
Distinguishing Sequences for
Distributed Testing: Adaptive

Distinguishing Sequences

Robert M. Hierons1 and Uraz Cengiz Türker2

1Department of Computer Science, Brunel University London, UK.
2Faculty of Engineering and Natural Sciences, Sabanci University, Turkey

Email: rob.hierons@brunel.ac.uk, urazc@sabanciuniv.edu

This paper concerns the problem of testing from a finite state machine (FSM) M
modelling a system that interacts with its environment at multiple physically
distributed interfaces, called ports. We assume that the distributed test
architecture is used: there is a local tester at each port, the tester at port p only
observes events at p, and the testers do not interact during testing. This paper
formalises the notion of an adaptive test strategy and what it means for an adaptive
test strategy to be controllable. We provide algorithms to check whether a global
strategy is controllable and to generate a controllable adaptive distinguishing
sequence (ADS). We prove that controllable ADS existence is PSPACE-Hard and
that the problem of deciding whether M has a controllable ADS with length `
is NP-Hard. In practice, there is likely to be a polynomial upper bound on the
length of ADS in which we are interested and for this case the decision problem

is NP-Complete.

Keywords: Finite state machine, distributed test architecture, distinguishing sequences

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Software testing is an important part of the software
development process but is typically expensive, manual,
and error-prone. This has led to interest in automating
parts of testing. One of the most promising approaches
to automation is model based testing (MBT) in which
automation is based on a model [1–8]. In MBT,
test cases are typically automatically generated from a
model. This model is an abstraction of the specification
of the system under test (SUT) or some aspect of
interest to the tester. Given a model M , there is
the potential to automatically analyse M to generate
test cases, direct testing, and check if the observed
output is acceptable (solve the Oracle problem). Thus,
the manual element in MBT is the production of a
model and possibly an adapter that translates between
values (inputs and outputs) in the model and those for
the SUT. Evidence gathered in an industrial project
involving hundreds of testers suggests that the use of
MBT can lead to significant benefits [5]. MBT usually
utilises state-based models, where the semantics of the
model is described in terms of states and transitions
between states. There has thus been much interest
in testing from finite state machines (FSMs) (see, for
example, [9–13]) and input output transition systems
(IOTSs) (see, for example, [7, 8]). While test tools

might allow the use of richer languages, the models are
typically mapped to FSMs or IOTSs for analysis.

FSMs and IOTSs are used to model state-based
systems, in which an event (input or output) can lead
to a change of state. The response to an input depends
on the state of the system/model and so it is necessary
to use sequences of inputs in testing. A test case might
thus be a sequence of inputs, which is also called an
input sequence. However, in some situations there are
benefits to using test cases that are adaptive and for
such test cases the choice of next input depends on the
outputs produced in response to the previous inputs in
the test case. For example, a test case might apply
input ?i and then choose to either apply input ?i if
output !o is observed or to apply input ?i′ if output !o′

is observed. Such test cases can be represented by trees
and will be called strategies.

Most MBT techniques assume that the SUT interacts
synchronously with one tester (Figure 1a). However,
many systems interact with their environment at
multiple physically distributed interfaces, called ports
(Figure 1b) [14]. Examples of such systems include
communications protocols, cloud systems, web services,
and wireless sensor networks [15, 16]. In such situations,
we might place a separate tester at each port and
allow these testers to act independently. When there

The Computer Journal, Vol. ??, No. ??, ????

2 Hierons and Türker

FIGURE 1: Illustrations for different test architectures.

is no global clock and the testers do not synchronise
during testing, we are testing in the ISO standardised
distributed test architecture [17]. Note that the testers
might be humans or automated systems.

This paper focuses on testing from a deterministic
FSM in the distributed test architecture. The
formalism used is multi-port FSMs. In a multi-port
FSM, a transition is triggered by an input and can
send output to more than one port. This formalism
was initially introduced in the context of testing a
communications protocol. Here one tester (called the
upper tester) acts as the layer above the SUT, while
the other tester (called the lower tester) resides on
a different machine. Most MBT work on distributed
testing has used multi-port FSMs (see, for example,
[18–27]).

The use of the distributed test architecture introduces
additional challenges. For example, normally we want
a test case to be structured so that each tester knows
when to supply its inputs and for such a decision to be
based on the observations the tester made. Test cases
that do not have this property introduce controllability
problems. Further, the set of observations made by
the local testers need not uniquely define the sequence
of inputs and outputs (the trace) produced by the
SUT and thus testing has reduced observational power
(observability problems). There are many techniques for
generating test cases from an FSM (see, for example, [9–
13]) and it is desirable to adapt these techniques for use
in distributed testing. Most FSM test techniques use
strategies (parts of test cases) to distinguish states of
the FSM specification M and this motivates our interest
in the problem of producing strategies that distinguish
states of a multi-port FSM: techniques that produce
such strategies have the potential to be used in test
case generation methods for distributed testing.

Most FSM-based testing techniques use sequences
that distinguish the states of the specification FSM
M . Some use separating sequences (input sequences
that distinguish two or more states of M) but such
techniques may require many test sequences to identify
a state and so to test a transition. As a result, many

methods instead use a single sequence or adaptive
process (strategy) to distinguish states of M . Such a
strategy is a distinguishing sequence and might be a
preset distinguishing sequence (PDS) (a single input
sequence) or an adaptive distinguishing sequence (ADS)
(where the next input supplied depends on the response
to previous inputs). When compared to separating
sequences, the use of PDSs and ADSs can lead to
smaller tests that contain fewer test sequences (see,
for example, [28]). There has been particular interest
in ADSs as the problem of deciding whether a single-
port FSM M has a PDS is PSPACE-Complete and the
problem of deciding whether a single-port FSM M has
an ADS is polynomial time solvable [29].

The above observations motivate the problem
investigated in this paper: producing controllable
ADSs for distributed testing. There are two reasons
for our interest in controllable ADSs. First, deciding
whether there is a separating sequence for two states is
generally undecidable [25]; this problem can be solved
in low-order polynomial time if we restrict attention to
controllable sequences [24]. Second, if a test case is
controllable then the order in which the inputs arrive
is predictable, making it easier to trace failures to
requirements and simplifying debugging. Interestingly,
previous work showed how one can construct test cases
from a multi-port FSM M when there are known PDSs
[30], although the notion of a PDS used in this previous
work potentially required some adaptivity and so might
be seen as being a special type of ADS. It should
be straightforward to adapt this previously developed
approach to use an ADS as defined in this paper. More
generally, if we can produce ADSs from multi-port
FSMs then there is the potential to adapt current FSM-
based test generation methods for use in distributed
testing.

This paper makes the following contributions.

1. We discuss adaptive test cases, which we call test
strategies, for FSM based testing and define both
a global strategy (corresponding to there being a
single tester that observes and controls all of the

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 3

local testers) and a distributed strategy.

2. We define what it means for a global strategy to
be controllable and also for a distributed strategy
to be deterministic.

3. We prove that a controllable global strategy can
be mapped to a deterministic distributed strategy
such that these strategies define the same set
of possible behaviours. Further, if a global
strategy is not controllable then we cannot create
a corresponding deterministic distributed strategy.

4. We define what it means for a distributed strategy
to be an ADS for all of the states of FSM M and
for a subset of its states.

5. We prove that the problem of deciding whether
there is a controllable ADS that distinguishes the
states of an FSM M is NP-Hard but we leave
decidability open.

6. We prove that deciding whether there is an ADS
of height at most ` is NP-Hard. Where bound ` is a
polynomial in terms of the size of M this problem
is NP-Complete.

7. We provide algorithms to check whether a global
strategy is controllable, generate a controllable
ADS, and map a controllable ADS to local test
cases.

These contributions address several practical issues
and have corresponding consequences. First, having
formalised ADSs for distributed testing there is the
potential to adapt corresponding test case generation
algorithms for use in distributed testing or to use
the previously defined test case generation method
[30]. Second, the results show that the problems
of generating ADSs are significantly harder for
distributed testing. The problems are more tractable
when we have a polynomial upper bound on the lengths
of the ADSs and, as explained later, a polynomial
upper bound might be provided by the sum of the
lengths of a set of separating sequences that distinguish
the states of M . There might therefore be value
in having test case generation algorithms that use
ADSs, where there are ADSs that are sufficiently short,
and also more general methods that use separating
sequences. Finally, conditions under which ADS
existence become simpler have the potential to feed into
notions of testability for distributed testing.

The paper is structured as follows. We start in
Section 2 by reviewing related work and then, in Section
3, by discussing multi-port FSMs and the distributed
test architecture. In Section 4 we formally define the
notion of a global ADS and what it means for such an
ADS to be controllable and prove that a controllable
ADS can be implemented using a set of distributed
testers. Section 5 then examines complexity issues

related to ADSs. Finally, Section 6 draws conclusions
and discusses possible future work. All proofs can be
found in the Appendix.

2. RELATED WORK

2.1. Testing from single-port FSMs

There has been much work on generating test sequences
from single-port FSMs [9–13]. These approaches often
use sequences that force (single-port FSM) M into a
particular state and also sequences that distinguish
states of M . Between them, these sequences can be
used to check the response of M to an input x when
in a state s. This is achieved by first moving M into
state s, then applying input x, and finally checking that
the resultant state is as expected. These are the basis
for techniques that take an FSM M and return an m-
complete test suite: a test suite that is guaranteed to
determine correctness as long as the SUT has no more
than m states [9–13]. The benefit of using m-complete
test suites is that they provide some guarantees; even if
the tester cannot determine a useful upper bound on the
number of states of the SUT, the choice of m provides
a trade-off between test suite size/cost and test suite
effectiveness.

There are several approaches to distinguishing states
of an FSM [11, 29]. The weakest approach is to
use separating sequences, where a separating sequence
distinguishes two states of M but may achieve no
more than this. The strongest approach is to use a
distinguishing sequence (DS), which distinguishes all
of the states of M . For single-port testing, if M
is minimal3 then for every pair s, s′ of states of M
there must be a separating sequence for s, s′ and, in
addition, such a sequence can be generated in low-order
polynomial time [31]. If M is not minimal then we can
apply a polynomial time algorithm to convert M into
an equivalent minimal single-port FSM. Unfortunately,
test case generation approaches that use separating
sequences require many test sequences to check a single
transition. In contrast, we can test a transition through
one test sequence if there is a preset distinguishing
sequence (PDS): an input sequence that distinguishes
all of the states of M . However, the problem of
deciding whether a single-port FSM M has a PDS
is PSPACE-Complete [29]. This has led to interest in
adaptive distinguishing sequences (ADSs), where the
next input supplied depends on the response to previous
inputs. If there is a PDS then there is also an ADS but
the converse is not the case. In addition, ADSs can
be produced in low-order polynomial time [29]. These
results demonstrate the benefits of ADSs: there are
efficient algorithms to decide whether a single-port FSM
has an ADS and, where an ADS exists, we can use a
single test sequence to check a transition. Where there

3An FSM M is minimal if no FSM equivalent to M has fewer
states.

The Computer Journal, Vol. ??, No. ??, ????

4 Hierons and Türker

is no ADS, we can instead use separating sequences.

2.2. Distributed testing from multi-port FSMs

The early work in the area of distributed testing
explored the situation in which there is a separate
independent (local) tester at each port. If there
is no global clock and the local testers do not
synchronise during testing then we are testing in
the ISO standardised distributed test architecture
[17]. Sometimes, we allow the testers to exchange
coordination messages through a network in order to
synchronise their actions (see, for example, [32–35]).
However, this can make testing more expensive, since it
requires us to establish a network to connect the local
testers, and may not be feasible where there are timing
constraints. In addition, the message exchange may
use the same network as the SUT and so change the
behaviour of the SUT. As a result, there has been much
interest in testing in the distributed test architecture
(see, for example, [18–27]).

Previous work identified two main problems intro-
duced by distributed testing [21, 22, 27]. First, there
might be a controllability problem in which a local
tester, at a port p, cannot determine when to supply
an input. Let us consider the interaction given in Fig-
ure 2a. The tester at port 1 should start by sending
input x1, this is expected to lead to output o1 at port
1, and the tester at port 2 should then send input x2.
The problem here is that the tester at port 2 does not
observe the earlier input or output and so cannot know
when to send its input. Controllability problems lead to
non-determinism in testing and so there has been inter-
est in the problem of generating test sequences that do
not cause controllability problems [18, 20, 23, 36–39].

Observability problems refer to the fact that, since
we only make local observations, we may not be able
to distinguish between two different behaviours (global
traces). Consider the interaction between two testers
and the SUT given in Figure 2b. The specification says
that the input of x1 at port 1 should lead to output
o1 at port 1 and that if we apply x1 again then we
should get o1 at port 1 and o2 at port 2. This defines
the allowed global trace x1/〈o1, ε〉x1/〈o1, o2〉 in which ε
denotes null output at a particular port. Here the tester
at port 1 expects to observe x1o1x1o1 and the tester
at port 2 expects to observe o2. If instead the SUT
produced x1/〈o1, o2〉 x1/〈o1, ε〉 then the SUT produced
a global trace not allowed by the specification but the
local testers made the expected observations: the tester
at port 1 observed x1o1x1o1 and the tester at port 2
observed o2 (Figure 2c). Observability problems can
reduce the effectiveness of a test sequence and so there
has been interest in producing test sequences that do
not suffer from such observability problems [19, 22, 40–
42].

Recent work has shown that a number of core testing
problems change significantly when we are using the

distributed test architecture. For example, if we are
testing from an FSM M then it is undecidable whether
there is a test case that is guaranteed to move M to a
particular state or to distinguish two states s and s′ [25].
If we restrict attention to controllable test sequences4

then there are low-order polynomial time algorithms to
decide whether there is a separating sequence for two
states [24] and to decide whether there is a controllable
sequence that forces M into a particular state [43].
Further, recent work has shown how such separating
sequences can be used in test case generation [44].
However, as noted above, if we use separating sequences
then we require many test sequences to test a single
transition. There is a known method for constructing
test cases from a multi-port FSM M when there are
PDSs [30], although the notion of a PDS used in this
previous work potentially required some adaptivity and
so might be seen as being a special type of ADS. The
hope is that if we can produce ADSs for distributed
testing then these can form the basis for FSM-based
test case generation methods and diagnostic methods.

2.3. Adaptive random testing

This subsection briefly reviews another form of
adaptivity in testing: adaptive random testing (ART)
[45, 46]. This approach is motivated by the belief that
one wants a highly diverse test suite that provides an
even spread over the input domain. In ART, test case
generation is iterative, starting with the empty test
suite and adding (and executing) test cases one at a
time. In each iteration, there is a current test suite T
and a set of candidate test cases C, C being randomly
generated. The test case t ∈ C that is chosen, to be
added to T , is one that maximises a notion of ‘spread’
or ‘diversity’. Typically, there is a metric that gives the
distance between pairs of test cases and the test case t
chosen in the one that has maximal distance from the
closest element of T that does not cause a failure. Thus,
if d is the metric used and TC is the set of test cases
from T that do not lead to failure, then the test case t
chosen maximises the following value.

mint∈TC
d(t, t′)

A number of studies have found that ART
outperforms uniform random testing (see, for example,
[45]) and ART has been further developed in several
directions. For example, ART has been refined so that
the next test case is randomly chosen from a restricted
domain, an approach that has been called Restricted
Random Testing (RRT) [47, 48]. RRT restricts the
input domain, from which the next test case is chosen,
by excluding regions around the test cases in TC ; those
that do not cause a failure. It is also possible to combine
ART and partition testing [49] and this at least partially

4A test sequence is controllable if it causes no controllability
problems. This is formally defined in Section 4.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 5

FIGURE 2: Controllability and observability problems.

addresses one weakness of ART, which is the time taken
to choose a next test case. However, although ART
and RRT are adaptive, the form of adaptivity used is
different from that discussed in this paper.

3. PRELIMINARIES

A multi-port deterministic finite state machine (FSM)5

has a set P of ports at which it interacts with its
environment. The ports are physically distributed and
each has its own input/output alphabet. For each port
p ∈ P there is a separate local tester that applies the
inputs to p and observes the outputs produced at p.

Definition 3.1. An FSM is defined by a tuple M =
(P, S, s0, X, Y, δ, λ) where:

• P = {1, . . . , k} is the finite set of ports.
• S is the finite set of states and s0 ∈ S is the initial
state.
• X is the finite set of inputs and X = X1 ∪X2 ∪
· · ·∪Xk where Xp (1 ≤ p ≤ k) is the input alphabet
for port p. Given input x ∈ X, inport(x) = p if
x ∈ Xp. We consider the projection of an input
onto a port and define it as πp(x) = x if x ∈ Xp,
and πp(x) = ε if x 6∈ Xp. We use “ε” to denote
an empty/null input or output and also the empty
sequence.
• Y =

∏k
p=1(Yp∪{ε}) is the set of outputs where Yp

is the output alphabet for port p. An output y ∈ Y
is a vector 〈o1, o2, . . . , ok〉 where op ∈ Yp ∪ {ε} for
all 1 ≤ p ≤ k. The notation πp(y) is used to denote
the projection of y onto port p, which is simply the
pth component of the output vector y. We define
outport(y) = {p ∈ P | πp(y) 6= ε}, which is the set
of ports at which an output is produced.

5In the context of this work, we always use the term FSM to
refer to multi-port deterministic finite state machines with more
than one port. A classical finite state machine with one port only
will be explicitly referred to as a single-port FSM.

• δ is the state transfer function of type S×X → S.
If an input x ∈ X is applied when M is in state s
then M changes its state to δ(s, x).
• During a state transition M produces an output
vector. The output function λ : S ×X → Y gives
the output vector produced in response to an input.

We assume that all of the alphabets are disjoint
and so: for all p, p′ ∈ P, such that p 6= p′, we have
Xp ∩Xp′ = ∅ and Yp ∩ Yp′ = ∅; and X is disjoint from
∪1≤i≤kYk. This is not a significant restriction since we
can label inputs and outputs with port numbers in order
to ensure that these conditions hold.

An FSM receives only one input at a time but
a transition can produce more than one output.
There has been some interest in models (partial
order automata) where transitions can be triggered by
multiple inputs [50, 51]. It would be interesting to
extend the notion of ADSs to such models.

We will use the following terminology in which M =
(P, S, s0, X, Y, δ, λ).

Definition 3.2. Given state s and input x, if
δ(s, x) = s′ and λ(s, x) = y then τ = (s, s′, x/y)
is a transition of M with starting state s, ending
state s′, and label x/y. If (s, s′, x/y) is a
transition of M then the input of x in state s
leads to M moving to state s′ and producing output
y. Given transition τ = (s, s′, x/y) we define
inport(τ) = inport(x/y) = inport(x) and we also
define outport(τ) = outport(x/y) = outport(y) and
finally we define ports(τ) = ports(x/y) = {inport(x)}∪
outport(y) to denote the ports used in the transition.

An FSM can be represented by a directed graph.
Figure 3 gives an example of a 2-port FSM M1 with port
set {1, 2}, state set {s1, s2, s3}, initial state s1, inputs
{x1} at port 1 and {x2} at port 2, and outputs {o1, o′1}
at port 1 and {o2, o′2} at port 2. A node represents
a state and a directed edge from a node labeled by s
to a node labeled by s′ with label x/y represents the

The Computer Journal, Vol. ??, No. ??, ????

6 Hierons and Türker

FIGURE 3: Example FSM M1.

transition (s, s′, x/y).
The output and state transfer functions can be

extended to input sequences as usual: if we use ε to
represent the empty sequence and if x ∈ X and x̄ ∈ X∗
then δ(s, ε) = s, δ(s, xx̄) = δ(δ(s, x), x̄)), λ(s, ε) = ε,
λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄)). The behaviour of FSM
M is defined in terms of the labels of walks of M .

Definition 3.3. A walk in M is a sequence (s1, s2,
x1/y1) . . . (sm, sm+1, xm/ym) of consecutive transitions.
This walk has starting state s1, ending state sm+1, and
label x1/y1 x2/y2 . . . xm/ym. x1/y1 x2/y2 . . . xm/ym is
an input/output sequence, also called a global trace,
and x1x2 . . . xm is the input portion and y1y2 . . . ym is
the output portion of this global trace.

Definition 3.4. An FSM M defines the language
L(M) of labels of walks with starting state s0. Likewise,
LM (s) denotes the set of labels of walks of M with
starting state s. Given S′ ⊆ S, LM (S′) = ∪s∈S′LM (s)
denotes the set of labels of walks of M with starting state
in S′. States s, s′ are equivalent if LM (s) = LM (s′) and
FSMs M and N are equivalent if L(M) = L(N). An
FSM M is minimal if there is no equivalent FSM that
has fewer states. An FSM M is strongly connected
if for every ordered pair (s, s′) of states of M there is
a walk that has starting state s and ending state s′; a
strongly connected FSM M is minimal if and only if
LM (s) 6= LM (s′) for all s, s′ ∈ S with s 6= s′.

An example of a walk in the FSM M1 from Figure 3
is (s3, s1, x2/〈ε, o2〉)(s1, s2, x2/〈o1, o2〉), and this has
starting state s3 and ending state s2. Its label is
x2/〈ε, o2〉x2/〈o1, o2〉, which has input portion x2x2 and
output portion 〈ε, o2〉〈o1, o2〉. L(M) contains the global
trace x2/〈o1, o2〉 x1/〈o′1, o′2〉 and LM (s3) contains the
global trace x2/〈ε, o2〉 x2/〈o1, o2〉.

We use pre to denote a function that takes a set
of sequences and returns the set of prefixes of these
sequences. If x1/y1 x2/y2 . . . xm/ym is a trace then its
prefixes are of the form x1/y1x2/y2 . . . xn/yn for n ≤ m.
We restrict attention to minimal FSMs; an FSM can be

rewritten to form a minimal FSM in polynomial time
[52].

Assumption 1. We are testing from minimal FSM
M = (P, S, s0, X, Y, δ, λ).

Since we assume that the ports are physically
distributed, no tester observes a global trace: the tester
connected to port p will observe only the inputs and
outputs at p. We use Σ to denote the set of global
observations (inputs and outputs) that a hypothetical
global tester can observe and Σp to denote the set
of observations that can be made at port p. Thus,
Σ = X ∪ Y contains all inputs and vectors of outputs
while Σp = Xp∪Yp contains only inputs and outputs at
p. Let σ ∈ Σ∗ be a global trace, then πp(σ) is the local
trace at p: a sequence of inputs and outputs at port p
(the projection of σ at p).

Definition 3.5. Given port p, function πp is defined
by the following rules.
πp(ε) = ε
πp((x/〈o1, o2, . . . , om〉)σ) = πp(σ) if x 6∈ Xp ∧ op = ε
πp((x/〈o1, o2, . . . , om〉)σ) = xπp(σ) if x ∈ Xp ∧ op = ε
πp((x/〈o1, o2, . . . , om〉)σ) = opπp(σ) if x 6∈ Xp ∧ op 6= ε
πp((x/〈o1, o2, . . . , om〉)σ) = xopπp(σ) if x ∈ Xp∧op 6= ε

Since the local testers observe only the local
projections of global traces, these testers can only
distinguish two global traces if one or more of their local
projections differ.

Definition 3.6. Two global traces σ1, σ2 are indis-
tinguishable, written σ1 ∼ σ2, if for all p ∈ P we have
that πp(σ1) = πp(σ2).

For instance, let us consider FSM M1 given in
Figure 3, and global traces σ1 = x2/〈o1, o2〉 x2/〈ε, o2〉,
σ2 = x2/〈ε, o2〉 x2/〈o1, o2〉, then π1(σ1) = o1, π2(σ1) =
x2o2x2o2, π1(σ2) = o1 and π2(σ2) = x2o2x2o2 and so
σ1 ∼ σ2. Finally we use |.| to denote the cardinality
of a set or the length of a sequence i.e. continuing the
above example we have |P| = 2 and |π2(σ1)| = 4.

Table 1 summarises some of the terminology
introduced.

4. TEST STRATEGIES FOR DISTRIBUTED
TESTING

4.1. Test Strategies

This section defines test strategies for use in distributed
testing and explores properties of such strategies.
Essentially, a test strategy is similar to a strategy in
game theory [53] and is a process that determines the
actions of a tester. Test strategies have been discussed
for testing from a single-port FSM [53] and multi-
ports FSMs (where a local tester has its own strategy)
[25]. However, as we explain below, the formalisation
in this section is, by necessity, different. In addition,
the notion of a strategy (for testing from an FSM)
being controllable has not previously been discussed

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 7

TABLE 1: Terminology

Notation/terminology Meaning

test sequence a sequence of inputs

adaptive test case/strategy a process that determines the next input to apply on the basis of previous input/output

separating sequence an input sequence that leads to different output sequences for two given states

controllable test case a test case in which a local tester can determine when to supply its inputs

δ(s, x) the state reached if input x is received when M is in state s

λ(s, x) the output produced if input x is received when M is in state s

L(M) the set of input/output sequences that label walks from the initial state of M

pre(σ) the set of prefixes of σ

πp(σ) the projection of trace σ onto port p

σ1 ∼ σ2 for all p ∈ P, πp(σ1) = πp(σ2)

FIGURE 4: FSM M2 for Example 1.

and previous work has not considered the problem of
using a strategy to distinguish more than two states in
distributed testing.

The main result in this section is that if a global
strategy µ is controllable then it can be mapped to
a set of local test cases (a distributed strategy) that
implement µ. In Section 5 this will allow us to focus on
problems associated with generating controllable global
strategies that achieve certain objectives. Some readers
might want to skip much of Section 4, although in
Section 5 we will use the notion of the set of evolutions
of a strategy µ (the set of traces that can result from
applying µ) and the evolutions of µ from a state set
S′ (the set of traces that can result from applying µ
in states from S′). Table 2 provides a list of terms
introduced in this section, along with corresponding
definition numbers.

A global strategy will be a test strategy in which a
single tester observes all inputs and outputs. Thus,
since the hypothetical global observer receives the
global trace, the usual definition of an ADS applies. We
will call these traditional ADSs. However, observability
problems can reduce their effectiveness.

Example 1. Consider the FSM given in Figure 4.
We have that x1x1 is a traditional ADS (also a
traditional PDS) since it leads to different global traces

from the states: from s1 we have x1/〈o1, o2〉x1/〈o1, o2〉;
from s2 we have x1/〈o1, o2〉 x1/〈o1, ε〉; and from s3 we
have x1/〈o1, ε〉 x1/〈o1, o2〉. However, if we consider the
local traces we find that x1x1 does not distinguish states
s2 and s3 in distributed testing since in each case the
projection at port 1 is x1o1x1o1 and the projection at
port 2 is o2.

We therefore have the following.

Proposition 1. Given FSM M , a traditional ADS
of M might fail to distinguish some states of M when
only local observations are made.

We will define the notion of a distributed test strategy,
which is a tuple of local strategies; a local strategy µp

is assigned to a port p and a tester at p applies µp.
In Section 4.2 we define what we mean by a global

strategy and what it means for such a strategy to be
controllable. We also define what it means for a global
strategy to be an adaptive distinguishing sequence. In
Section 4.3 we then consider distributed test strategies
and show that a controllable global strategy for FSM
M can be mapped to a distributed test strategy that
is equally effective in testing from M . Since we are
interested in controllable testing, this will show that
it is sufficient to generate global strategies that achieve
given objectives and produce distributed strategies from
these. This is useful since typical testing objectives,
such as reaching a state of M or distinguishing states
of M , are described in terms of the global behaviour of
M . The focus of the paper will then be on generating
controllable global strategies.

4.2. Global Strategies

In this section we define the notion of a global strategy
µ and the set of behaviours (evolutions) that can occur
when using µ. Based on this, we define what it means
for a global strategy to be controllable and to be an
ADS.

When testing from an FSM, an observation is a trace
and the global tester makes a decision, regarding what
to do next, on the basis of such a trace. A global

The Computer Journal, Vol. ??, No. ??, ????

8 Hierons and Türker

TABLE 2: Definitions

Notation/terminology Corresponding definition

An evolution and the sets of evolutions of global strategy µ (Ev(µ), Ev(µ,M, s), Ev(µ,M, S′)) Definition 4.2

A strategy being controllable Definition 4.3

A global strategy being an ADS Definition 4.5

A local strategy Definition 4.6

Distributed strategy (a tuple (µ1, . . . , µk) in which µ1, . . . , µk are local strategies) Definition 4.7

A distributed strategy being deterministic Definition 4.8

Evolutions of a deterministic distributed strategy Definition 4.10

Projection of a global strategy (πp(µ) and πS′
p (µ)) Definitions 4.11 and 4.12

A distributed strategy being an ADS Definition 4.13

strategy µ is therefore a partial function from (X/Y)∗

to X, where (X/Y)∗ denotes the set of traces. Thus, if
the SUT produces trace σ then µ(σ) determines what
the tester does next: if µ(σ) = x (x ∈ X) then the
tester applies x and otherwise µ is not defined on σ and
testing ends. We include a finiteness requirement to
ensure that testing terminates.

Definition 4.1. A global strategy µ is a partial
function from (X/Y)∗ to X such that only finitely many
traces from (X/Y)∗ are mapped to elements of X.

When the global tester applies a strategy µ one
obtains an evolution6 of µ [25]. We can restrict the
set of evolutions if we start testing an FSM M when
it is in state s since we must observe a trace from
LM (s). Similarly, we can define the set of evolutions
when applying a global strategy from some set S′ of
states.

Definition 4.2. Trace σ is an evolution of global
strategy µ if the following hold.

1. If σ′x/y is a prefix of σ for x ∈ X and y ∈ Y then
µ(σ′) = x.

2. If σ′ is a prefix of σ and µ(σ′) = x then there exists
y ∈ Y such that σ′x/y is prefix of σ.

Given global strategy µ, we let Ev(µ) denote the set of
evolutions of µ. Given FSM M and state s of M , we
let the set of evolutions of µ from s be Ev(µ,M, s) =
Ev(µ) ∩ LM (s). Further, given FSM M with set of
states S and S′ ⊆ S we let the set of evolutions of µ
from S′ be Ev(µ,M, S′) =

⋃
s∈S′ Ev(µ,M, s). We say

that the length of the longest evolution in Ev(µ,M, S)
is the height of µ.

This states that an input will only be applied after
σ′ if this is specified by the strategy and also that
whenever the strategy can apply an input it does so.
We will assume that a global strategy µ is not defined
on traces that cannot occur when µ is applied and
so σ 6∈ pre(Ev(µ)) implies that µ is not defined on

6Previous work concerned a single (local) tester and so
strategies were mappings from Σ∗p.

σ. Clearly, this does not reduce the effectiveness of
the global strategies we consider; it simply avoids some
redundancy.

Assumption 2. Global strategy µ is only defined on
traces in pre(Ev(µ)).

While executing a global strategy a controllability
problem may arise.

Example 2. Let x1, x
′
1 ∈ X1 be different inputs

at port 1, x2 ∈ X2, and let us suppose that
there are traces x2/〈o1, o2〉 x1/〈y, ε〉 (Figure 5a) and
x2/〈ε, o2〉x2/〈o1, ε〉x′1/〈y′, ε〉 (Figure 5b) in pre(Ev(µ)).
Since π1(x2/〈o1, o2〉) = π1(x2/〈ε, o2〉 x2/〈o1, ε〉) = o1,
tester 1 cannot differentiate between x2/〈o1, o2〉 and x2/
〈ε, o2〉x2/〈o1, ε〉, and so it cannot know which input (x1
or x′1) to send after observing o1.

For a global strategy to be controllable, the actions
at a port p should only depend on the observations
made at p and so if there is a local tester at p then
this local tester knows when to supply input. This is
characterised by saying that if two evolutions σ and σ′

have the same observations at p (πp(σ) = πp(σ′)) then
the tester at p performs the same action after each.

Definition 4.3. Global strategy µ is controllable if
for all σ, σ′ ∈ pre(Ev(µ)), if there exists port p such
that πp(σ) = πp(σ′) and µ(σ) ∈ Xp then µ(σ′) = µ(σ).

We can now adapt the notion of controllability to the
case where we have a strategy and a set S′ of states from
which we might apply this. To do this it is sufficient to
restrict attention to evolutions that can occur from S′.

Definition 4.4. Given set S′ of states of M ,
strategy µ is controllable for S′ if for all σ, σ′ ∈
pre(Ev(µ,M, S′)), if there exists port p such that
πp(σ) = πp(σ′) and µ(σ) ∈ Xp then µ(σ′) = µ(σ).

The following shows that this is less restrictive than
controllability: a strategy might be controllable for a
given M and S′ but not controllable in general. The
key point is that if we fix M and S′ then we only need
to consider the behaviour that can result from applying

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 9

FIGURE 5: A simple controllability problem. Strategy µ can lead to two different evolutions such that the tester
at port 1 receives o1 but supplies different inputs (x1, x

′
1).

FIGURE 6: An FSM M and a controllable global ADS for M .

the strategy µ from states in S′.

Proposition 2. If a strategy µ is controllable then
for every FSM M and set S′ of states of M , we have
that µ is controllable for S′. However, it is possible that
strategy µ is controllable for S′ for some FSM M and
state set S′ and yet µ is not controllable.

We now consider the problem of checking whether
a strategy µ is controllable for an FSM M and below
we give an algorithm that achieves this. Note that
previous work has explored the problem of deciding
whether a global test case, for testing from an input
output transition system (IOTS), is controllable [54].
The algorithm given in this paper is similar to that
previously defined for IOTSs, although it differs slightly
as a result of the differences in the formalisms. In
particular, for FSMs we know that input and output
alternate but this is not the case for IOTSs; by taking
advantage of this property we can produce a simpler
algorithm.

For a strategy µ, Algorithm 1 retrieves a set SEQ of
(maximal) sequences that can result from applying µ

to M i.e. SEQ = Ev(µ,M, S). Afterwards it checks if
these sequences cause a controllability problem.

Recall that we have a controllability problem if and
only if there are different prefixes σ, σ′ such that the
following hold:

1. there exists a port p such that πp(σ) = πp(σ′)

2. µ returns input at port p after at least one of σ and
σ′

3. µ(σ) 6= µ(σ′)

The first condition says that σ and σ′ look the same
to the tester at port p (πp(σ) = πp(σ′)). Thus, there
is a controllability problem if µ behaves differently at
port p after σ and σ′. The second and third conditions
check this: if the second condition holds then µ applies
input at p after at least one of σ and σ′ and so there is
a controllability problem if it does not apply the same
input after these (µ(σ) 6= µ(σ′)).

We now explain how Algorithm 1 operates and use
σp
k to denote the trace formed by taking the prefix of σ

with k−1 inputs and then taking the projection at port

The Computer Journal, Vol. ??, No. ??, ????

10 Hierons and Türker

p. The algorithm first generates the set SEQ (Line 1)
of sequences that can result from applying σ in M and
initiates a boolean variable C (Line 2); C will be set
to false if the strategy µ is not controllable. For each
sequence σ in SEQ and each 1 < k ≤ `, where ` is
the length of σ, we retrieve the port p that applies the
kth input xk of σ (we do not need to consider the case
k = 1 since the first input cannot cause a controllability
problem). We also compute the prefix of σ of length
k − 1 (i.e. the observations that precede the input
of xk) and take its projection σp

k at port p. We then
check whether the port that applies xk is in the set
ports(xk−1/yk−1) of ports that observe input/output in
the previous transition (Lines 7–8); if this is not the case
then σ is not a trace produced by a controllable strategy
since the tester at p cannot know when to send input
xk to ensure that it arrives after xk−1. Finally for each
σ′ ∈ SEQ \ {σ}, we first check whether σp

k is a prefix of
the projection πp(σ′) of σ′ on port p. If this is the case
then for µ to be controllable we require that µ applies
input xk as soon as σp

k is observed and so after the
shortest prefix of σ′ whose projection at p is σp

k; this is
checked in Line 12.

We now consider the complexity of Algorithm 1 and
let n denote the number of states of M and ` denote
the height of µ. Note that the algorithm uses three
nested loops. As the cardinality of SEQ is bounded
above by n, the outer loop iterates at most n times. At
each iteration the algorithm retrieves the prefix with k
inputs and as k varies from 1 to `, the number of steps
executed by this loop is of O(n`). The innermost loop
iterates O(n) times and on each iteration it considers a
sequence of O(`) length. Thus, the number of steps used
by the algorithm is of O(n2`2) and so we can conclude
that Algorithm 1 is a polynomial time algorithm with
respect to the size of its input.

A global strategy µ is an ADS if it produces different
observations from the states being considered and so
distinguishes them7.

Definition 4.5. Global strategy µ is an adaptive
distinguishing sequence (ADS) for state set S′ ⊆ S of
M if for all s, s′ ∈ S′ with s′ 6= s, σ ∈ Ev(µ,M, s), and
σ′ ∈ Ev(µ,M, s′), we have that σ 6∼ σ′. Further, µ is
an adaptive distinguishing sequence (ADS) for M if it
is an adaptive distinguishing sequence for S.

The difference, when compared to ADSs for testing
from a single-port FSM, is that we compare global
traces using ∼ rather than equality, this being an
inevitable consequence of the reduced observational
power of distributed testing.

We now provide a recursive algorithm that constructs
a controllable global ADS for an FSM M , if such an
ADS exists. But before going further we introduce the
notion of a test case being weakly controllable that will

7If an FSM does not have an ADS then there may still be
value in producing ADSs for subsets of states, a problem that
has been explored for single-port FSMs [55]

be used in this algorithm.
Recall that whenever traces σ, σ′ are indistinguish-

able at port p, we need that µ(σ) and µ(σ′) are ‘consis-
tent’ at p: either neither returns input at p or µ(σ) =
µ(σ′) (see Line 12 of Algorithm 1). However, while con-
structing a strategy µ we should allow the case where
µ(σ) = x, x ∈ Xp and µ(σ′) = ε even though such a
strategy is not controllable. This stems from the fol-
lowing observation: we may extend such a strategy µ
that is not controllable to form one in which µ(σ) = x
and µ(σ′) = x. That is to say, a recursive algorithm
might produce a strategy µ that is not controllable but
that can be extended to form a controllable strategy
as the algorithm progresses. So while constructing a
strategy if we declare that µ is not controllable, when-
ever we have µ(σ) = x and µ(σ′) = ε, we may not be
able to find the desired final strategy. Thus, we should
not discard such strategies. In order to achieve this we
use another version of Algorithm 1 that checks whether
a test case is weakly controllable. This algorithm can
be obtained from Algorithm 1 by changing line 12 as
follows.

12 µ(σ′′) 6= xk and µ(σ′′) 6= ε

If a strategy fails this condition then we have traces
σ and σ′ that are indistinguishable at port p such that:
the behaviour of µ is different at p after σ and σ′ and
µ(σ) and µ(σ′) both define inputs. Importantly, such
a strategy (one that is not weakly controllable) cannot
be extended to form a controllable strategy.

The pseudocode for constructing a controllable ADS
is given in Algorithm 2. The algorithm receives
an FSM (M), a tuple of input symbols (Υ) a non-
negative integer (h) and a global strategy (µ) as its
inputs. At each recursive step, the algorithm forms and
extends a strategy in a depth-first search manner. The
algorithm terminates if it finds a controllable ADS or
the strategies being constructed reach a preset height `.

The inputs are M , Υ = ∅, h = 0, and µ = ∅.
During a recursive step the algorithm first initialises a
set of sets of sequences (traces set) Π = {{ε}}. Set
Π is constructed so that it contains the equivalence
classes of Ev(µ,M, S), under equivalence relation ∼:
a controllable strategy must behave in the same way
after two traces that are equivalent under ∼. Set Π is
formed by considering the traces in Ev(µ,M, S) one at
a time, with two traces σ and σ′ being in the same set
Ψi if and only if σ ∼ σ′ (Lines 2–7).

After the set Π has been formed, for every Ψi ∈ Π
the algorithm retrieves the ith symbol x from the tuple
Υ. Then for each trace σs in Ψi the algorithm updates
the strategy to µ← µ∪{(σs, x)} (Lines 8–11) or makes
no change if x = ε.

When µ is updated the set Π is formed again, with
the algorithm executing the instructions provided on
Lines 1–7 (Line 12). Afterwards, the algorithm checks
whether the cardinality of set Π is equal to the number

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 11

of states of the FSM (Line 13). If the cardinality of Π is
equal to the number of states of the FSM, and the new
strategy is controllable (Line 14), then the strategy is a
controllable ADS and this is returned.

If the cardinality of Π is less than n or the strategy
is not controllable then the algorithm checks whether h
has reached the preset bound (Line 16) and returns null
if this is the case (Line 20). Otherwise, the algorithm
checks if the strategy is weakly controllable (Line 17).
If the strategy is not weakly controllable then the
algorithm returns null (Line 20). Otherwise, for each
different |Π|-tuple of the set X ∪ {ε}, the algorithm
generates Υ, which is a mapping from each equivalence
class to a next input or ε (representing no input being

added in this iteration of the loop). It then calls itself
with M , Υ, h = h + 1, and µ (Lines 18–19). The role
of Υ in this recursive step ensures that the algorithm
considers all ways of extending the current strategy. We
include ε as an option so that evolutions of a strategy
can vary in length.

As we generate different |Π|-tuples of setX∪{ε} (Line
18), the time complexity of the algorithm is exponential
in the size of M . However, since at each recursive call
the algorithm processes M , Υ, h and µ, the proposed
ADS construction algorithm requires polynomial space
if the preset bound ` can be described by a polynomial
function in the size of M . Moreover, the algorithm is
guaranteed to return a controllable ADS if there exists

The Computer Journal, Vol. ??, No. ??, ????

12 Hierons and Türker

a controllable ADS of height ` or less.

The following shows how the global ADS in Figure 6
can be generated from the FSM in the same figure when
using upper bound ` = 5.

Example 3. Let us suppose that we provide M
(given in Figure 6a) along with ∅, Υ = {x1, x2} and
h = 0 to Algorithm 2 as inputs and we assume that
` = 5. Note that h is provided as input in order to
allow recursion; if an ADS of height h is not found and
h < ` then the recursive step is applied. Initially, µ = {}
and so if we apply µ in a state of M then the resultant
trace is the empty sequence ε. Thus, after executing
Lines 2 − 7 we obtain Π = {Ψ0} with Ψ0 = {ε}. The
algorithm will then select an input for Ψ0 (Lines 8-11)
and let us suppose that x1 is chosen.

At this point the algorithm has generated a strategy
µ of depth 1; one that initially applies x1. It updates
Π with the equivalence classes of the set of resultant
traces. There are two traces that can be produced using
this strategy: from states s1, s2, and s3 there is output
〈o1, o2〉 (and so σ1 = σ2 = σ3 = x1/〈o1, o2〉) and from
states s4, s5, and s6 there is output 〈o′1, o′2〉 (and so
σ4 = σ5 = σ6 = x1/〈o′1, o′2〉). The set of traces is thus
{x1/〈o1, o2〉, x1/〈o′1, o′2〉} and we obtain two equivalence
classes: Ψ1 = {x1/〈o1, o2〉} and Ψ2 = {x1/〈o′1, o′2〉}.
The algorithm assigns {Ψ1,Ψ2} to Π (line 12).

The algorithm now checks whether µ distinguishes
the states of M (whether |Π| = |S|). Since this is not
the case, the algorithm checks whether the bound on the
depth has been reached. Since ` = 5 and the current
value of h is 1, the algorithm then checks whether µ
is weakly controllable (it clearly is). The algorithm is
then recursively called with µ, Υ, and h = 2.

In the next phase, the algorithm repeats the above
procedure for each Ψi. In order to produce the ADS in
Figure 6b, it chooses input x2 for Ψ1 and input x1 for
Ψ2. The resultant set of traces is {x1/〈o1, o2〉x2/〈o1, ε〉,
x1/〈o′1, o′2〉 x1/〈o1, o2〉, x1/〈o′1, o′2〉 x1/〈o′1, o′2〉}. We
therefore have three sets of traces: Ψ1 =
{x1/〈o1, o2〉 x2/〈o1, ε〉}, Ψ2 = {x1/〈o′1, o′2〉 x1/〈o1, o2〉},
and Ψ3 = {x1/〈o′1, o′2〉x1/〈o′1, o′2〉}. It is straightforward
to see that this global strategy is weakly controllable.
Since since |Π| is 3, and so is less than |S|, the process
continues. In the next iteration the algorithm chooses
input x1 for Ψ1, ε (no input) for Ψ2, and x1 for Ψ3.
The process continues, potentially returning True and
the global ADS shown in Figure 6b.

We now show how this global ADS can be used to
identify a state (in this case s3).

Example 4. From the ADS given in Figure 6b,
initially the strategy µ returns value µ(ε) = x1.
Let us suppose that when the tester applies input
x1 and the FSM produces output 〈o1, o2〉. The
global strategy states that the next input to ap-
ply is µ(x1/〈o1, o2〉) = x2. Let us suppose that
in response to input x2, M produces 〈o1, ε〉. This

pattern repeats until the global strategy µ pro-
duces ε as follows: µ(x1/〈o1, o2〉 x2/〈o1, ε〉) = x1,
µ(x1/〈o1, o2〉 x2/〈o1, ε〉 x1/〈o1, o2〉) = x2,
µ(x1/〈o1, o2〉 x2/〈o1, ε〉 x1/〈o1, o2〉 x2/〈o1, ε〉) = x1,
µ(x1/〈o1, o2〉x2/〈o1, ε〉x1/〈o1, o2〉x2/〈o1, ε〉x1/〈o1, o2〉) =
ε. Testing then ends and from the global trace we
know that initially M must have been in state s3.

4.3. Local and Distributed Test Strategies

This section defines what we mean by local and
distributed strategies. The main results are the
definition of projection functions that map global
strategies to local strategies and the proof that if a
global strategy is controllable then we can implement
it using a distributed strategy. This shows the value
of generating controllable global strategies for use in
testing, which is the problem we investigate in this
paper.

Recall that a global strategy is a partial function
from (X/Y)∗ to X and so it might appear that a
local strategy for port p will be a partial function from
(Xp/Yp)∗ to Xp. However, the observations made by
the tester at port p need not alternate between inputs
and outputs. For example, there might be a trace
such as σ = x1/〈ε, o2〉 x1/〈o1, o2〉 x2/〈o1, ε〉 and here
π2(σ) = o2o2x2. As a result, a local strategy will be
a partial function from sequences of observations at p
(elements of Σ∗p) and not from (Xp/Yp)∗. We include
ε in the set of values that can be returned by the local
strategy, with this denoting the case where the tester
waits to observe further output. In contrast to global
strategies, if the local tester at port p chooses to not
send an input then it might not have terminated since
input can be supplied by other local testers and this can
result in additional observations at p.

Definition 4.6. A local strategy µp for port p is a
function from Σ∗p to Xp ∪ {ε} such that only finitely
many traces from Σ∗p are mapped to Xp.

In distributed testing the overall test system can be
seen as a set of local testers and thus can be represented
by a tuple of local strategies.

Definition 4.7. Given port set P = {1, 2, . . . , k}, a
distributed strategy µ is a tuple (µ1, µ2, . . . , µk) such
that for all p ∈ P we have that µp is a local strategy for
p. Further, σ ∈ Σ∗p is an evolution of local strategy µp

if the following hold:

1. If σ′x is a prefix of σ for x ∈ Xp then µp(σ′) = x.

2. If σ′ is a prefix of σ and µp(σ′) = x then σ′x a
prefix of σ.

We let Ev(µp) denote the set of evolutions of µp.

Given distributed strategy µ = (µ1, µ2, . . . , µk), if σ is
a global trace and µp(πp(σ)) = x ∈ Xp then the tester
at port p applies input x if it observes πp(σ). When

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 13

µ is applied, a local tester makes decisions regarding
when to supply input on the basis of its observations.
In defining the evolutions of µ we need to consider a
situation that could not occur with global strategies:
we may get a point where more than one local strategy
wants to supply the next input and so this can cause
a race (see Figure 7 for an example). If the aim is
to implement a global strategy then such scenarios are
undesirable since there can be more than one possible
next input after a trace (global strategies do not allow
such situations to occur). As a result, we define what
it means for a distributed strategy to be deterministic
(to not have such races). The following requires that if
trace σ can occur in testing using distributed strategy
µ = (µ1, µ2, . . . , µk) (condition 1) then at most one µp

can supply input after σ; later we will prove that we can
map a controllable global strategy to a deterministic
distributed strategy.

Definition 4.8. Given state set S′, a distributed
strategy µ = (µ1, µ2, . . . , µk) is deterministic for S′ if
there does not exist σ ∈ LM (S′) such that the following
hold:

1. for all p ∈ P we have that πp(σ) ∈ pre(Ev(µp));
and

2. there exist p, p′ ∈ P, p 6= p′, such that µp(πp(σ)) ∈
Xp and µp′(πp′(σ)) ∈ Xp′ .

Further, µ is deterministic if there does not exist a trace
σ ∈ (X/Y)∗, such that the following hold:

1. for all p ∈ P we have that πp(σ) ∈ pre(Ev(µp));
and

2. there exists p, p′ ∈ P, p 6= p′, such that µp(πp(σ)) ∈
Xp and µp′(πp′(σ)) ∈ Xp′ .

Consequently, we cannot have a trace σ that can
occur when applying µ (one where all the projections
of σ are prefixes of evolutions of the local strategies)
after which two different testers can supply the next
input. Thus, since the µp are functions, any next
input after a global trace σ is uniquely defined. It
is straightforward to define evolutions of deterministic
distributed strategies and this will allow us to reason
about the observations that can be made when a
distributed strategy interacts with the SUT.

Definition 4.9. Trace σ ∈ (X/Y)∗ is an evo-
lution of a deterministic distributed strategy µ =
(µ1, µ2, . . . , µk) if the following hold:

1. If σ′x/y is a prefix of σ for x ∈ Xp then
µp(πp(σ′)) = x; and

2. If σ′ is a prefix of σ and µp(πp(σ′)) = x, x ∈ Xp,
then there exists y ∈ Y such that σ′x/y is a prefix
of σ.

We let Ev(µ) denote the set of evolutions of µ.

This can be extended to the case where we have a set
S′ ⊆ S of states from which a deterministic distributed
strategy might be applied.

Definition 4.10. Given state set S′ ⊆ S of M
and distributed strategy µ = (µ1, µ2, . . . , µk) that is
deterministic for S′, trace σ ∈ (X/Y)∗ is an evolution
of µ from S′ if σ ∈ LM (S′) and the following hold:

1. If σ′x/y is a prefix of σ for x ∈ Xp then
µp(πp(σ′)) = x; and

2. If σ′ is a prefix of σ and µp(πp(σ′)) = x, x ∈ Xp,
then there exists y ∈ Y such that σ′x/y is a prefix
of σ.

We let Ev(µ,M, S′) denote the set of such evolutions
of µ from S′.

We now consider the problem of mapping a global
strategy µ to a distributed strategy. Given port p we
can define the projection of µ at p and, in an abuse of
notation, call this πp(µ). The essential idea is that if
µ supplies input x at port p after σ (µ(σ) = x) then
µp = πp(µ) can supply x after the observation πp(σ) it
makes in this scenario. We initially define πp(µ) to be a
relation between Σ∗p and Xp∪{ε}: for some σp ∈ Σ∗p we
may have that πp(µ) maps σp to more than one element
of Xp ∪ {ε}.

Definition 4.11. Given a global strategy µ and port
p ∈ P, πp(µ) is a relation µp between Σ∗p and Xp ∪ {ε}
defined by: x ∈ µp(σp) for x ∈ Xp ∪ {ε} and σp ∈ Σ∗p
if and only if there exists some σ ∈ Ev(µ) such that
x = µ(σ) and πp(σ) = σp.

We have the important property that the projections
of a controllable global strategy form a deterministic
distributed strategy and so are suitable for use in
distributed testing.

Proposition 3. If global strategy µ is controllable
for S then the distributed strategy (π1(µ), π2(µ),
πk(µ)) is deterministic.

This tells us that if we have a controllable global
strategy µ then the set of evolutions is defined for
the distributed strategy (π1(µ), π2(µ), . . . , πk(µ)) since
evolutions are defined for deterministic distributed
strategies.

When considering a set S′ ⊆ S of states we restrict
attention to traces in LM (S′). As a result, one might
expect that if global strategy µ is controllable for S′

then the distributed strategy (π1(µ), π2(µ) . . . πk(µ)) is
deterministic for S′. However, this is not necessarily the
case since in forming the local strategies we consider all
evolutions of a global strategy, not only those allowed
from S′.

Proposition 4. It is possible that a global strategy
µ is controllable for S′ ⊆ S but the distributed strategy
(π1(µ), π2(µ), . . . πk(µ)) is not deterministic for S′.

The Computer Journal, Vol. ??, No. ??, ????

14 Hierons and Türker

FIGURE 7: Two distributed strategies: µ = (µ1, µ2) and µ′ = (µ′1, µ
′
2). Local strategies µ1 and µ2 are deterministic.

Local strategies µ′1 and µ′2 require testers to supply input at the same time, causing nondeterminism.

This leads us to define the projection of a global
strategy in the presence of a set S′ ⊆ S of states; we
simply restrict attention to evolutions of µ that can
occur from S′.

Definition 4.12. Given global strategy µ, port p ∈ P
and set S′ of states of M , πS′

p (µ) is a relation µp

between Σ∗p and Xp ∪ {ε} defined by: x ∈ µp(σp) for
x ∈ Xp ∪ {ε} and σp ∈ Σ∗p if and only if there exists
σ ∈ Ev(µ,M, S′) such that x = µ(σ) and πp(σ) = σp.

We can now generalise Proposition 3 for the case
where we have a set S′ ⊆ S of states.

Proposition 5. Given state set S′ ⊆ S of
M , if global strategy µ is controllable for S′ then
the distributed strategy (πS′

1 (µ), πS′

2 (µ),πS′

k (µ)) is
deterministic for S′.

We have shown that the projections of a controllable
global strategy define a deterministic distributed
strategy. If we take the projections of a controllable
global strategy then the resultant distributed strategy
the same set of evolutions and so we can implement a
controllable global strategy using distributed testers.

Proposition 6. Let us suppose that µ is a
controllable global strategy and for all p ∈ P we
have that µp = πp(µ). Then the distributed strategy
µ′ = (µ1, µ2, . . . , µk) is such that Ev(µ) = Ev(µ′).

Proposition 7. Let us suppose that µ is a
controllable global strategy for set S′ ⊆ S of states of
FSM M and for all p ∈ P we have that µp = πS′

p (µ).
Then the distributed strategy µ′ = (µ1, µ2, . . . , µk) is
such that Ev(µ,M, S′) = Ev(µ′,M, S′).

We now define what it means for a deterministic
distributed strategy to be an ADS.

Definition 4.13. A distributed strategy µ is an
adaptive distinguishing sequence for state set S′ of
FSM M , S′ ⊆ S, if µ is deterministic for S′ and
for all s, s′ ∈ S′ with s′ 6= s, σ ∈ Ev(µ,M, s), and
σ′ ∈ Ev(µ,M, s′) we have that σ′ 6∼ σ. Further, µ is
an adaptive distinguishing sequence for M if µ is an

adaptive distinguishing sequence for S.

We now have the main result in this section, which
is that if µ is a controllable ADS for M then the
distributed strategy obtained by taking the projections
of µ is also an ADS. This allows us to construct global
controllable strategies that are ADSs, knowing that we
can take their projections to form suitable distributed
strategies. The rest of the paper will therefore focus on
generating suitable global strategies.

Theorem 4.1. If µ is controllable and is an
adaptive distinguishing sequence for FSM M then µ′ =
(π1(µ), π2(µ), . . . , πk(µ)) is an adaptive distinguishing
sequence for M .

Theorem 4.2. Given S′ ⊆ S, if µ is controllable
for S′ and is an adaptive distinguishing sequence for
S′ then µ′ = (πS′

1 (µ), πS′

2 (µ), . . . , πS′

k (µ)) is an adaptive
distinguishing sequence for M from S′.

We now provide an algorithm (Algorithm 3) that
receives a global strategy µ and a port p and returns
the projection of the global strategy at p. Recall that
a global strategy is a partial function from traces to
inputs. In forming the local strategy µp we extract
the evolutions of µ since µ is defined on its evolutions
and their prefixes. Let us suppose that σ′ is a prefix
of an evolution σ of µ. There are two cases to
consider. If µ(σ′) = x and x ∈ XP then µp should
apply x after πp(σ′) and so we add to µp the pair
(πp(σ′), µ(σ′)) that represents µp mapping πp(σ′) to x
(Line 6). Alternatively, if µ(σ′) = x and x 6∈ XP then
µp should not supply input after πp(σ′) and so we add
the pair (πp(σ′), ε) that represents µp mapping πp(σ′)
to ε (and so µp does not supply input after πp(σ′)) (Line
7).

For example consider the global ADS strategy given
in Figure 6b. For Port 1, Algorithm 3 returns µ1 such
that Ev(µ1,M, s1) = x1o1o1x1o

′
1 and Ev(µ1,M, s6) =

x1o
′
1x1o

′
1x1o

′
1 etc.

These results are important since they tell us that as
long as we restrict attention to controllable strategies, it
is safe to generate global strategies that are ADSs and

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 15

then take their projections. If a global strategy µ is not
controllable then there must be a port p and traces σ
and σ′ such that πp(σ) = πp(σ′), µ(σ) ∈ Xp and µ(σ′) 6=
µ(σ). As a result, the set of projections of µ do not
define a distributed strategy in which the local testers
are deterministic: πp(µ) must relate πp(σ) to more than
one element of Xp ∪ {ε}. Thus, a local tester cannot
determine what to do next based on its observations
and, in addition, µ and (π1(µ), π2(µ) . . . , πk(µ)) will
have different sets of evolutions. As a result, we know
that it is safe to consider controllable global strategies
and also that if a global strategy µ is not controllable
then we cannot implement it using distributed testers
(using the resultant distributed testers can lead to a
race and so behaviours not allowed under µ).

5. GENERATING A CONTROLLABLE ADS

In Section 4, we showed that when using the distributed
test architecture it is sufficient to consider global
controllable ADSs. We now show that the problem of
deciding whether an FSM M has a global controllable
ADS that distinguishes all of its states is PSPACE-Hard.

We will rely on the following lemma that tells us that
the problem of deciding whether a single-port FSM has
a PDS is PSPACE-hard even if all transitions have non-
empty output.

Lemma 5.1. Given a single-port FSM M in
which no transition produces empty output, checking
the existence of a preset distinguishing sequence is
PSPACE-Complete.

Theorem 5.1. Given an FSM M , checking the
existence of a controllable ADS that distinguishes all
of the states of M is PSPACE-Hard. In addition, this
result still holds if we restrict attention to FSMs that
have two ports.

Clearly, not every FSM has a global controllable
ADS, therefore as discussed for single-port FSMs [55],
under such circumstances one may wish to construct
global controllable ADSs for subset of states. However,

we show that this is also a hard problem.

Theorem 5.2. The following problem is
PSPACE-Hard: given an FSM M , find a control-
lable ADS µ and state set S′ where µ is a controllable
ADS for S′ and µ and S′ are such that S′ has maximal
size.

By the virtue of the reduction used in the proof of the
above, one can deduce that there are FSMs such that
the shortest evolution8 in Ev(µ,M, S) is of exponential
length.

Theorem 5.3. There is a class of FSMs that have
ADSs such that the shortest evolution is of exponential
length.

Finally, since existence is PSPACE-Hard so are the
corresponding optimisation problems.

Theorem 5.4. The following problem is
PSPACE-Hard: given an FSM M , what is the smallest
value of ` such that M has an ADS of height `?

These results show that ADS generation problems
are computationally hard, in contrast to the situation
with single-port FSMs, but leave open the question of
whether these problems are decidable. We now show
that we can reduce these negative results to some extent
when we limit the height of the ADS and we are
therefore interested in the following problem.

Definition 5.1. Given an FSM M and natural
number `, the Exact Height problem for M is to
determine whether M has a controllable ADS with
height `.

Naturally, this corresponds also to the problem of
deciding whether there is a controllable ADS with
height at most ` and it is straightforward to adapt
the results in this section to the case where we have
a bound on the height of an ADS. We therefore
focus on the exact height problem. This problem is
motivated by the fact that it is possible to use a set

8Definition 4.2 defines the notion of an evolution

The Computer Journal, Vol. ??, No. ??, ????

16 Hierons and Türker

of separating sequences instead of an ADS or PDS
in order to identify states. It is known that for any
two states si and sj of an FSM M with n states, k
ports and m inputs, we can decide in O(mn2) time
whether there is a controllable separating sequence that
distinguishes si and sj and if so there is such a sequence
of length at most k(n − 1). Thus, one can construct
a set of controllable separating sequences to form a
characterisation set of polynomial size and this can be
achieved in polynomial time.

We will show that the Directed Hamiltonian
Path (DHP) problem for strongly connected directed
graphs, which is NP-Complete [56] [57], is polynomial
time reducible to the exact height problem. An instance
of a DHP problem can be defined as follows, where a
walk is said to visit a vertex v if v is the starting vertex
or the ending vertex of at least one edge in the walk.

Definition 5.2. Consider a strongly connected
directed graph G = (V,E) with vertex set V =
{v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. We
say that walk ρ of G is a Hamiltonian path if and only
if the walk visits each vertex of G exactly once. The
DHP problem is to decide whether a strongly connected
directed graph G has a Hamiltonian path.

Given an instance G of the DHP problem, we will
construct an FSM M(G) = (P, S, s0, X, Y, δ, λ). The
aim will be to construct the transition structure of the
FSM in such a way that an ADS µ simulates the rules
that govern the DHP problem. We will then prove
that if G has n vertices then there is an ADS µ for M
whose longest evolution in Ev(µ,M, S) is of length n−1
if and only if the corresponding sequence of symbols
constitutes a solution to the DHP problem for G. We
now show how we construct M(G).

Definition 5.3. We represent vertex vi of G by a
state si of M and add an additional state se and so
S = {s1, s2, . . . , sn} ∪ {se}. For each edge ei of G there
is a corresponding port i of M and unique input xi at
port i. There is an extra port 0, the port set of M is
P = {0} ∪ {1, 2, . . . ,m}. There are no inputs at port 0.
The output alphabets are: Y0 = {1, 2, . . . , n} and for all
1 ≤ i ≤ m, Yi = {oi}.

If ei is an edge from vertex vj to vertex vr then the
state changes associated with transitions of M(G) that
have input xi are defined by the following:

1. We include in M(G) a transition from sj to sr with
input xi.

2. From every state s ∈ S with s 6= sj there is a
self-loop transition from s with input xi. These are
included to make M(G) completely specified and all
transitions from se are of this form.

Thus, for each state s of M(G), a walk in G has a
corresponding walk in M(G) that starts at s. We define
the output in response to input xi in order to ensure
that in controllable testing xi can only be followed by

an input xj 6= xi if ei can be followed by ej in G. As
a result, controllable walks through M(G) correspond to
walks of G. Let us suppose that ei is an edge from vertex
vj to vertex vr and in G the edges that leave vr (and so
can follow ei) are are those in E′ ⊆ E. Then for port
p, 1 ≤ p ≤ m, the transitions with input xi produce
output op at p if ep ∈ E′ and otherwise they produce
no output at p. As a result, input xi can be followed by
input xj 6= xi in controllable testing if and only if ei can
be followed by ej in G. At port 0 there are two cases: xi
leads to output j at 0 if xi is input when M is in state
sj (recall that ei leaves vertex vj) and otherwise, if xi
is input when M(G) is in a state sj′ 6= sj, it leads to
no output at 0.

As a result of this construction, any input of xi
leads to the same output at all ports in {1, 2, . . . ,m}
irrespective of the state in which it is applied. Thus,
only the output at port 0 can be used to distinguish
states. In addition, no output can be produced at
0 when an input sequence is applied from se. For
example consider an instance G of the DHP problem
given in Figure 8a and corresponding FSM M(G) given
in Figure 8b.

In terms of distinguishing states there is no value in
following an input immediately by itself (e.g. having
a subsequence of the form xixi). We will say that
a strategy for M(G) is non-redundant if it cannot
lead to an input being immediately followed by itself
and results will restrict attention to non-redundant
strategies.

A controllable global strategy of M(G) has a
particular form.

Proposition 8. Given a directed graph G and
FSM M(G) with state set S, if µ is a non-redundant
controllable global strategy for M(G) then all traces
in Ev(µ,M(G), S \ {se}) have the same input portion
xi1xi2 . . . xir and this has the property that ei1ei2 . . . eir
is a walk of G.

We now show how the DHP problem for strongly
connected G relates to the existence of an ADS µ for
M(G) whose longest evolution has length ` = n.

Proposition 9. Strongly connected directed graph
G has a Hamiltonian path if and only if M(G) has a
controllable ADS that distinguishes all of the state of
M(G) and whose longest evolution has length ` = n.

We can now prove that the problem of deciding
whether an FSM has an ADS whose longest evolution
has length ` is NP-Hard. The following holds when we
are interested in distinguishing all states in S or some
subset S′ of these.

Theorem 5.5. The exact height problem is in
EXPSPACE and is NP-Hard.

Finally, if we suitably bound ` then the problem is
NP-Complete.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 17

FIGURE 8: Construction of an FSM from a given DHP problem instance.

Theorem 5.6. The exact height ADS problem for an
FSM M is NP-Complete if ` is defined by a polynomial
in term of the size of M .

As noted before, in testing it is possible to use a
characterisation set containing controllable separating
sequences. Thus, in practice we are unlikely to be
interested in ADSs that are significantly longer than
the sum of the lengths of the sequences in such a
characterisation set. This motivates the above result:
in practice we are likely to have a polynomial upper
bound on the height of an ADS that we are ready to
use.

6. CONCLUSIONS

Many automated test case generation algorithms for
testing from a single-port FSM M use test cases that
distinguish states of M and there has been particular
interest in adaptive distinguishing sequences (ADSs).
There has been interest in ADSs as they can be shorter,
are computationally less expensive to produce, and
there are FSMs that have ADSs but no PDS. This
has led to the development of many automated test
case generation algorithms for FSMs that use ADSs.
However, such algorithms return test cases that are
designed for the case where there is a single tester that
interacts with the SUT and so need not be suitable for
distributed testing.

This paper has extended the concepts of ADSs
to distributed testing. We showed that if an ADS
is controllable then it can be implemented by a set
of distributed local testers but otherwise this is not
possible. It also demonstrated how these local testers
can be devised.

We then considered complexity related problems for
ADSs. We proved that the problem of deciding
whether an FSM has an ADS is PSPACE-Hard but

left decidability open. This situation is significantly
different from the single-port FSM problem, which can
be solved in low-order polynomial time. We also showed
that the problem of deciding whether there is an ADS
with height ` (or height at most `) is NP-Hard. In
practice we are likely to have upper bound ` that is
a polynomial in the size of M and for this case the
problem is NP-Complete.

There are several lines of future work. First, it is still
open whether the ADS existence problem is decidable.
There is also the problem of finding realistic conditions
under which the problems studied can be solved in
polynomial time. There may also be scope to develop
heuristics for devising controllable ADSs and finally,
there is the potential to develop new automated test
case generation algorithms for distributed testing.

APPENDIX

Proposition 2. If a strategy µ is controllable then
for every FSM M and set S′ of states of M , we have
that µ is controllable for S′. However, it is possible that
strategy µ is controllable for S′ for some FSM M and
state set S′ and yet µ is not controllable.

Proof. The first part is immediate from the definitions.
For the second part consider a global strategy µ that:

• starts by supplying input x1 at port 1;
• if 〈o1, ε) is output then the strategy supplies input
x2 at port 2 and terminates;
• for every other output the strategy terminates.

This strategy is not controllable since it should send
input x2 to port 2 after x1/〈o1, ε〉 but not after the
empty sequence ε, even though x1/〈o1, ε〉 and ε have the
same projections at port 2. However, µ is controllable
for any S′ from which the input of x1 cannot lead to
output 〈o1, ε〉. The result thus follows.

The Computer Journal, Vol. ??, No. ??, ????

18 Hierons and Türker

Proposition 3. If global strategy µ is controllable
for S then the distributed strategy (π1(µ), π2(µ),
πk(µ)) is deterministic.

Proof. We are required to prove that µ′ = (π1(µ), π2(µ)
. . . .πk(µ)) is deterministic. We will use proof by
contradiction and assume that µ′ is non-deterministic.
By Definition 4.8 there therefore exists global trace
σ1 ∈ (X/Y)∗ such that for all p ∈ P we have that
πp(σ1) ∈ Ev(µp) and ports p, p′ with p 6= p′ such that
µp(πp(σ1)) ∈ Xp and µp′(πp′(σ1)) ∈ Xp′ . By Definition
4.11, there exist global traces σ and σ′ in Ev(µ) such
that:

• πp(σ) = πp(σ1) and µ(σ) = x, x ∈ Xp; and
• πp′(σ′) = πp′(σ1) and µ(σ′) = x′, x′ ∈ Xp′ .

By Definition 4.3, since µ is controllable and πp(σ) =
πp(σ1) we must have that µ supplies input x after σ1.
Similarly, by Definition 4.3, since πp′(σ′) = πp′(σ1)
we must have that µ supplies input x′ after σ1. This
contradicts the definition of a global strategy, since µ
applies two different inputs after σ1, and so the result
follows.

Proposition 4. It is possible that a global strategy
µ is controllable for S′ ⊆ S but the distributed strategy
(π1(µ), π2(µ), . . . πk(µ)) is not deterministic for S′.

Proof. Consider a global strategy µ that initially
supplies input x1 at port 1 and only supplies another
input if the output is 〈1, ε〉, in which case the input
is x2 at port 2. Further let S′ be some set of states
from which the input of x1 cannot lead to 〈1, ε〉.
Then clearly µ is controllable for S′ since from S′

it simply supplies x1, observes an output, and then
terminates. However, if we take the projections we find
that π1(µ) starts by supplying input x1 and π2(µ) can
initially supply input x2 (since µ can supply x2 after
x1/〈1, ε〉 and π2(x1/〈1, ε〉) = ε). Thus, the distributed
strategy (π1(µ), π2(µ)) is not deterministic for S′ as
required.

Proposition 6. Let us suppose that µ is a
controllable global strategy and for all p ∈ P we
have that µp = πp(µ). Then the distributed strategy
µ′ = (µ1, µ2, . . . , µk) is such that Ev(µ) = Ev(µ′).

Proof. First we prove that Ev(µ) ⊆ Ev(µ′). Proof
by contradiction: assume that there is some σ ∈
Ev(µ) \ Ev(µ′). Let σ′ denote the longest prefix
of σ that is in pre(Ev(µ′)) and so there exists an
input/output pair x/y such that σ′x/y is a prefix of
σ and σ′x/y 6∈ pre(Ev(µ′)). Let p be such that x ∈ Xp.
Since σ′x/y ∈ Ev(µ) we have that µ(σ′) = x and so
µp(πp(σ′)) = x. Thus, µ′ can supply input x after σ′

and so σ′x/y ∈ pre(Ev(µ′)), providing a contradiction
as required.

Now we prove that Ev(µ′) ⊆ Ev(µ). Proof by
contradiction: assume that there is some σ ∈ Ev(µ′) \
Ev(µ). Let σ′ denote the longest prefix of σ that is in

pre(Ev(µ)) and so there exists an input/output pair
x/y such that σ′x/y is a prefix of σ and σ′x/y 6∈
pre(Ev(µ)). Let p be such that x ∈ Xp. Since
σ′x/y ∈ Ev(µ′) we have that µp(πp(σ′)) = x. Thus,
by the definition of πp(µ), there exists some σ′′ ∈
Ev(µ,M, S′)) such that πp(σ′′) = πp(σ′) and µ(σ′′) =
x. However, since πp(σ′′) = πp(σ′) and µ is controllable
we must have that µ(σ′) = µ(σ′′). Thus, µ(σ′) = x
and so σ′x/y ∈ pre(Ev(µ)), providing a contradiction
as required.

Theorem 4.1. If µ is controllable and is an
adaptive distinguishing sequence for FSM M then µ′ =
(π1(µ), π2(µ), . . . , πk(µ)) is an adaptive distinguishing
sequence for M .

Proof. By Proposition 3, since µ is controllable we know
that µ′ is deterministic. In addition, by Proposition 6
we know that Ev(µ) = Ev(µ′) and so for every state s of
M we have that Ev(µ,M, s) = Ev(µ′,M, s). The result
now follows from µ being an adaptive distinguishing
sequence for M .

Theorem 4.2. Given S′ ⊆ S, if µ is controllable
for S′ and is an adaptive distinguishing sequence for
S′ then µ′ = (πS′

1 (µ), πS′

2 (µ), . . . , πS′

k (µ)) is an adaptive
distinguishing sequence for M from S′.

Proof. By Proposition 5, since µ is controllable for S′

we know that µ′ is deterministic for S′. In addition,
by Proposition 7, for every state s of M we have that
Ev(µ,M, s) = Ev(µ′,M, s). The result now follows
from µ being an adaptive distinguishing sequence for
S′.

Lemma 5.1. Given a single-port FSM M in
which no transition produces empty output, checking
the existence of a preset distinguishing sequence is
PSPACE-Complete.

Proof. The problem being in PSPACE is a consequence
of the general PDS existence problem for single-port
FSMs being in PSPACE and so we focus on proving
that the problem is PSPACE-Hard. We will show that
any algorithm that can solve this problem can also
solve the general problem of deciding whether a single-
port FSM has a distinguishing sequence. Let M =
(S, s0, X, Y, δ, λ) be a single-port FSM in which some
transitions may have output ε. We construct an FSM
M ′ = (S, s0, X, Y ∪ {y}, δ, λ′) where y 6∈ Y is a new
output and the function λ′ is defined by: given s ∈ S
and x ∈ X, if λ(s, x) 6= ε then λ′(s, x) = λ(s, x) and
otherwise λ′(s, x) = y. It is now sufficient to observe
that an input sequence is a distinguishing sequence
for M if and only if it is a distinguishing sequence
for M ′. The result now follows from the problem of
deciding whether a single-port FSM has a distinguishing
sequence being PSPACE-complete [29].

Theorem 5.1. Given an FSM M , checking the
existence of a controllable ADS that distinguishes all

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 19

of the states of M is PSPACE-Hard. In addition, this
result still holds if we restrict attention to FSMs that
have two ports.

Proof. Assume that we have been given a single-port
FSM M1 = (S, s0, X, Y, δ, λ) such that all of the
transitions of M1 have non-empty output. We will
construct an FSM M that has two ports 1 and 2. The
state set of M will be S and the initial state will be s0.
Port 1 will have input alphabet X1 = X and output
alphabet Y1 = ∅. Port 2 will have input alphabet
X2 = ∅ and output alphabet Y2 = Y . Given state s
and input x such that δ(s, x) = s′ and λ(s, x) = y, we
will include in M the transition from s to s′ that has
input x ∈ X1 and produces output 〈ε, y〉.

Now consider controllable global adaptive strategy
for M . Since all inputs are at port 1 and no outputs
are produced at port 1, there is no opportunity for
a controllable global adaptive strategy to lead to
different input sequences from different states: the
tester choosing the next input will have observed no
output irrespective of the state that the adaptive
strategy was applied in. Thus, all controllable adaptive
strategies for M correspond to fixed input sequences.
In addition, since every transition produces non-empty
output at port 2 and no output at port 1, if the
tester applies an input sequence x1, x2, . . . , xm at port
1 and the tester at port 2 observes output sequence
y1, y2, . . . , ym then we know that for all 1 ≤ i ≤ m, yi
was produced in response to input xi. Thus, there are
no observability problems.

To summarise, a controllable global adaptive strategy
for M corresponds to a fixed input sequence x̄ and the
output sequence observed at port 2 when x̄ is applied
from state s ∈ S is exactly λ(s, x̄). Thus, an adaptive
strategy forM is a controllable ADS forM if and only if
it corresponds to an input sequence x̄ such that for all
s, s′ ∈ S with s 6= s′ we have that λ(s, x̄) 6= λ(s′, x̄).
This is the case if and only if x̄ is a distinguishing
sequence for M1. The result now follows from Lemma
5.1.

Theorem 5.2. The following problem is
PSPACE-Hard: given an FSM M , find a control-
lable ADS µ and state set S′ where µ is a controllable
ADS for S′ and µ and S′ are such that S′ has maximal
size.

Proof. If we have an algorithm that solves this problem
and are given FSM M , then M has a controllable ADS
if and only if the algorithm returns such an ADS. The
result thus follows from Theorem 5.1.

Theorem 5.3. There is a class of FSMs that contain
ADS such that the shortest evolution is of exponential
length.

Proof. Consider a single-port FSM that has a PDS with
exponential length [29], now reapply the reduction given
in Theorem 5.1.

Theorem 5.4. The following problem is
PSPACE-Hard: given an FSM M , what is the smallest
value of ` such that M has an ADS of height `?

Proof. An FSM has an ADS if and only if it has
a minimum height ADS. Thus, any algorithm that
returns the smallest ` such that M has an ADS of
height ` also decides whether M has an ADS. The
result thus follows from the existence problems being
PSPACE-Hard.

Proposition 8. Given a directed graph G and
FSM M(G) with state set S, if µ is a non-redundant
controllable global strategy for M(G) then all traces
in Ev(µ,M(G), S \ {se}) have the same input portion
xi1xi2 . . . xir and this has the property that ei1ei2 . . . eir
is a walk of G.

Proof. First observe that all transitions of M(G) with
input xi, 1 ≤ i ≤ m, produce the same output at all
ports of M(G) except 0. In addition, M(G) has no
inputs at port 0. We will prove that the input portions
are the same for all traces in Ev(µ,M(G), S \ {se})
and will use proof by contradiction: assume that the
input portions of Ev(µ,M(G), s) and Ev(µ,M(G), s′)
are different for some states s, s′ ∈ S \ {se}. Let x̄
denote the longest common prefix of the input portions
of Ev(µ,M(G), s) and Ev(µ,M(G), s′). Without loss
of generality, assume that Ev(µ,M(G), s) has an input
portion that follows x̄ with input xp at port p. However,
since M(G) has no input at port 0 we have that
p 6= 0 and so the responses to x̄ in states s and
s′ have the same outputs at p. Thus, since µ is
controllable, Ev(µ,M, s′) must have an input portion
that follows x̄ with input xp. However, this contradicts
the definition of x̄ as required. Thus, all traces in
Ev(µ,M(G), S \ {se}) have the same input portion
xi1xi2 . . . xir . Further, by the definition of M(G), in a
non-redundant controllable global strategy an input xi
can only be followed by input xj if in G we have that ei
can be followed by ej . The result therefore follows.

Proposition 9. Strongly connected directed graph
G has a Hamiltonian path if and only if M(G) has a
controllable ADS that distinguishes all of the state of
M(G) and whose longest evolution has length ` = n.

Proof. First we prove that if G has a Hamiltonian path
ρ = e1e2 . . . en−1 then M(G) has an ADS whose longest
evolution has length n. Choose an edge en of G that can
follow en−1 in G: since G is strongly connected there
must be some such edge. By the definition of M(G),
the input sequence x1x2 . . . xn defines a controllable
global strategy for M(G). In addition, since ρ is a
Hamiltonian path, for every state si of M(G), si 6= se,
the application of input sequence x1x2 . . . xn from si
includes an input that corresponds to an edge with
starting vertex vi and so leads to an output sequence
at port 0 that starts with i. Finally, the application of
x1x2 . . . xn in state se leads to no output being produced

The Computer Journal, Vol. ??, No. ??, ????

20 Hierons and Türker

at 0. Thus, x1x2 . . . xn defines an ADS and its longest
evolution has length n as required.

Now we assume that M(G) has a controllable ADS
whose longest evolution has length ` = n and we
are required to prove that G has a Hamiltonian
path. By Proposition 8 we know that there is some
input sequence x1x2 . . . xn such that all traces of
Ev(µ,M(G), S \ {se}) have input portion x1x2 . . . xn.
Further, since µ is an ADS for M(G) we must have that
for every state si 6= se, x1x2 . . . xn contains an input xj
such that vi is the starting vertex of ej . In addition,
since µ is controllable we must have that e1e2 . . . en
is a walk of G. To conclude, all vertices of G start
edges in walk e1e2 . . . en of G and so e1e2 . . . en−1 is a
Hamiltonian path of G.

Theorem 5.5. The exact height problem is in
EXPSPACE and is NP-Hard.

Proof. We will first show that a non-deterministic
Turning machine T can decide the exact height ADS
problem using exponential space. We can allow T to
initially guess an ADS µ with height at most `. Since
this defines a finite tree with at most n leaves there is an
upper bound on the size of the tree that is polynomial
in terms of n and ` and so this take space that is
polynomial in ` and n.

In order to check whether µ is controllable it is
sufficient to compute the traces that can be produced
by applying µ from states of M and for any two
traces σ and σ′ check whether there are corresponding
controllability problems. There are corresponding
controllability problems if there are prefixes σ1 and σ′1
of σ and σ′ respectively that have the same projection
at a port p such that after σ and σ′ the behaviour of the
tester at p differs. Thus, the Turing machine can check
this in polynomial time. Finally, the Turing machine
can check in polynomial time whether µ distinguishes
the states of M . The Turing machine takes space
that is polynomial in n and ` and so exponential
in the description of the problem (since ` can be
described in O(log2 `) space). Thus, we have that a non-
deterministic Turing machine can solve the problem
in exponential space. Finally, using the Savitch’s
Theorem [58] we know that a deterministic Turing
machine can also solve the problem in exponential
space. We therefore have that the problem is in
EXPSPACE.

The problem being NP-Hard follows from Proposi-
tion 9 and the fact that the DHP problem with strongly
connected directed graphs is NP-Hard.

REFERENCES

[1] Barnett, M., Grieskamp, W., Nachmanson, L.,
Schulte, W., Tillmann, N., and Veanes, M.
(2003) Towards a tool environment for model-
based testing with AsmL. Formal Approaches to
Software Testing, Montreal, Canada, October 6th,

Lecture Notes in Computer Science, 2931, pp.
252–266. Springer-Verlag.

[2] Cartaxo, E. G., Machado, P. D. L., and Neto, F.
G. O. (2011) On the use of a similarity function
for test case selection in the context of model-
based testing. Software Testing, Verification and
Reliability, 21, 75–100.

[3] Farchi, E., Hartman, A., and Pinter, S. (2002)
Using a model-based test generator to test for
standard conformance. IBM Systems Journal, 41,
89–110.

[4] Garousi, V., Briand, L. C., and Labiche, Y. (2008)
Traffic-aware stress testing of distributed real-
time systems based on UML models using genetic
algorithms. Journal of Systems & Software, 81,
161–185.

[5] Grieskamp, W., Kicillof, N., Stobie, K., and
Braberman, V. A. (2011) Model-based quality
assurance of protocol documentation: tools and
methodology. Software Testing, Verification and
Reliability, 21, 55–71.

[6] Pickin, S., Jard, C., Jeron, T., Jezequel, J.-M.,
and Le Traon, Y. (2007) Test synthesis from UML
models of distributed software. IEEE Transactions
on Software Engineering, 33, 252–269.

[7] Tretmans, J. (1996) Conformance testing with
labelled transitions systems: Implementation
relations and test generation. Computer Networks
& ISDN Systems, 29, 49–79.

[8] Tretmans, J. (2008) Model based testing with
labelled transition systems. In Hierons, R. M.,
Bowen, J. P., and Harman, M. (eds.), Formal
Methods & Testing, An Outcome of the FORTEST
Network, Revised Selected Papers, Lecture Notes
in Computer Science, Springer, Verlag.

[9] Chow, T. S. (1978) Testing software design
modelled by finite state machines. IEEE
Transactions on Software Engineering, 4, 178–187.

[10] Hennie, F. C. (1964) Fault-detecting experiments
for sequential circuits. Proceedings of Fifth Annual
Symposium on Switching Circuit Theory & Logical
Design, Princeton, New Jersey, November 11-13,
pp. 95–110., The inst. of elec. and elect. eng.

[11] Lee, D. and Yannakakis, M. (1996) Principles &
methods of testing finite-state machines - a survey.
Proceedings of the IEEE, 84, 1089–1123.

[12] Moore, E. P. (1956) Gedanken-experiments. In
Shannon, C. and McCarthy, J. (eds.), Automata
Studies, 34, pp. 129–153.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 21

[13] Petrenko, A. and Yevtushenko, N. (2005) Testing
from partial deterministic FSM specifications.
IEEE Transactions on Computers, 54, 1154–1165.

[14] Walter, T., Schieferdecker, I., and Grabowski, J.
(1998) Test architectures for distributed systems:
state of the art & beyond. Testing of
Communicating Systems IFIP, Italy, Trento,
September 11, 3, pp. 149–174. Springer US.

[15] Sunyé, G., Cunha De Almeida, E., Le Traon, Y.,
Baudry, B., and Jézéquel, J.-M. (2014) Model-
Based Testing of Global Properties on Large-Scale
Distributed Systems. Information & Software
Technology , 56-7, Pages 749–762.

[16] Ernits, J. P., Roo, R., Jacky, J., and Veanes,
M. (2009) Model-based testing of web applications
using NModel. TestCom/FATES, Eindhoven, The
Netherlands, November 2-4 pp. 211–216.

[17] ISO/IEC (1995) Information technology - Opens
Systems Interconnection, 9646 Parts 1-7.

[18] Boyd, S. and Ural, H. (1991) The synchronization
problem in protocol testing and its complexity.
Information Processing Letters, 40, 131–136.

[19] Chen, J., Hierons, R. M., and Ural, H.
(2004) Conditions for resolving observability
problems in distributed testing. 24rd IFIP
International Conference on Formal Techniques
for Networked & Distributed Systems (FORTE
2004), Madrid, Spain, September 27-30, Lecture
Notes in Computer Science, 3235, pp. 229–242.
Springer-Verlag.

[20] Chen, W.-H. and Ural, H. (1995) Synchronizable
test sequences based on multiple UIO sequence.
IEEE/ACM Transactions on Networking, 3, 152–
157.

[21] Dssouli, R. and v. Bochmann, G. (1985) Error
detection with multiple observers. Protocol
Specification, Testing & Verification V, pp. 483–
494. Elsevier Science (North Holland).

[22] Dssouli, R. and v. Bochmann, G. (1986) Confor-
mance testing with multiple observers. Protocol
Specification, Testing & Verification VI, Montreal,
Quebec, Canada, June 10-13, pp. 217–229. Elsevier
Science (North Holland).

[23] Guyot, S. and Ural, H. (1995) Synchronizable
checking sequences based on UIO sequences.
Protocol Test Systems, VIII, Evry, France,
September 4-6, pp. 385–397. Chapman & Hall.

[24] Hierons, R. M. and Ural, H. (2008) The effect of
the distributed test architecture on the power of
testing. The Computer Journal, 51, 497–510.

[25] Hierons, R. M. (2010) Reaching and distinguishing
states of distributed systems. SIAM Journal on
Computing, 39, 3480–3500.

[26] Jourdan, G. V., Ural, H., and Yenigun, H. (2006)
Minimizing coordination channels in distributed
testing. 26th IFIP International Conference on
Formal Techniques for Networked & Distributed
Systems (FORTE 2006), France, September 26-
29, Lecture Notes in Computer Science, 4229, pp.
451–466. Springer-Verlag.

[27] Sarikaya, B. and v. Bochmann, G. (1984)
Synchronization & specification issues in protocol
testing. IEEE Transactions on Communications,
32, 389–395.

[28] Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli,
A. R., and Yevtushenko, N. (2010) FSM-based
conformance testing methods: A survey annotated
with experimental evaluation. Information &
Software Technology, 52, 1286–1297.

[29] Lee, D. and Yannakakis, M. (1994) Testing
finite-state machines: State identification and
verification. IEEE Transactions on Computers, 43,
306–320.

[30] Hierons, R. M. and Ural, H. (2008) Checking se-
quences for distributed test architectures. Dis-
tributed Computing, 21, 223–238.

[31] Gill, A. (1962) Introduction to The Theory of
Finite State Machines. McGraw-Hill, New York.

[32] de Almeida, E. C., Marynowski, J. E., Suny,
G., Traon, Y. L., and Valduriez, P. (2010)
Efficient distributed test architectures for large-
scale systems. Testing Software & Systems - 22nd
IFIP WG 6.1 International Conference, ICTSS
2010, Natal, Brazil, November 8-10, Lecture Notes
in Computer Science, 6435, pp. 174–187. Springer,
Verlag.

[33] Cacciari, L. and Rafiq, O. (1999) Controllability
and observability in distributed testing. Informa-
tion & Software Technology, 41, 767–780.

[34] Rafiq, O. and Cacciari, L. (2003) Coordination
algorithm for distributed testing. The Journal of
Supercomputing, 24, 203–211.

[35] Lucas, C., Elbaum, S., and Rosenblum, D. S.
(2012) Detecting problematic message sequences
and frequencies in distributed systems. SIGPLAN
Not., 47, 915–926.

[36] Hierons, R. M., Merayo, M., and Nunez, M. (2008)
Controllable test cases for the distributed test ar-
chitecture. Automated Technology for Verifica-
tion & Analysis, Lecture Notes in Computer Sci-
ence, Seoul, Korea, October 20-23 , pp. 201–215.
Springer Berlin / Heidelberg.

The Computer Journal, Vol. ??, No. ??, ????

22 Hierons and Türker

[37] Hierons, R. M. (2011) Controllable testing
from nondeterministic finite state machines with
multiple ports. IEEE Transactions on Computers,
60, 1818 –1822.

[38] Luo, G., Dssouli, R., and v. Bochmann, G. (1993)
Generating synchronizable test sequences based on
finite state machine with distributed ports. The
6th IFIP Workshop on Protocol Test Systems, pp.
139–153.,Pau, France, September 28-30, Elsevier
(North-Holland).

[39] Tai, K.-C. and Young, Y.-C. (1998) Synchronizable
test sequences of finite state machines. Computer
Networks & ISDN Systems, 30, 1111–1134.

[40] Khoumsi, A. (2002) A temporal approach for
testing distributed systems. IEEE Transactions on
Software Engineering, , 28, 1085 – 1103.

[41] Wang, C. and Schwartz, M. (1993) Fault detection
with multiple observers. IEEE/ACM Transactions
on Networking, 1, 48–55.

[42] Young, Y. C. and Tai, K. C. (1998) Observational
inaccuracy in conformance testing with multiple
testers. IEEE 1st workshop on application-specific
software engineering and technology, March 26-
28, 1998, Clarion Hotel and University of Texas
at Dallas, Richardson, Texas, pp. 80–85., IEEE
Computer Society Press

[43] Hierons, R. M. (2010) Canonical finite state
machines for distributed systems. Theoretical
Computer Science, 411, 566–580.

[44] Hierons, R. M. (–) Generating complete control-
lable test suites for distributed testing. IEEE
Transactions on Software Engineering, DOI
10.1109/TSE.2014.2364035, In Press.

[45] Chen, T. Y., Leung, H., and Mak, I. K. (2004)
Adaptive random testing. 9th Asian Computing
Science Conference, Chiang Mai, China, December
14–16, Lecture Notes in Computer Science, 3321,
pp. 320–329. Springer.

[46] Ciupa, I., Leitner, A., Oriol, M., and Meyer,
B. (2008) ARTOO: adaptive random testing
for object-oriented software. 30th International
Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10 - 18, pp. 71–80. ACM.

[47] Chan, K. P., Chen, T. Y., and Towey, D. (2002)
Restricted random testing. 7th International
Conference on Software Quality (ECSQ 2002),
Portland, Oregon, USA, October 11 - 12, Lecture
Notes in Computer Science, 2349, pp. 321–330.
Springer.

[48] Chan, K. P., Chen, T. Y., and Towey, D. (2006)
Restricted random testing: Adaptive random
testing by exclusion. International Journal of
Software Engineering and Knowledge Engineering,
16, 553–584.

[49] Lv, J., Hu, H., Cai, K., and Chen, T. Y. (2014)
Adaptive and random partition software testing.
IEEE Transactions on Systems, Manufacturing,
and Cybernetics: Systems, 44, 1649–1664.

[50] Haar, S., Jard, C., and Jourdan, G.-V. (2007)
Testing input/output partial order automata. 19th
IFIP TC 6/WG 6.1 International Conference on
Testing of Software & Communicating Systems
(TestCom/FATES), Tallin, Estonia, June 26-29,
Lecture Notes in Computer Science, 4581, pp.
171–185. Springer, Verlag.

[51] v. Bochmann, G., Haar, S., Jard, C., and
Jourdan, G.-V. (2008) Testing systems specified
as partial order input/output automata. 20th
IFIP TC 6/WG 6.1 International Conference on
Testing of Software & Communicating Systems
(TestCom/FATES), Tokyo, Japan, June 10-13,
Lecture Notes in Computer Science, 5047, pp.
169–183. Springer, Verlag.

[52] Hopcroft, J. E. (1971) An n log n algorithm
for minimizing the states in a finite automaton.
In Kohavi, Z. (ed.), The theory of Machines &
Computation, pp. 189–196. Academic Press.

[53] Alur, R., Courcoubetis, C., and Yannakakis, M.
(1995) Distinguishing tests for nondeterministic
and probabilistic machines. 27th ACM Symposium
on Theory of Computing, Las Vegas, Nevada, May
29-June 1, pp. 363–372. ACM New York, NY.

[54] Hierons, R. M., Merayo, M. G., and Núñez, M.
(2008) Controllable test cases for the distributed
test architecture. 6th International Symposium on
Automated Technology for Verification & Analysis
(ATVA 2008), Seoul, Korea, October 20-23, pp.
201–215, Lecture Notes in Computer Science,
Springer-Verlag.

[55] Hierons, R. M. and Türker, U. C. (2015)
Incomplete distinguishing sequences for finite
state machines. The Computer Journal, doi:
10.1093/comjnl/bxv041, In Press.

[56] Garey, M. R. and Johnson, D. S. (1979) Computers
& Intractability. W. H. Freeman and Company,
New York.

[57] Karp, R. M. (1972) Reducibility among combina-
torial problems. In Miller, R. E. and Thatcher,
J. W. (eds.), Complexity of Computer Computa-
tions. Plenum Press, New York-London. 85–103.

The Computer Journal, Vol. ??, No. ??, ????

Distinguishing Sequences for Distributed Testing: Adaptive Distinguishing Sequences 23

[58] Savitch, W. J. (1970) Relationships between non-
deterministic and deterministic tape complexities.
Journal of Computer & System Sciences, 4, 177 –
192.

The Computer Journal, Vol. ??, No. ??, ????

