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1 A B S T R A C T 

This paper examines the application of CFD modelling to simulate the complex 

multiphase characteristics inside a wickless heat pipe (thermosyphon). Water and 

refrigerant R134a were selected as working fluids. A novel and comprehensive three-

dimensional CFD model of a wickless heat pipe was developed to simulate both the 

complex multiphase heat and mass transfer characteristics of boiling and 

condensation and the heat transfer characteristics of the cooling fluid in the condenser 

- heat exchanger. The CFD simulation has successfully predicted, for the first time, a 

boiling regime and two phase flow pattern that takes place with water at low power 

throughput, known as geyser boiling. The effects of the power throughput on the 

characteristics of the geyser boiling were investigated. The CFD simulation was also 

successful in modelling and visualising the multiphase flow characteristics, 

emphasising the difference in pool boiling behaviour between these working fluids. 

Temperature profiles and visual validation of the resulting 3D CDF findings were 

conducted using two experimental facilities.  
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2 INTRODUCTION 

Interest in the use of heat pipe technology for heat recovery and energy savings in a 

vast range of engineering applications has been on the rise during the recent years [1]. 

Heat pipes are playing a very important role in many industrial applications, 

especially in improving the thermal performance of heat exchangers [2] as well as an 

effective heat removal method in hydrogen storage systems, such as metal hydride 

bed [3]. Moreover, for rapid temperature management and isothermalisation, heat 

pipes have been further used for the thermal control of Carbon monoxide (CO) 

removal from a CO/H2 stream [4].  

Computational techniques play an important role in solving complex flow problems 

for a large number of engineering applications due to their universality, flexibility, 

accuracy and efficiency [5,6]. Wickless heat pipe systems are more desirable than 

conventional systems due to their passive operation, reliability, efficiency and the 

cost and ease of manufacturing [7]. A wickless heat pipe, also called two-phase 

closed thermosyphon, is a two-phase heat transfer device with a highly effective 

thermal conductivity, containing a small amount of working fluid that circulates in a 

sealed tube utilising the gravity forces to return the condensate back to the evaporator 

[8]. When the evaporator section is heated by an external source, the heat is 

transferred to the working fluid through the evaporator wall. The working fluid 

absorbs an amount of heat proportional to the latent heat of vaporisation, which is 

sufficient to change the fluid from liquid to vapour. The vapour then moves to the 

condenser section, where it changes phase again back to liquid, along the condenser's 

wall, giving up its latent heat absorbed in the evaporator section. The condensed 

liquid is then returned to the evaporator due to gravitational or capillary forces, 

according to the type of heat pipe [8,9]. Two-phase closed thermosyphons have been 

extensively used in many applications [10]; however, up to now, computational 

numerical studies on heat pipes, displaying the complex two-phase flow inside the 

heat pipe, are at an early stage.  

Kafeel and Turan [11] studied the effect of different pulsed increases of the heat input 

at the evaporator zone on the behaviour of the thermosyphon. They used similar 

thermosyphon configurations to that of Amatachaya et al. [12] to validate their 
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simulation model, and an Eulerian model to simulate the film condensation at the 

condenser zone, with a filling ratio of 30% of the evaporator zone. Alizadehdakhel et 

al. [13] focused on a two-dimensional model simulation and experimental studies, in 

which they investigated the effect of the input heat flow and the filling ratio of the 

working fluid on the performance of a two-phase closed thermosyphon, using water 

as a working fluid. Zhang et al. [14] developed a two-dimensional model of a disk-

shaped flat two-phase thermosyphon used for electronics cooling. The authors 

simulated the flow inside the disk flat two-phase thermosyphon as a single-phase 

flow with water as the working fluid. They compared the distribution of the vapour 

velocity and temperature with the experimental results, in order to determine the 

factors affecting the axial thermal resistance of flat thermosyphons. Annamalai and 

Ramalingam [15] carried out an experimental investigation and CFD analysis of a 

wicked heat pipe using ANSYS CFX. The authors considered the region inside the 

heat pipe as a single phase of vapour and the wick region as the liquid phase, and 

used distilled water as the working fluid. They compared the predicted surface 

temperature along the evaporator and condenser walls and the vapour temperature 

inside the heat pipe with their experimental data. Lin et al. [16] built a CFD model to 

predict the heat transfer capability of miniature oscillating heat pipes (MOHPs) using 

VOF and Mixture models, and water as the working fluid. The effects of different 

heat transfer lengths and inner diameters at different heat inputs were used to analyse 

the heat transfer capability of MOHPs.  

Khazaee et al. [17] experimentally investigated the geyser boiling phenomenon in a 

two-phase closed thermosyphon for water as a working fluid. They investigated the 

effects of filling ratio, aspect ratio, heat input and coolant mass flow rate on geyser 

boiling by testing the period of the geyser boiling. They found that, by increasing the 

heat throughput to the evaporator section, the period of the geyser boiling decreased 

and eventually disappeared with further increase in the heat throughput. They also 

observed that the period of geyser boiling increased when the filling ration increased 

from 35% to 60%. Lin et al. [18] also carried out an experimental investigation of the 

geyser boiling in a two-phase closed thermosyphon. They investigated the influence 

of different parameters on the characteristics of the geyser boiling for water and 

ethanol as working fluids. Among the investigated parameters was the heat load, and 
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they found that the period of the geyser boiling was shorter for a higher heat 

throughput and the temperature oscillation showed a little irregularity. They 

concluded that the period of the geyser boiling decreased linearly with the heat 

throughput. The effects of the fill ratio of the working fluid and the inclination angle 

of a two-phase closed thermosyphon were experimentally investigated by Negishi 

and Sswada [19]. They reported that for fill ratios higher than 70%,a strange sound 

was heard, caused by a large mass of the working fluid being pushed up to the end of 

the condenser section by the sudden expansion of a boiling bubble. They called this 

phenomenon water hammer, and stated that it could cause damage to the contained 

wall if it continues for a long time. 

There is an obvious gap in the published literature on CFD simulations of two-phase 

heat transfer/flow within a wickless heat pipe. Fadhl et al. [8] considered the phase 

change material by implementing the appropriate source terms in the flow governing 

equations, using User Defined Functions (UDFs). These source terms, determining 

the mass and heat transfer between the liquid and vapour phases, have been linked to 

the main hydrodynamic equations of FLUENT. The two-dimensional CFD results of 

Fadhl et al. [8,20] show that FLUENT with the VOF and UDFs can successfully 

model the complex two-phase flow phenomena inside the thermosyphon.  

The purpose of this paper is to extend the work of Fadhl et al. [8,20] by building a 

three-dimensional CFD model to simulate the two-phase flow and mass/heat transfer 

phenomena of boiling and condensation, including the simulation of the condenser 

water jacket. The CFD model has successfully predicted and visualised the geyser 

boiling phenomenon, which has not been reported before in previous studies. The 

pool boiling behaviour has been investigated for different working fluids, namely 

water and R134a. The effects of high and low power throughput on the characteristics 

of the geyser boiling have been investigated. The reported work focuses on the flow 

visualisation of the two-phase flow during the operation of a wickless heat pipe. A 

transparent glass wickless heat pipe charged with water was used to observe and 

visualise the geyser boiling process mathematical model. 
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3 MATHEMATICAL MODEL 

The governing equations of mass continuity, momentum and energy are used to 

describe the motion of the working fluid in a thermosyphon. This will be explained in 

the next section. 

3.1 CONTINUITY EQUATION FOR VOF MODEL (VOLUME FRACTION 

EQUATION) 

By applying the physical principle of conservation of mass to the fluid, the continuity 

equation has the following form [20]: 

 ∇ ∙ (𝜌 𝐕) = −
𝜕𝜌

𝜕𝑡
 (3-1) 

where  is the density, 𝐕 is the velocity vector and t is the time.  

Solution of the above equation for the volume fraction of one of the phases is used to 

track the interface between the phases. Thus, the continuity equation of the VOF 

model for the secondary phase (l) can be expressed as [21]: 

 ∇ ∙ (𝛼𝑙 𝜌𝑙 𝐕) = −
𝜕

𝜕𝑡
(𝛼𝑙 𝜌𝑙) + 𝑆𝑚 (3-2) 

where Sm is the mass source term used to calculate the mass transfer during 

evaporation and condensation. 

The continuity equation shown above can be called the volume fraction equation and 

this relation will not be solved for the primary phase as the volume fraction of the 

primary-phase is determined based on the following constraint [21]: 

 1
1




n

l

l  
(3-3) 

When the cell is not fully occupied by the primary phase (v) or the secondary phase 

(l), a mixture of the phases l and v exists. Thus, the density of the mixture is given as 

the volume-fraction-averaged density and takes the following form [21]: 

   vlll   1  
(3-4) 
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3.2 MOMENTUM EQUATION FOR VOF MODEL 

The forces acting in the fluid were considered to be gravitational, pressure, friction 

and surface tension. In order to consider the effect of surface tension along the 

interface between the two phases, the continuum surface force (CSF) model proposed 

by Brackbill et al. [22] has been added to the momentum equation 

 𝐅𝐶𝑆𝐹 = 2𝜎
𝛼𝑙𝜌𝑙𝐶𝑣∇𝛼𝑣 + 𝛼𝑣𝜌𝑣𝐶𝑙∇𝛼𝑙

𝜌𝑙 + 𝜌𝑣
 (3-5) 

where 𝜎 is the surface tension coefficient and C is the surface curvature. 

By taking into account the above forces, the momentum equation for the VOF model 

takes the following form [20]:  

𝜕

𝜕𝑡
 (𝜌 𝐕) + ∇ ∙ (𝜌 𝐕 𝐕𝑻 )

= 𝜌 𝐠 − ∇𝑝 + ∇ ∙ [𝜇 (∇ 𝐕 + (∇ 𝐕)𝑻) −
2

3
𝜇 (∇ ∙ 𝐕)𝑰] + 𝐅𝐶𝑆𝐹 

(3-6) 

where g is the acceleration of gravity, p is the pressure and I is the unit tensor.  

The momentum equation depends on the volume fraction of all phases through the 

physical properties of density and viscosity [21]. Thus, the dynamic viscosity
 
  is 

given by 

   vlll   1  (3-7) 

A single momentum equation is solved through the computational domain, and the 

calculated velocity is shared among the phases.  

3.3 ENERGY EQUATION FOR VOF MODEL 

The energy equation for the VOF model has the following form [20]: 

 
𝜕

𝜕𝑡
 (𝜌 𝐸) + ∇ ∙ (𝜌 𝐸 𝐕 ) = ∇ ∙ (𝑘 ∇ 𝑇) + ∇ ∙ (𝑝 𝐕) + 𝑆𝐸 (3-8) 
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where SE is the energy source term used to calculate the heat transfer during 

evaporation and condensation.  

The VOF model treats the temperature T as a mass-averaged variable and the thermal 

conductivity k is calculated as [21]: 

 
 

(3-9) 

The VOF model also treats the energy E as a mass-averaged variable in the following 

form [21]: 

 𝐸 =
𝛼𝑙𝜌𝑙𝐸𝑙 + 𝛼𝑣𝜌𝑣𝐸𝑣

𝛼𝑙𝜌𝑙 + 𝛼𝑣𝜌𝑣
 (3-10) 

where 𝐸𝑙 and 𝐸𝑣 are based on the specific heat 𝐶𝑣 of the phase and the shared 

temperature, given by the caloric equation of state [20]: 

 𝐸𝑙 = 𝑐𝑣,𝑙(𝑇 − 𝑇𝑠𝑎𝑡) (3-11) 

 𝐸𝑣 = 𝑐𝑣,𝑣(𝑇 − 𝑇𝑠𝑎𝑡) (3-12) 

A single energy equation is also solved throughout the domain for both phases, and 

the calculated temperature is shared among the phases. 

 

4 MODEL GEOMETRY AND COMPUTATIONAL MESH 

A three-dimensional model was developed to simulate the two-phase flow in a 

wickless heat pipe. According to the experimental configuration described in [23], the 

specifications of a small two-phase closed thermosyphon for this model are as follow: 

Material: copper 

Working fluid: water 

Evaporator section length: 40mm 

Adiabatic section length: 100mm 

Condenser section length: 60mm 

Inner diameter: 6mm 

Outer diameter: 12mm 
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Wall thickness: 3mm 

 

Figure 1 shows the three-dimensional model geometry and dimensions.  

The computational mesh used in the simulation of the two-phase closed 

thermosyphon with water jacket is illustrated in Figure 2. At the near inner wall of the 

thermosyphon, ten layers of cells are used in order to capture the thin liquid film that 

develops in that region. Another ten layers of cells are used near the outer wall of the 

condenser section, in order to capture the forced convection heat transfer between the 

condenser section and the cooling water, as shown in Figure 2. As a result, 370,702 

cells are used for the simulations. The above number of cells was limited by the 

computing resources available for the present work, which precluded a more detailed 

convergence analysis.  

 

5 BOUNDARY CONDITIONS AND CFD SOLUTION PROCEDURE 

A transient simulation was carried out to model the dynamic behaviour of the two-

phase flow. A variable time stepping technique has been used in order to 

automatically change the time-step based on the maximum Courant number near the 

interface. A combination of the SIMPLE algorithm for pressure-velocity coupling and 

a first-order upwind scheme for the determination of momentum and energy is 

selected in the model. PRESTO and Geo-Reconstruct discretization for the pressure 

and volume fraction interpolation scheme, respectively, are also performed in the 

model. 

The vapour phase of the working fluid was defined as the primary phase and the 

liquid phase was defined as the secondary phase. The VOF method and UDFs have 

been employed in the model, by implementing the appropriate source terms in the 

flow governing equations. These source terms, determining the mass and heat transfer 

between the liquid and vapour phases, have been linked to the main hydrodynamics 

equations of FLUENT. The details of the UDFs, relevant to this study, have been 

discussed by Fadhl et al. [8,20]. 
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A non-slip boundary condition was imposed at the inner walls of the thermosyphon. 

Heat was applied to the thermosyphon by defining a constant heat flux at the wall of 

the evaporating section. A zero heat flux was defined as boundary condition on the 

adiabatic section. The upper and lower caps of the thermosyphon were also defined  

as adiabatic. The interfaces (i.e. inner walls) between the solid and fluid regions of 

the water jacket and heat pipe, as shown in Figure 2, were defined as coupled wall 

boundary condition, so as to allow heat to transfer between the solid and fluid zones. 

The condenser section was a double pipe heat exchanger, cooled by a flow of water, 

as can be seen in Figure 1. The heat exchanger consisted of two concentric pipes, 

where the saturated vapour flows through the condenser pipe and the cooling fluid 

flows through the annular space between the two pipes. The outer wall of the water 

jacket was considered as adiabatic. The cooling water inlet was defined as a mass 

flow inlet with a constant flow rate of 0.001329 kg/s [24], while the cooling water 

outlet was defined as a pressure outlet. Water and refrigerant R134a have been used 

as the working fluids and filled the total volume of the evaporator section (i.e. 

FR=1.0). The mesh adaption facility in FLUENT was used to define the fill ratio of 

the working fluid in the fluid region. The thermophysical properties of the working 

fluid were assumed to be constant to limit the calculation time. 
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Figure 1: 3D model geometry and dimensions of two-phase closed thermosyphon 

with water jacket 
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Figure 2: The computational mesh used in the simulation of a two-phase closed 

thermosyphon with water jacket 

 

6 FLOW VISUALISATION OF CFD SIMULATION RESULTS 

In the following sub-section, the CFD simulation findings will be visualised and the 

pool boiling process within the water-filled thermosyphon will be discussed. 

Furthermore, during the flow visualisation of the boiling process, a flow pattern has 

been noticed at low power throughput.  

To investigate further this observation, an experimental apparatus to validate the CFD 

outputs was set up to allow variable power throughputs through a thermosyphon 

under steady state conditions. The used experimental facility is shown in Figure 3.  

The thermosiphon was charged with water as a working fluid at a 50% filling ratio. 

The data from the two thermocouples that measure the wall temperatures Te1 and Te2 

were used to collect the wall temperature in the pool boiling and nucleate film boiling 

Cooling water 

of water jacket
Solid region 

of heat pipe

Fluid region 

of heat pipe

Layers
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regions. Details of the operational procedures, data reduction and analysis are 

reported by Jouhara and Robinson [23].  

The boiling pattern that is noticed at low power throughput into the thermosiphon is 

known as geyser boiling. This boiling mode, which will be discussed in a later 

section, is observed when boiling water at low heat fluxes and relatively smooth 

surfaces where the number of active nucleation sites is limited. The locations of the 

thermocouple measuring 𝑇𝑒1 and 𝑇𝑒2 are further illustrated in Figure 4. 

 

 

Figure 3.  The experimental apparatus 

As it can be seen in Figure 4, 𝑇𝑒1 is the temperature of the wall that encloses the bulk 

of the working fluid in the thermosiphon that undergoes pool boiling during steady 

state conditions. 𝑇𝑒2 is the wall temperature that has nucleate film boiling of the 

working fluid condensate that flows back from the condenser. 

The working fluid volume 
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Figure 4. Thermocouple locations for the measurements of Te1 & Te2  

Steady state heat transfer conditions through the thermosyphon were achieved for 

heat evaporator heat fluxes of between 14kW/m² and 36kW/m², corresponding to 100 

W to 250W, respectively. As it can be seen in Figure 5, typical geyser boiling regime 

is evident at low heat fluxes where the wall that surrounds the pool boiling regime 

experienced superheating until the nucleation site was activated. This effect on the 

wall that surrounds the nucleate film boiling region is also clear especially when the 

bubble departs the pool boiling area.  
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Figure 5. Evaporator temperatures for water-filled thermosyphon at different power 

throughputs  

 

Comparing the characteristics of the geyser boiling with the flow visualisation of the 

CFD modelling, as will be discussed in later sections, it can be noticed that the three-

dimensional CFD simulation is successfully modelling geyser boiling in a 

thermosyphon at low power throughput. 

Consequently, in the following sub-sections, the geyser boiling phenomenon will be 

briefly described, the CFD simulation findings will be visualised and the geyser 

boiling process within the water-filled thermosyphon, for a high and low power 

throughput will be discussed. 

6.1 GEYSER BOILING 

Geyser boiling is a phenomenon affected by many factors, such as heat load and 

filling ratio, and occurs in two-phase thermosyphons when the liquid fill ratio in the 

evaporator section is large and heat input is insufficient. Figure 6 presents a 

schematic of the geyser boiling phenomenon [17]. When the liquid pool in the 

evaporator section is gradually heated until it becomes superheated, a vapour bubble 

grows and expands to the size of the inner diameter of the thermosyphon. This bubble 

then blow-up suddenly, pushing all the liquid above it, causing the evaporator wall 

temperature to suddenly drop in the pool boiling section while that in the nucleate 
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film boiling and the condenser is suddenly raised due to the pushed hot liquid coming 

from the lower half of the evaporator. This hot liquid then starts to fall back to the 

evaporator, causing the condenser wall temperature to drop. The geyser boiling 

phenomenon can be recognised by a special sound. The falling liquid from the 

condenser then reaches the evaporator and gradually heats up again and starts another 

cycle of geyser boiling. Thus, a zigzag temperature variation in the evaporator wall 

has been observed, as clearly seen in Figure 5. 

While the above behaviour can be interpreted using eth thermocouples measurements, 

a visual validation is required to validate the CFD findings. To facilitate the visual 

validations, a transparent glass thermosyphon filled with water has been used to 

visualise the phenomena of geyser boiling and compare i with the flow visualisation 

findings of the three-dimensional CFD simulation. 

 

Figure 6: Schematic of geyser boiling process in a thermosyphon [18] 

6.2 THREE-DIMENSIONAL CFD SIMULATION OF A WATER-FILLED 

THERMOSYPHON FOR A POWER THROUGHPUT OF 30W 

The geyser boiling phenomenon generated inside the thermosyphon occurs when the 

water is superheated near the bottom of the evaporator, creating a nucleation site and 

leading to a large vapour bubble which expands to the size of the inner diameter of 

the thermosyphon. When the buoyancy of that bubble becomes higher than the weight 

of the water column above the bubble, the bubble quickly pushes the entire water 

column above it and produces a strange sound in the thermosyphon [18]. 

Heat 

input
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The process of geyser boiling described above is observed in the CFD flow 

visualisation shown in Figure 7. In this visual observation, the volume fraction 

contours of the fluid region in the thermosyphon for a power throughput of 30W has 

been monitored for different times. Vapour bubbles that appear in the evaporator 

section during the geyser boiling process and take the size of the inner diameter of the 

evaporator are shown in Figure 8. 

The water pool is represented by the blue colour and the vapour is represented by the 

red colour, as can be seen in Figure 7 and Figure 8. The water has initially filled the 

total volume of the evaporator section, as shown in Figure 7 at t=0.0 s. The water is 

heated and at a certain time, vapour bubbles start to form in the evaporator, as shown 

in Figure 7 at t=0.12 s. Vapour bubbles then grow and expand almost to the size of 

the inner diameter of the thermosyphon, specially at the top region of the evaporator 

section, which is clearly shown in Figure 8. As a result, the geyser boiling regime 

starts and the bubble quickly expels the water above it, as shown in Figure 7 at t=3.0 

s. The water expelled by the bubble then starts to fall back and the geyser boiling 

cycle is completed, as shown in Figure 7 at t=3.1 s. Later, another cycle of geyser 

boiling starts as the next bubble appears and grows, as seen in Figure 7 at t=4.0 s and 

5.0 s.  Furthermore, it is observed from the figure that the surface of the water pool 

has been raised due to the bubbles forming at a large number of nucleation sites, 

which form continuous columns of vapour bubbles in the liquid pool. 
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Figure 7: Geyser boiling process in a thermosyphon for a power throughput of 30W 
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Figure 8: Size of the vapour bubbles in the evaporator section for a power throughput 

of 30W 

 

6.3 THREE-DIMENSIONAL CFD SIMULATION OF A WATER-FILLED 

THERMOSYPHON FOR A POWER THROUGHPUT OF 220W 

In order to understand the effects of the power throughput on the boiling 

characteristics, flow visualisation of the pool boiling at a high power throughput is 

also conducted for the water-filled thermosyphon. Figure 9 shows the volume fraction 

contours of the fluid region in the evaporator and in the lower adiabatic region for a 

power throughput of 220W. The figure includes both the three-dimensional vapour 

t = 2.4 s
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3D vapour 

bubbles
2D vapour 

bubbles
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bubbles in the liquid pool and a cross-section of the evaporator and the lower 

adiabatic region for different simulation times. 

The water is heated and at a certain time, vapour bubbles start to form in the 

evaporator, as shown at 0.02 s. It can also be noted from the figure that a high number 

of small bubbles nucleation sites is observed on the evaporator inner wall, as can be 

seen between 0.02 s and 0.05 s. This can be explained by the fact that the evaporator 

wall at high power throughput is superheated well above the temperature required for 

the onset of nucleation boiling. As a result of this, the water pool is unstable and in 

vigorous irregular motion, which is clearly shown in the figure between 0.02 s and 

0.05 s at the upper region of the evaporator. In contrast, for the low power 

throughput, the water pool is stable and been in quiescent condition, as shown in 

Figure 7 at 0.1 s. By continuous nucleation, a large number of isolated vapour 

bubbles form and rise all the way up to the top region of the liquid pool before 

breaking up and releasing their vapour content. This is illustrated between 0.07 s and 

0.15 s. Furthermore, it is observed from the figure that some large vapour bubbles are 

formed later in the liquid pool and, as a result, the water pool surfaces rises upward, 

as shown in the figure between 0.16 s and 0.2 s. 

The above discussion refers to the short period of time between 0.0 s and 0.2 s, and 

that is explained by the high frequency of the evaporator wall temperature profiles 

given in Figure 5 for high power throughputs of 200W and 250W, while the 

temperature profile for low power throughput has low frequency of bubble formation, 

as shown in Figure 5 for 100W and 150W. 

It should be noted that the geyser boiling phenomenon disappears with the high 

power throughput and this is due to the presence of a large number of vapour bubbles 

in the liquid pool, which move upward fast; hence, a very large size vapour bubble, as 

shown in Figure 8, has not been observed.  
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Figure 9: Pool boiling process in a thermosyphon for a power throughput of 220 W 
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7 A TRANSPARENT GLASS THERMOSYPHON EXPERIMENTAL 

APPARATUS AND PROCEDURE 

In order to show that the three-dimensional CFD simulation has successfully 

modelled the geyser boiling phenomenon in a thermosyphon at low power 

throughput, a transparent glass thermosyphon charged with water has been used to 

observe and visualise the process.  

7.1 EXPERIMENTAL STRUCTURE 

The glass thermosyphon contains a glass water jacket embedded on the pipe to ensure 

no leaks appear when cooling fluid flows through the jacket. The cooling fluid 

flowing through the jacket will remove the heat rejected from the condenser section.  

Figure10 shows a schematic diagram of the experimental apparatus used in this study. 

The apparatus consists of the glass thermosyphon, framework, cooling water flow 

circuit and instrumentation. 

As can been seen in Figure11, the glass thermosyphon is manufactured with a 

17.5mm outer diameter, 440mm-long smooth glass tube with a wall thickness of 

1mm. It contains a 113mm-long evaporator section, a 167mm-long adiabatic section 

and a 160mm-long condenser section.  

7.2 EXPERIMENTAL PROCEDURE 

At the start of the experiment, the water flow meter is turned on to allow cooling 

water to flow through the water jacket. A cooling water mass flow rate of 550 ccm 

(i.e. 0.008317 kg/s) is set on the hydronic side of the equipment for the test. The 

visualisation of the geyser boiling is carried out by immersing the glass 

thermosyphon into a flask containing boiling water to supply heat to the evaporator 

section. The glass thermosyphon is then kept immersed in the flask until the geyser 

boiling phenomenon takes place, which is monitored using a digital camera recorder. 

Geyser boiling continues to occur until all the energy of the boiling water in the flask 

is dissipated. Figure 12 demonstrates the framework of the glass thermosyphon 

experimental apparatus. 
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7.3 EXPERIMENTAL DISCUSSION 

The footage frames recorded during the geyser boiling process in the evaporator 

section of the glass thermosyphon are shown in Figure 13. The initial stage of the 

geyser boiling process is known as the quiescent period, where the temperature of the 

water pool in the evaporator section gradually increases as it absorbs heat, as shown 

in Figure 13 (a). The water then becomes superheated and a nucleation site is created; 

as a result, a single vapour bubble appears at the bottom of the evaporator section, as 

shown in Figure 13 (b). This bubble then grows quickly to a large size, equal to the 

inner diameter of the evaporator section, and suddenly the growing bubble pushes up 

the water above it from the evaporator to the condenser producing a special sound, as 

shown in Figure 13 (c). Consequently, a very small volume of the water pool remains 

in the evaporator section, as shown in Figure 13 (d). The pushed water then falls 

down from the condenser and a liquid film can be seen on the inner wall, as shown in 

Figure 13 (e). The above described process then repeats again once the returned water 

is heated for another cycle, as shown in Figure 13 (f). It should be noted that due to 

the limitation of the resolution of the digital camera, the figure (c) is not clearly 

visualised the very small period of time of the pushed water in the evaporator section. 
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Figure 10: A glass thermosyphon experimental apparatus 
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Figure 11: A transparent glass thermosyphon dimensions 
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Figure 12: A glass thermosyphon experimental apparatus framwork 
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Figure 13: Visualisation of geyser boiling using transparent glass thermosyphon 
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8 THREE-DIMENSIONAL CFD SIMULATION OF A R134a-FILLED 

THERMOSYPHON FOR A POWER THROUGHPUT OF 30W 

In order to show that the developed three-dimensional CFD model has the ability to 

reproduce the difference in pool boiling behaviour between different working fluids, 

refrigerant R134a has been simulated and a three-dimensional flow visualisation of 

pool boiling and film condensation during the operation of the R134a-filled 

thermosyphon was observed and shown in Figure14. 

Consequently, three phases have been defined for the CFD simulation of the 

thermosyphon filled with R134a and cooled by water through the condenser section's 

heat exchanger. In particular, the two main phases defined in the CFD model are the 

liquid phase of R134a (filling the total volume of the evaporator section) and the 

vapour phase of R134a. These phases were adopted in the fluid region of the 

thermosyphon, where phase change occurs between them during the boiling and 

condensation processes. The third phase is the cooling fluid of the condenser section's 

heat exchanger, which is water. This phase has been adopted in the annular space of 

the heat exchanger, as shown in Figure1 (Section A-A), where forced convection heat 

transfer takes place between the condenser wall and the cooling fluid. 

In order to show the three-dimensional pool boiling, three-dimensional vapour 

bubbles and the surface liquid pool in the evaporator section have been visualised, as 

illustrated in Figure14. Heat is applied through the evaporator section where a liquid 

pool of R134a exists, as shown in Figure14 at t=0.0 s. Vapour bubbles are then 

generated in the evaporator section and moved to the liquid pool surface releasing 

their content of vapour, as shown in Figure14 at t=0.12 s. In the condenser section, 

the saturated vapour condenses along the inner wall and gravity then returns the 

condensate back to the evaporator section as a falling liquid film, as clearly seen in 

Figure14 at t=0.21 s and 0.56 s. The continuous liquid film then recharges the liquid 

pool in the evaporator section, as shown in Figure14 at t= 3.5 s to 5.8 s. 

Furthermore, due to the critical nucleation site radiuses, the pool boiling behaviour of 

R134a is significantly different to that of water, as very small bubbles grow during 
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the pool boiling of R134a–filled thermosyphon; as a result, the position of the liquid 

pool surface is not raised, as clearly seen in Figure 8 and Figure14. For that reason, it 

can be noted that geyser boiling is not observed in this case. 
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Figure14: Three-dimensional CFD modelling of evaporation and condensation for a thermosyphon charged with R134a for a power 

throughput of 30W 
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9 CONCLUSIONS  

The main objective of this study is the development of a comprehensive three-dimensional 

CFD model that allows the simulations of the evaporation and condensation processes in a 

wickless heat pipe, and the simulation of the double pipe heat exchanger in the condenser 

section cooling system. The simulation of these processes is one of the steps required to 

model the complete system, in order to consider the phase change material during the 

boiling and condensation mass transfer, by using the UDFs and VOF methods. 

The CFD simulation results of this study show that FLUENT with the VOF and UDFs can 

successfully model the complex phenomena inside the wickless heat pipe. It is observed 

from the flow visualisation that the CFD simulation was able to reproduce the multiphase 

flow characteristics of pool boiling in the evaporator section. The CFD visualisation results 

of this study have demonstrated the abilities of the CFD model to simulate the pool boiling 

behaviour for different working fluids, namely water and R134a. The three-dimensional 

CFD simulation has also successfully predicted and visualised, for the first time, a flow 

pattern that takes place with water at low power throughput, known as geyser boiling. The 

heat throughput has a significant effect on the characteristics of the geyser boiling in which 

the geyser boiling phenomenon does not appear for higher heat throughput. The geyser 

boiling simulations have been visually validated with a transparent glass thermosyphon 

experiment. 
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