denoted by Eq.(1).

 (1)

 where

 xi represents i
th
 points,

 yj represents the j
th
 centroids,

 n represents the number of points,

 k represents the number of centroids.

3.1 Parallelizing K-means with MapReduce

K-means involves a number of loosely coupled iterations [10] which can be fully parallelized in the
MapReduce cluster environment. MapReduce has two primary functions. One is the map operation
(mapper) and the other is the reduce operation (reducer). All the data chunks in MapReduce are
processed as Key (K)-Value (V) pairs. A mapper processes a {K1, V1} pair and generates an
intermediate list {K2, V2} pairs. A reducer takes all the values represented by the same key in the
intermediate list generated by a mapper and processes them accordingly, generating a final new list
{V2}. All the map and reduce operations can run independently in parallel. There are a number of
MapReduce implementations including Mars [14], Phoenix [15] and Hadoop framework [13]. Hadoop
has been widely taken up by the community due to its open source feature.

The Hadoop framework is an open source implementation of MapReduce mainly developed in Java.
The framework greatly enables the distributed processing of large data sets across a computer cluster
using commodity computers. Within a Hadoop computer cluster, individual computers share a Hadoop
Distributed File System (HDFS), in which the computers are logically cataloged into one Namenode
and a number of Datanodes. The Namenode manages metadata of the cluster in which a Jobtracker
frequently locates to dispatch data for the whole cluster. A Datanode is actual a processing node

running Map and Reduce functions of MapReduce model. When a job is submitted into the Hadoop
cluster, the data is firstly divided into small chunks and saved in the HDFS. In terms of data integrity,
each data chunk has replications according to the cluster configuration. When a job starts, the execution
file is copied to each Datanode, afterwards the Jobtracker running on the Namanode uses heartbeat to
contact Tasktrackers on a Datanodes. Based on data locality mappers either copy data from a remote
node or from a local node. The final result will be sorted, merged and generate by reducers to HDFS.
Fig.1 shows the architecture of a typical Hadoop cluster.

Fig.1. The architecture of Hadoop cluster.

To reduce the computation overhead of K-means in clustering CIM files, the MapReduce based

parallel K-means groups CIM data into a number of categories. The Hadoop HDFS can save the whole

dataset using data chunks and process these data chunks in a distributed way. Therefore, each

computer needs to process a small portion of the original data. In such a process, each mapper

computes the distance between each point and centroids, which enables each point to be clustered into

a certain cluster. Then, a reducer copies all the outputs of the mappers and merges the points belonging

to the same cluster. Moreover the reducer computes the new centroids for all clusters. The iteration

repeats until the centroids computed by the reducer become stable. Finally the reducer outputs the final

clusters with clustered points back into HDFS.

 Let

 D represent the set of points,

 P represent the set of processors, , each processor runs one mapper.

 M represent the set of mappers,

The data set D can be represented by a set of vectors denoted by V:

 Each vector vi represents the frequency of keywords that appear in one CIM data di. The input of

each mapper includes two parts. The first part is a centroid set of C with k initial centroids which are

randomly selected from the vector set V:

 The second part of the input of a mapper is a portion of V denoted by Vi. The vector set V is equally

divided into m portions according to the number of mappers. Thus Vi satisfies:

 Each mapper mi runs on one computer pi calculating the Euclid distances between vij∈V and C

which is denoted by dij, then

 Let dmin represent the shortest distance between vij and C, thus:

 Based on the shortest distance, the mapper selects the corresponding ci and vij to generate a key-value

pair as one output record. The output pairs of all the mappers are ultimately fed into the reducer. The

reducer groups the values with the same key ci into a set of clusters denoted by Clusteri:

For each Clusteri the reducer calculates a new centroid denoted by
 :

And then it outputs a set of centroids denoted by :

 Finally is fed into the mappers for computing another set of centroids again, until the values of
the centroids in set are the same as those in In this case the reducer outputs the finally clustered
sub-clusters denoted by Clusteri.

3.2 The Selection of Initial k with Stochastic Sampling and Merging

As each CIM data can be represented by V, the parallel K-means considers each point V as a centroid
of one cluster, which only contains the point itself. Stochastic Sampling and Merging (SSM) is used to
define a threshold distance r to determine if the distance of two points from different clusters is less
than r, then the two clusters can be merged. Therefore in order to measure the distances of two points,
Euclid distance (d) is used. Based on the following equations SSM determines if two clusters contain
two points that should be merged.

If d≤r, merge

If d>r, ignore

 The selection iteration process continues working until the distance d between any two points is less
than the threshold r, the iteration is terminated. The un-clustered points can be clustered based on the
minimum distance between each point and the centroid of a certain cluster using Euclid distance. The
centroid c of a cluster is represented by Eq.(2).

 (2)

where m represents the number of points in the cluster and n represents the length of point.

The computation process in k selection can compute the number of clusters and the centroids of

each cluster. However, the computation is a time consuming process as it needs to traverse all the

points for calculating the distances. To speed up the computational process, SSM also uses sampling

to reduce the size of data. Therefore, SSM can determine the initial values of k and centroids using Eq.

(2).

The algorithm terminates when:

where is threshold for terminating the algorithm.

3.3 Parallelizing CIM Verification

 Based on the algorithm proposed above, the CIM data can be clustered into a number of sub-

clusters, in which contains the points highly related to each other. This design firstly can facilitate the

usage of categorized CIM data for different types of application systems. And secondly it potentially

reduces the loading times of schema files for data verification since ideally only one kind of schema is

needed for one cluster minimally.

 In each sub-cluster, the verification works in the following way. Let Di represent the data size of

CIM data with similar points in cluster i. Therefore each mapper of a Hadoop cluster can take each Di

as input. And also in terms of verification, a pre-designed schema file which can verify Di is fed into

the mapper too. As a result, the input data is read and verified using the corresponding schema file.

The intermediate output of mappers is in the form of <point ID, verification result> key-value pair. At

last reducer merges all the outputs copied from mappers and outputs the final results using <point ID,

verification result> pairs in a final result list. There is one exception that if one CIM point is

incorrectly clustered, the algorithm starts loading the other schema files and tries to verify it. Among

the extra loaded schemas, if one schema verifies the CIM point to be correct, the verification result is

labeled as correct. Contrarily, if no schema file reports the correctness of the CIM point, then the result

will be labeled with an incorrect tag. Fig.2 shows the dataflow of the parallel CIM verification

process.

Input data

SSM

Distributed k-means

Subclusters with different

catalogs

CIM verification

If schema match

data?

Algorithm termination

Yes

No

Load the other

schemas

K, centroids

Fig.2. The workflow of parallel CIM verification.

4. Improving the Parallel K-Means Performance with Load Balancing

 The CIM verification can be conducted in parallel in a Hadoop MapReduce cluster. One critical

issue with Hadoop MapReduce is its lack of sufficient load balancing schemes in utilizing

heterogeneous computing resources. This section presents a load balancing scheme to further improve

the performance of the parallel K-means in computation [33].

The MapReduce based verification involves a number of mappers, however, only one reducer is

needed as all results are generated in one file. And also the most time consuming verifying

computations are carried out by the mappers. Therefore load balancing is mainly focused on the

mapper processing phase. In Hadoop framework the total time (T) of a mapper consists of the

following four parts:

 Data copying time (tc) in copying a data chunk from Hadoop distributed file system to local

hard disk. It depends on the available network bandwidth and the writing speed of hard disk.

 Processor running time (tp) in processing a data chunk.

 Intermediate data merging time (tm) in combining the output files of the mapper into one file

for reduce operations.

 Buffer spilling time (tb) in emptying filled buffers.

Therefore:

 (3)

Let

 be the size of the data chunk.

 be the writing speed of hard disk in MB/second.

 be the network bandwidth in MB/second.

 be the speed of the processor running the mapper process in MB/second.

 be the size of the buffer of the mapper.

 be the ratio of the size of the intermediate data to the size of the data chunk.

 be the number of frequencies in processing intermediate data.

 be the number of times that buffer is filled up.

 be the volume of data processed by the processor when the buffer is filled up.
 s be the sort factor of Hadoop.

We have:

Here tc depends on the available resources of hard disk and network bandwidth. The slower one of

the two factors will be the bottleneck in copying data chunks from Hadoop distributed file system to

the local hard disk of the mapper.

When a buffer is filling, the processor keeps writing intermediate data into the buffer and in the

mean time the spilling process keeps writing the sorted data from the buffer to hard disk. Therefore the

filling speed of a buffer can be represented by . Thus the time to fill up a buffer can be

computed by

. As a result, for a buffer to be filled up, the processor will generate a volume of

intermediate data with the size of which can be computed using Eq.(6).

The total amount of intermediate data generated from the original data chunk with a size of is

 . Therefore the number of times for a buffer to be filled up can be computed using Eq.(7).

The time for a buffer to be spilled once is

, therefore the time for a buffer to be spilled for times

is

. Then we have:

The frequencies in processing intermediate data can be computed using Eq.(9).

When the merging occurs once, the whole volume of intermediate data will be written into the hard

disk causing an overhead of

. Thus if the merging occurs times, the time consumed by hard

disk IO operations can be represented by

. We have

The total time to process data chunks in one processing wave in MapReduce Hadoop is the

maximum time consumed by participating mappers, where

According to divisible load theory, to achieve a minimum , it is expected that all the mappers

to complete data processing at the same time:

 In terms of solving the functions above, genetic algorithm is employed. For measuring the

differences of Ti, we use mean square errors to build the fitness function.

Let

 be the processing time for the mapper.

 be the average time of the number of mappers in data processing,

Therefore the fitness function can be represented by Eq.(11).

 5. Experimental Results

To evaluate the performance of the parallel K-means clustering, a Hadoop cluster was built
consisting of 3 computer nodes. The details of the experimental environments are presented in Table 1.

Table 1: Hadoop cluster.

Standalone node CPU Corei3-2120@3.3GHz

MEM 8GB

HDD 500GB

OS Fedora12

Namenode CPU Core2-P7750@2.6GHz
MEM 5GB
HDD 160GB
OS Fedora12

Datanode1 CPU Corei3-2120@3.3GHz
MEM 8GB
HDD 500GB
OS Fedora12

Datanode2 CPU Corei7-4770K@3.5GHz
MEM 32GB
SSD 256GB
OS Fedora12

5.1 Evaluating Sequential K-Means

The Iris data which is a published machine learning benchmark dataset [32] was used to evaluate the
precision, stability and efficiency of the SSM based sequential K-means in clustering.

5.1.1 Precision

SSM uses stochastic sampling and a threshold r, tests were conducted to find out how the volume of

the sampling data and the value of r impact performance of the standalone K-means in clustering. The

clustering precision p can be computed using

, where d' represents the number of correctly

clustered data and d represents the total number of correct data. In the first test we duplicated the

volume of data from 4KB to 312MB. The sampling rate was set to 10% and r was set to 0.79. Fig.3

shows that when the data size is small, the precision is low using sampling. However, The precision

increases with an increasing size of data. When the data size is larger than 2500kB, the precision stays

at 70%. As shown in Fig.4, a larger sampling rate can generate a higher precision in clustering.

Fig.5 shows the impact of r on the precision. In the two tests the values of r were respectively set to
0.30 and 3.00 and sampling rate was set to 10%. Firstly at the point of 20KB, it can be seen that the
precision sharply jumps from 4% to 31%. When the volume of sampled data is not large, the distances
of sampled points may not be close enough, thus a larger r can help to cluster points with large
distances. As the sampled data becomes saturated, a larger r may merge more points which should have
been separated.

0

10

20

30

40

50

60

70

80

4 20 100 500 2500 12500 62500 312500

P
re

ci
si

o
n

 (
%

)

Data size (KB)

0

10

20

30

40

50

60

70

80

4 20 100 500 2500 12500 62500 312500

P
re

ci
si

o
n

 (
%

)

Data Size (KB)

Sampling Rate5% Sampling Rate20%

Fig.3. The precision of SSM.

Fig.4. The impacts of sampling rates.

5.1.2 Stability

 SSM is used to select the initial centroids and number of clusters. SSM was evaluated in

comparison with standard K-means and K-medoids. As there are 3 clusters in the original data set,

thus k was set to 3 for the two algorithms. For SSM, the sampling rate was set to 10% and r was set to

0.79. The testing data was duplicated to 100KB. The experimental results are shown in Fig.6. It can be

observed that due to the randomly initial centroids and medoids selection, both standard K-means and

K-medoids algorithms fluctuate in performance with varied precisions. Contrarily, when a proper

value of r is given, SSM is stable in all the 10 execution runs.

 SSM involves iterations and samples to find the target centroids, Fig.7 shows the convergence of

SSM. This test evaluated the merging speed of SSM in K-means clustering. It shows that during 5-

execution runs, the number of clusters can converge to a stable number which can successfully

determine the number of sub-clusters.

0

10

20

30

40

50

60

4 20 100 500 2500 12500 62500 312500
P

re
ci

si
o
n

 (
%

)

Data Size (KB)

r=0.3 r=3.0

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

 (
%

)

Execution runs

K-means SSM K-medoids

Fig. 5. The impact of r.

Fig.6. The stability of the clustering algorithms.

5.1.3 Computation Efficiency

A number of tests were conducted to evaluate the efficiency in computation, this test conducted a

series of figures to show the algorithm performances. Fig.8 shows the increasing overhead with an

increasing data size. It also indicates that the overhead of SSM increases with a sampling rate

increasing from 1% to 10% whilst r was set to 0.79.

As discussed, theoretically SSM needs to traverse all the points within clusters to measure if two
clusters need to be merged, which causes its large computational overhead. However, in the actual
execution, when the distance of two points belonging to two clusters is close enough, the two clusters
are merged. Therefore the overhead is reduced. From Fig.9 it can be observed that a larger data size
contrarily has a lower ratio in decreasing overhead.

0

20

40

60

80

100

120

140

160

1 2 3 4 5

N
u

m
b

er
 o

f
cl

u
st

er
s

Merging runs

0

100

200

300

400

500

600

700

800

4 20 100 500 2500 12500 62500 312500

O
v
er

h
ea

d
 (

s)

Data Size (KB)

SR=1% SR=5% SR=10%

0

1

2

3

4

5

6

7

8

9

R
at

io

Data Size(2)/Data Size(1)

Fig.7: The convergence of SSM.

Fig.8. SSM efficiency in computation.

Fig.9. Decreasing ratio.

Fig.10 shows SSM is slower than both standard K-means and k-medoids due to the time consumed
in traversing the clusters for merging.

Fig.10. A comparison in computation overhead.

5.2 Evaluating Parallel K-means in CIM Verification

In this section, we evaluate 3 CIM data verification methods. The first one is the MapReduce based
parallel K-means verification. The second one is the standalone K-means verification using a single
computer. The last one is the standalone CIM verification without clustering and the verification was
carried out on a single computer as well. Two CIM dataset were designed. The instances in the first
dataset belong to 3 obviously separable clusters. Contrarily the instances in the second dataset belong to
3 clusters but two of them are not obviously separable from each other. The sizes of both datasets were
varied from 16MB to 512MB.

Fig.11 shows the efficiency of the 3 CIM data verification methods in dealing with the obviously
separable dataset. It indicates that the parallel K-means verification achieves the best performance in
computation whereas the CIM verification without clustering is the slowest one in computation. Due to
less IO operations, the standalone K-means for CIM verification is faster than the CIM verification
without clustering. Fig.11 also shows that the MapReduce based parallel CIM verification cannot
achieve the highest efficiency when the data size is less than 128MB. The reason is due to the
initialization overhead of the Hadoop framework. The parallel CIM verification starts increasing speed
in computation when the size of data gets large.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

O
v
er

h
ea

d
 (

m
s)

Execution runs

K-means SSM K-medoids

0

500

1000

1500

2000

2500

3000

16 32 64 128 192 256 320 384 448 512

E
ff

ic
ie

n
cy

 (
s)

Data Size (MB)

MR-Based Standalone Without Clustering

Fig.11. Computation efficiency on the first dataset.

Fig.12 shows the computation efficiency of the 3 algorithms in dealing with the dataset in which 2
clusters are not obviously separable. As expected, the MapReduce based parallel verification performs
similarly on different types of data.

5.3 Simulation Results

We have developed HSim [9], a Hadoop simulator for simulating large scale Hadoop cluster

environments. Him was used to further evaluate the performance of the MapReduce based parallel K-
means clustering in CIM data verification from the aspects of scalability and load balancing.

5.3.1 Scalability

In order to evaluate scalability, two sets of simulations were designed for homogeneous Hadoop

environments. In the first set of simulations, the data size was set to 5120MB while the number of
Hadoop nodes was varied. In the second set of simulations, the number of Hadoop nodes was set to 20
with a varied size of data. In the simulations, each node was configured with 2 mappers and 1 reducer.
The simulation results are shown in Fig.13a and Fig.13b.

0

500

1000

1500

2000

2500

3000

16 32 64 128 192 256 320 384 448 512

E
ff

ic
ie

n
cy

 (
s)

Data Size (MB)

MR-Based Standalone Without Clustering

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 6 8 10 12 14 16 18 20

O
v
er

h
ea

d
(s

)

Number of nodes

Fig.12. Computation efficiency on the second dataset.

a. The impact of the number of nodes.

Fig.13. Algorithm scalability.

 Fig.13a clearly indicates that the algorithm gains better efficiency with an increasing number of
Hadoop nodes. It is worth noting that when the number of nodes increases to a certain value, the
efficiency cannot be improved greatly. The reason is that when the number of nodes is small, a small
number of mappers are assigned which causes a large number of processing waves. Contrarily, when
the number of nodes is large, a large number of mappers can be assigned which results in a small
number of processing waves. For example, consider using 2 nodes with 4 mappers (each mapper deals

with 64MB data once) to process 512MB data. Theoretically

 waves are needed. However, if 4

nodes with 8 mappers are offered, the wave number equals

 . Moreover, if 6 nodes with 12

mappers are used to process 512MB data, due to 8 out of 12 mappers are enough for dealing with the
data so that still one wave is needed whilst 4 mappers are kept running idle. Fig.13b shows the
computation overhead increases linearly with an increasing size of data.

5.3.2 Load Balancing

To evaluate the load balancing algorithm, a cluster with 20 nodes was simulated. Each node had one

processor with two cores, simultaneously the number of mappers equals to the number of processor

cores. The speeds of the processors were generated based on the heterogeneities of the Hadoop cluster.

Considering the total processing power of the cluster is

 where n represents the number

of the processors employed in the cluster and represents the processing speed of the i
th

processor.

For a Hadoop cluster with a total computing capacity , the levels of heterogeneity of the Hadoop

cluster can be defined using Eq.(12).

 The heterogeneity of the first simulation was 0.27. The nodes' details are listed in Table 2.

 Three scenarios were simulated including homogeneous environment, heterogeneous environment

with load balancing and without load balancing. The simulation results are shown in Fig.14 which

indicates that the unbalanced algorithm works the worst. When the data size reaches to 2GB, the

executing time sharply increases above 6000 seconds. The reason is that in a simulated Hadoop cluster

with a heterogeneity of 0.27, some extremely slow nodes may exist in the cluster. When they are

assigned with tasks, these slow nodes may take an extremely long period of time. If the data size is not

enough for example 1GB in this case, the slow nodes may not have chance to join the processing thus

the job may finish with a high efficiency. This phenomenon greatly impacts the cluster performance.

0

200

400

600

800

1000

1200

1400

O
v
er

h
ea

d
(s

)
Data size (MB)

b. The impact of data size.

Table 2 : Heterogeneity specification

Nodes Simulated speed(MB/s)

Node 1 0.065

Node 2 0.582

Node 3 0.757

Node 4 0.651

Node 5 0.058

Node 6 0.099

Node 7 0.819

Node 8 0.221

Node 9 0.183

Node 10 0.010

Node 11 0.570

Node 12 0.012

Node 13 0.189

Node 14 0.027

Node 15 0.496

Node 16 0.638

Node 17 0.163

Node 18 0.043

Node 19 0.103

Node 20 0.205

Fig.14 also indicates that the parallel K-means works best in the homogeneous environment as the
load balancing scheme itself also causes some overhead in computation.

Fig.15 shows the convergence of the genetic algorithm. The result turns stable around 500 iterations.
Fig.16 reveals the impact of heterogeneity on the performance of the parallel K-means. It can be
observed that when the heterogeneity is small, the balanced verification algorithm takes more time
because of the overhead of the genetic algorithm. However, the balanced algorithm outperforms the
unbalanced one with an increasing value in heterogeneity.

0

1000

2000

3000

4000

5000

6000

7000

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

O
v
er

h
ea

d
(s

)

Data size (MB)

Homogeneous Balanced Unbalanced

Fig.14. Load balancing among 20 nodes.

.

5. Conclusion

In this paper we have presented a MapReduce based parallel K-means for large scale CIM data
verifications. By partitioning the CIM data into smaller subsets, the parallel K-means clustering reduces
the computation time significantly compared with a standalone sequential K-means clustering method.
We introduced a genetic algorithm based load balancing scheme to balance the workloads among
MapReduce computing nodes to optimize the performance of the parallel K-means in CIM data
verification.

Acknowledgment

The authors would like to appreciate the support from National Science Foundation of China (No.
51437003).

References

[1] EMS-API Work Group of National Power System Control and Communication Committee, “Introduction of

the 4th EMS-API interoperability test,” Automation of Electric Power System, vol. 28(16) , pp.1-3, 7, 2004.

[2] Y. Pan and J. Zhou, "Interoperability test based on common information model," Power System
Technology, vol. 10, pp. 25-28, 2003.

[3] M. Ding, Z. Zhang and R. Bi, "Distributed Generation System Oriented CIM Extension," Automation of
Electric Power Systems, vol.32(20), pp.83-87, 2008.

[4] P. Mao, Y. Li, J. Li, Y. Chen and L. Shuai, "Research on framework of CIM conformance test based on
OSI architecture," Advanced Technology of Electrical Engineering and Energy, vol. 32(2),pp. 8-71, 2013.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

1
0

0
1

1

1
0

1

1
2

0
1

1

3
0

1

1
4

0
1

1

5
0

1

1
6

0
1

1

7
0

1

1
8

0
1

1

9
0

1

O
v
er

h
ea

d
(s

)

Generations

0

1000

2000

3000

4000

5000

6000

7000

0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27

O
v
er

h
ea

d
(s

)

Heterogeneity

Balanced Unbalanced

Fig.15. Convergence of genetic algorithm.

Fig.16. The impact of heterogeneity.

[5] N. B. Hargreaves, S. M. Pantea, A. Carter and G. A. Taylor, "Foundations of a Metamodel Repository for
Use With the IEC Common Information Model," IEEE Transactions on Power Systems, vol. 28, no. 4, pp.
4752-4759, 2013.

[6] H. B. Sun, L. Peng, B. Zhang and W. Wu, "Design of A Hierarchical Network Remodeling System based on
IEC61970 for Electrical Power Control Centers in China," in Proceedings of Power and Energy Society
General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-6, 2008.

[7] G. Ravikumar, Y. Pradeep and S. A. Khaparde, "Graphics Model for Power Systems Using Layouts and
Relative Coordinates in CIM Framework," IEEE Transactions on Power Systems, vol. 28, No. 4, pp. 3906-
3915, 2013.

[8] A. Mercurio, A. D. Giorgio and P. Cioci, "Open-Source Implementation of Monitoring and Controlling
Services for EMSSCADA Systems by Means of Web Services— IEC 61850 and IEC 61970 Standards,"
IEEE Transactions on Power Delivery, vol. 24, No. 3, pp. 1148-1153, 2009.

[9] Y. Liu, M. Li, N. K. Alham and S. Hammoud, "HSim: A MapReduce simulator in enabling Cloud
Computing," Future Generation Comp. Syst. vol. 29, no. 1, pp. 300-308, 2013.

[10] Y. Liu, M. Li, S. Hammoud, N. K. Alham and M. Ponraj, "A MapReduce based distributed LSI," in:
Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2978–
2982, 2010.

[11] J. Dean, S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communications of the
ACM, vol. 51, pp.107–113, 2008.

[12] Apache Hadoop, http://hadoop.apache.org (last accessed: 10.01.2014).

[13] J. Venner, Pro Hadoop, Springer, USA, 2009.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju and T. Wang, "Mars: a MapReduce framework on graphics
processors," in: Proceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques, PACT, pp. 260–269, 2008.

[15] K. Taura, K. Kaneda, T. Endo and A. Yonezawa, "Phoenix: a parallel programming model for
accommodating dynamically joining/leaving resources," ACM SIGPLAN Notices, vol.38 (10), pp.216–229,
2003.

[16] A. S. Memon, M. S. Memon, P. Wieder and B. Schuller, "CIS: An Information Service based on the
Common Information Model," Third IEEE International Conference on e-Science and Grid Computing, pp.
465-472, 2007.

[17] L. Field, S. Andreozzi, "Grid Information System Interoperability The Need For A Common Information
Model," Fourth IEEE International Conference on eScience, pp.501-507, 2008.

[18] J. Ranzhe1, "Research Framework on Enterprise Common Information Model oriented Network
Cooperation," 2008 International Symposium on Computer Science and Computational Technology, pp.
422-426, 2008.

[19] X. F. Wang, N. N. Schulz and S. Neumann, "CIM Extensions to Electrical Distribution and CIM XML for
the IEEE Radial Test Feeders," IEEE Transactions on Power Systems, vol. 18, No. 3, pp. 1021-1028, 2003.

[20] C. Sinz, A. Khosravizadeh, W. Kuchlin and V. Mihajlovski, "Verifying CIM Models of Apache Web-Server
Configurations," in Proceedings of the Third International Conference On Quality Software, pp. 290-297
2003.

[21] M. Ding, T. Xie and L. Wang, "Research of Real-Time Database System for Microgrid," 2nd IEEE
International Symposium on Power Electronics for Distributed Generation Systems, pp. 708-712, 2010.

[22] N. K. Alham, M. Li and Y. Liu, "Parallelizing multiclass support vector machines for scalable image
annotation," Neural Comput & Applic. vol. 24(2), pp. 367-381, 2014.

[23] Y. Liu, M. Li, N. K. Alham, S. Hammoud and M. Ponraj, "Load Balancing in MapReduce Environments for
Data Intensive Applications," FSKD 2011, pp. 2675-2678, 2011.

[24] X. Fan, H. Zhang, W. Hao and S. Zhao, "Metadata of Database Based Pre-Process For Watermarking," 4th
IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), pp.232 -
234, 2011..

[25] DOM4J, http://www.dom4j.org/, last accessed: 11/03/2014

[26] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian and J. Majors, A. Manzanares, and X. Qin, "Improving
MapReduce performance through data placement in heterogeneous Hadoop clusters," IEEE International
Symposium on parallel & distributed processing symposium, pp. 1-9, 2010.

[27] http:// dom4j.sourceforge.net, last accessed: 11/03/2014

[28] Y. Fan, W. Wu, H. Cao and H. Zhu, "LBVP: A load balance algorithm based on Virtual Partition in Hadoop
cluster," Cloud Computing Congress (APCloudCC), pp. 37-41, 2012.

[29] K. Fan, D. Zhang, H. Li, and Y. Yang,"An Adaptive Feedback Load Balancing Algorithm in HDFS," 5th
International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 23-29, 2013.

[30] Y. Wei, X. Yuan and B. Malin, "Scalable and robust key group size estimation for reducer load balancing in
MapReduce," IEEE International Conference on Big Data, pp. 156-162, 2013

[31] Y. Liu, M. Li, M. Khan and M. Qi, "A Mapreduce Based Distributed Lsi For Scalable Information
Retrieval," Computing and Informatics, vol. 33, no. 2, pp. 259-280, 2014.

[32] The Iris Dataset, https://archive.ics.uci.edu/ml/datasets/Iris

[33] Y. Liu, A Resource Aware Distributed LSI Algorithm for Scalable Information Retrieval, PhD Thesis,
Brunel University, UK, 2011.

[34] N. K. Alham, Parallelizing Support Vector Machines for Scalable Image Annotation, PhD Thesis, Brunel
University, UK, 2011.

[35] N. K. Alham, M. Li, Yang Liu, S. Hammoud, M. Ponraj, "A distributed SVM for scalable image
annotation", Proceedings of the 8

th
 International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD), pp. 2655-2658, 2011.

