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Abstract—Multiscale and multiphysics applications are now
commonplace, and many researchers focus on combining ex-
isting models to construct combined multiscale models. Here
we present a concise review of multiscale applications and
their source communities. We investigate the prevalence of
multiscale projects in the EU and the US, review a range of
coupling toolkits they use to construct multiscale models and
identify areas where collaboration between disciplines could be
particularly beneficial. We conclude that multiscale computing
has become increasingly popular in recent years, that different
communities adopt very different approaches to constructing
multiscale simulations, and that simulations on a length scale
of a few metres and a time scale of a few hours can be found
in many of the multiscale research domains. Communities may
receive additional benefit from sharing methods that are geared
towards these scales.
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scale software; multiscale communities

I. I NTRODUCTION

Many physical problems we seek to understand nowadays
are complex in nature, and consist of separate physical
processes that each contribute to the problem as a whole.
These processes each take place on a specific space scale or
time scale. In biology for example, the interactions between
molecules typically take place on a space scale of several
nanometers and a time scale of a number of nanoseconds.
However, the interactions on the cellular level will require
considerably larger space and time scales. Many problems
are historically investigated by modeling or simulating a
physical process in isolation, and from the outcome of
that exercise, determining its contribution to the overall
(complex) physical problem. In the last two decades a new
approach has become widespread, where researchers con-
struct models and simulations that capture multiple physical
processes. Each of these processes operates on a different
space or time scale, has the potential to influence other
processes, and is represented by asubmodel. This approach
is now known asmultiscale modellingor multiscale simu-
lation. Here we use the term multiscale modelling to refer
to both the multiscale modelling and simulation of physical
problems, and the termmultiscale applicationto refer to the
program used to do the modelling. In turn, we use the term
subcodeto refer to the implementations of each submodel.

A. Multiphysics modelling

When a model captures multiple physical processes, and
each of these processes capture a different type of physics,
it is commonly referred to asmultiphysics modellingor mul-
tiphysics simulation. For example, a model of a star cluster
that resolves Newtonian gravitational interactions usingone
submodel and the aging of stars using another is considered
to be a multiphysics submodel, even if these models were
(hypothetically) to operate on the same space and time
scale. However, a star cluster model that uses two different
submodels for the Newtonian gravitational interaction of
stars is generally not considered to be multiphysics, even
when these models may be applied on a different space or
time scale.

Multiscale and multiphysics modelling are therefore two
different concepts, but they do have one prime commonality
in that they both consist of a number of submodels which
have been combined (orcoupled). A major challenge in
multiscale as well as multiphysics modelling lies in coupling
these submodels such that the overall model is both accurate
enough to be scientifically relevant and reproducible, and
efficient enough to be executed conveniently by modern
compute resources.

B. Multiscale and multiphysics applications

Multiscale and multiphysics applications are present in a
wide range of scientific and engineering communities. By its
nature, multiscale modeling is highly interdisciplinary,with
developments occurring independently across research do-
mains. Here we review a range of multiscale applications and
communities that reside within different scientific domains.
We describe several major projects for each domain and
present the results of our investigation on the popularity of
multiscale simulation and modeling. We find that multiscale
methods are adopted in hundreds of projects both in the EU
and US, and that the popularity of multiscale simulation and
modeling has increased considerably in recent years.

We also illustrate approaches to construct multiscale sim-
ulations in different scientific domains, and compare some
of the characteristics of the multiscale communities in these
domains. Additionally, we present a comparison between
coupling toolkits, and point out potential areas where inter-
disciplinary collaborations could be particularly beneficial.
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Within this survey we cover many major multiscale simula-
tion and modeling activities, but this review is by no means
exhaustive. For readability reasons we provide only a limited
number of references here. However, a full literature list is
available as a web-based supplement for those who wish to
delve more deeply into the work performed by the various
multiscale simulation and modeling communities.

C. Related work

Aside from numerous publications, project websites
and domain-specific reviews, we have identified a few
sources which provide information on multiscale simula-
tions in various scientific domains. One such source of
information is the Journal of Multiscale Modeling and
Simulation (epubs.siam.org/mms), which defines itself as
an interdisciplinary journal focusing on the fundamental
modeling and computational principles underlying various
multiscale methods. TheJournal of Multiscale Modeling
(www.worldscinet.com/jmm/) is also targeted at multiscale
modeling in general. There are also several books which
present multiscale research in a range of domains [1], [2], as
well as dozens of multiscale modeling workshops such as the
Multiscale Materials Meeting (www.mrs.org.sg/mmm2012)
or the Modelling and Computing Multiscale Systems work-
shop (www.computationalscience.nl/MCMS2013).

There are several articles which focus on the theoretical
aspects of multiscale modelling across domains. Yang et
al. [3] present a thorough and systematic review of the
computational and (especially) the conceptual toolkits for
multiscale modelling. In addition, Hoekstra et al. [4] in-
vestigate the modeling aspects of multiscale simulations,
emphasizing simulations using Cellular Automata.

II. OVERVIEW OF MULTISCALE COMMUNITIES

A. Astrophysics

The astrophysics community hosts a large number of
active multiscale projects, mainly due to the large scale
and multi-physics nature of many astrophysical problems.
Because of the intrinsic properties of gravitation, phe-
nomena on relatively small length scales, e.g. close en-
counters between massive stars or galaxies, may have a
considerable effect on systems of much larger size. It
is therefore essential in many cases to model these phe-
nomena using a multiscale approach. Researchers devel-
oped multiscale models in a range of topics of astro-
physical interest, such as cosmology [5], star cluster dy-
namics [6], [7], thermonuclear supernovae [8] and space
weather systems [9]. The Space Weather Modeling Frame-
work (http://csem.engin.umich.edu/tools/swmf/index.php) is
one of the domain-specific toolkits that emerged in this
community.

Cactus (www.cactuscode.org [10]) is a toolkit for coupling
simulation codes, which was originally used to model black
holes, neutron stars and boson stars. Cactus is now used by

researchers in a variety of disciplines, some of which have
adopted the tool to combine single-scale models and con-
struct multiscale simulations. The Astrophysical Multipur-
pose Software Environment (AMUSE, www.amusecode.org)
is an extensive and highly versatile toolkit for constructing
multiscale simulations using a wide range of astrophysical
codes [11]. AMUSE has been applied, for example, for
coupling a gravitational N-body simulation with a stellar
evolution code to model both the dynamical movements
and the aging of stars in a star cluster [12]. The FLASH
4 code [13] combines hydrodynamic solvers with magnetic
field models to simulate the surfaces of compact stars such
as white dwarves and neutron stars. Both AMUSE and
FLASH [14] provide extra flexibility by allowing alternative
implementations of its components to co-exist and be inter-
changed with each other. They additionally provide simple
and elegant mechanisms to customize code functionalities
without requiring modifications to the core implementation
of each component.

B. Biology

Biological systems, too, span many orders of magnitude
through the length and time scales. Although it is uncommon
for researchers to model systems much larger than the
human body (epidemiology is a notable exception), the
human body itself already encompasses many scales, rang-
ing from the molecular scale up to whole body processes.
The sequence from the genome, proteome, metabolome,
physiome to health comprises multi-scale systems biology
of the most ambitious kind [15], [16], [17], [18], [19].
Multiscale modelling in biology has already been widely
reviewed. For example, Schnell et al. [20] provide an excel-
lent introduction to the field, while Dada et al. [21] and
Sloot et al. [22] respectively provide a general overview
of the multiscale modeling efforts in biology and compu-
tational biomedicine. Several coupling tools were originally
developed to construct biomedical multiscale simulations,
such as GridSpace (dice.cyfronet.pl/gridspace) and MUS-
CLE 2 (http://www.qoscosgrid.org/trac/muscle). In addition,
a sizeable number of markup languages have emerged (e.g.,
CellML [23] and SBML [24]) which allow users to exchange
definitions of singlescale models and the system information,
an important aspect of constructing multiscale models.

The Virtual Physiological Human (VPH) Initiative is a
large and active community within the biomedical com-
puting domain. Multiscale simulations and models have
a central role within the VPH, as it supports multiscale
modelling efforts in Europe (e.g., VPH-NoE, www.vph-
noe.eu), USA (e.g., the Multi-scale Modeling Consortium,
www.imagwiki.nibib.nih.gov) as well as world-wide through
the Physiome project [25] (www.physiome.org). One re-
cently published example involves the coupling of atom-
istic and continuum subcodes to model blood flow in the
brain [26].
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C. Energy

A sizeable number of problems within the energy domain
can be resolved using single-scale models, but especially
for nuclear energy problems the use of multiscale simu-
lations is considered to be fundamentally important [27].
Modelling a complete nuclear reactor is a highly com-
plicated multiscale problem. Here, the testing of both the
efficiency and the durability of reactor parts includes a
diverse range of physical processes that all need to be
resolved accurately in computational submodels. Indeed, a
major flaw in one submodel could render the whole reactor
ineffective. Several tools emerged that assist in coupling
fusion applications, such as the Universal Access Layer
(UAL [28], http://www.efda-itm.eu/ITM/html/isipual.html),
the Framework Application for Core-Edge Transport Sim-
ulations (FACETS, www.facetsproject.org) and the Inte-
grated Plasma Simulator (IPS, cswim.org/ips/). Addition-
ally, the developments in the GriPhyN high energy physics
computing project (www.griphyn.org) resulted in a gen-
eralized toolkit for workflow-style multiscale simulations
(Swift [29]).

As a specific example, the EFDA Task Force on Integrated
Tokamak Modeling (www.efda-itm.eu) is an European ini-
tiative which aims to develop a generic yet comprehensive
Tokamak simulator. This simulator can then be applied to
investigate a range of existing and future fusion devices.
The layout of this simulator is modular and multiscale,
including submodels that for example resolve equilibrium
effects, magneto-hydrodynamical stability and heating, with
ab-initio quantum models to be incorporated in the future.

D. Engineering

Multiscale simulations have been applied to a wide range
of engineering problems, as microscopic properties can be
of crucial importance for the quality of the overall design.In
this work, engineering is presented disjoint from materials
science: the former focuses on simulating certain structures,
devices or chemical processes, whereas the latter focuses
more strongly on the properties of individual materials.

Fish et al. [1] provide a comprehensive review
of the most commonly used multiscale techniques
in the field. Additionally, the International
Journal of Multiscale Computational Engineering
(http://www.begellhouse.com/journals/multiscale-computational-engineering.html)
has a strong focus on multiscale simulation in engineering.
Multiscale engineering projects are common within the
domain of chemical engineering (see Lucia et al. [30] for a
comprehensive review), but also include efforts in aerospace
engineering (e.g., DESIDER [31] and FLOMANIA [32]),
non-equilibrium physics [33], chemical engineering [34],
stochastic simulations of kinetic theory models [35] and
the coupling of atomistic and continuum methods in
hydrology [36], [37].

One of the tools that emerged from the engineering do-
main is the Multiphysics Object-Oriented Simulation Envi-
ronment (MOOSE) toolkit (www.inl.gov/research/moose/).
MOOSE is a graphical environment that was originally
used for reactor engineering simulations, but has now been
reused for a range of scientific purposes. A second mul-
tiscale coupling environment that recently emerged from
this domain is the Coupled Physics Environment (CouPE,
sites.google.com/site/coupempf/). CouPE allows users to
couple different submodels which rely on mesh-based
solvers.

E. Environmental science

Environmental science covers topics such as ecology
studies, climate modeling, geosciences and hydrology,
all of which benefit strongly from multiscale simulation
approaches. The diverse collection of initiatives include,
for example, hydrology simulations [38], weather
forecasting [39], [40], climate modeling [41] and disaster
predictions [42]. Klein et al. [43] provide a broad review
of multiscale (fluid dynamics) methods in metereology.
Researchers within this domain have also developed several
general-purpose toolkits, such as the Model Coupling
Toolkit [44] (MCT, www.mcs.anl.gov/mct), the Pyre
framework [45] (www.cacr.caltech.edu/projects/pyre),
OpenPALM (www.cerfacs.fr/globc/PALMWEB),
OASIS (verc.enes.org/oasis), OpenMI [46] and
the Bespoke Framework Generator (BFG,
http://cnc.cs.man.ac.uk/projects/bfg.php). The DRIHM
project (www.drihm.eu) aims to develop a distributed
research infrastructure, rather than a single toolkit, to
facilitate multiscale hydro-metereological simulations.

The European Network for Earth System Modelling
(www.enes.org) is a large consortium which is develop-
ing a European network for the multiscale modelling of
earth systems. In this consortium the ENSEMBLES project
(ensembles-eu.metoffice.com) uses multiscale ensemble sim-
ulations to simulate the Earth system for climate predictions,
which include physical, chemical, biological and human-
related feedback processes.

F. Materials science

Materials science applications are inherently multiscale,
as the macroscopic properties of many materials are largely
characterized through interactions occuring on the micro-
scopic level. Linking our understanding of the physical
world at very small scales with the observable behaviour at
the macro-scale is a major focus within this area of science,
and the applications are extremely varied. A popular tech-
nique in this field is coarse-graining, where multiple atoms
are resolved as a single coarse-grained particle with a pre-
imposed potential [47]. Several tools have emerged which
facilitate coarse-graining, such as VOTCA (www.votca.org)
and MagiC (code.google.com/p/magic/).

http://www.efda-itm.eu/ITM/html/isip_ual.html
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The topics covered in these projects range from mul-
tiscale modeling of radiation damage (e.g., RADINTER-
FACES [48]) to modeling of multilayered surface systems
(e.g., M3-2S [49]) and multiscale heterogeneous model-
ing of solids [50]. The book by Attinger and Koumout-
sakos [2] comprehensively presents a large number of
projects within the materials sciences. Additionally, the
MMM@HPC project (www.multiscale-modelling.eu) devel-
ops a unified infrastructure for multiscale materials mod-
elling that covers applications from first principle quantum
mechanics to continuum simulations to model properties
beyond the atomistic scale. An example of distributed mul-
tiscale materials modeling is the clay-polymer nanocompos-
ites application presented by Suter et al. [51] [52] Cou-
pling toolkits are relatively uncommon within this domain,
although FEniCS (www.fenicsproject.org) is a tool that
enables multiscale finite-element simulations.

G. Other communities

One community of considerable size is the fluid dynamics
community, comprising numerous active areas of research
on multiscale simulation. These research topics include
multiscale methods to model multiphase fluids, fluids with
particles [53], [50], [54], biofluids [55], [56], [57], as well
as magnetorheological fluids [58]. The MAPPER project
(www.mapper-project.eu) features several multiscale fluid
dynamics applications, for example to model blood flow and
sediment formation in rivers. TheInternational Journal of
Multiscale Computational Engineering[59] and theJournal
of Multiscale Modelling[60] contain numerous articles on
multiscale fluid dynamics as well.

The multiscale modeling and simulation efforts within
fluid dynamics frequently take place within the context of
other scientific domains, such as biology in the case of blood
flow simulations, and environmental science in the case of
river or oceanic simulations. To accommodate this, we have
not sought to treat fluid dynamics as a separate domain, but
categorized the projects in accordance with their application
domain.

Overall, the six domains described in this work represent
major areas where multiscale simulations are frequently
applied. Having performed an extensive search, we did find
a number of multiscale projects outside these domains. The
vast majority of these projects concern theoretical mathe-
matical modeling of multiscale problems, and only indirectly
relate to the other scientific fields in our survey.

III. R EVIEW OF MULTISCALE COMMUNITIES

In this section we characterize several scientific commu-
nities, assessing the prevalence and nature of the multiscale
research performed in these domains. We also review a
sizeable number of commonly used multiscale coupling
tools, and reflect on the approaches used in different do-
mains for coupling single-scale submodels. In our review

Figure 1. Examples of a acyclically (left) and two cyclically coupled
(middle and right) multiscale models. Submodels are indicated by blue
boxes, and data transfers by arrows. On the right we provide acyclically
coupled model where the submodels are executed concurrently. The con-
current execution is frequently managed by a software tool that supports
cyclic coupling, which we indicate there with a yellow ellipse.

we distinguish between two multiscale simulation methods:
acyclically coupledsimulations andcyclically coupledsim-
ulations. Acyclically coupled simulations are applications
where subcodes are run, producing results which in turn are
used as input for the execution of a subsequent subcode. The
most characteristic aspect of acyclically coupled simulations
is that there are no cases where two or more subcodes
are mutually dependent of each other during execution.
Cyclically-coupled simulations do have this mutual depen-
dency, and require at least some of the subcodes to be
either run concurrently or in alternating fashion. We show
several schematic examples of multiscale models, both using
acyclic coupling and cyclic coupling, in Fig. 1. Although
these examples feature two submodels, it is not uncommon
for multiscale models to consist of three or more different
submodels.

A. Classification of multiscale communities

We present a brief characterisation of multiscale com-
puting in six scientific domains in Table I. Concurrent
cyclic coupling is especially common in astrophysics, and
the tight integration of codes required to make concurrent
cyclic coupling possible may be a reason why researchers
in this domain tend to favor custom-tailored domain-specific
coupling solutions. Acyclic coupling is commonly found
in the engineering and materials domains, where statistical
averages of smaller-scale simulations are frequently applied
to inform larger-scale models.

Geographically distributed multiscale simulations are less
common, although we did find at least one example for five
of the six domains, and several of them in biology. Multi-
scale efforts in biology, energy and environmental sciences
have resulted in a considerable number of general-purpose
coupling tools. We are unsure why this is the case, but
these three domains do all feature large and internationally
coordinated initiatives such as the VPH, ITER and ENES;



Scientific Domain Astrophysics Biology Energy Engineering Environmental Materials
Acyclic coupling? some some some most many most
Cyclic coupling? most most most some many some

Concurrent cyclic coupling? most many many few many few
Distributed multiscale? few some few unknown few few

Dominant style of coupling D G D&G D G S&D

Table I
ASSESSED CHARACTERISTICS OF THE SIX MULTISCALE SIMULATION DOMAINS, BASED ON THE LITERATURE WE HAVE FOUND. IN THE LAST ROW WE

LIST THE MAIN STYLE OF SUBMODEL COUPLING USED IN THESE DISCIPLINES. HERE WE INDICATE DOMAIN-SPECIFIC COUPLING SOLUTIONS WITH A

”D”, GENERAL-PURPOSE DOMAIN-INDEPENDENT SOLUTIONS WITH A”G”, AND COLLECTIONS OF HAND-WRITTEN SCRIPTS WITH AN”S”. D UE TO

THE COMMERCIAL NATURE OF MANY ENGINEERING MULTISCALE PROJECTS, WE ARE UNSURE ABOUT THE DOMINANT STYLE OF COUPLING OR THE
PRESENCE OF DISTRIBUTED MULTISCALE SIMULATIONS IN THAT DOMAIN .

organisations which may have been encouraging researchers
to adopt generalized approaches.

We present a schematic view of the space and time
scales commonly chosen in different research disciplines in
Fig. 2. Each discipline has a unique scale range given by
a parallelogram. For example, the left-bottom corner of the
parallelogram for materials sciences is indicative of roughly
the time steps used in quantum-mechanical studies, while the
top-right corner is indicative of the duration of mesoscale
materials simulations (e.g. using finite element methods).
Likewise, cosmological dark matter simulations typically
adopt scales which reside at the top end of the astrophysics
parallelogram. The space and time scale range of each disci-
pline is therefore given by the visually observed height and
width of the corresponding parallelograms. Here, relatively
small parallelograms (as seen for mechanical engineering
and environmental science) point to a higher probability of
overlapping space and/or time scales between subcodes in
those disciplines. When scales between subcodes overlap,
cyclic interactions between submodels are essential to obtain
an accurate result, and it becomes difficult to accurately
model the system using acyclic coupling alone. Hoekstra et
al. [4] provide more details on the challenges that arise when
scales overlap. On the other hand, large parallelograms point
to a larger range of submodels, and an increased likelyhood
that three or more submodels are required to solve complex
problems within these disciplines.

In general, we observe a roughly linear trend between
the time scale and the space scale of simulations across
disciplines. This correlation is to be expected as shorter-
range interactions tend to operate on shorter time scales as
well. Additionally, phenomena within a space range between
10

−4m and104m and a time range between100s and104s
are commonly addressed in many scientific disciplines. This
region of overlap may be particularly interesting when opt-
ing for interdisciplinary approaches or reusable multiscale
simulation tools. Additionally, when a very high accuracy
is required in a simulation operating on these overlapping
scales, it may become increasingly relevant to incorporate
phenomena from other overlapping scientific disciplines,
given that these phenomena are sufficiently proximate.
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B. Prevalence of multiscale research

To gain some understanding of the size of existing multi-
scale research communities we have explored several project
data bases from large funding agencies. These include the
European Community Research and Development Informa-
tion Service (CORDIS), as well as the project databases
of the National Institute for Health (NIH), the Department
of Energy (DOE) and the US National Science Foundation
(NSF). We found the projects by first selecting on the
presence of the words ‘multiscale’ and ‘multi-scale’ in the
project database. For DOE and NIH, we only selected
projects that have these phrases directly in the title, while
we also searched the abstracts in the case of CORDIS and
NSF.

Once we selected the projects, we removed any projects
with identical titles, as these are often continuations of the
same project in the previous year. Also, we eliminated any
project that did not describe explicit multiscale modeling
or simulation in its abstract. We found over a thousand
multiscale simulation and modeling grants, which range
from multi-million euro international projects to awards
for individual post-doctoral researchers. We provide an



Figure 2. Overview of the spatial and temporal scales in which typical (multiscale) simulations in several scientific domains operate. Each domain is
represented as either a colored or a hatched parallelogram.

overview of these projects by scientific domain in Fig. 3 and
by starting year in Fig. 4. The statistics presented here are
by no means exhaustive, as we only searched for explicit
mentions of multiscale and did not investigate nationally
funded projects in the EU, US-based projects funded by
other organizations or projects outside both the EU and the
US. Our results should therefore be interpreted only as a
rough indication of the multiscale community as a whole
and as a lower bound on its size.

In Fig. 3 we find that most multiscale projects reside
within the domain of biology and materials, although there
are a considerable number of engineering projects funded
in the US. The number of EU projects in the astrophysics
domain is quite low, most likely because international col-
laboration within theoretical astrophysics tends to focus
on more informal international collaborations and national
sources of funding.

In Fig. 4 we find that multiscale projects emerged in the
late 1990s, and that the number of these projects in the
EU has gradually increased in recent years. The number
of multiscale US-based projects peaks in 2009, but has
diminished in the last few years. This is in part because
the DOE database contains no projects starting after 2009
(multiscale or otherwise) and in part because the US Federal
Government made a one-time major investment in scientific
research in 2009. As most projects often last three years or
more, we estimate that there are more than 300 multiscale
projects currently active.

We present the number of new projects per year by
domain in Fig. 5. Here the number of new multiscale projects
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in biology is particularly high in 2008 and 2009. This is
largely caused by a growth in funded projects by the EU in
2008 (in part due to the approval VPH projects) and a peak
in new multiscale biology projects funded by NSF and NIH
in 2009. The number of multiscale projects in most other
areas has stabilized after 2005, although there are signs of
a decreasing trend in the number of multiscale engineering
projects after 2007. However, as ongoing projects may last
as long as 5 years, we do not know whether the decrease
we observe is indeed part of a longer-term trend.
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C. Coupling toolkits for multiscale simulation

We classify a large number of coupling toolkits for
multiscale simulation in Table II. Here we indicate whether
the tools feature a generic implementation, intended to be re-
used in other domains, what types of coupling are supported,
and whether the tools allow for multiscale simulations run
distributed across multiple computational sites. Allowing the
distributed execution of multiscale simulations is beneficial,
because the subcodes within each simulation may have het-
erogeneous resource requirements (e.g., some subcodes may
need larger compute resources than others, or require nodes
equipped with specialized hardware). We also provide a
graphical overview of the toolkits along with the originating
domain, the type of interface used and the level of generality
in Fig. 6.

In this work we discern several distinct coupling strate-
gies. Perhaps the most traditional strategy of multiscale
coupling is by developing hybrid codes which cover a set
of scales within a single simulation code. Thesemonolithic
codes are often tailored for specific problems, and can effi-
ciently incorporate concurrent cyclic coupling for a limited
number of built-in submodels. However, monolithic codes
are generally restricted in their modularity and extensibility.
These limitations, combined with the ongoing increase in
available compute capacity, have led to the emergence of
more modular and flexible coupling approaches, which are
easier to extend and refactor but may have performance
limitations when data-intensive concurrent cyclic coupling is
required. Interestingly, the way different communities have
adopted these new coupling approaches is not at all uniform.

For example, researchers in astrophysics and energy do-
mains tend to focus on reusable domain-specific coupling
solutions (e.g., AMUSE and IPS), while researchers in
biology and environmental science focus on general-purpose
solutions (e.g., MUSCLE and OpenPALM). Making a tool
general-purpose makes it directly usable for researchers in

other fields, but it may also limit the functionalities provided
by the tool (e.g., lack of unit conversion) or introduce
additional complexity in its architecture to retain flexibility.
We also provide a brief description of the interface used
by the tools, as the type of interface often provides a
useful hint of its intended audience. Tools geared towards
performance tend to rely often on Fortran and C/C++,
tools geared towards flexibility on Python or Java and tools
geared towards ease-of-use on Graphical User Interfaces
(GUIs). Researchers in the materials sciences only rarely
adopt coupling toolkits, and tend to either employ inherent
multiscale capabilities within molecular dynamics codes
(e.g., by using a “replica exchange” method to model a
range of temperatures) or to connect simulations using
(often handwritten) pre- and post-processing scripts. In afew
instances, however, they do rely on data conversion libraries
such as the VOTCA toolkit.

Using a single heavyweight and domain-specific toolkit
for multiscale simulations is often convenient for the user
in the short term, but it comes with several drawbacks on
the longer term. First, although it is often straightforward to
switch between different solvers within these all-in-one cou-
pling toolkits (sometimes it is as easy as replacing a single
line of code), it is often much more difficult to switch from
one coupling toolkit to another. This may be necessary if an
existing toolkit becomes outdated, or if the subcodes within
that toolkit need to be reused outside of the source domain.
By constructing and adopting formalizations for defining
multiscale coupling patterns (such as MML [61]), we are
able to diminish this drawback and improve the portability
of multiscale simulations and, for example, allowing them
to be more easily moved to a different toolkit if the existing
one becomes obsolete.

Another drawback of using traditional all-in-one ap-
proaches is that any new computational improvements in
multiscale coupling (such as more powerful data abstractions
or improvements in the data exchange performance between
subcodes) may have to be applied separately to each toolkit
to be used to full effect, resulting in duplicated integration,
or even implementation, efforts. This is a major concern
in any large software project, which among other things
can be mitigated by strictly enforcing modularity in the
toolkit design (assuming that the developers of underlying
components use standardized APIs that remain consistent
over time).

IV. D ISCUSSION ANDCONCLUSIONS

We have reviewed a number of multiscale communities
and compared them across a range of criteria. The number
of multiscale projects has been increasing in recent years so
that today there are numerous large multiscale projects in a
range of scientific domains. The increase in the number of
multiscale projects also implies a growth in the potential



name domain of origin generic implementation? distributed across sites? acyclic coupling? cyclic coupling? interface presented to users
AMUSE [62] astrophysics no yes yes yes Python

BFG environment yes no yes yes Fortran
Cactus astrophysics yes yes yes yes Custom
CouPE engineering no no no yes C++

FACETS energy no n/a n/a yes C++
FLASH [14] astrophysics n/a n/a yes yes Fortran

GridSpace [63] biology yes yes yes n/a GUI
IPS energy no no yes yes Python

MCT [44] environment yes yes yes yes Fortran
MOOSE Framework engineering yes no yes yes GUI

MUSCLE [64] biology yes yes n/a yes Java
OASIS [65] environment no no n/a yes Fortran/C
OpenMI [46] environment no yes yes yes Java/C#

OpenPALM [66] environment yes no n/a yes GUI
Pyre [67] environment yes no yes yes Python
Swift [68] energy yes yes yes no C-like
SWMF [9] astrophysics n/a no yes yes Fortran
UAL [28] energy yes yes yes yes C/Fortran/JAVA

Table II
ASSESSED CHARACTERISTICS OF THE COUPLING TOOLKITS. ALL THE COUPLING TOOLKITS HERE SUPPORT THE SWITCHING AND DYNAMIC USE OF

MULTIPLE SUBMODELS IN A MODULAR WAY, AND THE EXECUTION OF PARALLEL MULTISCALE SIMULATIONS WITHIN A SINGLE COMPUTE RESOURCE.
WITHIN THE TABLE WE PROVIDE A ’ YES’ IF THE TOOLKIT PROVIDES THIS FUNCTIONALITY, ’ NO’ IF IT CURRENTLY DOES NOT APPEAR TO DO SO,

AND ’ N/A’ IF THE FUNCTIONALITY APPEARS TO BE OUTSIDE OF THE SCOPE OF THETOOLKIT ALTOGETHER.

Figure 6. Graphical overview of the coupling toolkits discussed in
this paper. The names of the toolkits are horizontally positioned by their
originating domain, and vertically positioned by their level of generality.
Frameworks given in bold font feature a user interface basedon a compiled
language, those in regular font on a scripted language, and those in cursive
font on a graphical user interface.

benefit that can be gained by developing common and
reusable multiscale methods.

The different multiscale communities tend to adopt radi-
cally different technical approaches and possess diverse or-
ganizational characteristics. Within biology, energy andenvi-
ronmental sciences, a considerable fraction of the multiscale
projects are bundled in large international initiatives, while
the multiscale projects within astrophysics and materials
sciences are often driven by much smaller collaborations.
On the technical level, researchers in the astrophysics and
energy domains clearly prefer to use domain-specific toolkits
to couple their subcodes, while researchers in biology and
environmental sciences have a stronger inclination towards
general-purpose coupling tools. The numerous projects in
the materials sciences adopt yet a different approach, and
frequently construct multiscale simulations by connecting
codes with hand-written scripts. The vast majority of mul-

tiscale simulations are run on single sites, though a small
number of projects recently performeddistributed multiscale
simulations, where individual subcodes are deployed and
run on different computational sites. Considering the hetero-
geneity in computational requirements of various subcodes,
distributed multiscale simulation may be the only way to
efficiently run production simulations in a number of cases.

In our analysis of scales simulated by different multiscale
computing communities we find a distinct overlap in the
scales upon which the simulations in these domains operate.
In particular many research domains feature simulations on
a length scale of about a meter and a time scale of a
few hours. As a result, general-purpose multiscale methods
which are geared towards this scale may be particularly
suitable for reuse by a wide range of scientific disciplines,
and phenomena operating on these scales in one domain may
be of non-negligible relevance to others.

A uniform strategy for multiscale simulations has yet to
emerge, as different domains have adopted relatively disjoint
approaches so far. Nevertheless, multiscale simulations have
become widespread to the point where there are at least a
few hundred active projects in the EU and the US alone.
It is beyond the scope of this review to fully pronounce on
the benefits of pursuing domain specific approaches versus
general purpose approaches for accelerating the progress of
multiscale communities. However, based on the findings we
presented here, we can clearly conclude that it is high time
for such an inter-disciplinary debate to be opened.
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2012, p. 317.

[12] S. Portegies Zwart, S. McMillan, S. Harfst, D. Groen, M.Fu-
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