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Abstract

An h-adaptive finite element code for solving coupled Navier-Stokes and energy equations
is used to solve the thermally driven cavity problem. The buoyancy forces are represented
using the Boussinesq approximation. This problem is characterised by very thin bound-
ary layers at high values of Rayleigh number (> 10%). However steady state solutions
are achievable with adequate discretisation. This is where the auto-adaptive finite ele-
ment method provides a powerful means of achieving optimal solutions without having
to pre-define a mesh, which may be either inadequate or too expensive. Steady state and
transient results are given for six different Rayleigh numbers in the range 10? to 10% for
a Prandtl number of 0.71. The use of h-adaptivity, based on a-posteriori error estimation
is found to ensure a very accurate problem solution at a reasonable computational cost.

1 Introduction

Thermally driven cavity flow has been used to validate computer fluid flow models for
the last two decades, it is also an important flow problem in its own right. Simulating a
large horizontal temperature difference across a vertical cavity has applications in nuclear
reactor insulation, double glazing, predicting fire spread in buildings and dispersion of
heat in estuaries. The thermal cavity problem has been extensively studied and solved for
Prandtl number of 0.71 (corresponding to an air filled cavity ) over a range of Rayleigh
numbers in a steady state [1 4], and transient manner [5 7]. Several researchers have
solved this problem using Pr = 1.0 [8 10], however Patterson and Imberger [11] determined
that the steady state result is independent of the Prandtl number, but the transient
behaviour and hence the approach to steady state, is not. De Vahl Davis [1] invited
researchers to submit solutions of the thermal cavity problem using Pr = 0.71. A complete
set of results is available for comparison of flow data at Rayleigh numbers from 10° to 10°.
De Vahl Davis concluded that, for a given problem and solution technique, mesh density
controlled the accuracy of the results.



He also concluded that although there were accurate contributions from both the FEM
and FDM the former was by and large the better, giving better results at higher Rayleigh
numbers. De Vahl Davis also recommends that further work be conducted on the selective
refinement of the mesh in the region of the boundary layers, stressing that this would be
important for high Rayleigh numbers.

Finally he reports that Upson et al, who produced one of the best solutions, used the
finite element method and had taken care to provide a high density of grid points in the
wall and corner regions of the cavity.

Solutions have been obtained for Rayleigh numbers of 107 and 10® by a number of authors,
for instance [3,5,12 14], but the volume of published results is considerably less than for
the lower Rayleigh number cases. Solutions for Rayleigh numbers 10% to 10% will he
presented in this paper and compared with the existing results.

2 Governing equations

The governing equations have been written for a constant density, incompressible Newto-
nian fluid using the Boussinesq approximation to model buoyancy.

Continuity
V-v =10 (1)
where v represents the velocity.
Navier-Stokes
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subject to boundary conditions:
F = Pn—yu|Vv+(Vv)]n (3)
v = V(r,y1) (4)
and initial conditions:
v(t=0)=v, with V-ve =0 (5)



i 1s the dynamic viscosity, g is the acceleration due to gravity, 3 is the volumetric co-
efficient of thermal expansion, T' is the temperature, T, is a reference temperature, F
represents the applied tractions on the boundary and n is the unit normal vector.

Fnergy
aT
—+v-VT = VkVT (6)
ot
subject to boundary conditions:
n-(5VT) = g (7)
T = T(r,y1) (8)
and initial conditions:
T(t=0)="T, (9)

K = (10)

where, k is the thermal conductivity, p is the fluid density and O, is the specific heat
capacity.

2.1 Finite Element Formulation

The program is based on the Galerkin Finite Element Method (GFEM), solving for the
primitive variables: U-velocity, V-velocity and T-temperature at all nodes in the mesh
and P-pressure at a reduced level of interpolation to avoid spurious pressure modes, using
a mized formulation for the Navier-Stokes equations. The Navier-Stokes and energy equa-
tions were coupled by the Boussinesq approximation for buoyancy. Notation used here is

as used by Gresho et al, [8,15]. The Galerkin FEM discretisation produces a system of
ODE’s as follows:

Navier-Stokes
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The first to third rows represent the z-momentum, continuity and y-momentum equation
respectively. The right hand side vector F,, contains the coupling buoyancy term.

Fnergy

Mz ](T) + [Kr](T) = (Fr)

Expansion of all terms can be found in Usmani et al [16]. The two systems of equations
above are solved as a coupled system, with the K term containing the velocities (obtained
from solving the flow field) and the Fy term containing the buoyancy forces (determined
by the temperature field).

2.2 Temporal discretisation

Temporal discretisation of the time domain is achieved by applying the generalised mid-
point rule, [17,18].
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(11)

Variation of a leads to different members of this family of methods i.e.

a = (0 -Forward Difference or Forward Fuler.

o = 15 -Midpoint rule or Crank Nicolson.

o = % -Galerkin.

a = 1 -Backward Difference or Backward Fuler.

The Crank Nicolson, Galerkin and Backward Fuler schemes are all unconditionally stable,
however, of these methods the oscillation limit is lowest for o = 15 A larger time step
size chosen for Ra — 10% to 107 constrains the choice of a to % The time step size
for Ra = 10% is chosen to he small enough to avoid an oscillatory solution when using
o= 15 The choice of unconditionally stable implicit methods is enforced by the use of h-
adaptivity as the smallest elements determine the stability of conditionally stable explicit

methods, which makes them impractical for use in this context.

The formulations described above were implemented in the implicit transient FE code
CADTRAS (Coupled Advective Diffusive TRAnSport model), which was used to solve
the thermally driven cavity problem. The code incorporates an unstructured Delaunay
triangulation based mesh generator [19], which allows automatic adaptive re-meshing to
take place at each time step if necessitated by the a-posteriori error estimation algorithm.
Six-node triangular elements are used for all the meshes.



3 Adaptivity

The use of h-adaptivity enables the solution of this problem at high Rayleigh number with-
out the necessity of designing a suitable mesh at first and going through a trial-and-error
process. Adaptivity automatically produces an optimal mesh based on a user specified
discretisation error thus saving computational time and focusing effort intelligently over
successive time steps on areas of high scalar gradients (which for this problem coincide
with the areas of high velocity gradients). There are five distinct steps to the iterative
adaptive process used here :

1. Solution of the coupled system

2. Recovery of smoothed scalar gradients using the super-convergent patch recovery

(SPR) method [20]

3. Error Estimation using the a-posteriori error calculated at all nodes in the mesh for
the scalar field

4. Re-meshing based on the mesh sizes produced from the previous step

5. Transfer of all data to the new mesh

Recovery

The temperature field generated by the finite element method is most accurate at nodal
points whereas the temperature gradients are most accurate at (Gaussian integration
points, known as the super-convergence phenomenon. Hinton and Campbell [21] showed
that finite elements produce superior values of temperature gradient at node points after
application of a smoothing procedure. Their method was based on a global smoothing
scheme requiring the solution of a large system of equations. A more efficient and effec-
tive procedure was introduced by Zienkiewicz and Zhu [20], called super-convergent patch
recovery (SPR). The smoothed nodal gradients are calculated from the Gauss points on a
patch of elements surrounding a node, using a least squares interpolation, for each node
in the mesh.

Frror Fstimation

The error estimator used was originally derived for heat conduction [22]. Mathematical
justification of using such an estimator for the problem of this paper does not exist,
however as the estimator used is based on the scalar flux, it has proven very effective in
detecting regions of high scalar gradient, which in practice is sufficient for the purposes
of this paper. The a-posteriori error is based upon an energy norm (see [22]),

lel]? = / (VT wVTdQ — / (VI VT (12)
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if we define,

Q1> = ./Q(VT)TH,VT(JQ

1QIF = [ (V1) wvTd0 (13)
Ja
then Equation (12) can be rewritten as

el = 1QI — QI (14)

Such a definition allows a practical representation of the error norm in terms of a per-
centage error ),
_ el

— — x100% 15
U TToTR (15)

Re-meshing and mesh generation

Specification of a permissible error n determines the level of refinement throughout the
mesh, leading to a predicted reduction or increase in the element sizes so that the new
mesh may possess an approximately equal distribution of error. The maximum permissible
error for each element is calculated as,

fll, = n(@)% (16)

where m is the number of elements, 1 is the specified maximum percentage error. Dividing

||é]|. by the calculated error in an element yields a parameter & as follows,

ge = s (]7)

i.e. if & > 1 the mesh must be refined in the vicinity of element e, conversely, if £, < 1
the mesh may be coarsened. The new element size is calculated using,

h
h, = — (18)

L
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where h. is the original element size and p is the order of the element shape functions.

Mesh data transfer

Ensuring proper transfer of variables between meshes is crucial for conservation of quan-
tities such as energy and momentum. A transfer strategy using local coordinates of nodal
points and elemental shape functions has been used that maps the mesh data accurately.
The local coordinates (¢ — 1) of each node in the adapted mesh are determined with re-
spect to the elements of the previous mesh. FElement shape functions are then used to
interpolate the data onto the new mesh nodes.



4 The thermally driven cavity benchmark problem

The problem involves modelling fluid flow in a two dimensional square cavity of typical
dimension . with the two vertical walls being maintained at a temperature difference
of AT (see Figure 1). The top and bottom walls are insulated and the velocities at all
boundaries set to zero. The fluid inside the cavity is initially at rest and at a temperature
which is the mean of the temperatures on the vertical walls.

u=0 dT/dy=0
v=0
A
T=AT/2 T =-AT/2
-}
u=0 u=0
v=0 v=0
\/

u=0 dT/dy =0
v=0
Figure 1: Boundary conditions for thermal cavity benchmark problem

The steady state flow and heat transfer in the thermal cavity is characterised by the
Rayleigh number

ATIL?

VK

Ra = gp

(19)

The following non-dimensional groups are used in the analysis and presentation of the
computational results:

Velocity
1
w o= o (20)
K
L
vt = 2 (21)
K



Temperature

T =T,

= (22)
Coordinates

- ; (23)

vy o= 7 (24)
Time

7= ’;Z (25)

where * indicates the the non-dimensional quantity. 77 and T, are the fixed temperatures
at the two side walls of the cavity.

The Nusselt number is calculated at each node in the domain using

Nu = uT — Z—T (26)

r

where the temperature gradient is obtained by the gradient recovery process.

5 Results

The spacing between the isotherms at the sides of the cavity decreases with increasing
Rayleigh number. The high level of mesh refinement in this area allows the thin bound-
ary layer to be captured accurately, avoiding any oscillations that can be generated when
modelling steep temperature gradients without adequate discretisation. A uniformly dis-
tributed mesh with the ‘same’ number of elements will be inadequate to model large
changes in temperature at the boundary and will produce an oscillatory solution. At high
Rayleigh numbers (> 10°) a convergent solution may not be possible at all. Figure 2
shows the top half of the cavity for four different dimensionless times. It can be seen that
the mesh adapts to follow the high temperature gradient front as it passes the departing
corner. The refinement of the mesh around the side walls at ¢+ = 0.0001 (Figure 2(a)) is
due to a pre-adaptive loop where the mesh is refined based on the the initial conditions.

Figure 3 shows plots of velocity and temperature along the centre line of the cavity (y = 0)
for each Rayleigh number at steady state. The figure clearly shows that mesh refinement
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Figure 2: Mesh development for Ra = 10%.
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(a) Plot of velocity on y = 0.5 near boundary
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(b) Plot of temperature on y = 0.5 near boundary

Figure 3: Velocity and temperature near the vertical boundary
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Parameter | Description
Uas Maximum horizontal velocity on vertical mid plane of cavity
Yy y-coordinate position of maximum horizontal velocity on vertical mid plane
Vi Maximum vertical velocity on horizontal mid plane of cavity
X x-coordinate position of maximum vertical velocity on horizontal mid plane
Nug Average Nusselt number on the vertical boundary = =0
Nty Maximum Nusselt number on the vertical boundary 2 = 0
Yy y-coordinate position of maximum Nusselt number on vertical boundary = = 0
Ntmin Minimum Nusselt number on the vertical boundary = =0
Yy y-coordinate position of minimum Nusselt number on vertical boundary = = 0

Table 1: Measured parameters

based only upon the temperature gradients is appropriate for this problem as the steep
velocity gradients occur in the same locations as the steep temperature gradients.

Figures 4 to 9 show the mesh, velocity vectors, pressure field and isotherms for each
Rayleigh number at steady state.

Table 2 shows results obtained for the six Rayleigh numbers investigated. The parameters
presented are described in table 1.

Ra — 10% to 10°

The results for all the values measured are very close to the accurate results obtained
by De Vahl Davis [4], only deviating slightly at 10°. The error between De Vahl Davis’
solution and the adaptive FEM results have been calculated and presented in table 3, in
the manner presented in reference [1].

Ra — 107 to 108

Established benchmark solutions analogous to the lower Rayleigh number results do not
exist for the higher Rayleigh number problems. However, several researchers have solved
the thermally driven cavity problem for 107 and above. Table 4 shows the comparison of
the adaptive FEM results with others for the Rayleigh number of 107. Again the adaptive
FEM results compare well with other solutions both in the magnitude of velocity and
heat transfer rates but also with the locations of the maximum and minimum values. A
similar comparison is shown in Table 5 for Rayleigh number 10%, the same conclusions

apply.
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pressure contours for a Rayleigh number of 10%



6 Conclusion

A full set of results has been produced for the thermally driven cavity problem at Rayleigh
numbers of 10 to 10%. The use of h-adaptivity ensures a very accurate solution to this
problem at a reasonable computational cost. A pre-adaptive step, adapting the mesh on
the basis of the fixed temperature boundary conditions, allows the thin boundary layers
to be captured effectively from the very beginning. The results presented compare well
with existing transient and steady state solutions both qualitatively and quantitatively.
For highly advection dominated problems, such as the high Rayleigh number cases of the
thermally driven cavity, h-adaptivity fulfils another very important function, in addition
to the vital task of providing optimal meshes. This function is related to the deficiency
of standard Galerkin finite element method (analogous to centred difference FDM) in
solving flow and transport problems where advection is the dominant mechanism. Many
special techniques exist in order to address this deficiency, such as the SUPG method [23]
and the Taylor-Galerkin method [24]. However Gresho and Lee [25] have shown that the
oscillations that result from using GFEM in advection dominated problems are strongly
related to inadequate spatial discretisation. Usmani [26] showed conclusively that for
transient solution of advection dominated problems this was indeed the case and the
discretisation produced by using h-adaptivity made it unnecessary to use any special
schemes for advection dominant problems. This finding is confirmed by the results of this
paper, where all results have been produced using simply honest GFEM. In the opinion
of the authors, this fact makes it doubly attractive to use this method.
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