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Abstract

We focus on the problem of simultaneous variable selection and estimation for nonlinear models based

on modal regression (MR), when the number of coefficients diverges with sample size. With appropriate

selection of the tuning parameters, the resulting estimator is shown to be consistent and to enjoy the

oracle properties.
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1. Introduction

Mode, the most likely value of a distribution, has wide applications in biology, astronomy, economics

and finance. For example, it is not uncommon in many fields to encounter data distributions that are

skewed or have outliers. In those cases, the mean may not be an appropriate statistic to represent the

center of location of the data. Alternative statistics with less bias are the median and the mode. The

mean or median of two densities may be identical, while the shapes of the two densities are quite different.

Mode preserves some of the important features, such as wiggles, of the underlying distribution function,

whereas the mean or median tend to average out the data. In fact, as an important statistic, mode has

been used in modern science to identify the most frequent or the most typical element in certain network

systems (see, Hedges and Shah (2003)). Because of its advantages and wide applications, mode estimation

has gained much attention in the statistics literature (e.g., Berlinet et al. (1998), Meyer (2001), Kemp

and Santos Silva (2012)).

More recently, Yao and Li (2013) proposed a new regression model called modal linear regression

(MODLR) that assumes that the mode of f(y|x) is a linear function of the predictor x. A distinguishing

characteristic of this method is that it introduces an additional tuning parameter which is automatically

selected using the observed data to achieve both robustness and efficiency of the resulting estimate. Namely,

their method is not only robust when there are outliers or the error distribution is heavy-tail, but as
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asymptotically efficient as the ordinary least-square-based estimator when the data include no outliers

and the error distribution is a Gaussian distribution. Then, Yao, Lindsay, and Li (2012) extended this

new approach to the classical nonparametric model. Subsequently, Zhang et al. (2013) and Zhao et

al. (2014) considered the semiparametric partially linear varying coefficient models based on the modal

regression, they also develop a variable selection procedure to select significant parametric components for

it. And Liu et al. (2013) studied the single-index model based on the local modal regression. Due to its

nice properties, in this paper, we focus on the following nonlinear model

yi = g(xi;β) + εi, (1.1)

where g(·; ·) is a known real-valued function, β = (β1, ..., βp)
T is a p-dimensional unknown parameter vector

and εi is random error with mean zero. The model (1.1) is a very flexible model, which contains many

submodels of which linear models and generalized linear models with continuous responses are specific

examples.

Variable selection is important for any regression problem in that ignoring important variables brings

out seriously biased results, whereas including spurious variables leads to substantial loss in estimation

efficiency. Traditional variable selection methods such as stepwise regression and best subset selection is

computationally infeasible when the number of predictors is large. Thus, various shrinkage methods such as

the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), the adaptive LASSO (Zou

2006) and the smoothly clipped absolute deviation (SCAD) (Fan & Li 2001) have gained much attention

in recent years. However, the LASSO is known to be near mini-max optimal as well as consistent under

certain regularity conditions, Zou (2006) showed that it falls short of attaining the oracle property. By

this property, an estimator estimates a zero coefficient exactly as zero with probability approaching one,

while still being asymptotically normal for the non-zero coefficients in large samples. In this respect, the

LASSO is inferior to the SCAD estimator which possesses the oracle property. So in the present paper,

we prefer the SCAD of Fan and Li (2001) since it enjoys the oracle properties. Previous research mainly

focus on situations with fixed p. However, Fan and Peng (2004) and Lam and Fan (2008) advocated that,

in most variable selection problems, the number of parameters should be large and grow with the sample

size. Hence, in this paper, we study variable selection for the linear part in nonlinear model when the

number of parameters p depends on the sample size n, then model (1.1) can be rewritten as

yi = g(xi;βn) + εi, (1.2)

where βn = (βn1, ..., βnpn)T is a pn-dimensional unknown parameter vector, and εi is the random error

with E(εi|xi) = 0.

The main contributions of this paper are twofold. First, we propose a variable selection procedure

for model (1.2) based on modal regression, when the number of parameters p depends on the sample size

n. With proper choice of tuning parameters, we show that this variable selection procedure is consistent,

and the estimators of regression coefficients have oracle property. Here, the oracle property means that

the estimators of the parametric components have the same asymptotic distribution as that based on the
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correct submodel. This indicates that the penalized estimators work as well as if the subset of true zero

coefficients were already known. Second, we propose a modified modal expectation-maximisation (MEM)

type algorithm to obtain the solutions for the target function.

The rest of the paper is organized as follows. In Section 2, we present the proposed variable selection

method and study the asymptotic properties of the estimators. In Section 3, we describe the MEM type

algorithm. We assess the finite sample performance of the proposed method through a simulation study

in Section 4. We give concluding remarks in Section 5, and relegate the technical proofs to Appendix.

2. Methodology and asymptotic properties

2.1. Modal estimation and variable selection procedure

For the linear model yi = xTi β + εi, Yao and Li (2013) proposed to estimate the modal regression

parameter β by maximising

1

n

n∑
i=1

φh(yi − xTi β), (2.1)

where φh(t) = h−1φ(t/h) and φ(t) is a kernel density function. Throughout this paper, we will assume

that φ(t) is the standard normal density (for the simplicity of computation). Thus, based on the idea in

Yao and Li (2013), the robust modal estimator βn of model (1.2) is to maximise

1

n

n∑
i=1

φh(yi − g(xi;βn)), (2.2)

over βn.

It is well known that variable selection is a crucial step in high-dimensional regression modeling.

However, (2.2) cannot directly be used to select variables, we introduce the following penalized estimation

by maximising

Qn(βn) =

n∑
i=1

φh(yi − g(xi;βn))− n
pn∑
j=1

pλn(|βnj |), (2.3)

where pλn(·) is a penalty function and λn is a non-negative regularization parameter.

Remark 1. Notice that our method is in fact also a M-type estimator (The bandwidth h determines

the degree of robustness of the estimator) and its first derivative of φh(·) is bounded. This explains why

the proposed method is robust. Formulation (2.3) includes many popular variable selection methods, for

example, the Lasso (Tibshirani 1996) uses the L1 penalty with pλn(‖ · ‖) = λn‖ · ‖. Bridge regression

(Frank and Friedman 1993) uses the Lq penalty with pλn
(‖ · ‖) = λn‖ · ‖q. When 0 < q < 1 the Lq penalty

is concave over (0,∞) and nondifferentiable at zero. Fan and Li (2001) proposed the use of the SCAD

penalty defined by its first derivative as

p′λ(x) = λ
{
I(x ≤ λ) +

(aλ− x)+
(a− λ)

I(x > λ)
}
,
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where a is some constant usually taken to be a = 3.7 and pλ(0) = 0. As demonstrated in Fan and Li

(2001), the SCAD is an improvement of the Lasso in terms of modeling bias and of the bridge regression

with q < 1 in terms of stability. Therefore, we take pλn
(·) as the SCAD penalty function throughout

this paper. The adaptive Lasso (Zou 2006) can also be used here and are expected to lead to similar

consistency results, but this need further research.

2.2. Asymptotic properties

Define A = {j : βnj 6= 0}. Then without loss of generality, let the true value of βn be β∗n =

(β∗nA, β
∗
nAc)T , where β∗nA ∈ Rsn consists of all nonzero components with sn means the number of nonzero

components, while β∗nAc ∈ Rpn−sn consists of all zero components.

Theorem 1 Suppose that conditions (C1)-(C8) given in the appendix hold. If p3n/n→ 0 as n→∞, then

there is a local maximizer β̂n of Qn(βn) in (2.3), such that

‖β̂n − β∗n‖ = Op(
√
pn/n). (2.4)

To present the oracle properties of the resulting estimators, we require further notations. Let F (x, h) =

E[φ′′h(ε)|x], G(x, h) = E[φ′h(ε)2|x], and

bn = {p′λn
(|β∗n1|)sgn(β∗n1), ..., p′λn

(|β∗nsn |)sgn(β∗nsn)}T , Σλn
= diag{p′′λn

(β∗n1), ..., p′′λn
(β∗nsn)}

and

Ξ = −F (x, h)E[g′(xi;β
∗
n)g′(xi;β

∗
n)T |x], Ω = G(x, h)E[g′(xi;β

∗
n)g′(xi;β

∗
n)T |x].

where g′(; ) is a pn × 1 vector.

Theorem 2 (Oracle property) Suppose that conditions (C1)-(C8) given in the appendix hold. If λn → 0,√
n/pnλn → ∞ and p3n/n → 0 as n → ∞ with probability tending to 1, the

√
n/pn consistent local

maximizer β̂n = (β̂TnA, β̂
T
nAc)T in Theorem 1 satisfy:

(a) Sparsity : β̂nAc = 0, (2.5)

(b) Asymptotic normality :
√
n(ΞA + Σλn

){β̂nA − β∗nA + (ΞA + Σλn
)−1bn}

d−→ N(0,ΩA), (2.6)

where ΞA and ΩA consist of the first sn rows and columns of Ξ and Ω.

Remark 2. Theorems 1 and 2 indicate that the penalized estimators have the oracle property. That is,

the estimators of the parametric components have the same asymptotic distribution as that based on the

correct submodel.

In the process of variable selection, the bandwidth h and the tuning parameters λn should be deter-

mined. First, we give the optimal bandwidth in theoretical. When n is large enough, and the regularity

condition (C8) in the Appendix is satisfied by the model, we have Σλn
= 0 and bn = 0 for the SCAD

penalty. Thus, (2.6) becomes

√
n(β̂nA − β∗nA)

d−→ N(0,Ξ−1A ΩAΞ−1A ), (2.7)
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and it is easy to obtain the asymptotic variance of the estimator under the least squares loss of β̂nA is

Var(ε|x)/E[g′A(xi;β
∗
n)g′A(xi;β

∗
n)T |x], (2.8)

where g′A(; ) means the first derivative of gA(; ) with respect to β∗n, and gA(; ) consist of the first sn columns

of g(; ). Then, based on Yao et al. (2012), the ratio of asymptotic variance of (2.7) to that of (2.8) is given

by

R(x, h) =
G(x, h)

F 2(x, h)Var(ε|x)
. (2.9)

Thus, the ideal choice of h is

hopt = arg min
h
G(x, h)/F 2(x, h). (2.10)

Next, we consider the selection of λn, various techniques can be used to select λn, such as cross-

validation, AIC and BIC. To reduce intensive computation and guarantee consistent variable selection, we

consider the regularization parameter by minimizing a BIC-type objective function (see Wang, Li, and

Jiang 2007). That is, the optimal λn minimizes

BIC(λn) = − 1

n

n∑
i=1

φh(y − g(xi; β̂n)) +
log(n)

n
df(λn), (2.11)

where df(λn) is the total number of nonzero coefficients in β̂λn
. For details, we refer the reader to Zou et

al. (2007).

3. A modified modal expectation-maximization algorithm

In this section, we extend the MEM algorithm, proposed by Li et al. (2007) to maximise (2.3). Since

the SCAD penalty is irregular at the origin, maximising (2.3) directly may be difficult. Here, we use an

iterative algorithm based on the local quadratic approximation of the penalty function pλ(·) as in Fan and

Li (2001). More specifically, Suppose that we are given an initial value β
(0)
n that is close to the minimizer

of (2.3). If β
(0)
nj is very close to 0, then set β̂nj = 0. Otherwise they can be locally approximated by a

quadratic function as

pλ(|βnj |) ≈ pλ(|β(0)
nj |) +

1

2

p′λ(|β(0)
nj |)

|β(0)
nj |

(β2
nj − β

(0)2
nj ), for βnj ≈ β(0)

nj .

Then, we can use the modified EM algorithm to maximise (2.3). Let β
(0)
n be the initial estimation and

start with k = 0.

E-step: In this step, we calculate weights π(j|β(k)
n ), j = 1, ..., n as

π(j|β(k)
n ) =

φh(yi − g(xi;β
(k)
n ))∑n

i=1 φh(yi − g(xi;β
(k)
n ))

∝ φh(yi − g(xi;β
(k)
n )).
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M-step: Then, we update β
(k+1)
n by

β(k+1)
n = arg max

βn

( n∑
i=1

{π(j|β(k)
n )logφh(yi − g(xi;β

(k+1)
n ))} − n

pn∑
j=1

pλn
(|βnj |)

≈ arg max
βn

( n∑
i=1

{π(j|β(k)
n )logφh(yi,k − g′(xi;β(k)

n )βn)} − n
pn∑
j=1

pλn(|βnj |)

= (GTWG+ nΣλ(β(k)
n ))−1GTWỸ ,

where Ỹ = (y1,k, ..., yn,k)T with yi,k = yi−g(xi, β
(k)
n )+g′(xi;β

(k))β(k), G = (g′(x1;β
(k)
n ), ..., g′(xn;β

(k)
n ))T ,

W is an n× n diagonal matrix with diagonal elements π(j|β(k)
n )s and

Σλ(β(k)
n )) = diag

{
p′λn

(|β(k)
n1 |)

|β(k)
n1 |

, ...,
p′λn

(|β(k)
npn |)

|β(k)
npn |

}
.

Iterate the E-step and M-step until convergence. Note that in the M-step, we approximate g(xi;β
(k+1)
n )

in the neighborhood of β
(k)
n by using first order approximation of Taylor expansion, that is

g(xi;β
(k+1)
n ) ≈ g(xi;β

k
n) + g′(xi;β

k
n)(β(k+1)

n − βkn).

4. Simulation studies

In this section, we first consider how to select the bandwidth h in practice, and then assess the

performance of the proposed procedure by some simulation studies.

4.1. Bandwidth selection in practice

In this subsection, we present the details of bandwidth selection in our simulation studies. In our

simulation setting, we assume the error ε and x are independent. Thus, we first need to estimate F (h)

and G(h) to obtain the optimal bandwidth hopt based on (2.10). Then, F (h) and G(h) can be estimated

by

F̂ (h) =
1

n

n∑
i=1

φ′′h(ε̂i) and Ĝ(h) =
1

n

n∑
i=1

[φ′h(ε̂i)]
2, (4.1)

where ε̂ = yi − g(xi; β̂n), β̂n is the traditional penalized least squares estimate (or a robust estimate if

there are some outliers) of βn. Therefore, we can estimate R(h) by R̂(h) = Ĝ(h)/F̂ 2(h)V̂ar(ε|x), where

V̂ar(ε|x) is estimated based on the pilot estimates, ε̂1, ..., ε̂n of the error term. Since there is no explicit

solution for h, thus, we use the grid search method to obtain the optimal bandwidth hopt. Yao et al.

(2012) showed that the possible grids points for h can be h = 0.5V̂ar(ε|x)× 1.02j , j = 0, 1, ..., k, for some

fixed k (such as k=70).
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4.2. Simulation study

In this section, we conduct a Monte Carlo simulation study to assess the performance of our proposed

approach under a finite sample size scenario. We generated independently and identically distributed

sample {(yi, xi), i = 1, ..., n} from the following exponential regression model

yi =
1

2
+ exp(xTi βn) + εi, (4.2)

where βn = (1, 2/3, 0.5, ..., 0)T , and xi ∼ N(0, 0.5Ipn). Noise εi were generated from three different

distributions: the standard normal, the mixture normal 0.9N(0, 1) + 0.1N(0, 92) and the standard t with

three degrees of freedom.

In the simulations, we draw 1000 random samples of sizes 100 and 400 with pn = [2n1/4] + 3 from

model (4.2), then the corresponding dimensions of the parameter vector βn are 9 and 12, respectively.

Furthermore, the selection of h and λn are based on Equations (2.10) and (2.11), respectively. In each

simulation the “root of mean squared errors (RMSE)” for their average over simulations is reported in

Tables 1. To examine the robustness and efficiency of the proposed procedure, we compare the simulation

results with the penalized least-squares (PLS) estimator (Fan and Peng 2004) and the weighted composite

quantile regression (WCQR) method (Jiang et al. 2012). The average number of zero coefficients is also

reported in Table 1, Column “C” shows the average number of zero coefficients correctly estimated to be

zero, and Column “IC” presents the average number of non-zero coefficients incorrectly estimated to be

zero.

Based on Table 1, we can see that, as expected, the performance of Oracle procedure is best in all cases

in term of model errors. The performances of MR is slight better than that of WCQR, and significantly

better than that of PLS when the error distribution is non-normal. Especially, when the error follows a

mixture normal, the superiority of MR become more and more obvious.

5. Conclusions

In this paper, we have proposed a variable selection method in nonlinear models based on modal

regression, where the number of coefficients can diverges with sample size n. This approach is used

to simultaneously estimate parameters and select important variables. Theoretically, we showed that

our proposed method estimators enjoy the oracle properties, which is desirable as a variable selection

procedure. And from a practical point of view, we illustrated through a simulation study when the error

distribution are generated from three different distributions, the performances of the proposed method

outperform the PLS and WCQR in terms of the consistency of the variable selection method and the

efficiency of the estimation procedure.
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Table1 :Simulation results

Error distribution Method (n, pn) RMSE Aver. No. of zeros

C IC

N(0, 1) MR (100, 9) 0.0441 5.778 0

PLS 0.0355 5.815 0.001

WCQR 0.0372 5.793 0

MR oracle 0.0292 6 0

MR (400, 12) 0.0332 8.865 0

PLS 0.0313 8.891 0

WCQR 0.0305 8.869 0

MR oracle 0.0277 9 0

t(3) MR (100, 9) 0.0343 5.833 0

PLS 0.0560 5.690 0.005

WCQR 0.0333 5.827 0

MR oracle 0.0318 6 0

MR (400, 12) 0.0271 8.872 0

PLS 0.0515 8.725 0.002

WCQR 0.0296 8.835 0

MR oracle 0.0240 9 0

0.9N(0, 1)+0.1N(0, 92) MR (100, 9) 0.0415 5.889 0

PLS 0.0950 4.684 0.015

WCQR 0.0533 5.826 0

MR oracle 0.0383 6 0

MR (400, 12) 0.0378 8.902 0

PLS 0.0918 7.695 0.006

WCQR 0.0485 8.873 0

MR oracle 0.0350 9 0

Appendix: Proofs

For simplicity, let C denote a positive constant that may be different at each appearance throughout this

paper, and define an = max1≤j≤pn{p′λn
(|β∗nj |), β∗nj 6= 0} and bn = max1≤j≤pn{p′′λn

(|β∗nj |), β∗nj 6= 0}. Before

we prove our main theorems, we list some regularity conditions that are used in this paper.

(C1) lim infn→∞ lim infθ→0+ p
′
λn

(θ)/λn > 0.

(C2) an = Op(n
−1/2), and bn → 0 as n→∞.

(C3) There are constants C1 and C2 such that, when θ1, θ2 > C1λn, then |p′′λn
(θ1)−p′′λn

(θ2)| ≤ C2|θ1−θ2|.
(C4) F (x, h) and G(x, h) are continuous with respect to u. Furthermore, F (x, h) < 0 for any h > 0, where

the bandwidth h is a constant and does not depend on n.
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(C5) E(φ′h(ε)|x) = 0. E(φ′′h(ε)2|x), E(φ′h(ε)3|x), and E(φ′′′h (ε)|x) are continuous with respect to x.

(C6) There is a large enough open subset Θn ∈ Rpn that contains the true parameter point β∗n, such that

for all xi the second derivative matrix g′′(x;βn) of g(x;βn) with respect to βn, satisfies

‖g′′(x;βn1)− g′′(x;βn2)‖ ≤M(xi)‖βn1 − βn2‖ and
∣∣∣∂g(x;βn)

∂βnjβnk

∣∣∣≤ Njk(xi)

for all βn ∈ Θn, with E[M2(xi)] <∞, E[N2
jk(xi)] < C <∞ for all j, k.

(C7) Assume that g(x;βn) is a continuous function of βn, The second derivatives of g(x;βn) with respect

to β exist and are continuous. In addition, n−1
∑n
i=1 g

′(x;βn)g′(x;βn)T converges to a finite positive

definite matrix Ψ(βn).

(C8) Let the values of β∗n1, ..., β∗nsn be nonzero and β∗n(sn+1), ..., β∗npn be zero. Then β∗n1, ..., β∗nsn such

that

min
1≤j≤sn

|β∗nj |/λn →∞, as n→∞.

Remark 3. Conditions (C1)-(C3) are essentially the same as those in Fan and Peng (2004). Conditions

(C4)-(C5) are assumed in Yao et al. (2012) for local modal nonparametric regression. The condition

E(φ′h(ε)|x) = 0 ensures that the proposed estimate is consistent and is satisfied if the error density is sym-

metric about zero. Conditions (C6)-(C7) are similar to the conditions (F)-(G) placed on the information

matrix in Fan and Peng (2004). Condition (C8) is used to obtain the oracle property when using the

SCAD penalty.

Proof of Theorem 1. Note that maximizing the objective function (2.3) is equivalent to minimizing

Qn(βn) = −
∑n
i=1 φh(yi − g(xi;βn)) + n

∑pn
j=1 pλn

(|βnj |). Let δn =
√
pn(n−1/2 + an), v = δ−1n (βn − β∗n)

and set ‖v‖ = C. Let us first show that, for any given ξ > 0, there exists a large C such that

P
{

inf
‖v‖=C

Qn(β∗n + δnv) > Qn(β∗n)
}
≥ 1− ξ. (A.1)

This implies that, with probability at least 1 − ξ, there exists a local minimizer in the ball {β∗n + δnv :

‖v‖ ≤ C}.
Let Dn(v) = Qn(β∗n + δnv)−Qn(β∗n). Then by definition of Qn(βn) in (2.3), we have

Dn(v) ≡
n∑
i=1

[
−φh(yi − g(xi;β

∗
n + δnv)) + φh(yi − g(xi;β

∗
n))
]

+ n

pn∑
j=1

{
pλn(|β∗nj + δnvj |)− pλn(|β∗nj |)

}
≥

n∑
i=1

[
−φh(yi − g(xi;β

∗
n + δnv)) + φh(yi − g(xi;βn0))

]
+ n

sn∑
j=1

{
pλn(|β∗nj + δnvj |)− pλn(|β∗nj |)

}
≡: J1 + J2. (A.2)
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Using Taylor expanding g(xi;βn) around β∗n, on the basis of the boundness of g′′( ; ) and ‖βn − β∗n‖ ≤
Cδn, then we have

g(xi;β
∗
n + δnv) = g(xi;β

∗
n) + g′(xi;β

∗
n)T δnv(1 + op(1)). (A.3)

For the first part J1, by using the Taylor expansion and (A.3), we obtain that

J1 =

n∑
i=1

δnφ
′
h(εi)g

′(xi;βn0)Tv −
n∑
i=1

δ2nφ
′′
h(εi)[g

′(xi;β
∗
n)Tv]2 +

n∑
i=1

δ3nφ
′′
h(ε∗i )[g

′(xi;β
∗
n)Tv]3

≡: J11 + J12 + J13, (A.4)

where ε∗i lies in εi and εi − δng′(xi;β∗n)Tv.

By directly calculating the mean and the variance, and the regularity condition (C5), we have J11 =

O(Cnδn). Similarly, we can prove that J13 = O(nδ2n). As for J12, we have

J12 = −δ2nnF (x, h)vTE[g′(xi;β
∗
n)g′(xi;β

∗
n)T |x]v(1 + op(1)). (A.5)

By the regularity condition (C4), F (x, h) < 0 and E[g′(xi;β
∗
n)g′(xi;β

∗
n)T |x] is a finite positive definite

matrix by condition (C7). Hence, by choosing a sufficiently large C, J12 dominates both J11 and J13 in

‖v‖ = C.

Next, we consider J2, by invoking pλn(0) = 0, then by the standard argument of the Taylor expansion,

we obtain that

J2 ≈ nδn
sn∑
j=1

{
p′λn

(|β∗nj |)sgn(β∗nj)vj +
1

2
δnp
′′
λn

(|β∗nj |)v2j
}

= n
√
snδ

2
nC + nbnδ

2
nC

2. (A.6)

By the condition (C2), it is easy to show that J2 is dominated by J12 uniformly in ‖v‖ = C. Hence, by

choosing a sufficiently large C, we have Dn(v) > 0, which implies that with the probability at 1− ξ, (A.1)

holds and the proof of Theorem 1 is complete. �

To prove Theorem 2, we first show that the nonconcave penalized estimator possesses the sparsity

property β̂nAc = 0 by the following lemma.

Lemma A.1 Under conditions (C1)-(C8). If λn → 0,
√
pn/nλn → ∞ and p3n/n → 0 as n → ∞, then

with probability tending to 1, for any given βnA satisfying ‖βnA − β∗nA‖ = Op(
√
pn/n) and any constant

C

Qn

{(
βnA

0

)}
= min
‖βnAc‖≤C

√
pn/n

Qn

{(
βnA

βnAc

)}
.

Proof of Lemma A.1. Let ςn = C
√
pn/n, it is sufficient to prove that with probability tending to 1 as

10



n→∞, for any βn1 such that ‖βn1 − β∗n1‖ = Op(
√
pn/n), we have,

∂Qn(βn)

∂βnj
< 0 for 0 < βnj < ςn, j = sn + 1, ..., pn,

∂Qn(βn)

∂βnj
> 0 for − ςn < βnj < 0, j = sn + 1, ..., pn.

By a similar proof of Theorem 1, we can obtain that

∂Qn(βn)

∂βnj
=

n∑
i=1

∂g(xi;β
∗
n)

∂βnj
φ′h(εi − δng′(xi;β∗n)Tv) + np′λn

(|βnj |)sgn(βnj)

=

n∑
i=1

∂g(xi;β
∗
n)

∂βnj

{
φ′h(εi)− δnφ′′h(εi)g

′(xi;β
∗
n)Tv + δ2nφ

′′′
h (ε∗∗i )[g′(xi;β

∗
n)Tv]2

}
+ np′λn

(|βnj |)sgn(βnj)

= nλn

{
λ−1n p′λn

(|βnj |)sgn(βnj) +Op

(√
pn
n

/
λn

)}
(A.7)

Since
√
pn/n/λn → 0, and lim infn→∞ inft→0+ p

′
λn

(t)/λn > 0, then it is easy to see the sign of the

derivative βnj is completely determined by that of the sign of ∂Qn(βn)/∂βnj . This completes the proof

of Lemma A.1. �

Proof of Theorem 2. Part 1 of the theorem holds by Lemma A.1. We prove Part 2 of the theorem in

the following. By Lemma A.1 and Theorem 1, there exists β̂nA satisfying the following equations:

∂Qn(βn)

∂βnj

∣∣∣
βn=(β̂T

nA,0)
T

= 0, j = 1, ..., sn.

Then, by simple calculation, we have

∂Qn(βn)

∂βnj

∣∣∣
βn=(β̂T

nA,0)
T

=

n∑
i=1

∂g(xi;β
∗
n)

∂βnj

{
φ′h(εi)− δnφ′′h(εi)g

′
A(xi;β

∗
n)TvA + δ2nφ

′′′
h (ε∗∗i )[g′A(xi;β

∗
n)TvA]2

}
+ n{p′λn

(|β∗nj |)sgn(β∗nj) + (p′′λn
(|β∗nj |) + op(1))(β̂nj − β∗nj)}, (A.8)

where j = 1, ..., sn. Combining all these equations, we have

0 =

n∑
i=1

g′A(xi;β
∗
n)

{
φ′h(εi)− φ′′h(εi)g

′
A(xi;β

∗
n)T (β̂nA − β∗nA) + φ′′′h (ε∗∗i )[g′A(xi;β

∗
n)T (β̂nA − β∗nA)]2

}
+ n{bn + (Σλn

+ op(1))(β̂nA − β∗nA)}. (A.9)

Then, it follows by Slutskys theorem and the central limit theorem that

√
n(ΞA + Σλn

){β̂nA − β∗nA + (ΞA + Σλn
)−1bn}

d−→ N(0,ΩA) as n→∞, (A.10)

This completes the proof of Theorem 2. �
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