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Abstract

This paper is concerned with the variance-constrained state estimation problem for a class of networked

multi-rate systems (NMSs) with network-induced probabilistic sensor failures and measurement quantization. The

stochastic characteristics of the sensor failures are governed by mutually independent random variables over the

interval [0, 1]. By applying the lifting technique, an augmented system model is established to facilitate the state

estimation of the underlying NMSs. With the aid of the stochastic analysis approach, sufficient conditions are

derived under which the exponential mean-square stabilityof the augmented system is guaranteed, the prescribed

H∞ performance constraint is achieved and the individual variance constraint on the steady-state estimation error

is satisfied. Based on the derived conditions, the addressedvariance-constrained state estimation problem of NMSs

is recast as a convex optimization one that can be solved via the semi-definite program method. Furthermore,

the explicit expression of the desired estimator gains is obtained by means of the feasibility of certain matrix

inequalities. Two additional optimization problems are considered with respect to theH∞ performance index and

the weighted error variances. Finally, a simulation example is utilized to illustrate the effectiveness of the proposed

state estimation method.

Index Terms

Networked multi-rate systems; Variance constraint;H∞ state estimation; Measurement quantization; Proba-

bilistic sensor failures.

I. INTRODUCTION

The past few decades have undergone steady revolution leading to new generations of the information

and communication technologies. In particular, networkedcontrol systems (NCSs) have received consid-
erable research attention because of the urgent need to reduce the cost of installation and facilitate the
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implementation. It is well known that the devices in NCSs aremutually connected via communication

networks which are of limited capacity. Therefore, variousnetwork-induced phenomena such as commu-

nication delay and data missing have inevitably emerged, which should all be taken into account in order
to avoid the performance degradation of the NCSs. Consequently, it is not surprising that, the control

and filtering/state estimation problems of networked systems with communication delays and/or missing

measurements have been reported (see e.g. [4], [7], [10], [11], [13], [22]–[24], [29], [33], [34], [36]).
In computer-based control systems, the interface between the plant and the estimator is often connected

via analog-to-digital (A/D) and digital-to-analog (D/A) devices, which normally leads to the quantization

process [16]. Actually, quantization error never vanisheswhen the signals are processed by uniform

quantizer [19], [21] or nonuniform quantizer [5], [12], [25], [28], [31]. Accordingly, signal quantization is
considered as another source that has significant impact on the achievable performance of the NCSs. It is

worth pointing out that, all the references listed above have been concerned with the systems with a single

sampling rate. In practice, there are various physical restrictions on the system components such as sensors,
actuators, controllers and filters. These physical restrictions include, but are not limited to, the resource

constraints on the power, amplitude, frequency, energy andcosts, and such restrictions make it extremely

difficult to adopt the single-rate sampling strategy for different kinds of devices. Apart from the physical
limits, multi-rate sampling also stems from the engineering specifications, for example, sampling the sensor

output at a slower rate is often acceptable for cost saving aslong as the desired accuracy is ensured. With

multi-rate sampling, one could play the trade-offs betweenthe performance index and implementation
cost [30]. As such, the multi-rate sampled-data systems have received considerable research interest in

the past decades, see [17], [20], [37].

State estimation or filtering has long been a research topic of fundamental importance in signal process-
ing, communications and control applications [1], [3], [8], [9]. Among a variety of existing approaches,

theH∞ method has gained particular research attention due to its capability of providing a bound for the

worst-case estimation error without the need for knowledgeof noise statistics. On the other hand, it is
common in practical engineering that the estimation performance requirements are naturally expressed as

the upper bounds on estimation error variances [14]. As mentioned in [26], [35], the specified variance

constraints may not be minimal, but should meet given engineering requirements. Actually, variance-
constrained control or filtering theory is capable of ensuring the traditional stability with guaranteed

upper bounds on the variances of interest and, at the same time, enforcing other performance indices due

to its design flexibility. As a result, the variance-constrained theory has been widely applied in solving
multi-objective control problems as well as filtering problems, see, e.g. [6], [27], [32].

Summarizing the above discussions, it is of both theoretical importance and practical significance

to examine how the inclusion of the multi-rate sampling mechanism would influence the estimation
performance of networked multi-rate systems (NMSs). Therefore, the objective of this paper is to design

the estimator for a class of NMSs with measurement quantization and probabilistic sensor failures such

that the expected exponential mean-square stability, theH∞ performance requirement and the prespecified

variance constraints are simultaneously guaranteed. By employing stochastic analysis techniques, the
existence of the desired state estimators is investigated and some easy-to-verify sufficient conditions are

established. Furthermore, the explicit expression of estimator gain is characterized in terms of the feasibility

of certain matrix inequalities. Two additional optimization problems are considered with respect to the
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H∞ performance index and the weighted error variances. Finally, a simulation example is provided to

show the effectiveness of the proposed estimator design scheme.

The novelties of this paper lie in the following three aspects: (1) the system model is comprehensive

that covers multi-rate sampled-data dynamics, probabilistic sensor failures and measurement quantization,

thereby better reflecting the reality within networked environments; (2) by using the lifting technique, the

variance-constrainedH∞ state estimation problem for NMSs is investigated via a convex optimization

technique that caters for sensor failure probabilities andquantization levels; and (3) sufficient conditions

are established to quantify the relationships among theH∞ performance, upper bounds on the steady-state

estimation error, the quantizer parameters, the statistical information on the sensor failures as well as

the multi-rate multiple.
Notation The notation used here is fairly standard except where otherwise stated.Rn andRn×m denote,

respectively, then-dimensional Euclidean space and the set of alln × m real matrices.l2[0,∞) is the

space of square summable sequences. The notationX ≥ Y (respectively,X > Y ), whereX andY are
real symmetric matrices, means thatX −Y is positive semi-definite (respectively, positive definite). E{·}

stands for the expectation of the stochastic variable “·”. 0 and I denote, respectively, the zero matrix of

compatible dimensions and the identity matrix of compatible dimensions. In symmetric block matrices or
complex matrix expressions, we utilize asterisk∗ to represent a term that is induced by symmetry, and

diag{· · · } stands for a block-diagonal matrix.col{· · · } represents a column vector composed of elements.

‖ • ‖ refers to the Euclidean norm for vectors.

II. PROBLEM FORMULATION

Consider the following class of discrete time systems:

x(Tk+1) = Ax(Tk) +B1ω(Tk) +B2ν(Tk) (1)

z(Tk) = Lx(Tk), k = 0, 1, 2, · · · (2)

wherex(Tk) ∈ R
nx represents the state vector,z(Tk) ∈ R

nz is the signal to be estimated,ω(Tk) ∈ R
nω

is a disturbance input with bounded energy which belongs toℓ2[0,∞), andν(Tk) ∈ R
nν is a zero mean

Gaussian white noise sequence with covarianceR > 0.

The measurement with probabilistic sensor failures is described by

y(tk) = Ξ(tk)Cx(tk) +Dξ(tk) =

m∑

s=1

βs(tk)Csx(tk) +Dξ(tk) (3)

wherey(tk) ∈ R
m is the measured output vector,Ξ(tk) is a diagonal matrix governing the probabilistic

sensor failures described by

Ξ(tk) , diag
{
β1(tk), β2(tk), · · · , βm(tk)

}

with βs(tk) (s = 1, ..., m) beingm independent random variables which are also independent from ν(Tk),

and the matrixCs is defined by

Cs , diag
{
0, · · · , 0
︸ ︷︷ ︸

s−1

, 1, 0, · · · , 0
︸ ︷︷ ︸

m−s

}
C (s = 1, 2, · · · , m).
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Fig. 1. An example of multi-rate sampled-data systems with b=3.

It is assumed thatβs(tk) has the probabilistic density functionf(βs) on the interval[0, 1] with known math-

ematical expectations̄βs and variances̃̄β2
s . In the sequel, we denotēΞ , E[Ξ(tk)] = diag

{
β̄1, β̄2, · · · , β̄m

}
.

ξ(tk) ∈ R
nξ is the measurement noise which belongings toℓ2[0,∞). A, B1, B2, L, C andD are known

matrices with appropriate dimensions.

Remark 1:Note that an increasing number of sensors have been installed to structures for monitoring
and control, and sensor faults become more frequent compared to the structure’s lifetime [18]. For small

autonomous helicopters, the fault detection problem has been investigated in [15], where several sensor

failures have been considered such as total sensor failure,stuck with constant bias sensor failure, drift or
additive-type sensor failure, multiplicative-type sensor failure and outlier data sensor failure. In Eq. (3),

the random variableβs(tk) taking value on the interval[0 1] is introduced to describe possible failure for

the s-th (s = 1, ..., m) sensor, and this kind of measurement model can include the Bernoulli distribution
model [36] as a special case. Actually, this sensor fault model accounts for the multiplicative-type sensor

failures that have been discussed in [15].

For a given frame periodh, we make the following assumptions about the sampling period for (1)–(3).
Assumption 1:The system statex(Tk) and its estimationz(Tk) are updated at instantsTk, andTk+1 −

Tk , h, k = 0, 1, 2, · · · .

Assumption 2:The measurementy(tk) from the system is sampled at instantstk and tk+1 − tk ,

bh, k = 0, 1, 2, · · · , whereb is a positive integer.

It can be seen that (1) and (2) evolve with a faster sampling period h, while the measurement dynamics

(3) is generated with a slower periodbh, i.e. the measurement sampling periodstk+1 − tk are integer

multiples of the periodh. Accordingly, (1)-(3) is essentially a multi-rate sampled-data (MRSD) system
model. An illustration of MRSD is shown in Fig. 1 withb = 3, where the system state and estimation

signal are updating with periodh, and the measurements are sampled with period3h.

In this paper, the quantization effect on measurementy(tk) is considered with the map of the quantization
process given by

ȳ(tk) = q(y(tk)) = col
{
q1(y

(1)(tk)), q2(y
(2)(tk)), · · · , qm(y

(m)(tk))
}

whereȳ(tk) is the signal after quantization. The quantizerq(·) is assumed to be of the logarithmic type,

that is, for eachqs(y(s)(tk))(s = 1, 2, · · · , m), the set of quantization levels is described by

ℑ = {±u
(s)
i , u

(s)
i = (χ(s))iu

(s)
0 , i = 0,±1,±2, · · · }

⋃

{0}, 0 < χ(s) < 1, u
(s)
0 > 0

whereχ(s)(s = 1, 2, · · · , m) is called the quantization density. Each of the quantization level corresponds
to a segment such that the quantizer maps the whole segment tothis quantization level. The logarithmic
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quantizerqs(·) is defined as

qs(y
(s)(tk)) =







u
(s)
i , 1

1+δs
u
(s)
i < y(s)(tk) <

1
1−δs

u
(s)
i

0, y(s)(tk) = 0

−qs(−y(s)(tk)), y(s)(tk) < 0

whereδs =
1−χ(s)

1+χ(s) . It can be easily observed from the above definition thatqs(y
(s)(tk)) = (1+△(s)(tk))y

(s)(tk)

holds for certain△(s)(tk) satisfying△(s)(tk) ≤ δs.
According to the above transformation, the quantization effects have been transformed into sector-

bounded uncertainties [12]. Defining△(tk) = diag{△(1)(tk),△
(2)(tk), · · · ,△

(m)(tk)}, the measurement

after quantization can be expressed as

ȳ(tk) = (I +△(tk))y(tk) (4)

DenotingΛ , diag{δ1, δ2, · · · , δm} and settingF (tk) , △(tk)Λ
−1, we can know thatF (tk) is a real-

valued time-varying matrix satisfyingF (tk)
TF (tk) = F (tk)F (tk)

T ≤ I.
Note that it is mathematically difficult to handle the variance-constrained state estimation problem

directly for such kind of MRSD system. In the next section, weare going to convert the resulting MRSD
system into a single-rate system for technical convenience.

By applying the relation (1) recursively, one obtains the following equations with time scaletk:






x(tk+1) = Abx(tk) + B̄1,1ω̄(tk) + B̄2,1ν̄(tk)

x(tk+1 − h) = x(tk + (b− 1)h) = Ab−1x(tk) + B̄1,2ω̄(tk) + B̄2,2ν̄(tk)

...

x(tk+1 − (b− 1)h) = x(tk + h) = Ax(tk) + B̄1,bω̄(tk) + B̄2,bν̄(tk)

(5)

where

ω̄(tk) , col{ω(tk), ω(tk + h), · · · , ω(tk + (b− 1)h)},

ν̄(tk) , col{ν(tk), ν(tk + h), · · · , ν(tk + (b− 1)h)},

B̄j,1 , [Ab−1Bj Ab−2Bj · · · ABj Bj],

B̄j,2 , [Ab−2Bj Ab−3Bj · · · Bj 0], · · · ,

B̄j,b−1 , [ABj Bj 0 · · · 0
︸ ︷︷ ︸

b−2

], B̄j,b , [Bj 0 · · · 0
︸ ︷︷ ︸

b−1

], (j = 1, 2).

Based on the quantized measurement signalȳ(tk) and system (5), the following estimator is constructed:






x̂(tk+1) = Abx̂(tk) +H1

(

ȳ(tk)− Ξ̄Cx̂(tk)
)

x̂(tk+1 − h) = Ab−1x̂(tk) +H2

(

ȳ(tk)− Ξ̄Cx̂(tk)
)

...

x̂(tk+1 − (b− 1)h) = Ax̂(tk) +Hb

(

ȳ(tk)− Ξ̄Cx̂(tk)
)

ẑ(tk − ih) = Lx̂(tk − ih), (i = 0, 1, 2, · · · , b− 1)

(6)

wherex̂(tk−ih) ∈ R
nx (i = 0, 1, 2, · · · , b−1) are the estimated state,ẑ(tk−ih) ∈ R

nz (i = 0, 1, 2, · · · , b−

1) are the estimated output, andH̺ (̺ = 1, 2, · · · , b) are the estimator gains to be designed.
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Denoting

η(tk) , col{x(tk), x(tk − h), · · · , x(tk − (b− 1)h)}, e(tk − ih) , x(tk − ih)− x̂(tk − ih),

eη(tk) , col{e(tk), e(tk − h), · · · , e(tk − (b− 1)h)}, ez(tk − ih) , z(tk − ih)− ẑ(tk − ih),

z̃e(tk) , col{ez(tk), ez(tk − h), · · · , ez(tk − (b− 1)h)}, β̃s(tk) , βs(tk)− β̄s,

d(tk) , col{ξ(tk), ω̄(tk)}, Ā1 , col{Ab, Ab−1, · · · , A}, Â , [Ā1 0 · · · 0
︸ ︷︷ ︸

b−1

],

Ĥ , col{H1, H2, · · · , Hb}, I , [I 0 · · · 0
︸ ︷︷ ︸

b−1

], A , Â− ĤΞ̄CI, C , −ĤF (tk)ΛΞ̄CI,

Ās , −ĤCsI, C̄s , −ĤF (tk)ΛCsI, B̂j , col{B̄j,1, B̄j,2, · · · , B̄j,b−1, B̄j,b},

B1 ,

[

−ĤD B̂1

]

, B̄1 ,

[

−ĤF (tk)ΛD 0
]

, B2 , B̂2, L̂ , diag{L, L, · · · , L
︸ ︷︷ ︸

b

},

(i = 0, 1, 2, · · · , b− 1; j = 1, 2; s = 1, 2, · · · , m),

and using the lifting technique, the dynamics of estimationerror can be obtained from (5) and (6) as

follows:






eη(tk+1) = Aeη(tk) +
{

C +
m∑

s=1

β̃s(tk)(Ās + C̄s)
}

η(tk) + (B1 + B̄1)d(tk) + B2ν̄(tk)

z̃e(tk) = L̂eη(tk)

(7)

and ν̄(tk) satisfies the following relationship:

E{ν̄(tk)} = 0, E{ν̄(tk)ν̄
T (ti)} = 0 (k 6= i), E{ν̄(tk)ν̄

T (tk)} = diag
{

R, · · · , R
︸ ︷︷ ︸

b

}

, R. (8)

By denotingẽ(tk) , col{eη, η(tk)}, H̄ , col{−Ĥ, 0}, C̄ ,

[

0 ΛΞ̄CI
]

, C̄s ,

[

0 CsI
]

, D̄ ,
[

ΛD 0
]

, (s = 1, 2, · · · , m), we have the following augmented system:







ẽ(tk+1) =
{

(A + C ) +
m∑

s=1

β̃s(tk)(Ās + C̄s)
}

ẽ(tk) + (B1 + B̄1)d(tk) + B2ν̄(tk)

z̃e(tk) = L ẽ(tk)

(9)

where

A , diag{A, Â}, C , H̄F (tk)C̄, Ās , H̄C̄s, C̄s , H̄F (tk)ΛC̄s (s = 1, 2, · · · , m),

B1 ,

[

−ĤD B̂1

0 B̂1

]

, B2 ,

[

B̂2

B̂2

]

, B̄1 , H̄F (tk)D̄, L , [L̂ 0 · · · 0
︸ ︷︷ ︸

b

].

Remark 2:So far, by using the lifting technique, the model (9) for NMSshave been obtained. Com-
paring with the models of NMSs in [20], [37], model (9) exhibits two distinguished features: i) both

the quantization and probabilistic sensor failures are considered and therefore the model (9) is quite

comprehensive to better reflect the networked environment;ii) the coefficients in model (3) are governed
by individual random variables taking value on[0, 1] and such representations include the widely studied

Bernoulli distribution (see e.g. [20], [37]) as a special case.

Before proceeding further, we introduce the following definition.
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Definition 1: [36] The augmented system (9) is said to be exponentially mean-square stable if, with

d(tk) = 0 and ν̄(tk) = 0, there exist constantsα ≥ 1 and~ ∈ (0, 1) such that

E{‖ẽ(tk)‖
2} ≤ α~tkE{‖ẽ(t0)‖

2}

The main purpose of this paper is to design the estimator in the form of (6) such that the following

requirements are satisfied simultaneously:

(a) the augmented system (9) is exponentially mean-square stable;
(b) under zero-initial condition, the estimation errorz̃e(tk) with respect to the energy bounded distur-

banced(tk) satisfies
∞∑

k=0

E

{

‖z̃e(tk)‖
2
}

< γ2
∞∑

k=0

E

{

‖d(tk)‖
2
}

(10)

whereγ is a given disturbance attenuation level;
(c) the individual steady-state estimation error varianceE

(r)
e satisfies

E (r)
e , lim

k→∞

E

{

er(tk)e
T
r (tk)

}

≤ σ2
r (r = 1, 2, · · · , nx) (11)

whereer(tk) is the rth entry of the vectore(tk) , E (r)
e stands for the steady-state variance of the

rth state estimation error andσ2
r > 0 denotes the prespecified variance constraint on steady-state

estimation errorer(tk) (r = 1, 2, · · · , nx).

III. M AIN RESULTS

A. H∞ Performance

The following theorem gives a sufficient condition for the exponential mean-square stability as well as
H∞ performance constraint of the augmented system (9).

Theorem 1:For the given disturbance attenuation levelγ > 0 and estimator gainH, the augmented

system (9) is exponentially mean-square stable and simultaneously satisfies theH∞ performance constraint

(10) if there exists a positive definite matrixP such that the following matrix inequality

Φ ,

[

Γ + L TL (A + C )TP(B1 + B̄1)

∗ (B1 + B̄1)
TP(B1 + B̄1)− γ2I

]

< 0 (12)

holds, whereΓ , (A + C )TP(A + C ) +
∑m

s=1
˜̄β2
s (Ās + C̄s)

TP(Ās + C̄s)−P.

Proof: Choose the following Lyapunov function:

V (ẽ(tk)) = ẽT (tk)P ẽ(tk). (13)

By calculating the difference ofV (ẽ(tk)) along the trajectory of the augmented system (9) withd(tk) = 0

and ν̄(tk) = 0, and taking the mathematical expectation, one has

E

{

△V (ẽ(tk))
}

= E

{

ẽT (tk+1)P ẽ(tk+1)− ẽT (tk)P ẽ(tk)
}

= E

{

ẽT (tk)
[(

(A + C ) +

m∑

s=1

β̃s(tk)(Ās + C̄s)
TP
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×
(

(A + C ) +

m∑

s=1

β̃s(tk)(Ās + C̄s)
)

− P
]

ẽ(tk)
}

= ẽT (tk)
{

(A + C )TP(A + C ) +
m∑

s=1

˜̄β2
s (Ās + C̄s)

TP(Ās + C̄s)− P
}

ẽ(tk)

= ẽT (tk)Γẽ(tk). (14)

We can obtain from (12) thatΓ < 0 and, subsequently,

E

{

△V (ẽ(tk))
}

≤ −λmin(−Γ)‖ẽ(tk)‖
2.

Hence, by following the similar analysis in [38], the augmented system (9) is exponentially mean-square
stable.

Next, based on the zero initial condition, let us establish theH∞ performance constraint of augmented
system (9) withν̄(tk) = 0 by the following derivation:

E{△V (ẽ(tk))} + E{z̃Te (tk)z̃e(tk)} − γ2
E{dT (tk)d(tk)

}

= ẽT (tk){Γ + L
T
L }ẽ(tk) + 2ẽT (tk){(A + C )TP(B1 + B̄1)}d(tk)

+dT (tk){(B1 + B̄1)
TP(B1 + B̄1)− γ2I}d(tk)

= ϑT (tk)Φϑ(tk) (15)

whereϑ(tk) , col{ẽ(tk), d(tk)}. Furthermore, by using the Schur Complement Lemma to (12), wehave

Φ < 0 implying

E{△V (ẽ(tk))}+ E{z̃Te (tk)z̃e(tk)} − γ2
E{dT (tk)d(tk)} < 0

for all nonzerod(tk).

By considering the zero initial condition, the above inequality indicates that
∞∑

k=0

E{z̃Te (tk)z̃e(tk)} < γ2

∞∑

k=0

E{dT (tk)d(tk)}

which is equivalent to (10). The proof of this theorem is now complete.

B. Variance Analysis

The following theorem presents sufficient conditions that guarantee the exponential mean-square stability

of the augmented system (9) and, at the same time, enforce theindividual steady-state estimation error

variance constraints.
Theorem 2:For the given steady-state variance upper boundsσ2

r (r = 1, 2, · · · , nx) and estimator gain

H, the augmented system (9) is exponentially mean-square stable and simultaneously satisfies the steady-

state variance constraint (11) if there exists a positive definite matrix Q such that the following matrix
inequalities

(A + C )Q(A + C )T +
m∑

s=1

˜̄β2
s (Ās + C̄s)Q(Ās + C̄s)

T −Q+ B2RB
T
2 < 0 (16)

IrĪℓQĪT
ℓ I

T
r ≤ σ2

r (r = 1, 2, · · · , nx; ℓ = 1, 2, · · · , b) (17)
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hold, whereĪℓ = [0 · · · 0
︸ ︷︷ ︸

ℓ−1

I 0 · · · 0
︸ ︷︷ ︸

2b−ℓ

] andIr = [0 · · · 0
︸ ︷︷ ︸

r−1

1 0 · · · 0
︸ ︷︷ ︸

nx−r

].

Proof: First of all, it follows from (16) that

(A + C )Q(A + C )T +

m∑

s=1

˜̄β2
s (Ās + C̄s)Q(Ās + C̄s)

T −Q < −B2RB
T
2 < 0. (18)

Based on (18, it can be inferred from [35] that the augmented system (9) is exponentially mean-square

stable and, subsequently, the steady-state covarianceQ̂ defined by

Q̂ , lim
k→∞

E

{

ẽ(tk)ẽ
T (tk)

}

. (19)

exists and satisfies the following discrete-time modified Lyapunov equation:

(A + C )Q̂(A + C )T +

m∑

s=1

˜̄β2
s (Ās + C̄s)Q̂(Ās + C̄s)

T − Q̂+ B2RB
T
2 = 0. (20)

Subtracting (20) from (18) gives

(A + C )(Q− Q̂)(A + C )T +
m∑

s=1

˜̄β2
s (Ās + C̄s)(Q− Q̂)(Ās + C̄s)

T − (Q− Q̂) < 0 (21)

which indicates from [35] thatQ− Q̂ ≥ 0.
Finally, considering the definitions of (11) and (19), we canobtain that

E (r)
e , lim

k→∞

E{er(tk)e
T
r (tk)} , lim

k→∞

E{Ire(tk)e
T (tk)I

T
r }

, Ir

{

lim
k→∞

E{Īℓẽ(tk)ẽ
T (tk)Ī

T
ℓ }

}

IT
r

, IrĪℓQ̂ĪT
ℓ I

T
r ≤ IrĪℓQĪT

ℓ I
T
r (22)

Therefore, matrix inequality (17) indicates that the requirement (c) is also met and the proof is now
complete.

To conclude the above analysis, we present a theorem which intends to take both theH∞ performance

and the variance constraint into consideration in a unified framework. Before giving our main result, we
introduce the following well-known lemma.

Lemma 1: [2] Let Ω = ΩT , S andU be real matrices with appropriate dimensions, and matrixF (·)

satisfiesF (·)F T (·) ≤ I, then
Ω + UF (·)M +MTF T (·)UT < 0 (23)

if and only if there exists a positive scalarε such that

Ω +
1

ε
UUT + εMTM < 0 (24)

or equivalently 




Ω U εMT

∗ −εI 0

∗ ∗ −εI




 < 0 (25)

For convenience of later development, we denote

P̆ , diag
{

P1, P2, · · · , P2b

}

, P̆ , diag{P̆, · · · , P̆
︸ ︷︷ ︸

m

}, W , diag{W,W, · · · ,W
︸ ︷︷ ︸

b

},
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W , diag{W,W}, Ĥ , col{H1, · · · ,Hb}, Hs , col{0, · · · , 0
︸ ︷︷ ︸

s−1

,−Ĥ, 0, · · · , 0
︸ ︷︷ ︸

m−s

},

H , col{0, 0, 0,−Ĥ}, W A = diag
{

WÂ− ĤΞ̄CI,WÂ
}

, W Ās =

[

0 −ĤCsI

0 0

]

,

W B1 =

[

−ĤD WB̂1

0 WB̂1

]

, ˆ̄X T , [ ˜̄β1(W Ā1)
T ˜̄β2(W Ā2)

T · · · ˜̄βm(W Ām)
T ],

ˆ̄̄
Σ1 ,

[
ˆ̄Σ1

ˆ̄Σ2

∗ P̆ − 2W

]

, ˆ̄Σ1 ,






−P̆ 0 L T

∗ −γ2I 0

∗ ∗ −I




 , ˆ̄Σ2 , col{(W A )T , (W B1)

T , 0},

ˆ̄̄
Σ3 , col{ ˆ̄X T , 0, 0, 0},

ˆ̄̄
Σ4 , [H ε

(1)
1 CT H ε

(1)
2 DT ], ¯̄Σ5 , [ ¯̄Σ5,1

¯̄Σ5,2 · · · ¯̄Σ5,m],

¯̄Σ5,s , [0 ǫ(1)s CT
s ],

ˆ̄̄
Σ6 , [

ˆ̄̄
Σ6,1

ˆ̄̄
Σ6,2 · · ·

ˆ̄̄
Σ6,m],

ˆ̄̄
Σ6,s , [ ˜̄βsHs 0], W̆ , diag{W , · · · ,W

︸ ︷︷ ︸

m

},

ˆ̄Π2 ,








P̆ − 2W W A
ˆ̄Y W B2

∗ −P̆ 0 0

∗ ∗ −P̆ 0

∗ ∗ ∗ −R−1







, ˆ̄Y , [ ˜̄β1(W Ā1)

˜̄β2(W Ā2) · · · ˜̄βm(W Ām)],

M̄ , col{0, C̄, 0, · · · , 0
︸ ︷︷ ︸

m+1

}, M̄s , col{0, · · · , 0
︸ ︷︷ ︸

s+1

,ΛC̄s, 0, · · · , 0
︸ ︷︷ ︸

m+1−s

}, Û , col{−Ĥ, 0, · · · , 0
︸ ︷︷ ︸

m+2

},

ˆ̄Π3 , [Û ε
(2)
1 M̄T ], ˆ̄Π4 , [ ˆ̄Π4,1

ˆ̄Π4,2 · · · ˆ̄Π4,m],
ˆ̄Π4,s , [ ˜̄βsÛ ǫ(2)s M̄T

s ],

˘̄ε(1) , diag{ε
(1)
1 , ε

(1)
1 , ε

(1)
2 , ε

(1)
2 }, ˘̄ε(2) , diag{ε

(2)
1 , ε

(2)
1 }, ˘̄ǫ(j) , diag{ǭ

(j)
1 , ǭ

(j)
2 , · · · , ǭ(j)m },

R−1 , diag{R−1, · · · , R−1

︸ ︷︷ ︸

b

}, (s = 1, 2, · · · , m; j = 1, 2).

Theorem 3:For the given disturbance attenuation levelγ > 0 and steady-state variance upper bounds

σ2
r (r = 1, 2, · · · , nx), the augmented system (9) is exponentially mean-square stable while achieving the

H∞ performance constraint (10) for any nonzerod(tk) and the steady-state variance constraint (11) for
ν̄(tk), if there exist matricesH̺ (̺ = 1, 2, · · · , b), W > 0 andPh > 0 (h = 1, 2, · · · , 2b) such that the

following linear matrix inequalities (LMIs) hold:








ˆ̄̄
Σ1

ˆ̄̄
Σ3

ˆ̄̄
Σ4

¯̄Σ5

∗ P̆ − 2W̆ 0
ˆ̄̄
Σ6

∗ ∗ −˘̄ε(1) 0

∗ ∗ ∗ −˘̄ǫ(1)









< 0 (26)






ˆ̄Π2
ˆ̄Π3

ˆ̄Π4

∗ −˘̄ε(2) 0

∗ ∗ −˘̄ǫ(2)




 < 0 (27)

[

−σ2
r Ir

∗ −Pℓ

]

< 0 (r = 1, 2, · · · , nx; ℓ = 1, 2, · · · , b) (28)
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Furthermore, if above inequalities are feasible, the desired estimator gains can be determined by

H̺ = W−1H̺ (̺ = 1, 2, · · · , b). (29)

Proof: By using the Schur Complement Lemma, (12) is equivalent to the following inequality:

Σ ,






Σ1 Σ2 Σ3

∗ −P−1 0

∗ ∗ −P−1




 < 0 (30)

where

Σ1 ,






−P 0 L
T

∗ −γ2I 0

∗ ∗ −I




 , Σ2 , col{A T + C

T ,BT
1 + B̄

T
1 , 0}, Σ3 , col{X T , 0, 0},

X T , [ ˜̄β1(Ā
T
1 + C̄

T
1 ) ˜̄β2(Ā

T
2 + C̄

T
2 ) · · · ˜̄βm(Ā

T
m + C̄

T
m)], P

−1 , diag
{

P−1, · · · ,P−1

︸ ︷︷ ︸

m

}

.

In order to cope with the uncertainty factorF (•), we rewrite (30) in the form of (23) as follows:

Σ̄ + ˆ̄HF (tk)Ĉ + ĈTF T (tk)
ˆ̄HT + ˆ̄HF (tk)D̂ + D̂TF T (tk)

ˆ̄HT

+

m∑

s=1

˜̄βs
ˆ̄HsF (tk)Ĉs +

m∑

s=1

˜̄βsĈ
T
s F

T (tk)
ˆ̄HT
s < 0 (31)

where

Σ̄ ,






Σ1 Σ̄2 Σ̄3

∗ −P−1 0

∗ ∗ −P−1




 , Σ̄2 , col{A T ,BT

1 , 0}, Σ̄3 , col{X̄ T , 0, 0},

X̄ T , [ ˜̄β1Ā
T
1

˜̄β2Ā
T
2 · · · ˜̄βmĀ

T
m ], H , col{0, 0, 0, H̄}, ˆ̄H , col{H, 0, · · · , 0

︸ ︷︷ ︸

m

},

C , [C̄ 0 0 0], Ĉ , [C 0 · · · 0
︸ ︷︷ ︸

m

], D , [0 D̄ 0 0], D̂ , [D 0 · · · 0
︸ ︷︷ ︸

m

],

Hs , col{0, · · · , 0
︸ ︷︷ ︸

s−1

, H̄, 0, · · · , 0
︸ ︷︷ ︸

m−s

}, ˆ̄Hs , col{0, 0, 0, 0, Hs},

Cs , [ΛC̄s 0 0 0], Ĉs , [Cs 0 · · · 0
︸ ︷︷ ︸

m

], (s = 1, 2, · · · , m).

Applying Lemma 1 to (31), it follows that (31) holds if and only if there exist positive scalars

ε
(1)
1 , ε

(1)
2 , ǫ

(1)
s (s = 1, 2, · · · , m) such that the following matrix inequality holds

¯̄Σ ,








¯̄Σ1
¯̄Σ3

¯̄Σ4
¯̄Σ5

∗ −P−1 0 ¯̄Σ6

∗ ∗ −˘̄ε(1) 0

∗ ∗ ∗ −˘̄ǫ(1)







< 0 (32)

where

¯̄Σ1 ,

[

Σ̄1 Σ̄2

∗ −P−1

]

, ¯̄Σ3 , col{Σ̄3, 0},
¯̄Σ4 , [H ε

(1)
1 CT H ε

(1)
2 DT ],
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¯̄Σ6 , [ ¯̄Σ6,1
¯̄Σ6,2 · · · ¯̄Σ6,m],

¯̄Σ6,s , [ ˜̄βsHs 0], (s = 1, 2, · · · , m).

After using Schur Complement Lemma to (16), we have

Π1 ,








−Q A + C Y B2

∗ −Q−1 0 0

∗ ∗ −Q−1 0

∗ ∗ ∗ −R−1







< 0 (33)

whereQ−1 , diag
{

Q−1, · · · ,Q−1

︸ ︷︷ ︸

ℓ+1

}

, Y , [ ˜̄β1(Ā1 + C̄1)
˜̄β2(Ā2 + C̄2) · · · ˜̄βm(Ām + C̄m)].

Similarly, by denotingQ = P−1, we rewrite (33) in the form of (23) as follows:

Π2 + UF (tk)M̄ + M̄TF T (tk)U
T +

m∑

s=1

˜̄βsUF (tk)M̄s +

m∑

s=1

˜̄βsM̄
T
s F

T (tk)U
T < 0 (34)

where

Π2 ,








−P−1 A Ȳ B2

∗ −P 0 0

∗ ∗ −P 0

∗ ∗ ∗ −R−1







, Ȳ , [ ˜̄β1Ā1

˜̄β2Ā2 · · · ˜̄βmĀm], U , col{H̄, 0, · · · , 0
︸ ︷︷ ︸

m+2

}.

By applying Lemma 1 again to (34), we know that (34) holds if and only if there exist positive scalars
ε
(2)
1 , ǫ

(2)
s (s = 1, 2, · · · , m) such that the following LMI holds:

Π̄2 ,






Π2 Π3 Π4

∗ −˘̄ε(2) 0

∗ ∗ −˘̄ǫ(2)




 < 0 (35)

where

Π3 , [U ε
(2)
1 M̄T ], Π4 , [Π4,1 Π4,2 · · · Π4,m], Π4,s , [ ˜̄βsU ǫ(2)s M̄T

s ], (s = 1, 2, · · · , m).

To this end, in order to design the estimator by Matlab LMI Toolbox to effectively, we assumĕP ,

diag{P1, P2, · · · , P2b} and letH̺ , WH̺ (̺ = 1, 2, · · · , b). By noting W > 0 and Ph > 0 (h =

1, 2, · · · , 2b), we have(Ph −W )P−1
h (Ph −W ) ≥ 0, which is equivalent to

−WP−1
h W ≤ Ph − 2W (h = 1, 2, · · · , 2b)

Applying the congruence transformationdiag
{

I, I, I,W , · · · ,W
︸ ︷︷ ︸

m+1

, I, · · · , I
︸ ︷︷ ︸

2m+4

}

to (32), we get (26). Fur-

ther applying the congruence transformationsdiag
{

W , I, · · · , I
︸ ︷︷ ︸

3m+b+2

}

to (35), we obtain (27). At the same

time, the estimator gain can be expressed as (29).
On the other hand, fromQ = P−1, we assumeQ̆ , P̆−1 , diag{P−1

1 , P−1
2 , · · · , P−1

2b }, and rewrite

(17) as follows:

IrĪℓQ̆ĪT
ℓ I

T
r = IrĪℓP̆

−1ĪT
ℓ I

T
r = IrP

−1
ℓ IT

r ≤ σ2
r (r = 1, 2, · · · , nx; ℓ = 1, 2, · · · , b) (36)

by using Schur Complement Lemma to (36), we have (28), which concludes the proof from Theorems 1

and 2.
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Remark 3: In this paper, the variance-constrained state estimation problem is investigated for a class of

NMSs with quantization and probabilistic sensor failures.The main features of our results are twofold: i)

the quantified relationships have been established among the H∞ performance level, the upper bounds on
the steady-state variances of the estimation errors, the quantizer parameters, the sensor failure probabilities

and the multi-rate multipleb of the sampling periodh; and ii) the proposed approach has offered much

flexibility in making compromise between the steady-state variances and theH∞ performance, while the
essential multiple objectives can all be achieved simultaneously in the framework of NMSs.

In order to show the combined effect of the considered variance constraints, quantizer parameters, sensor

failure probabilities and the multi-rate sampling, we now discuss the following two optimization problems

for given quantization densityχ(s) (s = 1, 2, · · · , m), multi-rate multipleb, sensor failure parameters̄βs

and ˜̄β2
s (s = 1, 2, · · · , m).

P1: For given steady-state estimation error variance-constrained boundsσ2
1, · · · , σ

2
nx

, the optimalH∞

estimator design problem:

min
W,H1,··· ,Hb,P1,··· ,P2b

γ2 subject to (26)− (28). (37)

P2: For givenH∞ performance levelγ, the minimum weighted variance-constrained estimator design

problem:

min
W,H1,··· ,Hb,P1,··· ,P2b

nx∑

r=1

crσ
2
r subject to (26)− (28). (38)

wherecr (r = 1, 2, · · · , nx) are given weighting coefficients for variances and satisfy
∑nx

r=1 cr = 1.

IV. A NUMERICAL EXAMPLE

In this section, similar to [20], [37], a maneuvering targettracking system is presented to demonstrate

the effectiveness of the proposed design scheme, and the involved system has the following state-space
model:

x(Tk+1) =

[

0.3 h

0 0.4

]

x(Tk) +

[
h
2

0.1

]

ω(Tk) +

[

0.1
h2

2

]

ν(Tk) (39)

z(Tk) =
[

0.5 0.4
]

x(Tk) (40)

whereh is the sampling period.x(Tk) = col{xp(Tk), xv(Tk)} is the system state,xp(Tk) andxv(Tk) are
the position and velocity of the target at timeTk, respectively.

In a networked maneuvering target tracking system where thesensor signals are transmitted through

communication networks, it is often the case that the measurement outputs are quantized before being
transmitted to the estimator. At the same time, the measurements received by sensors could be neither

completely missing nor completely successful, but only part of the information can go through. Suppose

that only the position of the maneuvering target is measurable. Then, we use the following equation to
model the measurements with quantization effects and probabilistic sensor failures at timetk:

ȳ(tk) = q
(

β(tk)
[

1 0
]

x(tk) + 0.5ξ(tk)
)

(41)
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The parameters of the logarithmic quantizerq(·) are chosen asu0 = 2, χ = 0.4, and the probability

density function of sensor failure coefficient is taken as

f(β(tk)) =

{

10β(tk), 0 ≤ β(tk) ≤ 0.20;

−2.50(β(tk)− 1), 0.20 < β(tk) ≤ 1.

then the mathematical expectation̄β and the variancẽ̄β2 can be calculated as0.4000 and 0.0467,

respectively.

Here, the sampling periodh is set as0.5s and the variance of Gaussian white noiseν(Tk) is taken as
R = 0.3. The disturbance inputω(Tk) and the measurement noiseξ(tk) are chosen as following:

ω(Tk) = 0.1e−0.05Tk sin(Tk), ξ(tk) =
e−0.05tk

0.2tk + 1
.

Actually, the system under consideration is a two-rate sampled-data one, that is, the state estimation

for both the position and the velocity is conducted at a fast rate with the periodh, while the sensor

samples the target position at a slow one with the periodbh. We aim to design the estimator, by using
the quantized measurement, to estimate the state (position) of the maneuvering target subject to bounded

energy disturbance and Gaussian white noise. Now, let us examine the following two cases.

Case 1. The variance constraints on the steady-state estimation error are set asσ1 = 0.6 andσ2 = 0.4. By
using the MATLAB LMI toolbox and considering the optimization problem (P1), we obtain the minimum

disturbance attenuation levelγ and corresponding estimator gainsH̺ (̺ = 1, 2, · · · , b) in Table I with

different multi-rate multipleb. Take the initial state of (1) and its estimation asx(T0) = col{−0.1, 0.1}

and x̂(t0) = col{−0.2, 0.2}, respectively. The estimated errorez(tk) for the position of the maneuvering

target is plotted in Fig.2.

TABLE I

THE PERMITTED MINIMUM γ AND CORRESPONDING ESTIMATOR GAINSH̺ (̺ = 1, 2, · · · , b).

γ H̺

b = 2 0.7734 H1 =

[

0.0288

−0.0770

]

,H2 =

[

−0.0040

0.0822

]

b = 3 0.8073 H1 =

[

0.0105

−0.0291

]

,H2 =

[

0.0009

−0.0026

]

,H3 =

[

0.0724

0.0715

]

b = 4 0.8472 H1 =

[

0.0066

−0.0186

]

,H2 =

[

0.0007

−0.0019

]

,H3 =

[

0.0428

−0.0055

]

,H4 =

[

0.0229

0.0346

]

b = 5 0.8728 H1 =

[

0.0096

−0.0271

]

,H2 =

[

0.0004

−0.0011

]

,H3 =

[

0.0266

−0.0159

]

,H4 =

[

0.0190

0.0070

]

, H5 =

[

0.0146

0.0121

]

Case 2. For the givenH∞ performance levelγ = 0.95 and weighting coefficientsc1 = 0.4, c1 = 0.6,

we now deal with the problem (P2). Solving the optimization problem (38), we obtain the minimum

individual variance valuesσr (r = 1, 2) and corresponding estimator gainsH̺ (̺ = 1, 2, · · · , b) in Table
II. Choosing the same initial values as Case I, the simulation results are shown in Figs. 3-4, which display

the actual steady-state variance fore1(tk) = x1(tk)− x̂1(tk) ande2(tk) = x2(tk)− x̂2(tk), respectively.

Tables I-II demonstrate the relationship betweenH∞ performance levelγ and variance upper bounds
σr (r = 1, 2) as well as the multi-rate multipleb of the sampling periodh. It can be observed from Table
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Fig. 2. Estimation errorez(tk) for different b.
TABLE II

THE MINIMUM VARIANCE VALUES σr (r = 1, 2) AND CORRESPONDING ESTIMATOR GAINSH̺ (̺ = 1, 2, · · · , b).

σ1 σ2 H̺

b = 2 0.2368 0.0341 H1 =

[

0.0814

−0.2221

]

,H2 =

[

−0.0221

0.1561

]

b = 3 0.2759 0.0389 H1 =

[

0.0323

−0.0907

]

,H2 =

[

0.0018

−0.0051

]

,H3 =

[

0.0497

0.0913

]

b = 4 0.3011 0.0418 H1 =

[

0.0252

−0.0712

]

,H2 =

[

0.0008

−0.0022

]

,H3 =

[

0.0254

0.0245

]

,H4 =

[

0.0194

0.0336

]

b = 5 0.3166 0.0436 H1 =

[

0.0223

−0.0631

]

,H2 = 10−3
×

[

0.2863

−0.8104

]

,H3 =

[

0.0154

0.0083

]

,H4 =

[

0.0135

0.0142

]

,H5 =

[

0.0108

0.0168

]

I and Table II that, with increasedb, the disturbance attenuation performance deteriorates and the variance

upper bounds become bigger, and these observations can alsobeen confirmed from Figs. 3-4, which are

in agreement with the engineering practice.

V. CONCLUSION

In this paper, the variance-constrainedH∞ state estimation problem has been investigated for a class

of networked multi-rate systems. The system under consideration involves network-induced probabilistic
sensor failures and measurement quantization. The state estimator has been designed such that both

H∞ performance and variance constraints on steady-state estimation error are achieved. By utilizing the

stochastic analysis techniques, sufficient conditions have been established in the form of matrix inequalities
reflecting the relationship amongH∞ performance level, variance upper bounds, quantizer parameters,

sensor failure parameters and multi-rate multiple. The estimator gains matrix have been characterized

by means of the feasibility of certain matrix inequalities.Two additional optimization problems have
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Fig. 3. The actual steady-state estimation error variance for e1(tk) for different b.
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Fig. 4. The actual steady-state estimation error variance for e2(tk) for different b.

been considered with respect to theH∞ performance index and the weighted error variances. Finally, a

simulation example has been provided to show the effectiveness of the proposed estimator design scheme.
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