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Summary. The paper investigates the dependences between levels of severity of road traf-
fic accidents, accounting at the same time for spatial and temporal correlations. The study
analyses road traffic accidents data at ward level in England over the period 2005–2013. We
include in our model multivariate spatially structured and unstructured effects to capture the
dependences between severities, within a Bayesian hierarchical formulation. We also include
a temporal component to capture the time effects and we carry out an extensive model com-
parison. The results show important associations in both spatially structured and unstructured
effects between severities, and a downward temporal trend is observed for low and high levels
of severity. Maps of posterior accident rates indicate elevated risk within big cities for accidents
of low severity and in suburban areas in the north and on the southern coast of England for
accidents of high severity. The posterior probability of extreme rates is used to suggest the
presence of hot spots in a public health perspective.
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1. Introduction

Road traffic accidents are considered to be a major public health issue, with consequences
similar to those of cancer, cardio-vascular and other non-communicable diseases. According to
the annual reports of casualties in Great Britain by the Department for Transport for the years
2005–2013, on average, 2400 people die on Britain’s roads every year, making it the leading cause
of mortality for ages 15–34 years. At the same time, 222000 non-fatal accidents occur every year,
causing immediate and later physical, social and psychological consequences to those involved.
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Road traffic accidents have an intrinsic spatial structure which is important to take into account
properly to be able to identify areas of particularly high risk. In addition, a temporal trend could
also be identified when data on multiple time points (e.g. years) are considered. The aim of this
paper is to develop a statistical framework that makes use of the spatiotemporal structure of
road traffic accidents, as well as the correlation between levels of severity, and helps to highlight
areas that are characterized by excess risk, to inform future health policy strategies.

Both classical and Bayesian methods have been used to deal with road traffic accidents data
analysis. In the context of classical statistics, Poisson regression techniques, which are suitable
for count data, have been used by many researchers in the past. For instance, Miaou and
Lum (1993) compared this technique with conventional linear regression to assess accidents
and highway geometric design relationships, whereas Jovanis and Chang (1986) used Poisson
regression to assess the effects of travel mileage on accident occurrence. Other examples of
previous work include Kim and Yamashita (2002) and Graham and Glaister (2003) who focused
on the association between road traffic accidents and potential risk factors.

However, the main assumption for Poisson models is that the mean is equal to the variance,
and this is often violated, thus causing underestimated standard errors. This problem is known
as overdispersion. Negative binomial regression models are a generalization of Poisson models
and they have been used to relax this constraint (Miaou, 1994; Shankar et al., 1995; Noland and
Quddus, 2004). Other alternatives exist, such as zero-inflated models which are appropriate for
data that exhibit excess 0s (Miaou, 1994). All these methods have serious limitations though,
mainly because they give unstable estimates due to the large variability from one area to another,
especially when the population size and/or the geographical scale of the analysis is small.

The Bayesian hierarchical framework is a potential valid alternative, being more flexible and
able to handle data with low counts, and also to account easily for spatial correlation. Bayesian
hierarchical methods facilitate smoothing by borrowing information from neighbouring units,
which is an essential point in case of low counts, since it leads to more stable estimates (Ghosh
et al., 1998; Maiti, 1998). Advantages of these methods over other statistical techniques were
discussed by Ghosh and Rao (1994). Bayesian hierarchical models have been applied to road
traffic accidents by many researchers (Miaou et al., 2003; MacNab, 2004; Qin et al., 2004; Torre
et al., 2007). The Poisson log-normal model, including random effects specified through the
‘Besag–York–Mollié’ (BYM) structure (Besag et al., 1991) have been shown to be the most
appropriate for road traffic accidents analysis (Aguero-Valverde and Jovanis, 2006; Quddus,
2008a). The BYM model consists of both spatially structured and unstructured random effects
accounting for heterogeneity as well as for spatial correlation based on neighbourhood. It has
many applications in numerous fields, including epidemiology and public health, where disease
mapping is the main focus (Best et al., 2005).

A key issue with these models is the choice of the exposure variable. Typically in disease
mapping the expected number of cases is used, but this is not feasible in the context of road
traffic accidents. Several researchers have focused on alternative ways of obtaining a proxy for
the population at risk. Various examples are based on total population, numbers of registered
vehicles or numbers of licensed drivers, but they are generally recognized as poor surrogates
for the actual amount of accident risk and, as mentioned by Wolfe (1982), the most easily
obtained exposure measures are rarely the most desirable. Traffic volume seems to be the most
appropriate exposure measure and is usually described by annual average daily traffic AADT
(Aguero-Valverde, 2011). To approximate this to areal level, Fridstrom et al. (1995) used petrol
sales, whereas Eksler et al. (2008) used AADT-information to obtain counts for each region and
then multiplied it by the road length. Alternatively, the levels of population and employment
density were used to represent travel activity by Graham and Glaister (2003) and also used by
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Noland and Quddus (2004). Traffic volume was used as an explanatory variable by Quddus
(2008a), who used a function of the number of registered cars as an exposure variable, whereas
Jones et al. (2008) and Ackaah and Salifu (2011) also included indicators of traffic volume as
explanatory variables in their models.

Extensive research has also been conducted in the field of time series models, which are
employed to overcome dependence issues in time-related data. The auto-regressive integrated
moving average model, which was introduced by Box and Jenkins (1976), has been used to model
time series count data in many applications over the last few decades (Houston and Richardson,
2002; Van den Bossche et al., 2006; Goh, 2005). The integer-valued auto-regressive model which
was initially introduced by McKenzie (1985) and further studied by Al-Osh and Alzaid (1987)
was applied to road traffic accidents in Great Britain by Quddus (2008b), showing important
improvements over the auto-regressive integrated moving average specification. The demand
for road use, accidents and their gravity approach is a three-step approach that considers risk
exposure, accident rate and its severity, and has also been extensively used (Gaudry et al.,
1993; Tegnér and Loncar-Lucassi, 1997). In state space models, also known as structural time
series models or unobserved components models, the three important road safety components,
i.e. exposure, accidents and accident severity, can be modelled simultaneously. Examples of
multivariate state space models in the area of road safety can be found in Bijleveld et al. (2010)
and Durbin and Koopman (2012).

Within the Bayesian framework, extensions to space–time modelling have been proposed to
assess the trend of spatial patterns over time. Bernardinelli et al. (1995) presented a parametric
approach in which an area-specific intercept and a time trend are modelled as random effects,
allowing for some form of space–time interactions. However, a restrictive assumption is that
the time trend is linear. Waller et al. (1997) proposed a model in which the spatially structured
and unstructured effects are nested within time, therefore allowing for the spatial patterns at
each time point to be completely different. Knorr-Held and Besag (1998) proposed a non-
parametric model that combines space and time effects additively, accounting for information
shared both in the two dimensions. Here, the temporal component can be interpreted as the
temporal analogue of the spatial component in the formulation of Besag et al. (1991). Knorr-
Held (2000) extended this approach by including a space–time interaction term, and variations
have also been proposed by other researchers (MacNab and Dean, 2001, 2002; Richardson
et al., 2006).

In the literature, a separate univariate analysis of road traffic accidents is usually carried out
per level of severity (slight, severe and fatal) identifying different patterns and estimates for each
category (Aguero-Valverde and Jovanis, 2006; Quddus, 2008a; Jones et al., 2008). However, it is
reasonable to assume that accident severities are not independent but instead there is some degree
of correlation between them and, therefore, a potential statistical problem arises when this is not
taken into account in the modelling framework. This issue was studied by Bijleveld (2005) who
showed that there is a need for multivariate modelling in road traffic accidents analysis. Joint
approaches were attempted by Ma and Kockelman in a series of papers via multivariate Poisson
and multivariate Poisson–log-normal models (Ma and Kockelman, 2006; Ma et al., 2008). The
latter method was also used by Park and Lord (2007) and Aguero-Valverde and Jovanis (2009).
All these studies suggested interactions between accident severities, thus showing advantages of
the joint specification. However, none of them accounted for spatial and temporal correlation.

Very limited research has combined ideas from a multivariate setting and space analysis for
road traffic accident analysis. Song et al. (2006) proposed various priors for Bayesian multivari-
ate hierarchical models, whereas, recently, Wang and Kockelman (2013) attempted to model
pedestrian crash counts through a Poisson log-normal multivariate model. To the best of our
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knowledge, only Miaou and Song (2005) and Wang et al. (2011) have considered both space
and time dependences, the former through a generalized linear mixed model method, and the
latter through a two-stage mixed model.

In this paper, we propose a Bayesian multivariate statistical framework that accounts for both
space and time correlation, to model road traffic accidents by severity level jointly. Following the
spatiotemporal approach from Knorr-Held and Besag (1998), we incorporate the multivariate
conditional auto-regressive (CAR) formulation that was initially suggested by Mardia (1988),
to capture dependences across space and accident severities, whereas a random walk is specified
to model the temporal correlation. To assess the performance of the multivariate approach
proposed, we also present a series of alternative models for comparisons. Our data consider road
traffic accidents in England for the years 2005–2013. In this study we also produce informative
maps of England based on the results of the models, to visualize the pattern of accident rates
across time and to identify areas with elevated risk.

This paper is structured as follows. In Section 2 we present a brief description of the data
that were used for the analysis, and in Section 3 we present the statistical methodology. Section
4 describes the results of the analysis. Finally, conclusions and recommendations for further
research are discussed in Section 5.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Description of the data

In Great Britain, every road accident on the public highway, which includes human injury or
death, is recorded on a STATS19 report form by police officers (Department for Transport,
2010). This form collects a range of information such as time and location, road condition and
behaviour of the driver as well as the vehicles that were involved and the level of severity of
the accident. The STATS19 form is completed at either the scene of the accident, or when the
accident is reported to the police. Although a small proportion of minor accidents might not
be reported, especially when no human injury was incurred, STATS19 data provide the most
detailed and reliable available source on accidents. The Department for Transport has overall
responsibility for the design and the collection system of the STATS19 data.

We analysed the data for the years 2005–2013 for England. For each accident the location
and its severity are available, which can take one of three values: slight, severe or fatal. An
accident is classed as fatal when a death occurred within a month of the collision and severe
when hospital treatment is required. Otherwise it is classed as slight. We aggregated the accidents
at the electoral ward level (7932 in England) by severity for each year, considering fatal and
severe in the same category, as fatalities account for an average of 0.014% of the total number
of accidents for each year. In the rest of the paper, low severity refers to slight accidents, and
high severity refers to severe or fatal accidents.

Around 199000 accidents occurred in England in the year 2005 with a decrease down to
139000 accidents in 2013. The majority of them were of low severity—around 85% of the total
number of accidents for all years. Table 1 presents the summary statistics of the accidents data
at ward level, as used in the analysis.

Traffic count data for the majority of main roads in England (motorways and A-roads) were
obtained from the Department for Transport (Road Traffic Statistics Branch). These are very
stable across all the years that were considered in the study (2005–2013), and hence traffic
counts based on the middle year, 2009, were used for the analysis. The annual average daily flow
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Table 1. Summary statistics of the data at ward level by severity and year in England

Year Statistics for low severity Statistics for high severity

Mean Q(2.5%, 97.5%) % 0s Mean Q(2.5%, 97.5%) % 0s

2005 19.19 (18.75, 19.64) 0.73 3.07 (3.00, 3.14) 16.81
2006 18.06 (17.64, 18.48) 0.77 3.05 (2.98, 3.12) 16.91
2007 17.37 (16.98, 17.77) 0.82 2.98 (2.91, 3.05) 17.26
2008 16.24 (15.87, 16.62) 1.16 2.75 (2.68, 2.82) 19.16
2009 15.63 (15.26, 15.99) 0.92 2.62 (2.56, 2.69) 20.01
2010 14.87 (14.52, 15.22) 1.27 2.44 (2.38, 2.50) 22.29
2011 14.53 (14.18, 14.87) 1.60 2.50 (2.44, 2.57) 20.88
2012 13.89 (13.55, 14.22) 1.70 2.49 (2.43, 2.55) 21.18
2013 13.26 (12.93, 13.58) 2.18 2.35 (2.30, 2.41) 21.84

data, consisting of traffic counts (980 and 16 941 for respectively motorways and A-roads) for
each junction-to-junction link on the major road network, were joined within a geographical
information system to the Ordnance Survey Meridian road network. The traffic data were joined
to the road network by associating points to the correct road links based on road names or, if not
available, by associating point to the nearest road link based on distance. In the few occasions
when no traffic count was provided for the road link, an estimate was made by calculating the
average of the traffic counts of the bordering road segments (Eeftens et al., 2012; de Hoogh
et al., 2013; Beelen et al., 2013).

The resulting road traffic geographical information system file was subsequently intersected
with the wards 2001 geography and the traffic volume (or intensity) of each individual intersected
road segment was calculated by multiplying the length of the road segment by the annual average
daily flow AADF. The total traffic volume at the ward level was then calculated by summing
the traffic volumes of all road segments lying within the ward:

TVw = ∑
rs∈w

TVrs

TVrs = length.rs/AADFrs

where TV is the traffic volume, w represents the ward level and rs represents the road segment.

3. Statistical framework

The analysis is carried out within a Bayesian hierarchical framework. We specified a formula-
tion which includes spatial and temporal random-effect components. The spatial component
consists of spatially structured random effects that allow information to be shared between
areas, accounting for any potential spatial correlations, as well as spatially unstructured
random effects that account for heterogeneity. The temporal component is structured across
time, accounting for potential time correlations. We do not include a heterogeneity term in the
temporal component, as the number of time points is relatively small.

Using this formulation as a baseline, we present a series of models under various assumptions
regarding the spatial and temporal dependences between low and high accident severities (Table
2). The models are classified into three main groups according to the type of spatial dependences
between the two severities: independent space effects assume independence between the spatial
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Table 2. Models under different assumptions for space and time dependences
between severities of accident

Effects Model Model Spatial Temporal
specification component component

Independent A α.j/ +BYM+ δ
.j/
t BYM=θ

.j/
i +φ

.j/
i δ

.j/
t ∼RW1

θ
.j/
i ∼normal
φ

.j/
i ∼CAR

Independent B α.j/ +BYM+ δt BYM=θ
.j/
i +φ

.j/
i δt ∼RW1

θ
.j/
i ∼normal
φ

.j/
i ∼CAR

Common C α.j/ +BYM+ δ
.j/
t BYM=θi +φi δ

.j/
t ∼RW1

θi ∼normal
φi ∼CAR

Common D α.j/ +BYM + δt BYM=θi +φi δt ∼RW1
θi ∼normal
φi ∼CAR

Correlated E α.j/ +MBYM+ δ
.j/
t MBYM=Θi +Φi δ

.j/
t ∼RW1

Θi ∼MNormal
Φi ∼MCAR

Correlated F α.j/ +MBYM+ δt MBYM=Θi +Φi δt ∼RW1
Θi ∼MNormal
Φi ∼MCAR

Table 3. Hierarchy of the models

Model Spatially structured Spatially unstructured Temporal
effects effects effects

θ
.j/
i θi Θi φ

.j/
i φi Φi δ

.j/
t δt

A � � �
B � � �
C � � �
D � � �
E � � �
F � � �

structure of low and high severities, common space effects assume the same spatial structure
for the two severities and correlated space effects assume a certain degree of dependence in the
spatial random effects. In all groups we include a temporal dependence via a random walk either
common or specific for the levels of severity.

Table 3 shows how the effects are introduced, to help to understand the hierarchy. We describe
the groups in detail in the rest of this section.

3.1. Independent space effects
We present here the general modelling approach assuming complete independence between the
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two levels of accident severities (model A in Table 2), as each parameter in the model is severity
specific (low and high).

In the first level of the hierarchy, the observed counts of accidents Y
.j/
it are modelled as

Y
.j/
it ∼Poisson.λ

.j/
it Offi/, .1/

for ward i, time point t and severity j. There are N = 7932 wards and T = 9 time points which
correspond to the years 2005, 2006, : : : , 2013. The level of severity is low or high if j =1 or j =2
respectively. The accident rate is denoted by λ

.j/
it and the offset variable by Offi, which here is

taken as the traffic volume described in Section 2.
The second level of the hierarchy models the accident rate λ

.j/
it . It is a function of a spatially

unstructured component θ
.j/
i , a spatially structured component φ

.j/
i and a temporally structured

component δ
.j/
t . It also includes a severity-specific intercept α.j/:

log.λ
.j/
it /=α.j/ +θ

.j/
i +φ

.j/
i︸ ︷︷ ︸

BYM.j/

+ δ
.j/
t : .2/

In the third level, an exchangeable prior is assigned to the spatially unstructured random effects:

θ
.j/
i ∼N.0, σ2.j/

θ / .3/

where σ
2.j/
θ is the corresponding variance.

The spatially structured random effects φ
.j/
i are assigned a CAR prior (Besag, 1974):

φ
.j/
i |φ.j/

.−i/ ∼N

(
φ̄

.j/
i ,

σ
2.j/
φ

ni

)
, φ̄

.j/
i =

∑
k∈Di

φ
.j/
k

ni
: .4/

Here, σ
2.j/
φ is the variance for the spatially structured random effects, and φ

.j/

.−i/ denotes all the
elements of the vector φ.j/ except for the area i. Di represents the set of areas that are adjacent
to area i (neighbours) and ni is the total number of those areas. Hence, the spatially structured
random effects follow a normal distribution with a conditional mean given by the average of
the neighbouring random effects and conditional variance inversely proportional to the number
of neighbouring areas. This results in a spatial smoothing, as information is borrowed across
neighbouring areas. The convolution prior for the spatial random effects (BYM = θi +φi) was
intially introduced by Besag et al. (1991).

For the temporal component δ
.j/
t a normal random-walk prior of order 1, RW1, is used.

To implement this, we use the temporal analogue of the CAR prior which defines temporal
neighbouring points of t as t −1 and t +1. Similar to the spatial CAR prior, the underlying as-
sumption is a structure where the neighbouring time points are assumed to be similar (Fahrmeir
and Lang, 2001; Li et al., 2012).

This prior is defined as

δ
.j/
t |δ.j/

.−t/ ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N.δ
.j/
t+1, σ2.j/

δ /, for t =1,

N

(
δ

.j/
t−1 + δ

.j/
t+1

2
,
σ

2.j/
δ

2

)
, for t =2, 3, : : : , 8,

N.δ
.j/
t−1, σ2.j/

δ /, for t =9,

.5/

where δ
.j/
.−t/ denotes all elements of δ.j/ except for the time point t and σ2.j/

δ denotes the variance
in the temporal effects for accidents of severity j.

A gamma(0.5, 0.0005) prior is assigned to the precision τ2.j/

θ = 1=σ2.j/

θ as introduced by
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Kelsall and Wakefield (1999) and used by Wakefield et al. (2000). Simulation studies showed
that this is more appropriate for epidemiological studies when compared with the widely used
gamma(0.001, 0.001) and gamma(0.2, 0.0001) priors. This prior distribution plays a minimal
role in the posterior distribution and can be described as vague, flat or non-informative (Gelman
et al., 2003). This hyperparameter controls for the extra Poisson variation due to heterogeneity
between areas.

Similarly, a gamma(0.5, 0.0005) prior is also assigned to the precisions τ2.j/

φ = 1=σ2.j/

φ and τ2
δ =

1=σ2.j/

δ , controlling for the variations conditionally on the neighbouring spatial and temporal
points respectively. To ensure identifiability of the model, we imposed sum to 0 constraints on
the vectors φ and δ and a flat prior for the intercept α.

In the group of independent space effects, we also include model B, which differs from model
A only in the temporal effects δt ∼ RW1, which in this case are taken to be common between
the two severities.

3.2. Common space effects
Following the Poisson log-normal specification that is described in equations (1)–(5), we present
two additional models that assume the same spatial effect for accidents of low and high level of
severity. This is included in the model in the form of a common distribution (not severity spe-
cific). The spatially unstructured effects θi are assigned a common normal distribution and the
spatially structured effects φi are assigned a common CAR distribution. This means dropping
the j-superscript in equations (3) and (4). The temporal random effects are specified either as in-
dependent (model C) or common (model D). The prior specification is the same as in Section 3.1.

3.3. Correlated space effects
Finally, we extend the BYM specification to the multivariate BYM (MBYM) model which con-
siders a multivariate setting across severities for both spatially structured φi- and unstructured
θi-effects quantifying their correlation.

The spatially structured effects φi follow a multivariate CAR (MCAR) prior. Assuming that
we have a two-dimensional vector of spatially structured random effects Φi = .Φi1, Φi2) for each
area i=1, : : : , N, where the subscripts 1 and 2 represent low and high severity respectively, then
we extend the CAR specification as follows:

Φi|Φ.−i/ ∼N.Φ̄i, ΣΦ=ni/, Φ̄i = .Φ̄i1, Φ̄i2/, Φ̄ip =

∑
k∈Di

Φkp

ni
, p=1, 2: .6/

Φ.−i/ = .Φ1.−i/, Φ2.−i// denotes the elements of the matrix Φ excluding the area i. As in the
univariate CAR case, Di and ni are the set of areas adjacent to area i and the number of
those areas respectively. ΣΦ is the 2×2 covariance matrix with diagonal elements σ2.1/

φ and σ2.2/

φ
representing the conditional variances for each level of severity. The within-area conditional
correlation of random effects of low and high severity ρφ is modelled via the off-diagonal
terms

ΣΦ =
(

σ2.1/

φ ρφσ
.1/
φ σ

.2/
φ

ρφσ
.1/
φ σ

.2/
φ σ2.2/

φ

)
:

Hence, the MCAR model not only takes into account the spatial correlation between areas for
each severity but also allows for correlation between severities in each spatial unit.

Also, for each area i = 1, : : : , N we have a two-dimensional vector of spatially unstructured
random effects Θi = .Θi1, Θi2) where again the subscripts 1 and 2 represent low and high severity
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respectively. On these, a multivariate normal distribution is defined as

Θi ∼MVN.0, ΣΘ/ .7/

where 0 is a 1×2 vector and ΣΘ is a 2×2 covariance matrix

ΣΘ =
(

σ2.1/

θ ρθσ
.1/
θ σ

.2/
θ

ρθσ
.1/
θ σ

.2/
θ σ2.2/

θ

)

with diagonal elements σ2.1/

θ and σ2.2/

θ representing the conditional variances for each severity,
whereas the off-diagonal elements ρθ model the within-area conditional correlation of random
effects of low and high severity. In addition to ρφ and ρθ, we also estimate ρtot which is the within-
area conditional correlation for the total random effect (i.e. the sum of spatially structured and
unstructured components).

The precision matrix ΩΦ =Σ−1
Φ is assigned a Wishart.A, k/ prior where A and k denote the

inverse scale matrix and the degrees of freedom respectively. We set k = 2 for a weakly infor-
mative specification. For the inverse scale matrix A, typically a prior belief of the value of the
covariance matrix is used. We set the entries on the diagonals to 500 and the off-diagonal entries
to 0.0005, following Kass and Natarajan (2006), who suggested considering the data on the
prior specification in the multivariate case, and Gelman (2006), who recommended taking con-
siderable care with the prior specification on unobserved parameters and assigning reasonable
values in advance. Although such external information does not usually bias the main estimates,
it may have some influence on the precision of the estimates, and it is important to explore this
through sensitivity analysis.

Similarly to the spatially structured case, a Wishart.A, k/ prior is assigned to the precision
matrix RΘ =Σ−1

Θ , with the same parameters k and A. The prior specifications for the remaining
components are as defined in Section 3.1.

The MBYM specification that is described in this section, where MBYM = Φi +Θi, is then
coupled with independent time effects δ

.j/
t in model E and common time effects δt in model F.

3.4. Spatial fraction
For all the models, we are interested in estimating the relative contribution of structured and
unstructured effects to the overall variability. We quantify this through the fraction of the
marginal variability of the structured random effects σ2

φ, over the total marginal variability
σ2

θ +σ2
φ. The parameter σ2

φ is not directly available since, from their definition, the spatial effects
of φi are conditional on the neighbouring effects. We thus use the conditional variance which
is available, to estimate the empirical marginal variance σ̂2

φ =Σi .φi − φ̄/2=.n−1/. The spatial
fraction of interest is given by

fracφ = σ̂2
φ

σ2
θ + σ̂2

φ

:

When the spatial fraction is close to 1, structured effects explain most of the variability of the
model, whereas when this is close to 0 the unstructured random effects dominate.

3.5. Model comparison and checking
In this work we use the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to carry
out comparisons between the various models that we develop, but we stress that this is solely
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used for building the models to find the most suitable for the data at hand, and it is not intended
as an absolute measure.

The DIC has been extensively used for comparisons between hierarchical models in which
the number of parameters is not clearly defined. This is a generalization of Akaike’s informa-
tion criterion, as it trades off model fit against a measure of complexity. Similarly to Akaike’s
information criterion, lower values indicate better performance.

Although the DIC is a useful tool for comparisons between different models, it does not give
any information about whether a specific model is adequate. To assess this, we use posterior
predictive checks and Bayesian p-values, as suggested by Lunn et al. (2012). We generate a
predictive distribution of accident counts Y rep for each level of severity, year and area under
each model specified in Table 2 and then compare these predictions with the observed data.
If the model fits the data adequately, the replicated data should look similar to the observed
data. In addition to this graphical check, we also calculate a Bayesian p-value which gives the
predictive probability of obtaining an extreme result:

pBayes =Pr{T.Y rep, λ/>T.Y , λ/|Y}:

T.Y , λ/ is a test statistic, and here we use the common choice of T.Y , λ/=Y and T.Y rep, λ/=Y rep

to check for individual outliers. A pBayes-value close to 0.5 suggests that the generated data are
compatible with the model, whereas values close to 0 and 1 are considered extreme and hence
suggest poor fit.

Finally, a sensitivity analysis is conducted to evaluate how robust the posterior estimates are
under the probability model that is specified by using different priors. In the models with a
CAR distribution in the spatially structured effects (independent and common space effects),
the prior distribution for the precisions τφ was changed to a half-Cauchy distribution on the
natural scale of standard deviation as recommended by Gelman (2006): σφ ∼ z=

√
γ, where σφ

is Cauchy distributed with location 0 and scale B, which in turn is assigned a non-informative
uniform distribution. In the models with an MCAR distribution (correlated space effects), the
diagonals of the Wishart distribution on the multivariate normal and MCAR priors are changed
to 1 and 1000, whereas the off-diagonals remain 0.0005.

3.6. Posterior distribution of accident rates
Typically in disease mapping, the results of the analysis are presented in the form of maps that
display posterior mean relative risks (or accident rates in the context of road traffic accidents)
across areas. This allows us to visualize spatial patterns of risk, and also to assess the degree of
smoothing by comparing those against maps of crude rates.

Since the posterior mean rates do not make full use of the output of Bayesian analysis,
several researchers have proposed to map the probability that a rate exceeds a specified threshold
(Clayton and Bernardinelli, 1992; Richardson et al., 2004). This is a more powerful tool, which
takes into account the uncertainty in the posterior estimates, thus highlighting areas that are
characterized by strong evidence of an increased risk.

In this paper, besides mapping the posterior accident ratesλ
.j/
it , we want to highlight dangerous

areas; thus we adapt the posterior probability maps to fit this purpose. We borrow ideas from
the concept of ranking, which is extensively used in road traffic accidents analysis (Christiansen
et al., 1992; Schlüter et al., 1997; Miranda-Moreno et al., 2005; Aguero-Valverde and Jovanis,
2007) and calculate the posterior probability that the spatial component of the accident rates
(exp(θi +φi)) is ranked among the top 800, accounting for roughly 10% of the total number of
areas (7932), for each severity level j. This is given by
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Pr[rank{exp.θi +φi/
.j/}< 800]:

In addition, we compare the rank order of areas based on crude rates (averaged across years),
against the rank order of areas under the model to highlight potential differences and evaluate
the effect of the modelling approach. To estimate the latter, we use the posterior mean of the
rank (Miaou and Song, 2005; Tunaru, 2002) of the spatial component (exp.θi +φi//.

4. Results

All models are implemented in OpenBUGS. Two chains are run for each parameter for each
model with different initial values for around 50000 iterations depending on the complexity
of the model, from which 5000–10000 are discarded as a burn-in, and estimates are based on
the remaining samples. The simulations took between 20 and 27 h per model on an Intel Core
processor at 3.40 GHz with 8 Gbytes of random-access memory. The convergence diagnostics
that we used include a visual check of trace plots, the Brooks–Gelman–Rubin statistic, auto-
correlation plots and Monte Carlo error which should be less than 5% of the posterior standard
deviation.

Analysing the DIC values of the models in Table 4 allows us to make several observations
regarding their fit to the road traffic accidents data. In general, comparing models within groups,
it is clear that those with independent temporal effects are favoured over those with common
temporal effects (model A better than model B, model C better than model D, and model E
better than model F).

Regarding the spatial effects, which are of primary interest in this paper, it is shown that
common space effects provide the worst fit, with high relative differences in the DIC than
independent space effects that follow.

The benefit of including a multivariate structure in the spatial effects (the MBYM specifica-
tion) can be seen in the correlated space effects, where the DIC decreased greatly. This indicates
that there is a non-negligible correlation between low and high severities, in both spatially
structured and unstructured effects, which needs to be considered in the model. We have also
developed a model with a multivariate structure either in φi or in θi alone, followed by an in-
dependent structure in the other parameter, to investigate the complex structure of the data
further. However, these models did not provide any important improvement, indicating that it
is the synergy of the multivariate structure on φi and θi that best supports the data. In addition,
the fact that model E is favoured over model F suggests that there are differences in the temporal
trends between low and high severities over the period 2005–2013.

Table 5 reports the parameter estimates of all the models that are considered in this study.
In general, we observe that most of the estimates are consistent among the different models.

Table 4. DIC values for competing models†

DIC values for the following models:

A B C D E F

527400 540100 542300 543200 392900 413300

†A, B, independent effects models; C, D, common effects models;
E, F, correlated effects models. The best model is shown in italics.
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The overall mean accident rate is around 0.19 for low severity and 0.03 for high severity. As
expected, some differences in the variances for the spatially structured and unstructured effects
exist between the models of different groups. More specifically, the independent space effects
give an average of 0.85 and 0.63 for the variability in φi for low and high severity respectively,
whereas this is somewhere between the two values under the common space effects models. The
same stands for the variability in θi. Under the correlated space effects models, the variability
in φi decreases by around 0.8 for low severity and 0.3 for high severity, whereas, at the same
time, the variability in θi increases by around 0.3 for both severities, which is important if we
consider the small standard deviations associated with these estimates. Potentially, this is because
part of the unstructured variability σ2

θ in the data can only be captured under a multivariate
specification. The effect of including a multivariate setting for both φi and θi is also notable in
the reduction in uncertainty associated with the variance estimates due to the information that
is borrowed between the two severities. The larger uncertainty in the independent case is due
to the correlation between severities which is not taken into account in the model. The spatial
fraction changes across groups of models as this is calculated on the basis of the variances, with
the estimates becoming slightly more precise under correlated space effects.

Within the correlated effects group of models, and by looking at the temporal effects σδ, we
observe that their magnitude seems to be the same for low and high severities; however, as model
E is favoured over model F, different patterns in the temporal trend between the two severities
are suggested.

Focusing on the preferred model (model E) in Table 5, we draw conclusions regarding the
sources of variability in road traffic accidents data. A comparison of σ̂2

φ and σ2
θ indicates that

the spatially structured effects are somewhat stronger than the spatially unstructured effects for
both low and high severities. This can also be seen by the values of the spatial fraction fracφ. This
is distributed around 0.646 for accidents of low severity, and 0.602 for accidents of high severity,
indicating that, although the effect of spatially structured effects is stronger in both categories,
the unstructured effects are also non-negligible. The conditional within-area correlations for φi

and θi are 0.77 and 0.64 respectively, whereas the corresponding correlation due to the total
random effects is 0.74. Fig. 1 presents the temporal effects on the exponential scale, showing an
overall decrease in the posterior rates across years. Although for low severity an almost linear
pattern is observed, for high severity the downward trend becomes flatter after 2010. What we
learn from these findings is that the present data have a complex structure as the variation is
due to several sources of variability; spatially structured, spatially unstructured and temporal
random effects, as well as the correlation between severities are needed to explain this.

Table 6 shows the proportion of areas with extreme pBayes-values for each year and level
of severity, and the mean values under model E. An adequate model fit is suggested, as only
13–17% of areas are assigned extreme pBayes-values, and these are close to 0.5, varying from
0.55 to 0.63. This is also confirmed by maps of pBayes-values which can be found in Fig. 3 of the
on-line supporting material.

Sensitivity analyses performed did not highlight noticeable differences on the spatial compo-
nent θi +φi as well as on the temporal component, as seen in Figs 4–7 in the on-line supporting
material, suggesting that our results are robust to the model specification.

We produce maps which help to visualize how the risk of road traffic accidents is distributed
across space. Figs 2(a) and 2(b) show crude rates calculated for a specific year (2005), for low
and high severity, together with the corresponding posterior rates under model E (Figs 2(c) and
2(d)).

First, comparing crude and posterior mean rates for high severity, we observe that these are
greatly smoothed out under the model. The map of crude rates in Fig. 2(b) does not indicate
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Fig. 1. Median values and 25th and 75th percentiles for the temporal effects under model E:�, high severity;
�, low severity

a particular pattern of risk, showing fairly similar effects across the south-west, central and
central-east of England. The corresponding map of posterior rates in Fig. 2(d) uncovers a clear
pattern; the effects in the south-west are eliminated, whereas these become stronger towards
the eastern part of England and even stronger in the north, mainly in the area that includes
Liverpool, Manchester, Leeds and Sheffield, as well as along the southern coast. Clusters of
dangerous areas are now detected in the region of Southend-on-Sea, and around Hull and
Bridlington. This is in line with common knowledge, as the road connecting those (the A165
road) is believed to be the most dangerous in the East Riding. Interestingly, motorways across
England can also be clearly distinguished in Fig. 2(d). To illustrate this, we have linked the map
in Fig. 2(d) with the motorway network within the geographical information system and the
resulting map can be seen in the on-line supporting material. It appears that the wards including
motorways, e.g. the M24, M1, M4 and M11 motorways, show low posterior rates compared
with the surrounding regions. This is obvious even in central London, where the inner part
suffers most and, moving outside, the wards including motorways become less risky. The high
accident rates within London and other big cities can be explained by the high numbers of
pedestrians and cyclists who are involved in those, whereas the high rates in areas between big
cities can be explained by the excess speed of vehicles and road conditions that lead to severe
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Table 6. Proportion of areas with extreme pBayes-values and the mean
pBayes-values for low and high severity under model E†

Year % areas with extreme pBayes-values Mean pBayes-values

Low severity High severity Low severity High severity

2005 12.7 15.5 0.549 (0.285) 0.618 (0.254)
2006 12.3 14.7 0.551 (0.281) 0.618 (0.251)
2007 13.0 14.7 0.556 (0.284) 0.622 (0.249)
2008 11.0 15.3 0.552 (0.273) 0.622 (0.251)
2009 11.7 15.6 0.552 (0.275) 0.628 (0.249)
2010 11.3 15.4 0.545 (0.275) 0.629 (0.247)
2011 12.2 15.6 0.543 (0.282) 0.630 (0.246)
2012 12.4 15.6 0.547 (0.285) 0.628 (0.247)
2013 13.9 17.3 0.540 (0.269) 0.634 (0.251)

†Standard deviations are in parentheses.

and fatal accidents. Other areas that are shown to be prone to accidents of high severity are
countryside areas, such as Northumberland and the North York, Peak District and Yorkshire
Dales national parks, where road conditions and characteristics (narrow roads, bends, slopes,
etc.) might be an exlanation for this.

Second, looking at the posterior mean rates for low severity in Fig. 2(c), we can see that urban
areas in England appear to be more dangerous. The risk for accident incidence is focused mainly
within big cities, with central London showing a significantly increased risk. Other big cities,
such as Newcastle, Birmingham, Liverpool, Leeds, Sheffield and Manchester, are also shown
to be dangerous. This could be again due to the high numbers of pedestrians and cyclists, and
the presence of bus and cycle lanes.

In contrast with high severity, there are no obvious differences between maps of crude and
posterior rates when comparing Figs 2(a) and 2(c). The fact that the model does not affect the
rates for low severity importantly is reasonable if we consider that these consist of high counts
in general, and the model is designed to provide smoothing to low counts that suffer from great
variability. The information of low severity in the model yet contributes to stable estimates for
high severity, and this is one of the main aspects of this paper; strength is borrowed, not only
between areas, but also between levels of severity.

Moreover, the probability maps in Fig. 3 help to discriminate specific areas of excess risk in
England and focus on those which show strong evidence of increased risk, after accounting for
the uncertainty in the posterior estimates. The west, east and north-east parts of England are no
longer shown as dangerous, and clusters of areas that consistently belong to the top 800 ranked
areas are observed in central London, and in the area around Southend-on-Sea. This gives a
clearer picture of the most dangerous areas at a national level, and therefore provides evidence
for prioritizing interventions to reduce rates.

Finally, by comparing ranks that are generated under the model against ranks under crude
rates for the top 100 areas (Fig. 4), we observe that for low severity these are quite consistent,
whereas, for high severity, they differ importantly. Among the top 100 ranked areas the pro-
portion of those that have a difference of more than 15 places between the two ranking criteria
is 0.02% for low severity and 0.26% for high severity; when we consider the top 800 ranked
areas these numbers increase to 0.27% and 0.75% respectively, suggesting that the features of
the model have an important influence on the results.
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Fig. 2. (a), (b) Crude and (c), (d) posterior accident rates for a specific year for (a), (c) low and (b), (d) high
severity
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(a) (b)

London London

Fig. 3. Probability that residual accident rates belong to the top 800 ranked areas for (a) low and (b) high
severity: , less than 0.2; , 0.2–0.8; , greater than 0.8

(a) (b)

Fig. 4. Area ranks based on crude rates versus posterior ranks for the top 100 areas: (a) low severity; (b)
high severiy

5. Discussion

In this paper we have compared models for road traffic accidents data under various assumptions
on the spatial and temporal dependences between severities. These models combine ideas from
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a Bayesian hierarchical framework with space–time effects and multivariate analysis to produce
a flexible framework for the analysis of road traffic accidents by level of severity.

We have identified the MBYM model as the most appropriate in this context. This model
consists of both multivariate spatially structured and unstructured effects that assume a degree
of correlation in the respective components between severities, allowing at the same time the
quantification of this correlation. The results suggest a high correlation between severities in
both spatially structured and unstructured effects, whereas the time effects are better modelled
via separate components indicating fairly different trends for the two severities.

From the point of view of policy making, probability maps and rankings are used to aid
the detection of areas that are characterized by excess risk. One of the strengths of our model
is that it not only provides top ranked areas based on the mean rates of accidents, but in ad-
dition it takes into account the uncertainty associated, providing policy makers with a high
level of information to draw priority plans for actions. We have shown that this could greatly
influence high severity accidents, owing to the small numbers. For example, the results of our
analysis can be used centrally to decide where to allocate funding to decrease the number of
injuries and fatalities due to road accidents. Among the policies that can be implemented to
prevent road traffic accidents in the most high-risk areas, there are environmental changes
(such as the introduction of speed cameras, or marked pathways for cyclists) and safety ed-
ucation and skills training (such as road safety media campaigns or providing free safety
equipment). Different policies can be used for high-risk areas for high and low severity ac-
cidents.

The paper has shown that the MBYM specification offers a great improvement over other
model specifications that consider joint modelling of accidents by level of severity; however, as
always the case with disease mapping models we should treat this as an explorative analysis,
aiming solely at investigating the spatial and temporal pattern of accidents and at identifying
areas that are characterized by particularly high risks. We stress that we are not placing our-
selves in the context of hot spot analysis, which involves a deep investigation from identifying
the dangerous locations, ranking these locations according to various criteria and providing
explanations of why certain locations are hot spots, and which usually consider information
on the cost of the accidents (Miaou and Song, 2005; Brijs et al., 2007). Instead, our mod-
elling approach can serve as a first step for policy making, which should be followed by further
investigation.

The next step of this research would be to assess risk factors formally, including these in
the model as explanatory variables. For instance socio-economic and demographic factors and
adverse weather conditions could be good candidates to explain the pattern that is seen for
slight and severe accidents. It would be important to consider also the type of road (i.e. major
or minor) and other characteristics, and particularly whether a ward includes a motorway or
not, to investigate formally the findings that were suggested by the current analysis. In addition,
information on the classification of an area as rural, suburban or urban can be incorporated in
the model.

Aiming at identifying clusters of areas with an unusual road accidents pattern (e.g. increasing
in time whereas the general temporal trend shows a decrease) more complex models including an
interaction term could be considered, which would provide information on area changes across
space and time jointly as presented in Li et al. (2012). However, this type of models entails a
considerable computational burden for large study regions such as the whole of England; thus we
decided against it in the present paper as we were interested in investigating the spatiotemporal
trend of accidents for the entire study region. A natural extension of this paper would be to
focus on some specific regions, e.g. around the big cities showing evidence of increased risk, and
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to go more deeply into these by means of a more complex model which considers for instance
a mixture specification on the interactions.
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