
International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 1

Information Hiding in SOAP Messages: A Steganographic Method for

Web Services

Bachar Alrouh
1
, Adel Almohammad

2
, Gheorghita Ghinea

3

Brunel University, West London, UK
1, 3

University of Aleppo, Syria
2

bachar.alrouh@brunel.ac.uk
1
, adel.almohammad@gmail.com

2
,

george.ghinea@brunel.ac.uk
3

Abstract

Digital steganography is the art and science of

hiding communications; a steganographic system

thus embeds secret data in public cover media so as

not to arouse an eavesdropper’s suspicion. Hence, it

is a kind of covert communication and information

security. There are still very limited methods of

steganography to be used with communication

protocols, which represent unconventional but

promising steganography mediums. In this paper, we

discuss and analyze a number of steganographic

studies in text, XML as well as SOAP messages.

Then, we propose a novel steganography method to

be used for SOAP messages within Web services

environments. The method is based on rearranging

the order of specific XML elements according to a

secret message. This method has a high

imperceptibility; it leaves almost no trail because of

using the communication protocol as a cover

medium, and since it keeps the structure and size of

the SOAP message intact. The method is empirically

validated using a feasible scenario so as to indicate

its utility and value.

1. Introduction

Secure and secret communication methods are

needed for transmitting messages over the Internet.

Cryptography scrambles the message so that it

cannot be understood. However, it makes the

message suspicious enough to attract eavesdropper’s

attention. Additionally, due to increasing of

computers capabilities and cipher texts availability,

cryptographic techniques could be vulnerable.

However, this vulnerability can be reduced

significantly using steganography, which is a method

of covert communication and information security.

Unlike encryption, steganography hides the even

existence of secret information rather than hiding its

meaning only. Thus, steganography is the art of

hiding secret messages within other innocuous-

looking cover files (i.e. images, audio, video, and

text files) so that it cannot be observed.

Consequently, steganography aims to hide the very

existence of communication by embedding messages

within other cover objects. As a result, the purpose of

steganography is to keep others from thinking that a

secret message even exists within the stego files.

Using only encryption for secret communication

draws the attention of others. Therefore,

steganography combined with cryptography raises

the security level and would be the most secure

method to go.

Steganography can be considered as a solution to

exchange secret information and news between

people around the world over the Internet without

any fear of the message being detected. However, it

has been claimed that the terrorists of the September

11th attacks used steganography to plan their attacks.

Therefore, steganography is called “a terrorist’s tool”

[1], yet there is no evidence supporting such

direction [2]. Additionally, businesses and

governments have interests in breaking

steganography (steganalysis) to detect secret

messages for competitive advantages in the market

(i.e. trade secrets or new product information) and to

benefit national security [3].

Watermarking is a data hiding technique that

protects digital documents, files, or images against

removal of copyright information. Therefore, the

goal of steganography is the secret messages while

the goal of watermarking is the cover object itself

[4]. Watermarking is the process of embedding a

specific copyright mark into digital documents in the

same way. Nevertheless, in order to detect any break

of licensing agreement, a serial number is embedded

in every copy of this digital document. This process

is known as fingerprinting.

Text steganography refers to the process of hiding

secret information in text files. For security and

imperceptibility reasons, it is very important for

stego texts not to show any detectable artifacts. Thus,

readers should not notice or discover the

modifications made in the stego text files. Generally,

the redundant information in text files is very limited

in comparison to that in images and audio files.

Therefore, using text as cover files in steganography

represents the most difficult way of information

hiding [5].

Basically, there are three major methods to hide

data in text files. The first method, open space

method, manipulates white spaces in the text.

Therefore, it exploits inter-sentence spacing, end-of-

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 2

line spaces, and inter-word spacing. The second

method, syntactic method utilizes punctuation.

However, the third method, semantic method,

manipulates the words of the text themselves [5].

It is well known that Web represents the world's

premier network and Extensible Mark-up Language

(XML) represents the world's premier data

representation format. Though, Web services require

a data exchange in the form of XML documents,

Simple Object Access Protocol (SOAP) exactly

provides this kind of data transport. Therefore,

SOAP supports a common data transfer protocol for

effective communication over the Web [6]. Thus,

XML is playing an increasingly important role in the

exchange of a wide variety of data on the Internet.

Therefore, XML documents are considered as a

language of Web pages and digital contents.

Moreover, they are used for the data exchange

between organizations.

Web services provide a platform neutral and

programming language independent technology that

supports interoperable machine-to-machine

interaction over a network. Moreover, clients and

other systems interact with the Web service using a

standardized XML messaging system, such as SOAP

[7]. Therefore, structured and typed information can

be exchanged between peers of distributed

environment using SOAP messages.

In Web services, the interaction between service

providers and requesters occurs typically via SOAP

messages. Therefore, such messages offer a kind of

steganography cover files. Hence, secret information

can be embedded in SOAP messages and sent over

the network to an intended destination.

Basically, a SOAP message is an XML document

that contains text. Therefore, steganography methods

used for text files and XML documents can

theoretically be used for SOAP messages.

Practically, some or all of these methods might be

infeasible. Therefore, we are going to design and

propose a new steganography method to embed

secret information in SOAP messages. This method

changes the order of XML elements according to the

secret message to be embedded.

The rest of this paper is organized as follows.

Section 2 reviews the related work on text and XML

steganography. Section 3 discusses and explains the

concept of information hiding within SOAP

messages. Furthermore, our designed and proposed

steganography method is illustrated in Section 4. An

example scenario is illustrated in section 5. Finally,

the conclusion is presented in Section 6.

2. Related Work

There is a relatively small number of text

steganography studies in comparison to that of image

video, and audio based steganography. This might be

due to the lack of redundancy in text files [8].

Por and Delina [9] improved the open space

method proposed by [5]. Therefore, they proposed a

hybrid steganography method for text by combining

both inter-word spacing and inter-paragraph spacing

methods. Thus, whitespaces between words and

paragraphs in right-justification of text are used for

data hiding in order to increase the embedding

capacity. However, the cover text was dynamically

generated according to the size of the secret message.

Shirali-Shahreza [10] proposed a new

steganography method for texts. This method is

based on the different spelling of some words in

English between UK and US. For example, “centre”

has different terms in UK (centre) and US (center).

The model proposed in [11] defines a text

steganography method based on substituting the

words which have different terms in UK and US. For

example, (Gas) has different terms in UK (Petrol)

and US (Gas).

Liu et al. [12] proposed a text steganography

method to be used in online chat. This method is

based on an Internet meme named typoglecymia,

which means that changing the order of word’s

middle letters has a slight to no effect on the ability

of skilled readers to understand the text (e.g. Guitar

and Guiatr). Therefore, it used the redundancy found

in the interior letters’ order. Since this letter

randomization equals to the common error made by

chatters due to high speed typewriting, it is likely to

be used in online chats, where the text usually

contains mistakes.

However, the previous studies provide text

steganography method, which are not necessarily

applicable in SOAP messages context due to the fact

that SOAP messages are exchanged and monitored

by computer systems rather than humans. Using

misspelled or alternative words in SOAP messages

would result in the SOAP parsers not being able to

handle the SOAP messages received because they do

not comply with the expected semantic.

To the best of our knowledge, there are only a

couple of studies and examples of research regarding

information hiding in XML files. Inoue et al. [8]

proposed five steganography methods to be used

with XML files. These steganography methods are

summarized as follows:

1. The empty elements are represented according

to the secret bit; either a start-tag immediately

followed by an end-tag (), or an

empty-element tag (). This technique can

embed one bit per empty element.

2. According to the secret bit, we can either add a

white space before the close bracket (<tag >), or

delete (normal with no added spaces) this white

space (<tag>). This technique can embed one bit per

tag.

3. Two elements may or may not be exchanged

according to the secret bit. Thus, one bit per an

exchange of two elements can be hidden.

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 3

4. The order of attributes in an element can be

exchanged to hide the secret data. Thus, one bit per

an exchange of the attributes order can be hidden.

5. Elements that contain each other can be used to

hide secret data by exchanging inner-tags and outer-

tags. In this method, one bit per an exchange can be

hidden.

If an element has no content then empty-element

tag can be used whether or not it is declared using

the keyword EMPTY. However, the number of such

elements in an XML document is limited and then

the capacity of method (1) is limited too.

Additionally, using two formats to represent empty

elements in the same document will arouse the

attention of observers. Also, the parser may use only

one representation of empty elements rather than

two, which invalidate this method. Names of XML

elements can't contain spaces but there can be space

before the closing character ">" (<tag >). However,

this process will increase the size of the XML file

and the hidden data may be destroyed due to parsing

which may discard these added spaces (secret data).

Additionally, tags are case sensitive and therefore the

tag <tag> is different from the tag <tag >. In other

words, the endtag’s name has to exactly match the

start-tag's name. Thus, the method (2) is practically

infeasible since it uses a start-tag different from the

end-tag (one tag may contain a white-space). The

order in which attributes are included on an element

is not considered relevant. For example, if an XML

parser encounters a specific order of an element

attributes, it doesn't necessarily have to give us the

attributes in the same order. As a result, method (4)

above is infeasible in terms of validity and

applicability even though its capacity is very limited.

However, a certain order of information can be

maintained in an XML document if we put this

information into elements, rather than attributes. As a

result, method (3) above is a valid and possible

solution for steganography. Nevertheless, hiding

only one secret bit per an exchange of two elements

represents a very small capacity. Finally, an XML

document must have a top-level element and all the

other elements are its children. Furthermore, one and

only one root element must be included in each XML

document even if this element has no content.

However, each of these children elements may

represent a parent element and therefore have some

sub-elements. Thus, exchanging a parent element

with a sub-element technically looks valid (method

(5) above). However, it seems impractical since the

semantics will not make sense and we will get a new

and different parent element by such an exchange.

Also, the steganographic capacity of this method is

very limited.

Since XML documents are widely used for data

exchange over different networks and exposed to

different threats, XML security become a key

concern of organizations. Thus, Memon et al. [13]

considered XML steganography as a new method

and solution for secure communication. Furthermore,

they proposed and designed four XML based

steganography methods for the purpose of securing

the cover file (XML document) rather than for the

purpose of secret communication. The main aspects

of these methods are as follows:

1. Random characters are inserted inside all tags

and their values. So, after the first character of the

first tag one random character is inserted, after the

second character of the first tag two random

characters are inserted and so on. Thus, it mixes up

the actual XML data with random fake characters

and therefore increases the size of the stego XML

file significantly.

2. XML tags are shuffled (sequentially) in such a

way the position of the 1st tag and its value are

swapped with that of the last tag and its value. The

same process happens with the second and the

second last tags, and so on. The large XML file is,

the better this technique work.

3. Similar to the previous method, but the correct

order of shuffled tags is identified in the attribute

value of the root element. Thus, the first tag is

determined by the first character of attribute value

while the second character is randomly generated.

Also, this method works better with large XML files.

4. The sequence of characters in all tags and

values are reversed. Thus, the order of tags’

characters is reversed by moving the last character to

become the first one while the second last one

becomes the second character and so on. As a result,

the XML file will look like an encrypted file since

the characters are scrambled in an unreadable form.

Then, they suggested combining all these

methods together in one hybrid method to provide

better XML security. In conclusion, all these four

methods aim to safeguard the stego XML document

against actual XML content detection rather than

against hidden information detection. Additionally,

their goal is the XML content not the hidden data

itself. Therefore, the goal of these methods is totally

different from our steganography goal which is

undetectable and covert communication.

Nevertheless, the first and fourth methods are

definitely infeasible for steganography since the

stego XML arouses the suspicion of everyone (look

like encrypted). The second method may hide a few

bits only, while in the third method, the secret key is

included in the stego file, which is more than enough

to extract the hidden message.

SOAP parsers have been developed and they only

process XML that conforms to the SOAP schema

and associated structural rules. Zhang et al. [7]

proposed a steganography method depending on the

text characteristics of SOAP technology in order to

hide information in SOAP messages. Therefore, the

physical properties of SOAP keywords and

namespaces (self-defined) are used as cover

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 4

message. A character string is initialized by

converting every letter in these keywords and

namespaces into lowercase. Coordinating every

secret bit with every letter of the character string, a

specific letter is converted into capital letter only

when the secret bit is “1”. However, the amount of

SOAP keywords is limited for short SOAP message.

Furthermore, the stego SOAP looks suspicious since

some characters of this message are in lowercase

shape while others are in uppercase shape. Therefore,

the overall shape of the stego SOAP may attract

attention. Additionally, this method does not comply

with the case-sensitivity nature of XML documents.

3. Information Hiding in SOAP Messages

The SOAP protocol is designed to enable the

exchange of structured information (i.e. SOAP

messages) over a variety of underlying protocols in

decentralized and distributed environments. This

lightweight protocol uses XML technologies to

define a messaging framework that is independent of

any specific programming languages or

implementation semantics [6].

A SOAP message is an XML document, which

consists mainly of “envelope, header, body and fault

elements, as shown in (Figure 1). The “Envelope” is

the root element that defines the XML document as a

SOAP message. Also, it indicates the start and the

end of the message. Application specific information

(like security, reliability, etc) is usually defined

within the optional “Header” element. Additionally,

headers may contain commands to SOAP processors

either to understand these headers or to reject the

SOAP message. However, the actual data is defined

within the required “Body” element. Thus,

mandatory information that must be delivered to the

intended recipient should be included within the

body part of SOAP message. The optional “Fault”

element is used to identify error messages. If an error

occurs during SOAP processing, a SOAP fault

element will be emerge in the body of the message.

Then, the sender of the SOAP message will get the

fault response returned.

Figure 1. SOAP Message Construct

When two parties communicate through SOAP

messages, the actual data (i.e. fields and properties of

objects or parameters and return values of methods)

in the sender endpoint are converted (serialized) into

an XML stream that conforms to the SOAP

specifications. This serialized XML document is the

SOAP message that needs to be de-serialized at the

receiver endpoint to reconstruct the actual data.

Figure 2 illustrates an example Java class Book and

its XML serialized class instance.

Figure 2. Example Java Class and Its XML

Serialized Instance

An endpoint application normally employs a

SOAP package to perform the serialization and de-

serialization processes, as Web applications and

clients care mainly about the actual data transmitted

and not the structure of the SOAP message. Hence,

secret information can be smuggled into SOAP

messages, which provide a perfect cover if the

hidden secret message does not damage the SOAP

messages or spoil the actual data.

The main concern of hiding secret information

within SOAP message is how we can hide this

information and not to be detected. Basically, end

users care about the actual data transmitted but they

do not care about other issues like SOAP namespace,

keywords, or the order of elements’ attributes.

However, the transmitted message must generate no

errors and therefore not to discard the message.

Hiding secret information in a SOAP message

means that the mule that is used to convey the secret

message is the communication protocol that governs

the actual data path over a network, instead of using

the actual data itself as a cover. This idea can

overcome many of the limitations that faced the

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>…</S:Header>

 <S:Body>…

 <S:Fault>… </S: Fault >

 </S:Body>

</S:Envelope>

public class BookOrder{

 private String isbn;

 private String author;

 private String bookName;

 private int numOfPages;

 private String publisher;

 private int year;

 private double price;

 public getters and setters

}

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:BookOrder

xmlns:ns2="http://service.bookorder.com/">

 <book>

<isbn>1-11-111111-1</isbn>

<author>Author_1</author>

<bookName>Book_1</ bookName >

<numOfPages>372</numOfPages>

<publisher>Publisher_1</publisher>

< year >2009</year>

<price>29.99</price>

 </book>

 </ns2:BookOrder>

 </S:Body>

</S:Envelope>

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 5

conventional steganography techniques. Traditional

techniques hide secret messages inside digital files,

which impose the threat of detecting the secret as

these files are usually saved. Alternatively, a SOAP

message leaves almost no trail as they are normally

deleted after receiving the message and de-

serializing the actual data. In addition, a secret piece

of information can be divided into multiple smaller

messages and transmitted over several SOAP

messages to overcome the size limitation as well.

This paper provides a novel steganography

method that manipulates the SOAP protocol by

rearranging the order of the contents and attributes of

specific elements in a SOAP message, where every

permutation represents a specific status according to

a secret key shared between the sender and the

receiver. For example, there are 7 sub-elements

within the element book in Figure 2. These sub-

elements are arranged in a particular order (isbn,

author, bookName, numOfPages, publisher, year,

price). This order does not have any importance for

the endpoint application, however. If the order of

these sub-elements is rearranged, the message will

still have the same meaning for the endpoint.

For a set of n sub-elements, there are a maximum

of n! (factorial of n) permutations . This means that

n! different sequences of order can be presented.

4. Steganography Framework for SOAP

Messages

Considering the previous concept, we have

designed and implemented a data hiding method that

monitors a SOAP message just after its serialization

in the sender endpoint and before it is sent, analyzes

its elements and embeds a secret message

accordingly. Figure 3 illustrates the general model of

data hiding in SOAP messages.

Figure 3. SOAP Steganography Model

When the stego SOAP message arrives at the

receiver endpoint, the secret message is extracted

using a stego key that is shared between the sender

and receiver.

4.1 Embedding Procedures

In our proposed method, the procedure of hiding a

secret message within SOAP consists of the

following six steps.

1. Capturing the SOAP message after its

serialization.

2. Analyzing its contents to identify all the

elements with contents that can be rearranged to

determine if the SOAP message is suitable for

embedding (i.e. has elements with contents that can

be rearranged).

3. Calculating the number of elements that can be

used to hide data (N).

4. Permuting every set of sub-elements to reflect a

status of a symbol from the secret message.

5. If all the symbols of the secret message can be

hidden in one SOAP message (the number of

available sets N is greater than the length of the

secret message M), then the sub-elements of the set

M+1 will be rearranged to indicate the end of secret

message.

6. Otherwise, if M>N, only a part of the secret

message is sent in this SOAP message and the last

set of sub-elements is rearranged to indicate that

more hidden data are to arrive within the next

received SOAP message.

Figure 4 illustrate the algorithm used for secret

message embedding.

4.2 Extracting Procedure

The receiver, on the other hand, extracts hidden

data by analyzing the contents of each eligible

element using the secret key to reveal the hidden

symbol, as described in the following section and

illustrated in the Extracting Algorithm (Figure 5):

1. Capturing the SOAP message and checking its

validity and capability to be a stego SOAP message.

2. Calculating the number of elements that might

be used for data hiding (N).

3. Extracting the hidden symbols by analyzing the

sub-elements order of each element in the stego

SOAP message.

4. Stop the process either if the extracted symbol

indicates that the message is not a stego SOAP or if

the extracted symbol means “End of Message”.

5. If the extracted symbol means “To Continue”,

new SOAP message to be captured and analyzed as

in 1.

6. Otherwise, the next symbol will be extracted

and so on until we get the entire secret message

embedded.

Receiver

Sender
SOAP

Message

Secret Message

Stego SOAP

Message

Stego Key

SOAP

Message

Secret Message

Embedding

Transmitting

Extracting

Stego Key

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 6

Figure 4. Secret Message Embedding

Figure 5. Secret Message Extracting

No

Yes

Not a stego

SOAP

message

No

No

Yes

Yes

Symbol = To

continue?

Yes

No

Start

End

Capture SOAP

message

N = (number of available sets of elements)

Extract the hidden

symbol from the

permutation of the

contents of element i

i = 1

i = i + 1

Are the contents

of element i

rearranged?

Symbol = End

of Message?

Add the symbol to

the secret message

Is it a Stego

SOAP message?

No

Yes

Yes

No Yes

No

Start

End

i ≤ N-1?

i ≤ M

Capture SOAP

message

N = (number of available sets of elements)

M = Secret message length

Rearrange the sub-

elements of element i

according to ith

symbol of the secret

message

i = 1

i = i + 1

Rearrange the sub-

elements of element

N according to the

“To Continue”

Symbol.

M = M – (N -1)

Rearrange the sub-

elements of element

i according to the

“End of Message”

Symbol.

N ≥ 2

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 7

5. Example Scenario

Our proposed method for SOAP message-based

steganography is empirically tested and validated.

Thus, we demonstrate the data embedding and

extracting algorithms using an example yet realistic

web service scenario (Book Order): In this scenario,

we assume that the person who wants to send secret

data is the “Book Buyer” while the intended

recipient of secret message is the “Book Seller”.

However, the opposite scenario is true since the

“Book Seller” can send a secret message to the

“Book Buyer” using the same procedure. The

example scenario is:

Step 1: The Book Buyer (Service Requester)

selects the books to be ordered from the Book Seller

website (service Provider).

Step2: The Book Order will be formatted as

XML document and then an XML-based SOAP

message will be generated in order to be sent to the

Service Provider.

Step 3: An application is used at the sender (Book

Buyer) endpoint in order to capture each SOAP

message before it has been sent (prevents the sending

process of SOAP).

Step 4: The “Embedding Procedure” of our SOAP

steganography method is applied on each captured

SOAP message.

Step 5: The output of the “Embedding procedure”

(a stego SOAP message) will be sent to the Book

Seller.

Step 6: The Book Seller receives the SOAP

message (a stego SOAP) and a similar application to

that used at the Book Buyer endpoint will be used at

the Book Seller endpoint to capture each received

SOAP message.

Step 7: The “Extracting Procedure” of our SOAP

steganography method is applied on each captured

SOAP message in order to extract the secret message

from the stego SOAP messages.

As illustrated in Figures 6, 7 and 8, a book buyer

is sending two messages to the book seller. The first

SOAP message contains an order for 4 books, while

the second is an order for 3 books. A secret message

“Hello” is smuggled by shuffling the sub-elements

of each “book” element in these SOAP messages.

The first message contains only part of the hidden

message “Hel” and “to continue” symbol, while the

second message contains the rest of the message

“lo” and the “end of message” symbol. Because

each element has 5 sub-elements, 5! (120) different

cases can be represented. That covers all the

alphabetical characters (in small and capital caps),

numbers and most of the printing characters. For the

purpose of demonstration, we used a shifted version

of the ASCII table as a secret key for data hiding.

More complex secret keys can be used in real

implementations.

For this experiment, NetBeans IDE 6.9 is used to

develop the web service (book seller service) and the

client (book buyer application). The web service is

built as a web application and deployed on a Glass

Fish 2.2 application server. All the SOAP messages

are intercepted in the sender endpoint just after being

serialized into XML messages and before the SOAP

messages are sent to the receiver endpoint. Similarly,

all the coming SOAP messages are intercepted

before they are de-serialized. The SOAP messages

are also monitored and recorded using soapUI in the

standard HTTP proxy mode.

Figure 6. Example Secret Message Hidden

in 2 SOAP Messages

6. Conclusion

In this paper, we have provided a communication

protocol-based steganography method that

manipulates the SOAP protocol. This method

monitors a SOAP message just after its serialization

in the sender endpoint and before it is sent. It

analyzes the SOAP elements and embeds a secret

message accordingly by rearranging the order of the

contents and attributes of specific elements in a

SOAP message, where every permutation represents

a specific symbol according to a secret key shared

between the sender and the receiver. As a result, the

provided method has a high resistance against

detection since it uses the communication protocol as

a cover medium rather than the traditional digital

files. Furthermore, the stego SOAP message has the

same size of the original message. The method is

tested and validated using a feasible scenario so as to

demonstrate its utility and applicability.

Security is an ongoing process and as soon as

developers fix one set of problems crackers will find

yet another way to break these systems. Essentially,

the applications must be flexible in order to add new

security features as needed.

Furthermore, anyone on the Internet can intercept

the data transmitted between different sites. Thus,

distributed applications require higher security levels

than internal applications.

Book Order 1

Book 1: “H”

Book 2: “e”

Book 3: “l”

Book 4: “T.C.”

Book Order 2

Book 5: “l”

Book 6: “o”

Book 7: “E.O.M.”

SOAP Message 1 SOAP Message 2

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 8

Encryption can be used to preserve data security

but the technologies required for encryption cause

problems with firewalls and they don’t work very

well on the Internet. Encryption has another

problem; if both communication parties don’t have

the same platform then the receiver can’t decrypt the

sender’s message. Thus, even a common encryption

scheme usually can only work on a limited number

of platforms [14]. As a result, our SOAP based

steganography method could be a reasonable

solution for transmitted data security. It can be used

as a secret communication channel over different

kinds of networks regardless of the applications used

at the distributed endpoints. As a kind of

communication security, the process of surely

knowing the identity of the other communicating

party (on the other end of a channel) is known as

Authentication. Additionally, associated HTTP

Authentication Framework with HTTP 1.1 provides

better authentication means between communicating

parties. Thus, the HTTP Authentication Framework

secures only the authentication portion of the

communication. Furthermore, Secure/Multipurpose

Internet Mail Extensions (S/MIME) and Secure

Socket Layer (SSL) use digital certificates to provide

security which relies on the use of public key

cryptography. Usually, using static keys provides the

crackers more chance to break the system than using

dynamic keys [14].

As a result, we can use the proposed SOAP

steganography method to convey information of

authentication which necessary to authenticate the

communicating parties. Additionally, encryption

keys can be embedded and transmitted in order to get

dynamic keys instead of static keys, and therefore

add another layer of system security.

Basically, encryption algorithms represent a

conventional solution of information security but the

encrypted data is still there and everyone can observe

it over the network. Thus, our SOAP steganography

algorithm provides a way of secret communications

over the Internet. It can overcome the limitations and

challenges of encryption as well as it can be used

with encryption to provide a double layer of security.

In conclusion, the proposed SOAP steganography

method can be used for a variety of applications such

as; authentication, proof of identity, watermarking,

digital signature and message hash.

6. References

[1] K. Bailey, K. Curran, J. Condell, “Evaluation of

Pixel-Based Steganography and Stegodetecction

Methods”, The Imaging Science Journal, Vol. 52(3),

pp. 131-150, 2004.

[2] S. Engle, “Current State of Steganography: Uses,

Limits, & Implications”, 2003, University of

California, Davis Website. Available from:

http://wwwcsif.cs.ucdavis.edu/~engle/stego.pdf.

Access date: 1 May 2010.

[3] D. Artz, “Digital Steganography: Hiding Data within

Data”, IEEE Internet Computing, vol. 5(3), pp. 75-80,

2001.

[4] S. Venkatraman, A. Abraham, and M. Paprzycki,

“Significance of Steganography on Data Security”, In

Proceedings of the International Conference on

Information Technology: Coding and Computing,

2004.

[5] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,

“Techniques for Data Hiding”, IBM Systems Journal,

vol. 35(3-4), pp. 313-336, 1996.

[6] E. Newcomer, Understanding Web Services: XML,

WSDL, SOAP and UDDI, Addison Wesley, 2002.

[7] X. Zhang, H. Wang, and J. Sun, "An Information

Hiding Method based on SOAP", In Proceedings of

the 3rd International Conference on International

Information Hiding and Multimedia Signal

Processing (IIH-MSP 2007), Kaohsiung, Taiwan,

2007.

[8] S. Inoue, K. Makino, I. Murase, O. Takizawa, T.

Matsumoto, and H. Nakagawa, “A Proposal on

Information Hiding Methods using XML”, In

Proceedings of the 1st Workshop of NLP and XML,

Nov, 2001.

[9] L. Y. Por and B. Delina, “Information Hiding: A New

Approach in Text Steganography”, In Proceedings of

the 7th International Conference on Applied Computer

& Applied Computational Science (ACACOS’08),

Hangzhou, China, 2008.

[10] M. Shirali-Shahreza, “Text Steganography by

Changing Words Spelling”, In Proceedings of the 10th

International Conference on Advanced

Communication Technology (ICACT 2008), Phoenix

Park, Korea, 2008.

[11] M. H. Shirali-Shahreza and M. Shirali-Shahreza, “A

New Synonym Text Steganography”, In Proceedings

of the 4th International Conference on Intelligent

Information Hiding and Multimedia Signal

Processing (IIH-MSP 2008), Harbin, China, 2008.

[12] M. Liu, Y. Guo, and L. Zhou, “Text Steganography

Based on Online Chat”, In Proceedings of the 5th

International Conference on Intelligent Information

Hiding and Multimedia Signal Processing (IIH-MSP

2009), 12-14 Sep, 2009, Kyoto, Japan, 2009.

[13] A. G. Memon, S. Khawaja, and A. Shah,

“Steganography: A New Horizon for Safe

Communication Through XML”, Journal of

Theoretical Information Technology, vol. 4(3), pp.

187-202, 2008.

[14] J. P. Mueller, Special Edition Using SOAP ,

QUE, USA, 2001

http://wwwcsif.cs.ucdavis.edu/~engle/stego.pdf

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 9

Book Order (Step 1):

Order 1:

1-Book 1: isbn=1-11-111111-1, author=Author_1, name=Book_1, pages=111, publisher=Publisher_1

2-Book 2: isbn=2-22-222222-2, author=Author_2, name=Book_2, pages=222, publisher=Publisher_2

3-Book 3: isbn=3-33-333333-3, author=Author_3, name=Book_3, pages=333, publisher=Publisher_3

4-Book 4: isbn=4-44-444444-4, author=Author_4, name=Book_4, pages =444, publisher=Publisher_4

Cover SOAP (Stes 2+3):

SOAP Message 1:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:bookOrder xmlns:ns2="http://service.testproject/">

 <book>
 <isbn>1-11-111111-1</isbn>

 <author>Author_1</author>

 <name>Book_1</name>

 <pages>111</pages>

 <publisher>Publisher_1</publisher>

 </book>

 <book>
 <isbn>2-22-222222-2</isbn>

 <author>Author_2</author>

 <name>Book_2</name>

 <pages>222</pages>

 <publisher>Publisher_2</publisher>

 </book>

 <book>
 <isbn>3-33-333333-3</isbn>

 <author>Author_3</author>

 <name>Book_3</name>

 <pages>333</pages>

 <publisher>Publisher_3</publisher>

 </book>

 <book>
 <isbn>4-44-444444-4</isbn>

 <author>Author_4</author>

 <name>Book_4</name>

 <pages>444</pages>

 <publisher>Publisher_4</publisher>

 </book>
 </ns2:bookOrder>

 </S:Body>

</S:Envelope>

Stego SOAP (Steps 4+5+6+7):

SOAP Message 1:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:bookOrder xmlns:ns2="http://service.testproject/">

 <book>
 <author>Author_1</author>

 <pages>111</pages>

 <publisher>Publisher_1</publisher>

 <name>Book_1</name>

 <isbn>1-11-111111-1</isbn>

 </book>

 <book>
 <name>Book_2</name>

 <publisher>Publisher_2</publisher>

 <pages>222</pages>

 <isbn>2-22-222222-2</isbn>

 <author>Author_2</author>

 </book>

 <book>
 <pages>333</pages>

 <isbn>3-33-333333-3</isbn>

 <publisher>Publisher_3</publisher>

 <name>Book_3</name>

 <author>Author_3</author>

 </book>

 <book>
 <publisher>Publisher_4</publisher>

 <isbn>4-44-444444-4</isbn>

 <author>Author_4</author>

 <name>Book_4</name>

 <pages>444</pages>

 </book>
 </ns2:bookOrder>

 </S:Body>

</S:Envelope>

Secret Message:

“Hel”

Stego Key:

NO EMBEDDING = isbn, author, name, pages, publisher.

“H” Character = author, pages, publisher, name, isbn

“e” Character = name, publisher, pages, isbn, author

“l” Character = pages, isbn, publisher, name, author

“To Continue” = publisher, isbn, author, name, pages

Figure 7. Hiding the First Part of the Secret Message in The First SOAP
Message

International Journal for Information Security Research (IJISR), Volume 1, Issue 2, 2011

__

 10

Book Order (Step 1):

Order 2:

1-Book 5: isbn=5-55-555555-5, author=Author_5, name=Book_5, pages =555, publisher=Publisher_5

2-Book 6: isbn=6-66-666666-6, author=Author_6, name=Book_6, pages =666, publisher=Publisher_6

3-Book 7: isbn=7-77-777777-7, author=Author_7, name=Book_7, pages =777, publisher=Publisher_7

Cover SOAP (Stes 2+3):

SOAP Message 2:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

<ns2:bookOrder xmlns:ns2="http://service.testproject/">

 <book>
 <isbn>5-55-555555-5</isbn>

 <author>Author_5</author>

 <name>Book_5</name>

 <pages>555</pages>

 <publisher>Publisger_5</publisher>

 </book>

 <book>
 <isbn>6-66-666666-6</isbn>

 <author>Author_6</author>

 <name>Book_6</name>

 <pages>666</pages>

 <publisher>Publisger_6</publisher>

 </book>

 <book>
 <isbn>7-77-777777-7</isbn>

 <author>Author_7</author>

 <name>Book_7</name >

 <pages>777</pages>

 <publisher>Publisher_7</publisher>

 </book>
 </ns2:bookOrder>

 </S:Body>

</S:Envelope>

Stego SOAP (Steps 4+5+6+7):

SOAP Message 2:

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

<ns2:bookOrder xmlns:ns2="http://service.testproject/">

 <book>
 <pages>555</pages>

 <isbn>5-55-555555-5</isbn>

 <publisher>Publisger_5</publisher>

 <name>Book_5</name>

 <author>Author_5</author>

 </book>

 <book>
 <pages>666</pages>

 <author>Author_6</author>

 <name>Book_6</name>

 <isbn>6-66-666666-6</isbn>

 <publisher>Publisger_6</publisher>

 </book>

 <book>
 <publisher>Publisher_7</publisher>

 <pages>777</pages>

 <name>Book_7</name >

 <author>Author_7</author>

 <isbn>7-77-777777-7</isbn>

 </book>
 </ns2:bookOrder>

 </S:Body>

</S:Envelope>

Secret Message:

“lo"

Stego Key:

NO EMBEDDING = isbn, author, name, pages, publisher.

“l” Character = pages, isbn, publisher, name, author

“o” Character = pages, author, name, isbn, publisher

“End of Message” = publisher, pages, anme, author, isbn

Figure 8. Hiding the Second Part of the Secret Message in the Following SOAP
Message

