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Abstract

A Bayesian approach is proposed for coefficient estimation in Tobit quantile regression model.

The proposed approach is based on placing a g-prior distribution depends on the quantile

level on the regression coefficients. The prior is generalized by introducing a ridge parameter

to address important challenges that may arise with censored data, such as multicollinearity

and overfitting problems. Then, a stochastic search variable selection approach is proposed

for Tobit quantile regression model based on g-prior. An expression for the hyperparameter

g is proposed to calibrate the modified g-prior with a ridge parameter to the corresponding

g-prior. Some possible extensions of the proposed approach are discussed, including the

continuous and binary responses in quantile regression. The methods are illustrated using

several simulation studies and a microarray study. The simulation studies and the microarray

study indicate that the proposed approach performs well.

Keywords: g-prior, Gibbs sampler, Ridge parameter, Tobit quantile regression, Variable

selection.

1. Introduction

Quantile regression (QReg) models have received much attention in the literature since

the seminal work of Koenker and Bassett (1978), and a variety of parametric, semiparametric
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and nonparametric estimation approaches have been proposed over the years. The Tobit

QReg model provides an efficient way of coping with left-censored data, and can be viewed

as a linear QReg model where only the data on the dependent variable is incompletely

observed. A great body of work exists on Tobit QReg methods and we refer to Powell (1986),

Hahn (1995), Buchinsky and Hahn (1998), Bilias et al. (2000), Yu and Stander (2007) and

Wang and Fygenson (2009) for an overview.

Consider the model,

yi = max{y0, y∗i }, i = 1, · · · , n, (1)

y∗i = x′
iβ + εi,

where yi is the observed outcome of interest, y∗i is the corresponding latent unobserved

outcome of subject i, y0 is a known censoring point, x′
i is a 1 × k vector denoting the ith

row of the n × k matrix of predictors X, β is a vector of unknown parameters of interest

evaluate at pth quantile, and εi is the error term whose distribution is restricted to have

the pth quantile equal to zero, that is,
∫ 0

−∞
fp(εi)dεi = p. Following Powell (1986), it can

be shown that the regression coefficients vector β can be estimated by the solution to the

following problem

n∑

i=1

ρp(yi −max{y0, y∗i }), (2)

where ρp(·) is the usual check function of Koenker and Bassett (1978), which is defined by

ρp(ε) =
|ε|+ (2p− 1)ε

2
. (3)

Yu and Stander (2007) observed that the posterior estimator of β obtained by assigning

a likelihood function that is based on the asymmetric Laplace distribution at specific value
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of p, serves as the pth Tobit QRreg estimate. Here, the density function of the ALD is given

by (Yu and Moyeed, 2001)

f(ε) = τ−1p(1− p) exp{−τ−1ρp(ε)}, (4)

The authors assigned flat priors, independent of the value of p, for the Tobit QRreg coeffi-

cients vector and sampling β using the Metropolis-Hastings (MH) method. It is well known

that flat priors could be useful for coefficient estimation in Tobit QRreg and other models

but they cannot be used in subset selection techniques, owing to the fact that proper priors

are needed to evaluate Bayes factors (Ibrahim and Chen, 2000). Yu and Stander (2007) also

suggested families of symmetric prior distributions on the Tobit QRreg coefficients vector,

such as normal and Laplace priors. Although these priors may lead to proper posterior,

they are independent of the values of quantiles. That is, the prior is the same for modelling

different order of quantiles. This approach may result in inflexibility in quantile modelling.

Because the posterior distribution of β, the variance-covariance matrix of β and the marginal

distribution of the data depend on the quantile level, extreme quantiles should have different

parameter values from the median. In addition, a correct estimate of the prior distribu-

tion perhaps leads to support insufficiency of data (Agliari and Parisetti, 1988). Thus, it

is crucial to elicit a prior distribution for QRreg coefficients that is as informative as possi-

ble, and more crucially, that depends on the quantile level. For such situations and others,

Alhamzawi and Yu (2013) proposed a modification of Zellner’s g-prior (Zellner, 1986) to be

a quantile dependent prior for quantile regression (QReg) models. This modification can be

written as

β|τ,V ,X ∼ N(0, 2τg(X ′V X)−1), vi ∼ Exp(τ−1p(1− p)), i = 1, ..., n, (5)

where V = diag(v−1
1 , ..., v−1

n ) and g > 0 is a known scaling factor. Here, Exp(θ) denotes the
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density of an exponential distribution with rate parameter θ. In this paper, we use this prior

to develop the Bayesian analysis of the Tobit QReg model. Then, we generalized the g-prior

by introducing a ridge parameter to address some issues that may arise with censored data

such as, multicollinearity and overfitting problems. We also developed an expression for the

hyperparameter g to calibrate the modified g-prior with a ridge parameter to a corresponding

g-prior. Furthermore, we discuss some possible extensions of our approach, including the

continuous and binary responses in QReg.

The remainder of the paper is structured as follows. In Section 2, the structure of our

hierarchical Bayesian Tobit QReg model is described in detail and an extension of the mod-

ified g-prior is suggested. A choice for the hyper-parameter g is presented and the Bayesian

MCMC estimation procedure is outlined. An approach for model selection is presented in

Section 3. Some possible extensions of the proposed approach to QReg with continuous and

binary responses are discussed. Section 4 evaluates the methods using simulation examples,

and Section 5 gives the microarray study. A brief discussion is introduced in Section 6.

2. Methods

2.1. Hierarchical Bayesian Modelling

At the pth quantile, we model conditional Tobit quantiles of the response by using the

Asymmetric Laplace Distribution (ALD) for the errors. More specifically, the location-scale

mixture representation of the ALD (Kozumi and Kobayashi, 2011; Kotz and Podgrski, 2001)

is used to build an efficient Gibbs sampler. This representation can be written as

τ−n exp{−
n∑

i=1

|εi|+ (2p− 1)εi
2τ

} =
n∏

i=1

∫ ∞

0

1

τ
√
4τπvi

exp{−(εi − ξvi)
2

4τvi
− ζvi}dvi, (6)

where ξ = (1− 2p) and ζ = τ−1p(1 − p); see Alhamzawi and Yu (2013) for some details.

Formula (6) has the advantage that there is no need to worry about the prior distribution of
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vi as it is extracted in the same formula. It is easy to show that the exact prior of vi in formula

(6) is exponential with mean τ−1p(1− p) and variance (τ−2p2(1− p)2) and strongly depends

on the value of p. However, the mode of vi is 0 for any p. To complete the prior specification,

we take a quantile dependent prior for β so that π(β|τ,V ,X) = N(0, 2τg(X ′V X)−1). This

choice for β has several attractive features. First, under this setting the prior distribution

of β depends on the quantile level. Thus, we have different priors for different quantiles.

For example, a 95% QReg model should have different parameter values from the median

quantile, and thus the priors used for modelling the quantiles should be different. Second,

this prior is conditionally conjugate, a property that allows for a simple and efficient Gibbs

sampling algorithm for fitting the model. Third, in the case of V = In and 2τ = σ2, the

proposed prior is reduced to the original g-prior, i.e. π(β|σ2,X) = N(0, gσ2(X ′X)−1).

Finally, as g −→ ∞, the proposed prior distribution of β converges to Jeffrey’s prior of

the form π(β|V 0,X) ∝ |X ′V 0X|1/2 with V 0 =diag((2τv1)
−1, · · · , (2τvn)−1), which is a

popular noninformative prior for Bayesian analysis. To summarize, our hierarchical Bayesian

modelling is given by

yi = max{y0, y∗i }, i = 1, · · · , n,

y∗i |β, τ, vi ∼ N(x′
iβ + ξvi, 2τvi),

β|τ,V ,X ∼ N(0, 2τg(X ′V X)−1), (7)

vi|τ ∼ Exp(τ−1p(1− p)),

p(τ) ∝ τ−1.

Since our target in the SSVS approach required computation of the marginal distribution

of the data p(y∗|τ, v) with v = (v1, · · · , vn)′, the following lemma gives the closed-form of

p(y∗|τ, v) under the proposed prior.

Lemma 1. Under the quantile dependent prior (5), the conditional distribution of the data
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p(y∗|τ, v) is given by

p(y∗|τ, v) = (1 + g)−k/2

(4π)n/2
(

n∏

i=1

(τvi)
−1/2)

× exp{−(y∗ − ξv)′(
V

4τ
− gV X(X ′V X)−1X ′V

4(1 + g)τ
)(y∗ − ξv)}. (8)

The proof of Lemma 1 is straightforward and can be accomplished by integrating out the

quantile coefficients vector β as in Smith and Kohn (1996).

2.2. Introducing a ridge parameter

In the original g-prior, the matrixX ′X suffers from singularity in case of multicollinearity

or overfitting problems (k >> n). For this reason, Gupta and Ibrahim (2007) proposed a

modification of the original Zellner’s g-prior, motivated by the ridge parameter λ which

comes from ideas of ridge regression to deal with multicollinearity and overfitting problems.

The authors showed that their technique allows consistent subset selection and coefficient

estimation for overfitting problems. Baragatti and Pommeret (2012) considered the influence

of λ on the subset selection and suggested a technique to select the scaling factor. Similar

to Gupta and Ibrahim (2007), in the case of singularity of the matrix X ′V X, we modified

our prior with the ridge parameter (λ > 0). More specifically, we propose the following prior

for β:

β|τ,V ,X ∼ N(0, 2τgλ(X
′V X + 2λIk)

−1), (9)

where gλ > 0 is a known scaling factor characterised by the parameter λ and Ik is the k× k

identity matrix. In this paper, we assume gλ 6= g.

Clearly in order for the conditional distribution of the quantile coefficients vector β

under the prior (5) and the conditional distribution of β under the prior (9) to have identical

conditional distributions, we need g(X ′V X)−1 = gλ(X
′V X + 2λIk)

−1. The following
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lemma characterises the relationship among the three parameters g, gλ and λ.

Lemma 2. The posterior distribution of the quantile coefficients vector β under the

prior (5) and the posterior distribution of β under the prior (9) are identical distributions

if and only if

gλIk = g[Ik + 2λ(X ′V X)−1]. (10)

This lemma provides a technique to elicit gλ and the proof of Lemma 2 is straightforward.

By taking the trace of left and right hand sides of (10), we are led to

ĝλ =
1

k
E[gk +

2gλ

tr(X ′V X)
], (11)

where the expectation in Equation (11) is taken with respect to the posterior distribution of

V .

2.3. Choice of g and λ

Various values of g have been used in the context of variable selection and estimation.

For example, Kass and Wasserman (1995) proposed the general idea of the unit informa-

tion prior, i.e. g = n. Smith and Kohn (1996) performed variable selection using splines

and suggested that the value of g is in the range 10 ≤ g ≤ 1000. Following this sug-

gestion, a number of authors set g = 100 (see for example, Lee et al., 2003; Gupta et al.,

2007; Chen et al., 2011, among others). Although for linear regression models, placing an

Inverse Gamma prior on g, g ∼ InvGa(1/2, n/2), leads to a multivariate Cauchy prior on β

which is recommended as a robust prior for Bayesian variable selection in regression mod-

els (Clyde and George, 2004; Zellner and Siow, 1980), the corresponding marginal likelihood

f(y|γ) has no closed form, where γ is a latent k-vector with binary entries: γj = 1 if the jth
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covariate is active in the regression and γj = 0 otherwise. For this reason, Liang et al. (2008)

suggested the idea of the hyper-g prior. Cui and George (2008) proposed an inverse-gamma

prior distribution on (1 + g) (not g) and Celeux et al. (2012) suggested a Jeffrey prior on

g. In this paper, we choose g = 100 and we choose λ = 1/k which has been suggested by

Baragatti and Pommeret (2012) which lies between 0 and 1 as recommended for Bayesian

robustness (Gupta and Ibrahim, 2007).

2.4. Posterior Computation

The hierarchical modelling (7) produces an efficient MCMC algorithm by updating the

latent variables y∗i and vi as well as the other parameters β and τ from their full conditional

distributions.

• Updating y∗i

Let Υ(.) denotes to a degenerate distribution, then the latent variable y∗i , i = 1, · · · , n,

has a conditional distribution given by

y∗i |yi,β, τ,V ∼





Υ(yi), if yi > y0;

N(x′
iβ + ξvi, 2τvi)I(y

∗
i ≤ y0), otherwise,

(12)

• Updating β

The full conditional distribution of β is Nk(µ,Σ), where

Σ = 2τ [
gλ + 1

gλ
X ′V X +

2λ

gλ
Ik]

−1 and µ = (2τ)−1ΣX ′V (y∗ − ξv). (13)

Here, y∗ = (y∗1, · · · , y∗n)′.
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• Updating τ

τ |y∗,β, v ∼ InvGa((3n+ k)/2,
1

4
(y∗ −Xβ − ξv)′V (y∗ −Xβ − ξv)

+
1

4g
β′(X ′V X)β + p(1− p)

n∑

i=1

vi).

• Updating vi

For i = 1, ..., n, each vi ∼ GIG(ν, ̺1, ̺2), where ν = 0, ̺21 = ((y∗i − x′
iβ)

2 +

β′xix
′
iβ/g)/(2τ) and ̺22 = 1/(2τ).

Recall that if x ∼ GIG (ν, ̺1, ̺2) then the probability density function of x is given by

(Barndorff-Nielsen and Shephard, 2001)

f(x|ν, ̺1, ̺2) =
(̺2/̺1)

ν

2Kν(̺1̺2)
xν−1 exp

{
−1

2
(x−1̺21 + x̺22)

}
,

where x > 0, −∞ < ν < ∞, ̺1, ̺2 ≥ 0 and Kν(.) is so called “modified Bessel function of

the third kind”. During MCMC iteration we update gλ using gλ = [gk + 2gλ/tr(X ′V X)]

where g = n and λ = 1/k. In the case of nonsingularity of the matrix X ′V X, we set λ = 0

and gλ = g.

3. Stochastic Search Variable Selection (SSVS)

3.1. Priors specification and Bayesian sampler

The approach of Ji et al. (2012) allows for Bayesian variable selection in Tobit QReg;

however, their approach had the disadvantages of relying on priors that are independent of

the value of quantiles. This approach may result in inflexibility in quantile modelling. Our

initial goal is to address this problem using the proposed prior in Section 2.

Given p ∈ (0, 1) and τ = 1, we consider the following prior distribution assumptions:
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• The prior distribution of βγ is taken as βγ |V ,Xγ ∼ N(0, 2gλ(X
′
γV Xγ+2λIkγ )

−1),

where vi ∼ Exp(p(1− p)) for i = 1, ..., n.

• The prior of γ is taken as p(γ|π) ∝ πkγ (1 − π)k−kγ (George and McCulloch, 1993,

1997), where π ∼ Beta(b01, b02).

Under prior assumptions, we are able to use a MCMC based computation technique to

update y∗,βγ ,V and π from the posterior:

• Updating y∗i

Under γ, the full conditional distribution of y∗i , i = 1, · · · , n, is reduced to

y∗i |yi,βγ ,V ∼





Υ(yi), if yi > y0;

N(x′
i,γβγ + ξvi, 2vi)I(y

∗
i ≤ y0), otherwise,

(14)

• Updating βγ

The full conditional distribution of βγ is Nkγ (µγ ,Σγ), where

Σγ = 2[
gλ + 1

gλ
X ′

γV Xγ +
2λ

gλ
Ikγ ]

−1,

and µγ = 2−1ΣγX
′
γV (y∗ − ξv).

• Updating v

The full conditional distribution of each vi can be obtained from the full conditional

distribution of vi in the subsection 2.4 by setting τ = 1 and replacing x′
i and β

everywhere with x′
i,γ and βγ , respectively.

• Updating γj
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Each γj, j = 1, · · · , k, has a full conditional distribution given by

p(γj = 1|y,y∗,βγ , v,γ−j) =
1

1 + hj
,

hj =
p(y∗|y,βγ , v, γj = 0,γ−j)p(βγ |γj = 0,γ−j)p(γj = 0,γ−j)

p(y∗|y,βγ , v, γj = 1,γ−j)p(βγ |γj = 1,γ−j)p(γj = 1,γ−j)
.

• Updating π

Since π ∼ Beta(b01, b02), then, under model γ the full conditional distribution of π is

Beta(kγ + b01, k − kγ + b02).

3.2. Model extensions

3.2.1. Subset selection in QReg

The proposed method in subsection 3.1 can be used, with some modifications, to find

subset selection in QReg with continuous outcome variable. By ignoring the link function

yi = max{y0, y∗i } and replacing y∗ everywhere with y, our approach offers an alternative way

for subset selection in QReg model with continuous outcome to deal with multicollinearity

and overfitting problems.

3.2.2. Subset selection in Binary QReg

In this subsection, we show that our technique reported in subsection 3.1 can be ex-

tended to subset selection for binary QReg model. Binary QReg models have received

considerable interest in the literature and we refer to Manski (1975, 1985), Kordas (2006)

and Benoit and Poel (2011) for an overview. Suppose yi is a binary outcome variable (e.g.

normal and cancer), then the binary QReg takes the form of (Manski, 1985)

y∗i = x′
iβ + εi, (15)

yi = 1 if y∗i ≥ 0, yi = 0 otherwise.

11



Under the above model, the proposed method in subsection 3.1 can be used to find promising

subset in binary QReg by using the link function yi ∼ 1(y∗i ≥ 0) and sampling y∗i , i =

1, · · · , n, as follows

y∗i |yi = 1, vi,βγ ∼ N(x′
i,γβγ + ξvi, 2vi) truncated at the left by 0,

y∗i |yi = 0, vi,βγ ∼ N(x′
i,γβγ + ξvi, 2vi) truncated at the right by 0.

4. Numerical Illustrations

4.1. Inference

4.1.1. Example 1

In this example, we consider our Bayesian Tobit QReg approach using g prior (BTQRg)

and Bayesian Tobit QReg approach (BTQ) using a symmetric prior distribution, β ∼

Nk(0, 100I), as reported in Kozumi and Kobayashi (2011). These approaches were com-

pared with the standard Tobit QReg approach (crq) employing Powell’s method (Koenker,

2011). The simulation design follows the setting of Bilias et al. (2000) and Yu and Stander

(2007). Data are simulated from the model

yi = max{0, y∗i },

y∗i = β0 + β1x1i + β2x2i + εi,

where x1i ∼ Bernoulli(0.5) centered at zero, x2i ∼ N(0, 1) and (β0, β1, β2) = (1, 1, 1). Three

error distributions are considered: the standard normal N(0,1), a heteroscedastic normal dis-

tribution (1+x2)N(0, 1) and a normal mixture distribution 0.75N(0, 1)+0.25N(0, 4). Under

these distributions the censoring level is approximately 30%. For each error distribution,

we simulate 250 data sets assuming the sample size is n = 100. We fit the models at three

different quantiles p = 0.50, 0.75 and p = 0.95. The MCMC algorithms are run for 17000
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iterations, discarding the first 2,000 as burn in. Methods are evaluated based on the relative

average bias

b̂ias(β̂m) =
1

250

250∑

r=1

β̂r
m − βm

| βm|
,

and the estimated relative efficiency

êffmodel(β̂m) =
S2
model(β̂m)

S2
BTQRg(β̂m)

,

where β̂r
m, m = 0, 1 is the estimated quantile for the rth replication, βm is the true value,

S2(β̂m) =
1

250

∑250

r=1(β̂
r
m − β̄m)

2 and β̄m = 1
250

∑250

r=1 β̂
r
m.

The simulation results for β0, β1 and β2 are summarized in Table (1). Clearly, the biases

due to three approaches are more or less the same. However, the proposed method (BTQRg)

generally behaves much better than the other approaches (crq and BTQ) in terms of the

absolute bias. Across the three error distributions, it can be noted that the absolute bias

obtained from our proposed method is much smaller at extreme quantiles than the competing

approaches. Most noticeably, when p = 0.95 the absolute bias generated by the proposed

method for all parameters is much smaller than the absolute bias generated by the other

approaches. In addition, the proposed method appears more efficient than the other methods.

For example, when the error is standard normal and estimating the median, the loss of

efficiency of the standard Tobit QReg (crq), with respect to our model, was 107% for β2 and

larger for the other parameters. We can also see that the the loss of efficiency of the BTQ,

with respect to our model, was 1.23% for β2 and larger for the other parameters. It may

suggest that the Bayesian approach using a quantile dependent prior distribution has an

advantages for modelling the extreme quantiles, which is desirable situation when attention

is focused on the extreme quantiles.
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Table 1: Estimated bias and relative efficiency for different error distributions. The proposed
approach (BTQRg) is compared with two other approaches: the frequentist Tobit QReg approach
(crq) and the Bayesian approach using symmetric prior distribution for the regression coefficients
(BTQ).

Model p bias (eff.) bias (eff.) bias (eff.)
β0 β1 β2

ε ∼ N(0, 1)
crq 0.50 -0.01466 (2.15047) 0.03376 (2.18275) 0.01217 (2.06735)
BTQ 0.50 0.00597 (1.14267) 0.00996 (1.06784) -0.00789 (1.01235)
BTQRg 0.50 0.00640 (1.00000) -0.01036 (1.00000) -0.05614 (1.00000)
crq 0.75 -0.01052 (1.72184) -0.00405 (1.32100) -0.01455 (1.59715)
BTQ 0.75 -0.02690 (1.35108) 0.06365 (1.57798) 0.09263 (1.85198)
BTQRg 0.75 0.00284 (1.00000) -0.05996 (1.00000) -0.01000 (1.00000)
crq 0.95 0.01208 (1.13496) -0.02656 (1.21129) -0.12986 (0.97514)
BTQ 0.95 0.09551 (0.91855) 0.05976 (1.03759) 0.07646 (1.09315)
BTQRg 0.95 0.00201 (1.00000) 0.00079 (1.00000) -0.04465 (1.00000)

ε ∼ (1 + x2)N(0, 1)
crq 0.50 -0.15563 (9.78132) 0.16054 (21.48298) 0.01826 (2.33432)
BTQ 0.50 -0.07266 (1.32119) 0.09796 (2.85943) 0.05578 (1.22709)
BTQRg 0.50 0.07632 (1.00000) -0.01073 (1.00000) -0.01023 (1.00000)
crq 0.75 -0.01138 (1.21019) 0.05568 (2.65549) -0.07541 (1.62722)
BTQ 0.75 -0.05331 (1.30429) 0.28926 (2.96351) 0.03059 (1.67248)
BTQRg 0.75 0.04686 (1.00000) -0.04863 (1.00000) -0.01050 (1.00000)
crq 0.95 0.08300 (1.32362) -0.01790 (1.18841) -0.31592 (1.98608)
BTQ 0.95 0.18887 (0.89628) 0.27505 (1.01940) -0.21792 (1.40077)
BTQRg 0.95 0.13293 (1.00000) -0.00770 (1.00000) -0.14665 (1.00000)

ε ∼ 0.75N(0, 1)
+0.25N(0, 4)
crq 0.50 -0.02559 (2.81012) 0.00989 (2.73070) -0.00652 (1.82914)
BTQ 0.50 -0.01951 (1.49375) 0.00640 (1.36406) -0.00642 (0.90888)
BTQRg 0.50 0.00207 (1.00000) -0.00570 (1.00000) -0.01228 (1.00000)
crq 0.75 -0.13335 (1.42499) 0.01562 (1.54906) -0.01233 (1.78678)
BTQ 0.75 -0.14603 (1.86671) 0.08703 (1.85623) 0.10127 (1.89332)
BTQRg 0.75 -0.09073 (1.00000) -0.04322 (1.00000) -0.00878 (1.00000)
crq 0.95 -0.18130 (1.58685) -0.05828 (1.15029) -0.11391 (0.99865)
BTQ 0.95 -0.10930 (1.08060) 0.05055 (0.95292) 0.10552 (1.05016)
BTQRg 0.95 -0.10797 (1.00000) -0.00999 (1.00000) -0.02471 (1.00000)
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Wemay also look at the estimation of the regression coefficients and 95% credible intervals

(95% CrI). Table 2 compares the posterior means of the Bayesian methods with the true

values of β when p = 0.50, 0.75 and p = 0.95. It can be observed that our estimates are very

close to the true values and our credible intervals are generally shorter than the intervals

given by the BTQ. Although our intervals are shorter, but its more informative than the

intervals given by the BTQ especially for the most extreme quantile (p = 0.95). For example,

when the error is standard normal and estimating the 0.95 quantiles for β0, our intervals

capture the true parameter value 100% of the time, while BTQ intervals capture the true

parameter value 98% of the time, suggesting a good performance of our proposed method. It

can be seen clearly from Table 1 and Table 2, the proposed Bayesian method outperformed

the BTQ method. It yields considerably lower biases, high relative efficiency and much more

precise credible interval.

For convergence diagnosis, across the three error distributions, we run our MCMC al-

gorithm with 3 different sets of initial values each for 17,000 iterations discarding the first

2,000 gave values of the Gelman-Rubin (Gelman and Rubin, 1992) diagnostic of between

1.00 and 1.01. The posterior mean for each parameter was virtually identical for each chain,

suggestting that the constructed chains are stationary and the mixing is quite good. The

posterior histograms of parameters β0, β1 and β2 in Figure 1 also support this conclusion.

4.2. Model selection

4.2.1. Example 2 ( Subset selection for left-censored response with k < n)

In this example, we consider two simulation studies. We simulate 8 covariates from a

multivariate normal with pairwise covariance between any two predictors xh and xl being

ρ|h−l|, for ρ = 0.5. For both simulations, we generated 250 datasets each with n = 200
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Table 2: True parameter values, posterior means and 95% credible intervals (95% CrI) for Example 1. The results are averaged
over 250 independent simulations. %in is the number of times each 95% credible interval capture the true value out of 250
replications.

Error Model p β0 β1 β2

Mean (95% CrI) %in Mean (95% CrI) %in Mean (95% CrI) %in

ε ∼ N(0, 1)

β
true 0.50 1.000 1.000 1.000

BTQ 0.50 1.013 (0.713, 1.342) 100 0.983 (0.662, 1.349) 100 1.000 (0.528, 1.399) 100

BTQRg 0.50 1.001 (0.775, 1.215) 100 0.990(0.775, 1.214) 100 1.006 (0.757, 1.236) 100

βtrue 0.75 1.675 1.000 1.000

BTQ 0.75 1.592 (1.511, 2.035) 100 0.982 (0.719, 1.314) 100 0.995 (0.549, 1.386) 100

BTQRg 0.75 1.642 (1.450, 1.952) 100 0.991 (0.748, 1.253) 100 1.031 (0.779, 1.211) 100

βtrue 0.95 2.645 1.000 1.000

BTQ 0.95 3.050 (2.145, 3.552) 98 1.081 (0.624, 1.335) 100 1.122 (0.499, 1.791) 100

BTQRg 0.95 2.650 (2.327, 3.312) 100 1.024 (0.516, 1.492) 100 1.090 (0.544, 1.486) 100

ε ∼ (1 + x2)N(0, 1)

βtrue 0.50 1.000 1.000 1.000

BTQ 0.50 0.939 (0.689, 1.335) 100 1.069 (0.974, 1.250) 100 1.040 (0.689, 1.448) 100

BTQRg 0.50 0.989 (0.803, 1.248) 100 1.019 (0.812, 1.181) 100 1.003 (0.792, 1.263) 100

βtrue 0.75 1.675 1.000 1.675

BTQ 0.75 1.648 (1.442, 1.891) 1.012 (0.635, 1.432) 1.495 (0.995, 1.873)

BTQRg 0.75 1.681 (1.479, 1.984) 1.010 (0.743, 1.226) 1.561 (1.175, 1.711)

βtrue 0.95 2.645 1.000 2.645

BTQ 0.95 3.333 (2.457, 3.678) 96 1.362 (0.519, 1.771) 100 2.122 (1.153, 2.351) 98

BTQRg 0.95 2.779 (2.659, 3.875) 100 1.019 (0.481, 1.695) 100 2.155 (1.264, 2.161) 100

ε ∼ 0.75N(0, 1)+0.25N(0, 4)

βtrue 0.50 1.000 1.000 1.000

BTQ 0.50 1.003 (0.661,1.457) 98 1.006 (0.721, 1.425) 100 1.005 (0.671, 1.372) 100

BTQRg 0.50 0.999 (0.786 1.207) 100 1.011 (0.783, 1.206) 100 1.001 (0.767, 1.224) 100

β
true 0.75 1.843 1.000 1.000

BTQ 0.75 (1.153, 2.001) 94 (0.636,1.155) 99 (0.711, 1.356) 99

BTQRg 0.75 (1.396, 1.874) 99 (0.782, 1.259) 100 (0.748, 1.256) 100

βtrue 0.95 3.056 1.000 1.000

BTQ 0.95 2.918 (1.992, 3.451) 91 1.086 (0.571, 1.749) 98 1.150 (0.421, 1.581) 98

BTQRg 0.95 2.974 (2.191, 3.129) 98 1.011 (0.522, 1.443) 100 1.020 (0.579, 1.416) 100
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Figure 1: Posterior histograms of β0, β1 and β2 at quantiles 0.50 and 0.95 for Example 1 using
the proposed method.
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observations from the true censoring model

yi = max{0, y∗i }, i = 1, · · · , n,

y∗i = x′
iβ + εi. (16)

For the first simulation, we set β = (1, 5, 0, 0, 0, 0, 0, 0, 0)′, while for the second simulation

we set β = (1, 3, 1.5, 0, 0, 2, 0, 0, 0)′, so that the first true regression coefficient refers to the

intercept value. Three error distributions are considered: N(0,1) distribution, t3 distribution

and χ2
3 distribution. In this example, we compare our Bayesian variable selection approach in

Tobit QReg using g prior (BTQRg) and Bayesian variable selection in Tobit QReg approach

(BVST) using a symmetric prior distribution as reported in Ji et al. (2012). The results of the

standard Tobit QReg approach (crq) are also reported. Methods are evaluated based on the

median of mean absolute deviations (MMAD), that is, median(1/200
∑200

i=1 |x′
iβ̂ −x′

iβ
true|),

where the median is taken over the 250 simulations.

The results of the MMADs and the standard deviations of the MMADs are listed in

Table 3. For the MMADs and the standard deviations (sd) criteria, the proposed method

(BTQRg) generally performs better than BVST and crq for all the distributions under

consideration. In addition, the average number of correct zero coefficients selected by our

approach is greater than the average number of correct zero coefficients selected by BVST

for all the distributions under consideration. It can be seen that as the quantiles become

more extreme, the BVST approach yields a low average of correct zero coefficients compared

with the proposed approach, suggesting a good performance of the proposed algorithm.

Instead of looking at the MMADs, the standard deviations and the average number of

correct zero coefficients, we may also look at the top model picked out by the Bayesian

methods. From Table 4, we see that both methods pick the correct model. However, we can

observe that our method tends to perform better in terms of posterior model probability for
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the correct model, than the BVST especially for the extreme quantile (p = 0.95). Hence our

prior plays a crucial role to correctly identify the correct model with higher posterior model

probability, even for the extreme quantiles.

4.2.2. Example 3 (k > n)

The setup in this example is the same as the Example 2, except we increase the number

of variables to k = 250 and choose β such as β = (1, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, ..., 0︸ ︷︷ ︸
236

).

This allows us to investigate the performance in the case k > n.

From Table 5, the performance of our method appears quite good compared to the BVST.

We observe that the median of mean absolute deviations (MMAD) produced using the BVST

method is much higher than our method. We also see that our method tends to produce

lower standard deviations than BVST.

4.2.3. Example 4 (k > n)

The setup in this example is the same as Example 3 but we ignore the link

function (i.e., continuous response) and we set n = 50, k = 100 and β =

(1, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, ..., 0︸ ︷︷ ︸
86

). This setup allows us to investigate the perfor-

mance of the proposed method in the quantile regression model with the case k > n. In

this example, one simulation dataset is used to compare our approach reported in subsection

3.2.1 with the stochastic search variable selection reported in Reed et al. (2009) using the

SSVSquantreg function in the R package MCMCpack (Martin et al., 2011). The methods were

compared using marginal inclusion probabilities (MIP). In this example, we considered two

quantiles, these were 0.50 and 0.95. We ran both algorithms for 17,000 iterations, discarding

the first 2,000 as burn in. The results of the marginal inclusion probabilities are summarized

in Table 6. Clearly, we can see that our approach tends to perform better in terms of the

estimated marginal inclusion probabilities than SSVSquantreg, especially for p = 0.95.
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Table 3: MMADs, standard deviation of MADs (SD) and the average number of correct zero coefficients (correct) for the simulated
data in Example 2, where p = 0.50, 0.75 and 0.95.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2
3

Model p MMAD (SD) correct MMAD (SD) correct MMAD (SD) correct

Sim. 1
crq 0.50 0.327 (0.112) - 0.336 (0.191) - 0.415 (0.289) -
BVST 0.50 0.158 (0.083) 6.88 0.177 (0.105) 6.84 0.552 (0.386) 6.96
BTQRg 0.50 0.094 (0.082) 6.96 0.142 (0.094) 6.88 0.347 (0.264) 7.00

crq 0.75 0.311 (0.119) - 0.363 (0.157) - 0.444 (0.287) -
BVST 0.75 0.267 (0.254) 6.84 0.322 (0.318) 6.80 0.357 (0.360) 6.68
BTQRg 0.75 0.146 (0.112) 7.00 0.184 (0.162) 6.96 0.297 (0.271) 6.92

crq 0.95 0.366 (0.189) - 0.404 (0.280) - 0.450 (0.520) -
BVST 0.95 0.383 (0.318) 6.88 0.359 (0.393) 6.60 0.386 (0.388) 6.20
BTQRg 0.95 0.223 (0.168) 7.00 0.223 (0.217) 6.92 0.343 (0.290) 6.89

Sim. 2
crq 0.50 0.296 (0.095) - 0.343 (0.120) - 0.408 (0.271) -
BVST 0.50 0.159 (0.084) 4.84 0.315 (0.301) 4.64 0.371 (0.357) 4.46
BTQRg 0.50 0.149 (0.080) 4.96 0.221 (0.121) 4.84 0.296 (0.253) 4.99

crq 0.75 0.294 (0.092) - 0.350 (0.121) - 0.286 (0.263) -
BVST 0.75 0.283 (0.211) 4.68 0.320 (0.299) 4.72 0.381 (0.338) 4.66
BTQRg 0.75 0.172 (0.081) 4.96 0.218 (0.111) 4.92 0.338 (0.257) 4.96

crq 0.95 0.345 (0.132) - 0.386 (0.293) - 0.477 (0.435) -
BVST 0.95 0.384 (0.311) 4.76 0.390 (0.374) 4.66 0.437 (0.425) 4.36
BTQRg 0.95 0.234 (0.175) 5.00 0.258 (0.291) 4.96 0.381 (0.384) 4.96
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Table 4: Top two models in Example 2 for Tobit QReg.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2

3

Sim. Model p Variables Pb Variables Pb Variables Pb

1 BVST 0.50 Inter., x1 0.90 Inter., x1 0.87 Inter., x1 0.85
BTQRg 0.50 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.91

BVST 0.75 Inter., x1 0.85 Inter., x1 0.84 Inter., x1 0.74
BTQRg 0.75 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.90

BVST 0.95 Inter., x1 0.82 Inter., x1 0.76 Inter., x1 0.60
BTQRg 0.95 Inter., x1 0.97 Inter., x1 0.96 Inter., x1 0.87

2 BVST 0.50 Inter., x1, x2, x5 0.89 Inter., x1, x2, x5 0.89 Inter., x1, x2, x5 0.86
BTQRg 0.50 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91

BVST 0.75 Inter., x1, x2, x5 0.85 Inter., x1, x2, x5 0.88 Inter., x1, x2, x5 0.85
BTQRg 0.75 Inter., x1, x2, x5 0.92 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91

BVST 0.95 Inter., x1, x2, x5 0.84 Inter., x1, x2, x5 0.81 Inter., x1, x2, x5 0.52
BTQRg 0.95 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.93 Inter., x1, x2, x5 0.91

Table 5: MMADs and SD for the simulated data in Example 3, where p = 0.50, 0.75 and 0.95.

ε ∼ N(0, 1) ε ∼ t3 ε ∼ χ2
3

Model p MMAD (SD) MMAD (SD) MMAD (SD)
BVST 0.50 0.192 (0.089) 0.323 (0.235) 0.473 (0.358)
BTQRg 0.50 0.183 (0.093) 0.211 (0.155) 0.337 (0.294)

BVST 0.75 0.325 (0.339) 0.361 (0.289) 0.552 (0.403)
BTQRg 0.75 0.258 (0.278) 0.328 (0.293) 0.369 (0.413)

BVST 0.95 0.529 (0.363) 0.631 (0.346) 0.670 (0.619)
BTQRg 0.95 0.497 (0.321) 0.589 (0.334) 0.611(0.680)
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Table 6: Marginal inclusion probabilities to the true model for simulated data in Example 1
using three different error distributions. Our approach for Bayesian quantile regression (BQRg) is
compared with SSVSquantreg.

Variables

Error distribution Method p Intercept x1 x7 x13

ε ∼ N(0, 1)

SSVSquantreg 0.50 0.72 1.00 1.00 1.00

BQRg 0.50 1.00 1.00 1.00 1.00

ε ∼ t3

SSVSquantreg 0.50 0.65 1.00 1.00 1.00

BQRg 0.50 1.00 1.00 1.00 1.00

ε ∼ χ2

3

SSVSquantreg 0.50 0.80 1.00 1.00 1.00

BQRg 0.50 1.00 1.00 1.00 1.00

ε ∼ N(0, 1)

SSVSquantreg 0.95 1.00 0.11 0.71 0.18

BQRg 0.95 1.00 1.00 1.00 1.00

ε ∼ t3

SSVSquantreg 0.95 1.00 0.09 0.71 0.22

BQRg 0.95 1.00 1.00 1.00 1.00

ε ∼ χ2

3

SSVSquantreg 0.95 1.00 0.11 0.28 0.12

BQRg 0.95 1.00 1.00 1.00 1.00

5. Leukemia data set

We illustrate the performance of the proposed model for simultaneous gene selection and

estimation on the leukemia dataset reported in Golub et al. (1999). The dataset describe

the expression levels of 7129 human genes in 72 acute leukemia mRNA samples with either

acute myeloid leukemia (AML, 25 cases) or acute lymphoblastic leukemia (ALL, 47 cases).

The data further splits into a training dataset and a testing dataset. The training dataset

contains 38 samples of which 27 are ALL and the remaining 11 are AML, while testing

dataset consists of 34 samples 20 are ALL and the remaining 14 are AML (Golub et al.,

1999).

Table (7) list the top 10 most significant genes selected by the proposed model for p ∈
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{0.25, 0.50, 0.75}, together with the relevant genes selected by Golub et al. (1999), Lee et al.

(2003) and Yang and Song (2010) when p = 0.50 which corresponds to the center of the

distribution. The leading gene is Zyxin. Zyxin is a protein that is in humans and is encoded

by the ZYX gene (Maccalma, 1996). This gene also one of the strong genes in Golub et al.

(1999), Lee et al. (2003), Bae and Mallick (2004), and Yang and Song (2010), among others.

Bae and Mallick (2004) used only Zyxin for prediction and had only 3 misclassifications,

while Golub et al. (1999) used 50 genes for prediction and had 5 misclassifications. This

ensure that Zyxin plays an important role in classification. A more complete picture of

gene effects can be provided by the first and third quartiles. We note that the leading

gene is Macmarcks when p = 0.25, while the leading gene is CST3 Cystatin C (amyloid

angiopathy and cerebral hemorrhage) when p = 0.75. We used the top five selected genes

for each p ∈ {0.25, 0.50, 0.75} to perform predictions on the test data. The proposed model

misclassified only one observation when p = 0.50 and 0.75 (the observation number 4 and the

observation number 30, respectively) and two observations when p = 0.25 (the observations

number 4 and 29). The classification results indicate that the proposed model perform

well. In addition, since we use only five genes, our prediction results appear to improve

predictions done by Golub et al. (1999) who used 50 genes and had 5 misclassifications and

also our results give a more complete picture of the underlying distribution.
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6. Discussion

This paper has introduced a new method for Bayesian model selection of Tobit QReg.

Our approach relies on a modification of Zellners informative g-prior in QReg reported in

Alhamzawi and Yu (2013) to take into account different priors for different quantile levels.

The proposed prior is first developed for settings in which p < n, and then extended to

deal with multicollinearity and over-fitting problems by defining a ridge parameter in the

prior construction. We have also discussed some extensions of our method, including the

continuous and binary responses in QReg. The analysis of simulation studies and microarray

study shows strong support for the use of the proposed method to inference for quantile

regression models. The proposed method generally behaves much better than the other

approaches in terms of the absolute bias and relative efficiency. Clear advantages over

an earlier approach proposed by Reed et al. (2009) and Ji et al. (2012) include quantile

dependent priors and efficiency of posterior computation. The advantage of the method is

that the prior distribution changes automatically when we change the quantile. Thus, we

have different priors for different quantiles. In particular, the prior distribution and efficient

Bayesian computation represent a useful alternative to methods that rely on symmetric priors

for regression coefficients, which are reported by (Kozumi and Kobayashi, 2011; Reed et al.,

2009; Ji et al., 2012, among others). The work considered in this paper opens the door to

new research directions for subset selection and coefficient estimation in QReg models by

using the modified g-prior. For example, the approach can be extended to the Bayesian

QReg models with right-censored or interval censored responses. There are, also, many

other possible extensions such as using the modified g-prior in Bayesian single index QReg

or Bayesian nonparametric QReg.
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Table 7: The top 10 significant genes selected by the proposed model.

p Rank Index Gene description

0.25 1 804 Macmarcks

2 1685 Termianl transferase mRNA

3 3847 HoxA9 mRNA

4 2354 CCND3 Cyclin D3

5 1779 MPO Myeloperoxidase

6 4847 Zyxin

7 2402 Azurocidin gene

8 760 CYSTATIN A

9 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

10 6041 APLP2 Amyloid beta (A4) precursor-like protein 2

0.50 1 4847 Zyxin a,b,c

2 760 CYSTATIN Ab,c

3 804 Macmarcks a,b,c

4 4052 Catalase (EC 1.11.1.6) 5′flank and exon 1 mapping to chromosome 11, band p13 a,c

7 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)a,b,c

6 1144 SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)b

5 1745 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

8 1630 Inducible protein mRNAb

9 2288 DF D component of complement (adipsin)b

10 1953 Fc-epsilon-receptor gamma-chain mRNA

0.75 1 1882 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

2 4377 ME491 gene extracted from H.sapiens gene for Me491/CD63 antigen

3 1834 CD33 CD33 antigen (differentiation antigen)

4 760 CYSTATIN A

5 4336 ARHG Ras homolog gene family, member G (rho G)

6 4847 Zyxin

7 6041 APLP2 Amyloid beta (A4) precursor-like protein 2

8 3847 HoxA9 mRNA

9 1953 Fc-epsilon-receptor gamma-chain mRNA

10 4328 PROTEASOME IOTA CHAIN

a Golub et al. (1999), b Lee (2009), c Yang and Song (2010)
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