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Abstract—Diversity assessment of Pareto front approximations
is an important issue in the stochastic multiobjective optimization
community. Most of the diversity indicators in the literature
were designed to work for any number of objectives of Pareto
front approximations in principle, but in practice many of these
indicators are infeasible or not workable when the number
of objectives is large. In this paper, we propose a Diversity
Comparison Indicator (DCI) to assess the diversity of Pareto front
approximations in many-objective optimization. DCI evaluates
relative quality of different Pareto front approximations rather
than provides an absolute measure of distribution for a single
approximation. In DCI, all the concerned approximations are
put into a grid environment so that there are some hyperboxes
containing one or more solutions. The proposed indicator only
considers the contribution of different approximations to non-
empty hyperboxes. Therefore, the computational cost does not
increase exponentially with the number of objectives. In fact, the
implementation of DCI is of quadratic time complexity, which
is fully independent of the number of divisions used in grid.
Systematic experiments are conducted using three groups of
artificial Pareto front approximations and seven groups of real
Pareto front approximations with different numbers of objectives
to verify the effectiveness of DCI. Moreover, a comparison with
two diversity indicators used widely in many-objective optimiza-
tion is made analytically and empirically. Finally, a parametric
investigation reveals interesting insights of the division number
in grid and also offers some suggested settings to the users with
different preferences.

Index Terms—Multiobjective optimization, many-objective op-
timization, performance assessment, diversity comparison indi-
cator.

I. INTRODUCTION

MANY real-world problems involve simultaneous opti-
mization of several competing criteria or objectives:

often, there is no single optimal solution, but rather a set
of Pareto optimal solutions (also called Pareto front in the
objective space). In general, generating the Pareto front is
often infeasible, since the complexity of the underlying appli-
cation prevents exact methods from being applicable. Heuristic
search methods are an alternative: they try to find a good
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approximation that is not too far away from the Pareto front,
although they usually do not guarantee to obtain the optimal
tradeoffs. Over the past decades, various stochastic heuristic
search techniques, such as genetic algorithms, particle swarm
optimization algorithms, ant colony optimization algorithms,
simulated annealing, and tabu search, have been proposed
to solve multiobjective optimization problems (MOPs), and
their usefulness has been demonstrated in many application
domains [1]–[5].

With the rapid development of useful and effective tech-
niques in multiobjective optimization, the issue of perfor-
mance assessment has become increasingly important and
has developed into an independent research topic. Numerous
quality indicators [6]–[10] have been emerging in the literature
to evaluate the performance of Pareto front approximations
obtained by multiobjective optimizers. They mainly concen-
trate on three aspects that the optimizers try their best to
optimize: 1) the convergence of the obtained approximation, 2)
the uniformity of the approximation, and 3) the spread (i.e.,
extensity) of the approximation. The latter two are closely
related aspects, and in general, they are called the diversity of
the approximation.

Many-objective optimization problems, which appear
widely in industrial and engineering design [11]–[13], usually
refer to those problems with more than three objectives. In
recent years, many-objective optimization has been gaining
increasing attention in the stochastic multiobjective optimiza-
tion community: a great variety of many-objective optimizers
have been developed [14]–[19], and their performance has
been tested on many problems with different characteristics
[20]–[25].

However, how to compare the Pareto front approximations
obtained by different many-objective optimizers seems having
not gotten enough attention and concern [26], which largely
hinders the deep investigation of the performance of optimizers
[27], [28]. Most of the quality indicators that are scalable
analytically to any number of objectives are often not available
actually to the problems with a large number of objectives. In
general, the difficulties of comparing many-objective Pareto
front approximations may be mainly attributed to three rea-
sons, which are summarized as follows.

• Visual comparison of approximations. When the number
of objectives of Pareto front approximations is more
than three, visual and intuitive quality assessment can be
misleading or even impossible, despite the fact that it is
a prevailing comparison tool in the literature.

• Substitution of the Pareto front. Many quality indicators
need to compare an approximation with a reference set,
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which is regarded as a substitution of the Pareto front.
Due to the “curse of dimensionality”, the number of
points required to accurately represent the Pareto front of
a given problem increases exponentially with the number
of objectives. This places the setting of the number of
points in a reference set in a dilemma: a large number
will pose a challenge to the storage and access of data,
whereas a small one will decrease the accuracy of the
evaluation results.

• Complexity of storage and time. The storage or time
requirement of some quality indicators, such as hy-
pervolume [29], diversity measure [30], and hyperarea
difference [31], increases exponentially with the number
of objectives. This may limit their applicability in per-
formance comparison of high-dimensional Pareto front
approximations.

Whereas the above difficulties have created obstacles to
the design of quality indicators in many-objective optimiza-
tion, the influence for indicators on different aspects (i.e.,
convergence and diversity) may be of great difference. Some
convergence indicators can avoid these difficulties by utilizing
the characteristics of the Pareto front of the considered test
problems [32], [33] or by testing the dominance relation
between individuals of different approximations [9], [14], etc.
However, for diversity indicators, a proper reflection of the
distribution of approximations seems to be more difficult
in many-objective optimization [7]. Separate assessment of
uniformity and spread may give a misleading result about
the whole distribution of an approximation (a detailed ex-
planation will be given in the next section). In general, a
diversity indicator without the introduction of comparison
between an approximation and the problem’s Pareto front fails
to accurately reflect the distribution of the approximation,
since the true shape and distribution of the optimal front are
often unknown beforehand and hard to estimate in a high
dimensional space.

In this paper, we propose a diversity1 comparison indica-
tor (DCI) to compare Pareto front approximations in many-
objective optimization. DCI assesses the relative quality of
different Pareto front approximations rather than provides an
absolute measure of distribution for a single approximation,
so that a reference set that is difficult to accurately represent
the Pareto front of a many-objective optimization problem is
not needed. Moreover, unlike binary quality indicators [34],
[35], which compare the performance of two approximations,
DCI is available for any number of approximations, which
seems very attractive because it can identify all the considered
approximations in a single run.

The rest of this paper is organized as follows. In Section
II, the related work is reviewed and discussed. Section III
is devoted to the description of the proposed performance
indicator. Empirical comparative studies and discussions are
presented in Section IV. Finally, Section V provides some
concluding remarks along with pertinent observations.

1This paper focuses on the diversity in the objective space, rather than in
the variable space, although the latter is also very important in the area.

II. RELATED WORK

During the past decade, various quality indicators have been
emerging in the stochastic multiobjective optimization domain
[7], [9], [36]. Some of them focus on the performance of
Pareto front approximations in terms of a single aspect, and the
others assess several aspects of the quality of approximations.
Table I summarizes some quality indicators and their prop-
erties, listing the quality aspect(s) involved by the indicators,
the number of approximations handled by the indicators, the
computational effect needed by the indicators, and the state
whether a reference set is required by the indicators or not.

As can be seen from Table I, there are three categories of
existing quality indicators regarding the uniformity and spread
of Pareto front approximations. The first category separately
assesses the uniformity or spread of approximations (items 11–
18), the second one covers all three aspects of performance
(i.e., uniformity and spread as well as convergence) (items 19–
24), and the last one focuses on diversity (i.e., both uniformity
and spread, but no convergence) (items 25–27).

Considering the first category, although the indicators can
separately evaluate the two aspects of diversity, they may fail
to reflect the whole distribution of an approximation. Fig. 1
gives a distribution example to explain this case. The solutions
of the approximation in the figure are uniformly distributed
on the boundary of the Pareto front rather than over the
whole Pareto front. In this case, both uniformity indicators
(e.g., items 11–15) and spread indicators (e.g., items 16–
18) may give good evaluation results of the approximation.
This occurrence can be attributed to the fact that the former
only considers distribution uniformity in the neighborhood
of solutions (e.g., the Spacing indicator [39] assesses the
uniformity of an approximation by calculating the standard
deviation of distance from each solution to its closest neighbor
in the approximation), and the latter only measures the distri-
bution range of boundary solutions rather than the coverage
of an approximation to the whole Pareto front [60] (e.g., the
Maximum Spread indicator [49] assesses the spread of an
approximation by measuring the length of the diagonal of the
minimal hyperbox that encloses the approximation). In fact, it
may be meaningless that a uniformly-distributed solution set
is located only in a small part of the Pareto front, which could
be obtained more easily in many-objective optimization due to
the exponential growth of the problem space [12], [26].

Note that for accuracy, in the remainder of the paper the
meaning of “spread” is modified to refer to the performance
of an approximation to cover the whole Pareto front.

The second category of indicators involve all three aspects
of performance of approximations, and some of them, such
as Hypervolume [29] and Inverted Generational Distance
(IGD) [53], are popular to compare multiobjective optimizers
in the literature [26], [61], [62]. However, there are some
requirements for them to be used, which may obstruct their
application in the performance comparison of approximations
with a large number of objectives. Although Monte Carlo
sampling-based approximate calculation can greatly reduce the
computational cost of Hypervolume [63], the proper choice
of the reference point in the calculation of the indicator is
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TABLE I
QUALITY INDICATORS AND THEIR PROPERTIES

Quality Indicators Convergence Uniformity Spread Number of Ap-
proximations

Computational Effect Reference
Set Needed

1 Generational Distance [37], GDp [38]
√

unary quadratic
√

2 ONVG, GNVG [39]–[41]
√

unary linear time
3 ONVGR, GNVGR [40], [41]

√
unary linear time

√

4 Convergence Measure [30]
√

unary quadratic
√

5 RNI [42]
√

unary linear time
6 Error Ratio [40]

√
unary quadratic

√

7 C1R, C2R [6], [43]
√

unary quadratic
√

8 Coverage [29], [44]
√

binary quadratic
9 Dominance Ranking [8]

√
arbitrary quadratic

10 Purity [45]
√

arbitrary quadratic
11 Spacing [39], [46], Minimal Spacing [45]

√
unary quadratic

12 Uniform Distribution [42]
√

unary quadratic
13 Entropy Measure [47]

√
unary linear time

14 Cluster [31]
√

unary exponential in m
15 Uniformity Assessment [48]

√
unary quadratic

16 Maximum Spread [49]–[51]
√

unary linear time
17 Overall Pareto Spread [31]

√
unary linear time

18 Spread Assessment [52]
√

unary exponential in m
19 Hypervolume [29]

√ √ √
unary/binary exponential in m

20 Hyperarea Ratio [40]
√ √ √

unary exponential in m
√

21 IGD [53], [54] IGDp [38]
√ √ √

unary quadratic
√

22 Coverage Difference [55]
√ √ √

binary exponential in m
23 G-Metric [56], [57]

√ √ √
arbitrary quadratic

24 Averaged Hausdorff Distance ∆p [38]
√ √ √

unary quadratic
√

25 ∆ Metric [58]
√ √

unary quadratic
26 Sigma Diversity Metric [59]

√ √
unary linear time

27 Diversity Measure [30]
√ √

unary exponential in m
√

28 The Proposed Indicator
√ √

arbitrary quadratic

(a) Pareto front (b) An approximation

Fig. 1. A distribution example that uniformity or spread indicators may fail
to reflect the whole distribution of an approximation.

also an important issue [64]. For IGD, a reference set that
can accurately represent the Pareto front of a problem is
required. Moreover, since these indicators concentrate on an
overall consideration of convergence and diversity, they fail
to separately reflect the distribution of approximations, which
the user may be rather desirous to concern sometimes [65].

In addition, it is interesting to note that the comprehensive
performance indicator G-Metric [56] (item 23 in Table I),
which measures the convergence and diversity of approxima-
tions according to the Pareto dominance relation and “zone
of influence” of individuals respectively, could be placed into
the third category since their solutions are often mutually non-
dominated in a high dimension space. However, since the
calculation of “zone of influence” is based on Monte Carlo
sampling when more than three objectives are involved, the
accuracy of the indicator may be affected as the number of
objectives increases.

Represented by ∆ Metric [58], Sigma Diversity Metric

(SDM) [59] and Diversity Measure (DM) [30], the third
category of indicators assess the performance of approxi-
mations in terms of uniformity and spread. The ∆ Metric
is an extension of the uniformity indicator Spacing [39] by
considering boundary solutions of the Pareto front for a bi-
objective problem, and it is defined as follows:

∆ =
df + dl +

∑|P |−1
i=1

∣∣di − d̄
∣∣

df + dl + (|P | − 1)d̄
(1)

where |P | denotes the size of the considered approximation P ,
di corresponds to the Euclidian distance between consecutive
solutions in P , d̄ stands for the average of di, and df and dl
denote the Euclidian distance between the extreme solution of
the Pareto front and the boundary solution in the approxima-
tion regarding each of the two objectives, respectively. Due
to the introduction of comparison between an approximation
and the concerned Pareto front, the ∆ metric seems to be one
that reflects the distribution correctly. Despite the fact that ∆
metric can easily be extended in a higher-dimensional space
according to the Voronoi diagram approach, how to find the
Voronoi diagram of a solution set is not an easy (or even an
infeasible) task when more than three objectives are involved.

Inspired from the polar and spherical coordinate axis for
the 2- and 3-objective space, the SDM indicator assesses the
diversity of an approximation by using a set of reference lines
dividing the objective space [59]. The outputs of the metric
are a percentage of the space and the position information of
a given approximation in the space, rather than a scalar value
representing the distribution of the approximation. However,
due to depending on several parameters, such as the distance
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around each reference line, the number of reference lines, and
the shape of the Pareto front, the metric may face difficulties
to be extended to many-objective optimization.

DM, proposed by Deb at el. [30], has recently been used
in some comparison studies of many-objective optimizers
[32], [66], [67]. DM measures the diversity of a Pareto front
approximation by comparing it with a reference set. In the
calculation of DM, the solutions in the approximation are
projected on a (m − 1)-dimensional hyperplane which is
divided into a number of hyperboxes. The indicator considers
each hyperbox and gives it an evaluation value according to the
distribution of solutions in it and its neighbors. The more the
hyperboxes that, when containing a member of the reference
set, also contain a member of the approximation, the higher
the indicator value. DM takes the value between zero and one,
where one corresponds to the best possible diversity and zero
stands for the worst. A more detailed description of DM can
be found in [30].

The idea of assessing diversity using a grid-based way is
meaningful, but DM has some shortcomings when applied to
compare Pareto front approximations with a large number of
objectives, which are described as follows:

• A reference set, in which the solutions are uniformly
distributed over the Pareto front, is required in order to
accurately reflect the distribution of the optimal front;
and it is also required that the number of solutions in the
reference set is approximate to the number of solutions
in the approximation in order to guarantee that the ideal
distribution of the approximation can reach the optimal
DM value (one). These requirements are often unavailable
in many-objective optimization problems.

• DM needs to access each hyperbox in grid to estimate
the distribution, which produces great challenges to both
the data structure and computational cost. For an opti-
mization problem with m objectives, there will be rm−1

hyperboxes to be considered, where r is the number of
divisions in each dimension.

• In the distribution estimation for a hyperbox, DM needs to
assign each of its neighboring hyperboxes a proper value
by a value function to distinguish different distributions
of solutions in its neighborhood. Since the number of
neighbors of a hyperbox increases exponentially with the
number of objectives (there are (3m−1) neighbors for an
m-dimensional hyperbox at most), the value function ac-
curately reflecting different distributions will be difficult
to define when the concerned problem involves a large
number of objectives [30].

• DM may fail to give an accurate diversity result of an
approximation with a large number of objectives due to
the designation of the neighbors of a solution in grid. The
setting of neighborhood of a solution in DM is based on
the Manhattan distance of grid coordinates of solutions,
rather than on the Euclidean distance of them, which
may misleadingly eliminate adjacent solutions but regard
farther ones as its neighbors (a detailed analysis will be
given in Section IV-C).

The diversity indicator proposed in this paper also adopts

a grid-based technique to compare the distribution of Pareto
front approximations, but it attempts to solve all the above
difficulties. Some of its properties are also shown in Table I.
A key difference between DCI and DM lies in that DCI only
considers the hyperboxes where the nondominated solutions
in approximations are located, so that at most N hyperboxes
will be accessed for an approximation, where N is the size
of the approximation. The proposed DCI has a quadratic
computational complexity, which is not affected by the number
of divisions in grid, and thus can be easily calculated to
examine and compare the diversity of approximations for
many-objective optimization problems.

III. THE DIVERSITY COMPARISON INDICATOR (DCI)

The essential idea behind the proposed indicator is to
consider the contribution of different Pareto front approxima-
tions to the hyperboxes that have at least one nondominated
solution. All the concerned approximations are put into a grid
environment so that there are some hyperboxes containing one
or more nondominated solutions. Depending on the contribu-
tion of an approximation to these hyperboxes, the diversity
indicator of the approximation is defined. If the contributions
of an approximation to all of these hyperboxes are maximal,
the best diversity value is achieved; if the contributions of
an approximation to most of these hyperboxes are low, the
diversity is poor. Below, we introduce the grid environment
where the DCI is implemented, followed by the formulation
of the DCI and its time requirement analysis.

A. Grid Environment

The position and size of grid are of great importance in
the proposed indicator. The grid should not involve the whole
objective space but rather aim at a region not far away from
the Pareto front of a given problem, because a prerequisite of
meaningful diversity comparison of different approximations
is that they have already approached the optimal front [50].
Assuming that the lower and upper boundaries of grid are
LB = (lb1, lb2, . . . , lbm) and UB = (ub1, ub2, . . . , ubm)
respectively (m denotes the number of objectives), a solution
vector (q1, q2, . . . , qm) that goes beyond LB or UB (i.e.,
k ∈ {1, 2, . . . ,m} : qk < lbk or qk > ubk) will be discarded
in the indicator calculation.

In the application of the proposed DCI to different problems,
the grid boundary may be determined by the “satisfied region”
defined by the user, or be set by using the Ideal point and
Nadir point of the problems2. The “satisfied region” is a user’s
estimation that the obtained solutions in it are considered to
achieve the quality requirement in terms of convergence. When
the user fails to clearly define his/her “satisfied region”, the
grid boundary can be obtained by the Ideal point and Nadir
point of a given problem (shown in Fig. 2). The Ideal point
and Nadir point are two important concepts in multiobjective
optimization, and they can be estimated by some efficient
methods when the boundary of the Pareto front is unknown [1],

2The Ideal point is an m-dimensional vector constructed with the best
objective values, and the Nadir point signifies the opposite (i.e., constructed
with the worst objective values of the Pareto front).
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Fig. 2. Grid setting for a bi-objective minimization problem.

[68], [69]. Here, a slight relaxation of the region constructed
by the Ideal point and Nadir point of a problem is regarded
as the grid environment:

ubk = npk +
npk − ipk
2× div

(2)

lbk = ipk (3)

where ipk and npk denote the values of the Ideal point
and Nadir point in the kth objective, respectively, and div
is a constant parameter, i.e., the number of divisions of the
objective space in a dimension, set by the user (e.g., div = 5
in Fig. 2).

According to the boundaries of grid and the number of
divisions, the hyperbox size dk in the kth objective can be
formed as follows:

dk =
ubk − lbk

div
(4)

In this case, the grid location of a solution in Pareto front
approximations can be determined by the lower boundary and
the hyperbox size as follows:

Gk(q) = ⌊ (Fk(q)− lbk)/dk ⌋ (5)

where Gk(q) denotes the grid coordinate of solution q in the
kth objective, and Fk(q) is the actual objective value in the
kth objective. For example, the grid coordinates of solutions
A, B, C, and D in Fig. 2 are (0, 4), (0, 3), (2, 2), and (4, 0),
respectively. In the following, several distance-based concepts
used in the DCI calculation are introduced.

Definition 1 (Grid distance between two hyperboxes). Let h1

and h2 be two hyperboxes in grid, the grid distance between
them is calculated as follows:

GD(h1, h2) =

√√√√ m∑
k=1

(hk
1 − hk

2)
2 (6)

where hk
1 and hk

2 denote the coordinate of h1 and h2 in the
kth objective respectively, and m is the number of objectives.
For example, the grid distance between the hyperboxes where
solutions B and C are located is

√
(0− 2)2 + (3− 2)2 =

√
5

in Fig. 2.

Algorithm 1 Diversity Comparison Indicator (DCI)
Require: P1, P2, . . . , PL (tested approximations)

1: Construct the grid environment according to Eqs. (2)–(4)
2: Put P1, P2, . . . , PL into the grid
3: Determine a set of hyperboxes, h1, h2, . . . , hS , where the non-

dominated solutions in P1, P2, . . . , PL are located
4: for all h ∈ {h1, h2, . . . , hS} do
5: for all P ∈ {P1, P2, . . . , PL} do
6: Calculate the contribution degree CD(P, h) of P to h

according to Eq. (8)
7: end for
8: end for
9: for all P ∈ {P1, P2, . . . , PL} do

10: DCI(P ) = 1
S

∑S
i=1 CD(P, hi)

11: end for
12: return DCI(P1), DCI(P2),. . . , DCI(PL)

Definition 2 (Distance from an approximation to a hyperbox).
Let P be an approximation and h a hyperbox in grid. The
distance from P to h is the shortest grid distance between h
and the hyperbox that has at least one solution of P :

D(P, h) = min
p∈P

{GD(h,G(p))} (7)

where G(p) denotes the hyperbox where solution p is located.
For example, in Fig. 2, the distance from the approximation
composed of solutions A, B, C, and D to the hyperbox
of coordinates (1, 3) is equal to GD(h(1,3), G(B)) = 1.
Apparently, an approximation whose solutions are uniformly
and extensively distributed in the grid environment has a low
average distance value to all hyperboxes.

B. Diversity Comparison of Approximations

The solutions in different Pareto front approximations may
be located in different hyperboxes. Here, we only consider the
hyperboxes where the nondominated solutions in the mixed
set of the considered approximations are located, because the
diversity of dominated solutions may be meaningless for the
user. For an approximation, if its solutions cover or are close
to all of the considered hyperboxes, it will achieve a relatively
good diversity in comparison with other approximations; on
the other hand, if its solutions are far away from most of
these hyperboxes, a relatively poor diversity will be obtained.
Algorithm 1 gives the main procedure of calculating the DCI
values for approximations being compared.

The contribution degree (line 6 of Algorithm 1) reflects the
contribution of an approximation to a hyperbox and is deter-
mined by the distance between them. For an approximation, if
there exists at least one solution in the considered hyperbox,
the maximum contribution degree of the approximation to the
hyperbox will be achieved; if the distance from the approx-
imation to the hyperbox is farther than a specified threshold
(i.e., the hyperbox’s neighborhood), the contribution degree
will be assigned zero. Specifically, the contribution degree of
an approximation P to a hyperbox h is defined as:

CD(P, h) =

{
1−D(P, h)2/(m+ 1), D(P, h) <

√
m+ 1

0, D(P, h) ≥
√
m+ 1

(8)
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Fig. 3. The contribution degree function regarding different numbers of
objectives.

where D(P, h) denotes the distance from P to h as defined
in Eq. (7), and m denotes the number of objectives.

It is worth pointing out that we set the threshold of
grid distance to

√
m+ 1 in order to ensure that two ad-

jacent individuals can always interact (i.e., the hyperboxes
where they are located are always neighbors to each other).
Intuitively, two hyperboxes should be regarded as neigh-
bors if their individuals can arbitrarily approach (i.e., there
is no another hyperbox between the individuals). Clearly,
the two farthest hyperboxes that meet the above condition
are diagonal hyperboxes whose grid distance is

√
m. Since

the grid distance between hyperboxes is always a discrete
value (

√
0,
√
1, . . . ,

√
m,

√
m+ 1, . . .), setting the threshold to√

m+ 1 just makes such diagonal hyperboxes to be neighbors
and thus to be able to interact with each other in the calculation
of the contribution degree.

Fig. 3 shows the curves of the contribution degree func-
tion regarding different numbers of objectives. Note that the
contribution degree takes a discrete value since D(P, h) ∈
{
√
0,
√
1, . . . ,

√
m,

√
m+ 1, . . .}. From the figure, some ob-

servations can be drawn as follows.
• The contribution degree takes the value between zero and

one. It decreases monotonously with the increase of the
distance from an approximation to a hyperbox in a certain
range (i.e., the neighborhood of the hyperbox).

• The radius of a hyperbox’s neighborhood increases with
the number of objectives. This indicates that a larger
range can be considered for individuals to interact when
the number of objectives becomes higher.

• For equal values of the distance variable D(P, h), the
contribution degree increases with the number of objec-
tives. This increase seems reasonable since the relative
distance between hyperboxes becomes smaller with the
growth of the total number of hyperboxes in the grid.

Overall, the contribution degree function considers not only
the distance information from an approximation to a hyperbox
but also the properties of the grid environment with different
numbers of objectives, thereby showing a good adaptability
to the change of the number of objectives. In fact, any form
of function can be assigned as a contribution degree function
by keeping in mind the above properties. Here, a quadratic
function is used for simplicity.

h0,7 h0,6 h1,4 h1,3 h2,2 h3,2 h4,2 h4,1 h5,1 h6,0 h7,0 DCI
P1 2/3 1 1 2/3 1 2/3 1 2/3 1 2/3 1 0.848
P2 1 1 0 0 0 1/3 2/3 1 2/3 1 1 0.606
P3 0 0 1 1 2/3 1 1 2/3 1/3 0 0 0.515

Fig. 4. An illustration of DCI calculation. The considered hyperbox hi,j is
highlighted with a gray background, where i and j denote the coordinates
in objectives f1 and f2, respectively. The number corresponding to an
approximation P and a hyperbox h means the contribution degree of P to h
(i.e., CD(P, h)).

According to the contribution degree function, the DCI
value of an approximation is a number in the range [0, 1]. It is
necessary to reiterate that the DCI only assesses the relative
distribution quality of different Pareto front approximations
rather than provides an absolute measure of distribution for
a single approximation. The best value (i.e., DCI = 1)
obtained by an approximation cannot reflect that it is uni-
formly distributed over the whole Pareto front. Instead, it
indicates that the approximation has a perfect advantage over
other approximations: it covers all the hyperboxes where the
nondominated solutions belonging to other approximations are
located. On the other hand, a well-distributed approximation
may not reach the best DCI value if it fails to cover all the
hyperboxes that the nondominated solutions belonging to other
approximations occupy.

As an illustration to the calculation procedure of the DCI,
Fig. 4 shows three Pareto front approximations P1, P2, and P3

for a bi-objective problem. First, P1, P2, and P3 are put into
the grid environment, and then 11 hyperboxes (marked in gray)
are determined (here, solutions A and B’s hyperboxes are not
considered since they are dominated solutions in the mixed
set). Afterward, for each of these hyperboxes, the contribution
degree of the three approximations is calculated according to
Eq. (8). For example, considering hyperbox h0,7 (0 and 7
correspond to its coordinates in f1 and f2, respectively), the
contribution degree of P2 reaches 1 since P2 has a solution in
this hyperbox; the contribution degree of P1 is 1−12/3 = 2/3
as D(P1, h

0,7) = 1; for approximation P3, the contribution
degree is equal to zero because the distance from P3 to h0,7 is
farther than the threshold (D(P3, h

0,7) =
√
10 >

√
3). Finally,

the average contribution degree of each approximation to these
hyperboxes is obtained according to Algorithm 1 (line 10), and
the DCI values of P1, P2, and P3 are 0.848, 0.606, and 0.515,
respectively.

C. Time Requirement of DCI

The computational cost of DCI can mainly be divided into
three parts. The first involves the operations of calculating
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(a) DCI = 0.8000 (b) DCI = 0.7816 (c) DCI = 0.7026 (d) DCI = 0.4026

Fig. 5. DCI test for a group of artificial Pareto front approximations with different distribution ranges. All solutions in the approximations are located on
the Pareto front f1 + f2 + f3 = 1.

the grid coordinates for the solutions in all approximations,
which requires O(mLN) computations for an m-objective
problem, where L denotes the number of approximations and
N is the approximation size. The second part is related to
the identification of nondominated solutions in the mixed
set and to the record of their hyperboxes in grid, which
requires O(m(LN)2) comparisons. Clearly, the number of the
considered hyperboxes, denoted as S, is not larger than LN .
The third part corresponds to the operation of calculating the
contribution degree of all approximations to the S hyperboxes.
This requires O(mLNS) computations since at most mLN
comparisons are implemented for one hyperbox.

From the above analysis, the total complexity of the DCI
is max(O(m(LN)2), O(mLNS)) = O(m(LN)2), since S ≤
LN . This cost is fully determined by the number of objectives
and the size summation of all approximations, and thus is
independent of the grid division and does not increase with
the number of hyperboxes.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we verify the proposed DCI indicator.
First, three groups of artificial Pareto front approximations are
introduced to show the effectiveness of DCI in assessing the
spread and uniformity of approximations. Then, seven groups
of Pareto front approximations obtained by six multiobjective
optimizers in different numbers of objectives are used to
further examine DCI, in view of their representative results
in terms of diversity. Next, a comparison with two diversity
indicators used widely in many-objective optimization is made
analytically and empirically. Finally, the effect of the parame-
ter (i.e., the grid division) in DCI is investigated, and a further
discussion of the proposed indicator is made.

A. Artificial Examples

As mentioned before, diversity of Pareto front approxima-
tions involves two facets, i.e., spread and uniformity. Here, we
illustrate the validity of the proposed indicator by introducing
several groups of artificial Pareto front approximations with
different characteristics in spread and uniformity, with respect
to a tri-objective optimization problem with a Pareto front
f1 + f2 + f3 = 1 (0 ≤ f1, f2, f3 ≤ 1).

Fig. 5 gives a group of artificial Pareto front approxima-
tions. Each one has 105 solutions distributed uniformly on

the Pareto front of the problem. The only difference is their
distribution range: the solutions in Fig. 5(a) are located over
the whole Pareto front, and the solutions in other figures
are located on a part of the Pareto front (from Fig. 5(b)
to Fig. 5(d), the objective value of solutions belongs to
the ranges [0.05, 0.9], [0.1, 0.8], and [0.2, 0.6], respectively).
Now, we apply the proposed indicator on these Pareto front
approximations. The number of grid divisions is set to 19 for
this and other tri-objective problems, unless otherwise stated.
As can be seen from Fig. 5, the evaluation results given in the
figure are consistent with the distribution range of the Pareto
front approximations, which indicates that DCI can accurately
reflect the spread of approximations.

The Pareto front approximations in Fig. 6 are used to test
the DCI in terms of distribution uniformity. The uniformity
degree of four approximations is decreased gradually from
Fig. 6(a) to Fig. 6(d), although all of them are located over
the whole Pareto front. Clearly, the evaluation results show
the effectiveness of DCI in assessing a set of approximations
with different uniformity degrees. In addition, note that the
same approximation in Fig. 5(a) and Fig. 6(a) has different
DCI results since it has different competitors in the diversity
comparison.

The above two groups of Pareto front approximations verify
the correctness of the DCI in evaluating spread and uniformity
separately. However, a comprehensive evaluation on a group of
Pareto front approximations with different distribution ranges
and uniformity degrees is necessary to further test the DCI;
e.g., for two approximations, how to compare their diversity,
if one performs better in terms of spread and the other has
an advantage in uniformity. Fig. 7 shows this case. A group
of Pareto front approximations are formed by copying the
approximations in Figs. 5 and 6 (i.e., Fig. 7(a) = Fig. 6(c),
Fig. 7(b) = Fig. 5(c), Fig. 7(c) = Fig. 6(d), and Fig. 7(d)
= Fig. 5(d)). From the evaluation results in the figure, DCI
could be considered as a tradeoff evaluation between spread
and uniformity. An approximation with a great advantage over
its competitors at one point will achieve a better DCI value,
even though it performs slightly worse at the other point.

B. Real Examples

In this section, we apply the proposed indicator on Pareto
front approximations obtained by six established multiobjec-
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(a) DCI = 0.8245 (b) DCI = 0.7979 (c) DCI = 0.7500 (d) DCI = 0.6809

Fig. 6. DCI test for a group of artificial Pareto front approximations with different uniformity degrees. All solutions in the approximations are located on
the Pareto front f1 + f2 + f3 = 1.

(a) DCI = 0.7463 (b) DCI = 0.6970 (c) DCI = 0.6329 (d) DCI = 0.4377

Fig. 7. DCI test for a group of artificial Pareto front approximations with different distribution ranges and uniformity degrees. All solutions in the
approximations are located on the Pareto front f1 + f2 + f3 = 1.

tive optimizers, which are described as follows.

• Nondominated Sorting Genetic Algorithm II (NSGA-
II) [58]. This is one of the most popular evolutionary
multiobjective optimization (EMO) algorithms in the lit-
erature. The main characteristics of NSGA-II are fast non-
dominated sorting and crowding distance-based density
estimation in fitness assignment.

• Average Ranking (AR) [70]. AR is regarded as a
good alternative to rank solutions in a multiobjective
population. It compares all solutions in each objective and
independently ranks them, and the final rank of a solution
is obtained by summing its ranks of all objectives. AR
is found to perform successfully in searching towards
the optimal direction for many-objective optimization
problems [14], [17], although often converging into a
subset of the Pareto front due to the lack of diversity
maintenance schemes [17], [67].

• Indicator-Based Evolutionary Algorithm (IBEA) [71].
IBEA, introduced by Zitzler and Küenzli, aims to inte-
grate the preference information of the decision maker
into the multiobjective search. The main idea is to first
define the optimization goal in terms of a binary per-
formance measure and then directly use this measure in
the mating and environmental selection processes. Since
the single measure that involves both convergence and
diversity is used to optimize a desired property of an
approximation, IBEA is competitive with classic EMO
algorithms in many-objective optimization [33].

• Diversity Management Operator (DMO) [51]. DMO is

a methodology to manage the use of diversity preserva-
tion operators in dealing with many-objective problems.
It adaptively tunes the diversity operator according to
the requirement of the evolutionary population. If the
diversity result is smaller than 1 by the Maximum Spread
test [49], a specified diversity promotion mechanism is
activated; otherwise, deactivated. Specifically in [51],
DMO is implemented in NSGA-II and the crowding dis-
tance is regarded as the diversity promotion mechanism.

• Territory Defining Evolutionary Algorithm (TDEA)
[72]. TDEA is a steady-state algorithm based on the
concept of territory. Keeping the Pareto dominance re-
lation in mind, the algorithm defines a territory around
each solution and forbids other solutions to reside in it,
thereby providing a good tradeoff between convergence
and diversity.

• Average Ranking combined with Grid (AR+Grid)
[67]. AR+Grid is a hybrid method which uses grid to
enhance diversity for AR in many-objective optimization.
In AR+Grid, the AR strategy is employed to provide the
selection pressure searching towards the Pareto front, and
grid instrument is introduced to prevent solutions from
being crowded in the objective space.

All tested multiobjective optimizers are given real-valued
decision variables. A crossover probability pc = 1.0 and a
mutation probability pm = 1/l (where l is the number of
decision variables) are used. Simulated binary crossover (SBX)
and polynomial mutation are separately chosen as crossover
and mutation operators [3]. Both of them use the distribution
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TABLE II
SETTINGS OF PARAMETERS τ AND d IN TDEA AND AR+GRID

Number of Objectives 3 4 5 6 8 10
τ 0.10 0.22 0.34 0.44 0.67 0.86
d 20 17 15 13 13 13

TABLE III
PARAMETER SETTINGS OF DCI

Number of Objectives 3 4 5 6 8 10
div 19 11 10 8 6 5

TABLE IV
DCI RESULTS OF THE SIX OPTIMIZERS ON DTLZ2 WITH DIFFERENT

NUMBERS OF OBJECTIVES

Algorithm 3 obj. 4 obj. 5 obj. 6 obj. 8 obj. 10 obj.
NSGA-II 0.5777 0.5365 0.0684 0.0000 0.0000 0.0000

AR 0.1841 0.0210 0.0172 0.0229 0.0420 0.0545
IBEA 0.3843 0.4096 0.4301 0.5132 0.2811 0.3381
DMO 0.5455 0.5178 0.4240 0.3942 0.4515 0.4266
TDEA 0.7365 0.6901 0.5957 0.5983 0.4862 0.4878

AR+Grid 0.6927 0.6436 0.5922 0.6391 0.7066 0.7590

indexes 20 (i.e., ηc = 20 and ηm = 20). For each optimizer,
a population3 of 100 individuals and a predefined number
of 30,000 evaluations are set. Additionally, for TDEA and
AR+Grid, two parameters τ and d (i.e., the size of territory
in TDEA and the number of grid divisions in AR+Grid) are
required respectively. They are given in Table II.

To verify the proposed indicator, two scalable test function
DTLZ2 and DTLZ7 [20] are used. The Pareto front of DTLZ2
corresponds to the positive part of the unit hypersphere, and
the Pareto front of DTLZ7 consists of 2m−1 disconnected
regions. The total number of decision variables in the functions
is l = m+ n− 1, where m denotes the number of objectives
and n, set by users, is a parameter specifying the distance
from solutions to the Pareto front. According to [20], here n
is set to 10 and 20 for DTLZ2 and DTLZ7, respectively.

In the proposed DCI, a parameter div (i.e., the number of
grid divisions) is required to divide the considered region into
many hyperboxes. In this section, the setting of div is fixed
and shown in Table III. A detailed investigation about different
configurations of div will be given in Section IV-D.

Table IV gives the diversity comparison results of the
Pareto front approximations obtained by the six optimizers
for different numbers (3, 4, 5, 6, 8, and 10) of objectives of
DTLZ2. Due to the space limitation, only the distributions of
the approximations for 3-, 6-, and 10-objective problems are
plotted in Fig. 8 to Fig. 10, respectively.

Fig. 8 shows the six Pareto front approximations with three
objectives. Clearly, the optimizer TDEA performs the best: the
solutions are uniformly located over the whole Pareto front.
AR+Grid takes the second place, with its solutions distributed
widely but not so uniformly as those of TDEA. The solutions
obtained by NSGA-II and DMO are similar and distributed
into many clusters on the Pareto front. The only difference
between them is that the former seems to achieve a better
result in terms of spread. The solutions of IBEA are of great
regularity: most of them are located orderly on the boundary

3The archive set is also maintained with the same size if required.

of the Pareto front, but the rest of the region is populated
sparsely. Due to the lack of a diversity maintenance method,
the optimizer AR performs the worst among the selected opti-
mizers, with the solutions concentrating around three scattered
extreme points, i.e., (1, 0, 0), (0, 1, 0), and (0, 0, 1), of the
Pareto front. Clearly, from the results in Fig. 8, it is clear that
DCI is able to accurately reflect the relative distribution of
Pareto front approximations: an approximation with a higher
DCI value means that it performs better regarding the tradeoff
between spread and uniformity.

The Pareto front approximations of the six optimizers for
the six-objective DTLZ2 are plotted by parallel coordinates
in Fig. 9. As seen in the figure, the distribution of these ap-
proximations is consistent with the DCI results. The solutions
obtained by NSGA-II fail to approach the Pareto front. In this
case, none of them are located into the grid environment set by
Eqs. (2) and (3), and thus the DCI value is assigned zero. The
solutions of AR reach the optimal front, but nearly converge
into a point. Although DMO performs significantly better than
AR, its solutions do not appear to be well distributed over
the whole Pareto front: most of them are grouped into many
clusters, and some regions are lack of solutions. The rest
three optimizers IBEA, TDEA, and AR+Grid perform better in
terms of diversity maintenance, thereby producing higher DCI
values. More specifically, IBEA, similar to the tri-objective
case, prefers to converge into the boundary of the Pareto front,
and only several solutions are obtained in other parts of the
front. AR+Grid tends to be the most successful in maintaining
diversity: its solutions have a better coverage of the optimal
front than those of the other five optimizers.

Concerning the ten-objective case shown in Fig. 10, the
distribution of the approximations is generally similar to that
for the six-objective case. An interesting difference is that
IBEA fails to find the whole Pareto front of the problem. In
this case, DMO achieves a higher DCI value than IBEA. In
addition, AR+Grid seems to show more advantage over TDEA
in terms of diversity, and thus the difference between their DCI
values is larger.

The above experiments have demonstrated the effectiveness
of DCI on the problems with a linear or concave Pareto
front. We now further examine its effectiveness when working
on problems with other Pareto geometries. The test problem
DTLZ7 has a disconnect Pareto front consisting of 2m−1

regions with both convex and concave shapes (where m
denotes the number of objectives), and is used to test an
algorithm’s ability to maintain subpopulations in disconnected
portions of the objective space.

Fig. 11 shows the Pareto front approximations obtained by
one typical run of the six algorithms on the tri-objective
DTLZ7. As can be seen from the figure, AR and DMO fail
to find all the four Pareto optimal regions. The solutions of
AR concentrate in the top region and the solutions of DMO
are distributed in the top and left ones. Despite having found
all the four regions, IBEA struggles to develop extensity,
with most of the solutions located on the boundary of the
regions. NSGA-II, TDEA, and AR+Grid perform similarly
in terms of extensity, but differently in terms of uniformity.
The solutions of TDEA have the best distribution uniformity,
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(a) NSGA-II (DCI = 0.5777) (b) AR (DCI = 0.1841) (c) IBEA (DCI = 0.3843)

(d) DMO (DCI = 0.5455) (e) TDEA (DCI = 0.7365) (f) AR+Grid (DCI = 0.6927)

Fig. 8. Pareto front approximations of the six algorithms and their DCI result on the tri-objective DTLZ2.

(a) NSGA-II (DCI = 0) (b) AR (DCI = 0.0229) (c) IBEA (DCI = 0.5132)

(d) DMO (DCI = 0.3942) (e) TDEA (DCI = 0.5983) (f) AR+Grid (DCI = 0.6391)

Fig. 9. Pareto front approximations of the six algorithms and their DCI value on the six-objective DTLZ2 shown by parallel coordinates.

followed by those of AR+Grid and NSGA-II. Clearly, the
assessment results of DCI confirm the above observations:
an approximation with a higher DCI value means that it
performs better regarding the comprehensive performance in
finding multiple Pareto optimal regions as well as maintaining
solutions’ uniformity and extensity in each region.

C. Comparative Study

This section is devoted to comparing DCI with other di-
versity indicators. Here, two indicators, i.e., DM [30] and
Maximum Spread (MS) [51], which are used widely in many-
objective optimization [32], [51], [66], [67], are chosen as the
peers. DM, as briefly described before in Section II, is a grid-
based indicator that can reflect the spread and uniformity of

a Pareto front approximation. It takes the value in the range
[0, 1]. The larger the value, the better the diversity.

MS, originally presented in [49], measures the length of the
diagonal of the hypercube formed by the extreme objective
values in a Pareto front approximation. Since the original
indicator can be influenced heavily by the convergence of the
considered approximation, Adra and Fleming [51] improved
the MS indicator by considering the extreme values of the
Pareto front as follows:

MS(P ) =

√√√√ m∑
k=1

(max
p∈P

(pk)−min
p∈P

(pk))2

/√√√√ m∑
k=1

(npk − ipk)2

(9)
where m denotes the number of objectives, pk denotes the
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(a) NSGA-II (DCI = 0) (b) AR (DCI = 0.0545) (c) IBEA (DCI = 0.3381)

(d) DMO (DCI = 0.4266) (e) TDEA (DCI = 0.4878) (f) AR+Grid (DCI = 0.7590)

Fig. 10. Pareto front approximations of the six algorithms and their DCI value on the ten-objective DTLZ2 shown by parallel coordinates.

(a) NSGA-II (DCI = 0.6771) (b) AR (DCI = 0.1812) (c) IBEA (DCI = 0.4830)

(d) DMO (DCI = 0.4513) (e) TDEA (DCI = 0.8442) (f) AR+Grid (DCI = 0.7673)

Fig. 11. Pareto front approximations of the six algorithms and their DCI result on the tri-objective DTLZ7.

value of individual p in the kth objective, and ipk and npk
denote the value of the ideal point and Nadir point in the kth
objective, respectively.

The MS value of an approximation P close to one (i.e.,
MS(P ) = 1) is desired. The value smaller than one (i.e.,
MS(P ) < 1) implies a lack of diversity of P compared with
the ideal result, which is most likely due to it converging into a
sub-region of the Pareto front. The value larger than one (i.e.,
MS(P ) > 1) indicates that P is located far away from the
Pareto front. In the light of the above properties, MS is used
to not only compare the distribution range of approximations
but also guide the search in many-objective optimization [51].

First, we compare DCI with DM. Here, we focus on the
accuracy of the assessment result for the two indicators.

Therefore, their other differences (e.g., in DM each hyperbox
in grid needs to be accessed and a reference set is also
required; see items 27 and 28 in Table I) are not considered.

In DM, the setting of a hyperbox’s neighborhood is crucial
for the assessment result. Two hyperboxes are called as
neighbors to each other if the Manhattan distance of their
grid coordinates is not larger than one. However, this setting,
when the number of objectives of a problem is large, may
cause an inaccurate estimation of the position of individuals,
further leading to an inaccurate assessment of approximations’
diversity.

Let us consider a five-objective example with three hyper-
boxes h1(0, 0, 0, 0, 0), h2(0, 0, 0, 0, 2), and h3(1, 1, 1, 1, 1). In
DM, h3, rather than h2, is a neighbor of h1. Without loss
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Fig. 12. An example of distribution of approximations for the MS and DCI
indicators. MS(P1) = MS(P2) = MS(P3) = 1, and DCI(P1) = 12/15 >
DCI(P2) = 11/15 > DCI(P3) = 7/15 (div = 5).

of generality, let individuals A, B, and C be located in the
center of hyperboxes h1, h2, and h3, respectively. Clearly,
the Euclidean distance between B and A is shorter than that
between C and A (2 <

√
5), but only individual C is in the

neighborhood of A.

Let there be two approximations P and Q, with P con-
sisting of A and B and Q consisting of A and C. In this
case, DM(P ) > DM(Q) because the distance between A
and B is mistakenly considered farther than that between
A and C, in view of the location of A and B in different
neighborhoods in DM. However, as to the proposed DCI
indicator, the distance between individuals is calculated based
on the Euclidean distance of their grid coordinates. Therefore,
DCI(P ) = (CD(P, h1) + CD(P, h2) + CD(P, h3))/3 =
(1 + 1 + 1/6)/3 = 13/18 < DCI(Q) = (CD(Q,h1) +
CD(Q,h2) + CD(Q,h3))/3 = (1 + 1/3 + 1)/3 = 14/18.

Next, we consider the MS indicator. Since MS only tests
the range comparison between an approximation and the
problem’s Pareto front, it may fail to assess the uniformity of
solutions in the approximation. Moreover, even if testing the
distribution range, MS may also give an inaccurate estimation
because a poorly-converged approximation often has a broad
range.

As an explanation to the problems of MS, Fig. 12 shows
three approximations P1 = {(0, 10), (5, 5), (10, 0)}, P2 =
{(0, 10), (2, 8), (10, 0)}, and P3 = {(3, 7), (15, 5.5), (17, 5)}
for a bi-objective optimization problem with a Pareto front
f1 + f2 = 10. Clearly, P1 outperforms P2 in terms of
diversity, and two individuals in P3 fail to approach the
Pareto front. However, all the three approximations have the
ideal MS result, i.e., MS(P1) = MS(P2) = MS(P3) = 1.
Concerning the DCI indicator, the two individuals in P3 will
be removed since they are dominated by some individuals
in P1 and P2. The DCI results of three approximations are:
DCI(P1) = 12/15 > DCI(P2) = 11/15 > DCI(P3) = 7/15.
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Fig. 13. DCI against the number of divisions of the six optimizers on the
ten-objective DTLZ2.

TABLE V
DCI RESULTS OF THE SIX OPTIMIZERS ON THE 10-OBJECTIVE DTLZ2

WITH DIFFERENT NUMBERS OF DIVISIONS (div). THE RESULTS ARE
UNDERLINED WHEN THEY CAN CORRECTLY REFLECT THE DISTRIBUTION

DIFFERENCES AMONG THE OPTIMIZERS

div 2 3 4 5 6 7 8 9 10
NSGA-II 0 0 0 0 0 0 0 0 0

AR 0.766 0.353 0.109 0.055 0.036 0.023 0.012 0 0
IBEA 0.860 0.686 0.467 0.338 0.278 0.257 0.250 0.230 0.219
DMO 0.946 0.845 0.661 0.427 0.300 0.229 0.210 0.200 0.193
TDEA 0.977 0.885 0.739 0.488 0.320 0.212 0.180 0.175 0.169

AR+Grid 0.977 0.925 0.854 0.759 0.682 0.645 0.618 0.578 0.565

D. Study of Different Configurations of the Parameter div

In DCI, a parameter div (the number of divisions) is
required to divide the grid environment. Obviously, it largely
affects the evaluation results since it determines the hyperbox
location where Pareto front approximations are distributed. In
this section, we investigate the effect of div and try to find
an appropriate setting for a given problem. Here, we only
show the results on a ten-objective problem due to the space
limitation. Similar results can be obtained for problems with
other numbers of objectives.

Fig. 13 plots the curves of the DCI results against the
number of divisions for the six optimizers; they are also
summarized in Table V for clarity. Clearly, there are two
properties about the influence of div on the DCI. The first
one is that the DCI value, in general, degrades with the growth
of div. This is because the number of non-empty hyperboxes
in grid increases with div, and for an approximation, more
hyperboxes that are occupied by other approximations are
needed to be considered. The second property is that within
a certain range (div ∈ [3, 5]), DCI can correctly compare
the distributions of the approximations. Although the DCI
values of the three competitive optimizers (i.e., IBEA, DMO,
and TDEA) are all decreased, their differences remain mostly
unchanged when div ∈ [3, 5]. This provides an effective
evaluation for the distributions of the approximations. On
the other hand, when div is equal to 2, the DCI differences
between TDEA and AR+Grid are too slight to reflect the
distributions; and when div becomes larger than 6, the DCI
values among IBEA, DMO, and TDEA may result in an
incorrect judgment on their distributions. This occurrence may
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be attributed to the following reason: a very small div makes
many solutions located in a hyperbox no matter how they are
distributed; a large div causes that there are no other solutions
existed in the neighborhood of a solution, which decreases the
sensitivity of DCI to the extensity of approximations.

Intuitively, the optimal setting of div is the minimum
required number of divisions of satisfying the condition that
for a Pareto front approximation with ideal distribution (i.e., its
individuals distributed uniformly over the whole Pareto front),
the neighborhood4 of each individual does not contain any
other individuals. This means that, ideally, the hyperboxes, in
the dimensionality of the Pareto front of a given problem (i.e.,
the dimensionality of the manifold of Pareto optimal solutions
in the objective space), should exactly cover all individuals so
that no individual is located in the neighborhood of others.
Namely,

divn = V(n,R) ×N (10)

where V(n,R), representing the volume of a hyperbox’s neigh-
borhood in the dimensionality of the Pareto front, denotes
the volume of an n-dimensional hypersphere with radius R,
n denotes the dimensionality of the Pareto front, m denotes
the number of objectives (obviously, n ≤ m − 1), and N is
the size of the approximation. Here, R =

√
m+ 1/2, since

two hyperboxes contribute nothing to each other (i.e, are non-
neighboring) when their grid distance is larger than (or equal
to)

√
m+ 1 (cf. Eq. (8)).

However, the optimal setting of div according to Eq. (10)
may be infeasible in practice due to two reasons: 1) In DCI
the neighborhood of a hyperbox corresponds to a hypersphere
rather than a hypercube constructed by a set of hyperboxes,
and 2) The shape of the Pareto front can be distinct for
different problems, even if they have the same dimensionality.

Considering a bi-objective problem with one-dimensional
manifold of the Pareto front, the closest grid distance between
two non-neighboring individuals is

√
m+ 1 =

√
2 + 1 =

√
3.

However, in the 2-dimensional objective space, there are not
two hyperboxes whose grid distance is equal to

√
3 (the grid

distance between two hyperboxes ∈ {1,
√
2, 2,

√
5, 2

√
2, 3...}).

In addition, approximations with different Pareto front shapes
may require different numbers of hyperboxes. Fig. 14 gives a
2-objective example regarding two approximations, one (P1)
with a straight line Pareto front and the other (P2) with a
folding line Pareto front. Clearly, 49 hyperboxes can contain
only 4 uniformly-distributed non-neighboring individuals from
P1 but 7 ones from P2. This means that P1 requires more
hyperboxes than P2 when they have the same number of
individuals.

In view of these reasons, we give div a rough range estima-
tion rather than a precise value. On the one hand, according to
Eq. (10), div = (V(n,

√
m+1/2)N)1/n > (V(n,

√
m/2)N)1/n. On

the other hand, as mentioned before, sometimes there are no
two hyperboxes whose grid distance is equal to the ideal grid
distance (

√
m+ 1). In this case, the radius of a hyperbox’s

neighborhood is larger than
√
m+ 1/2. For instance, for a 2-

objective problem (e.g., the example in Fig. 14), the radius of

4Here, the neighborhood of an individual means the neighborhood of the
hyperbox where the individual is located.

Fig. 14. An example of approximations with different Pareto front shapes
requiring different numbers of hyperboxes.

the hyperbox’s neighborhood will be 1,
√
5/2, or

√
2. In fact,

under the condition of having the same number of individuals,
an approximation with the 45◦ hyperplane shape (like P1

in Fig. 14) requires the most hyperboxes. In this case, the
radius of the hyperbox’s neighborhood will be equal to

√
m.

Consequently, div ≤ (V(n,
√
m)N)1/n.

Moreover, since div must be an integer and the total number
of hyperboxes should be larger than (or equal to) that of
hyperboxes occupied by individuals and their corresponding
neighborhoods, therefore we have

⌈(V(n,R1)N)1/n⌉ ≤ div ≤ ⌈(V(n,R2)N)1/n⌉ (11)

where R1 =
√
m/2 and R2 =

√
m. For an n-dimensional

hypersphere, its volume V(n,R) can be calculated by the
following formula:

V(n,R) =

{
(πk

/
k! )Rn, for n = 2k

(22k+1k!πk
/
(2k + 1)! )Rn, for n = 2k + 1

(12)
where k is an integer larger than or equal to zero. Taking the 4-
objective DTLZ2 as an example, here n=3, R1=1 and R2=

2. So, V(n,R) = 4
3πR

3, div ∈ [⌈( 43πN)
1/3⌉, ⌈( 323 πN)

1/3⌉],
and further div is in the range [8, 15] if N = 100.

Although the effectiveness of DCI seems to be insensitive
to div in a certain range, different div settings will prefer
different distributions of Pareto front approximations in the
context of spread and uniformity. Next, we give two examples
to explain this fact. Figs. 15 and 16 show two groups of Pareto
front approximations obtained by AR+Grid with different
parameter settings on the 3- and 4-objective DTLZ2; the
DCI results for different div settings are also included in
the figures. Clearly, the solutions in Figs. 15(a) and 16(a) are
located extensively but non-uniformly since they concentrate
(or even coincide) in a number of scattered regions; whereas
the solutions in Figs. 15(c) and 16(c) are uniformly distributed
(i.e., adjacent solutions have basically equal spacing) but fail
to cover the whole Pareto front.

An interesting observation from the comparison between P1

and P3 in the figures is that with a small div, an extensively-
distributed approximation has a better DCI value, while with a
large div, a uniformly-distributed approximation is preferred.
This phenomenon is mainly due to the sensitivity of DCI to the
number of hyperboxes in grid. A small div makes hyperboxes
decreased in number; an extensively-distributed approximation
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(a) P1 (d = 14) (b) P2 (d = 20) (c) P3 (d = 28)

div 12 14 16 17 18 19 20 21 23 25
DCI(P1) 0.8420 0.7809 0.7463 0.7353 0.7188 0.6893 0.6559 0.6278 0.5887 0.5710
DCI(P2) 0.8620 0.8315 0.7958 0.7946 0.7704 0.7535 0.7369 0.7059 0.6860 0.6600
DCI(P3) 0.7561 0.7416 0.7030 0.6985 0.6967 0.6799 0.6714 0.6697 0.6553 0.6335

Fig. 15. Investigation of different numbers of divisions (div) in DCI for the tri-objective DTLZ2. The Pareto front approximations P1, P2, and P3 obtained
by AR+Grid with different parameter settings.

(a) P1 (d = 9) (b) P2 (d = 17) (c) P3 (d = 30)

div 8 9 10 11 12 13 14 15
DCI(P1) 0.7956 0.7255 0.6792 0.6360 0.5902 0.5398 0.5256 0.4833
DCI(P2) 0.8656 0.8436 0.8203 0.7899 0.7625 0.7307 0.6812 0.6558
DCI(P3) 0.7169 0.6649 0.6473 0.6350 0.6259 0.5991 0.5940 0.5858

Fig. 16. Investigation of different numbers of divisions (div) in DCI for the four-objective DTLZ2. The Pareto front approximations P1, P2, and P3 obtained
by AR+Grid with different parameter settings.

will cover (or at least be not far away from) any considered
hyperbox, thereby obtaining a relatively higher average con-
tribution degree. On the other hand, when div becomes larger,
the number of hyperboxes increases, and correspondingly the
grid distance between solutions becomes longer; the solutions
that are uniformly distributed and are away from each other
with certain distance will have a higher likelihood in different
hyperbox neighborhoods, thereby providing relatively higher
contributions to the evaluation result.

The above properties can make the setting of div in the
DCI consistent with the preference of the user. In the absence
of guidance information, the optimal setting, if attainable, is
first suggested (e.g., div = 19 for a 3-objective problem with
a 2-dimensional manifold of Pareto front when the size of
approximations is equal to 100); otherwise, a value around
the median of the range in Eq. (11) can be replaced. On the
other hand, a slightly lower (or higher) div is recommended
if the user prefers an extensive (or uniform) distribution of the
solutions in Pareto front approximations.

E. Discussion

None of performance indicators can assess all kinds of
distributions of approximations in the area. Like existing
diversity indicators, DCI also fails to deal with some specific
distributions. Since DCI considers relative positions of two

(several) approximations in a grid, it may not be able to
distinguish approximations with similar (or same) relative
positions in the grid but different distributions in the objective
space. This is a weakness of the proposed indicator, which will
be one important issue for our future study. A possible way
to cope with this problem may be to assign different weights
to the considered hyperboxes according to their distributions
in the objective space.

In addition, DCI does not consider the difference between
individuals in the same hyperbox. This can affect the accuracy
of the assessment result to some extent. A refined division of
grid (i.e., a large div) can reduce the probability of individuals
located in same hyperboxes, but it decreases the sensitivity of
DCI to the extensity of approximations, as explained in the
previous section.

Here, it is worth mentioning that DCI only fails to assess
several approximations which are located in the exactly same
set of hyperboxes. In most cases, DCI can reflect the in-
formation regarding several approximations where there exist
individuals distributed in the same hyperboxes. For example,
considering two approximations P and Q with the same
number of individuals, if P has more individuals in the same
hyperboxes than Q, in general P will obtain a poorer DCI
value since it provides fewer hyperboxes to be considered in
the DCI calculation.
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V. CONCLUSIONS

This paper presents a quality indicator, DCI, to assess the
diversity of Pareto front approximations in many-objective
optimization. DCI can be used to compare the ability of
different population-based multiobjective optimizers in gen-
erating well-distributed Pareto front approximations. In the
implementation of DCI, all the concerned approximations are
put into a grid environment and thus distributed in different
hyperboxes. The proposed indicator considers the contribution
of different approximations to the hyperboxes where the
nondominated solutions in these approximations are located,
thereby providing the following characteristics:

• DCI assesses the relative quality of different Pareto front
approximations rather than provides an absolute measure
of distribution for a single approximation. In other words,
it delivers no information about the distribution of one ap-
proximation, but a quantitative comparison among several
approximations in terms of diversity.

• DCI can identify any number of Pareto front approxi-
mations in a single run. In addition, it has a quadratic
computational complexity, which is fully independent of
the division setting in grid and does not increase with the
number of hyperboxes.

• DCI does not require a reference set that substitutes
the Pareto front of a given problem, which is especially
suitable for many-objective optimization since an accu-
rate substitution of a Pareto front is difficult or even
impossible when the front’s dimension is high.

• DCI is sensitive to the number of divisions in grid.
Nonetheless, it works effectively within a certain range
of division settings. Furthermore, the users can set the
number of divisions according to their preference: a lower
(or higher) division number can be set if they prefer
extensive (or uniform) distribution of the solutions in
Pareto front approximations.

Systematic experiments have been conducted by validating
DCI on artificial and real Pareto front approximations with
3, 4, 5, 6, 8, and 10 objectives. The evaluation results have
confirmed the observations from the illustration. A comparison
with two popular diversity indicators has been made to show
the applicability of the proposed indicator in many-objective
optimization. Moreover, the investigation of the effect of
the parameter div on DCI has also been included in the
experiments. Based on the experimental observations, some
suggestions regarding how to set the parameter appropriately
have been provided for the user.

Finally, it is worth mentioning that DCI may also be used
to compare solution sets in preference-based multiobjective
optimization, given that the range of the grid environment in
the indicator can be determined by the user’s interest.
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