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Variance-Constrained State Estimation for
Networked Multi-rate Systems with Measurement
Quantization and Probabilistic Sensor Failures

Yong Zhang, Zidong Wang and Lifeng Ma

Abstract

This paper is concerned with the variance-constrainea statimation problem for a class of networked
multi-rate systems (NMSs) with network-induced probatiiti sensor failures and measurement quantization. The
stochastic characteristics of the sensor failures arergedeby mutually independent random variables over the
interval [0, 1]. By applying the lifting technique, an augmented system eh@&l established to facilitate the state
estimation of the underlying NMSs. With the aid of the statltaanalysis approach, sufficient conditions are
derived under which the exponential mean-square stalofithe augmented system is guaranteed, the prescribed
H, performance constraint is achieved and the individualavexé constraint on the steady-state estimation error
is satisfied. Based on the derived conditions, the address&ihce-constrained state estimation problem of NMSs
is recast as a convex optimization one that can be solvedheiasémi-definite program method. Furthermore,
the explicit expression of the desired estimator gains iginbd by means of the feasibility of certain matrix
inequalities. Two additional optimization problems aresidered with respect to th€ ., performance index and
the weighted error variances. Finally, a simulation exaniplutilized to illustrate the effectiveness of the progbse
state estimation method.

Index Terms

Networked multi-rate systems; Variance constraifit,, state estimation; Measurement quantization; Proba-
bilistic sensor failures.

I. INTRODUCTION

The past few decades have undergone steady revolutioméesminew generations of the information
and communication technologies. In particular, networ&edtrol systems (NCSs) have received consid-
erable research attention because of the urgent need toereéde cost of installation and facilitate the
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implementation. It is well known that the devices in NCSs amatually connected via communication
networks which are of limited capacity. Therefore, varimegwork-induced phenomena such as commu-
nication delay and data missing have inevitably emergedchwhould all be taken into account in order
to avoid the performance degradation of the NCSs. Consdguénis not surprising that, the control
and filtering/state estimation problems of networked syst&vith communication delays and/or missing
measurements have been reported (see e.g. [4], [7], [10], [13], [22]-[24], [29], [33], [34], [36]).

In computer-based control systems, the interface betweeplant and the estimator is often connected
via analog-to-digital (A/D) and digital-to-analog (D/Agdices, which normally leads to the quantization
process [16]. Actually, quantization error never vanisidgen the signals are processed by uniform
quantizer [19], [21] or nonuniform quantizer [5], [12], [$28], [31]. Accordingly, signal quantization is
considered as another source that has significant impadteoachievable performance of the NCSs. It is
worth pointing out that, all the references listed aboveehasen concerned with the systems with a single
sampling rate. In practice, there are various physicatiotisins on the system components such as sensors,
actuators, controllers and filters. These physical rdgiris include, but are not limited to, the resource
constraints on the power, amplitude, frequency, energycasts, and such restrictions make it extremely
difficult to adopt the single-rate sampling strategy fofafiént kinds of devices. Apart from the physical
limits, multi-rate sampling also stems from the enginegsgpecifications, for example, sampling the sensor
output at a slower rate is often acceptable for cost savirigrasas the desired accuracy is ensured. With
multi-rate sampling, one could play the trade-offs betw#®sn performance index and implementation
cost [30]. As such, the multi-rate sampled-data systeme heweived considerable research interest in
the past decades, see [17], [20], [37].

State estimation or filtering has long been a research tdgimdamental importance in signal process-
ing, communications and control applications [1], [3],,[]. Among a variety of existing approaches,
the H,, method has gained particular research attention due tajiahslity of providing a bound for the
worst-case estimation error without the need for knowledfaoise statistics. On the other hand, it is
common in practical engineering that the estimation perforce requirements are naturally expressed as
the upper bounds on estimation error variances [14]. As imeed in [26], [35], the specified variance
constraints may not be minimal, but should meet given emging requirements. Actually, variance-
constrained control or filtering theory is capable of ensyirthe traditional stability with guaranteed
upper bounds on the variances of interest and, at the saree ¢imforcing other performance indices due
to its design flexibility. As a result, the variance-consteal theory has been widely applied in solving
multi-objective control problems as well as filtering prefvs, see, e.g. [6], [27], [32].

Summarizing the above discussions, it is of both theoretio@ortance and practical significance
to examine how the inclusion of the multi-rate sampling naatdm would influence the estimation
performance of networked multi-rate systems (NMSs). Tioeee the objective of this paper is to design
the estimator for a class of NMSs with measurement quaitdizatnd probabilistic sensor failures such
that the expected exponential mean-square stability/thgperformance requirement and the prespecified
variance constraints are simultaneously guaranteed. Bylogtng stochastic analysis techniques, the
existence of the desired state estimators is investigatddsame easy-to-verify sufficient conditions are
established. Furthermore, the explicit expression ofresttir gain is characterized in terms of the feasibility
of certain matrix inequalities. Two additional optimizati problems are considered with respect to the
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H,, performance index and the weighted error variances. Finallsimulation example is provided to
show the effectiveness of the proposed estimator desigenseh

The novelties of this paper lie in the following three aspe(t) the system model is comprehensive
that covers multi-rate sampled-data dynamics, probatilisensor failures and measurement quantization,
thereby better reflecting the reality within networked emwinents; (2) by using the lifting technique, the
variance-constrainedd,, state estimation problem for NMSs is investigated via a eoryptimization
technique that caters for sensor failure probabilities aphntization levels; and (3) sufficient conditions
are established to quantify the relationships amongfihe performance, upper bounds on the steady-state
estimation error, the quantizer parameters, the statdtioformation on the sensor failures as well as
the multi-rate multiple

Notation The notation used here is fairly standard except where wikerstatedR™ andR"*™ denote,
respectively, the:-dimensional Euclidean space and the set ofnall m real matrices/;[0, o) is the
space of square summable sequences. The notationY (respectively,X > Y), where X andY are
real symmetric matrices, means that- Y is positive semi-definite (respectively, positive defihite{-}
stands for the expectation of the stochastic variable(* and I denote, respectively, the zero matrix of
compatible dimensions and the identity matrix of compatidiimensions. In symmetric block matrices or
complex matrix expressions, we utilize asterisko represent a term that is induced by symmetry, and
diag{- - - } stands for a block-diagonal matril{- - - } represents a column vector composed of elements.
| @ || refers to the Euclidean norm for vectors.

II. PROBLEM FORMULATION

Consider the following class of discrete time systems:

wherez (7)) € R"* represents the state vectof,[},) € R" is the signal to be estimated|7}) € R"
is a disturbance input with bounded energy which belong&fth ), andv(7}) € R™ is a zero mean

Gaussian white noise sequence with covariaRce 0.
The measurement with probabilistic sensor failures is riesd by

y(tn) = E(te)C(te) + DE(tk) = Y By(t) Comty) + DE(t) 3

s=1
wherey(t,) € R™ is the measured output vect&(t,) is a diagonal matrix governing the probabilistic
sensor failures described by

E(tk) £ dlag{ﬁl(tk>7 B2(tk>7 e 7ﬁm<tk>}

with 5,(t;) (s = 1, ..., m) beingm independent random variables which are also independemt:ft7},),
and the matrixC, is defined by

Cy 2 diag{ 0,---,0,1,0,---,0}C (s =1,2,--- ,m).

s—1 m—s
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Fig. 1. An example of multi-rate sampled-data systems witB. b

It is assumed that;(¢) has the probabilistic density functigfiis,) on the interval0, 1] with known math-
ematical expectations, and varianceéf. In the sequel, we denofe= E[E(t;,)] = diag{S1, B2, -, B }-
&(tr) € R is the measurement noise which belongingg,{0, o). A, By, By, L, C' and D are known
matrices with appropriate dimensions.

Remark 1:Note that an increasing number of sensors have been imstallstructures for monitoring
and control, and sensor faults become more frequent comhparthe structure’s lifetime [18]. For small
autonomous helicopters, the fault detection problem ha#® lhevestigated in [15], where several sensor
failures have been considered such as total sensor fasituek with constant bias sensor failure, drift or
additive-type sensor failure, multiplicative-type senfilure and outlier data sensor failure. In Eq. (3),
the random variablg;(t;) taking value on the interval 1] is introduced to describe possible failure for
the s-th (s = 1, ..., m) sensor, and this kind of measurement model can include #nedslli distribution
model [36] as a special case. Actually, this sensor faultehadcounts for the multiplicative-type sensor
failures that have been discussed in [15].

For a given frame period, we make the following assumptions about the sampling deoo (1)—(3).

Assumption 1:The system state(7;) and its estimation(7},) are updated at instan®s,, and 7}, —
T.&h, k=0,1,2,---.

Assumption 2:The measuremeny(t;) from the system is sampled at instamtsand 5., — t, =
bh, k=0,1,2,---, whereb is a positive integer.

It can be seen that (1) and (2) evolve with a faster samplinggé, while the measurement dynamics
(3) is generated with a slower peridd, i.e. the measurement sampling periggs, — ¢, are integer
multiples of the periodh. Accordingly, (1)-(3) is essentially a multi-rate sampldata (MRSD) system
model. An illustration of MRSD is shown in Fig. 1 with= 3, where the system state and estimation
signal are updating with periot, and the measurements are sampled with peiad

In this paper, the quantization effect on measuremeémni is considered with the map of the quantization
process given by

g(tr) = aly(t) = col{a (v (1)), a2y (1), -+ dn(y™ (1)) }

wherey(t;) is the signal after quantization. The quantizér) is assumed to be of the logarithmic type,
that is, for eachy,(y®)(t;))(s = 1,2,--- ,m), the set of quantization levels is described by
(

= {£u” uf” = (x(s))’ués = 0,41,42, {0}, 0<x® < 1uf? >0

wherex®)(s = 1,2,---,m) is called the quantization density. Each of the quantizaiével corresponds
to a segment such that the quantizer maps the whole segmthis tguantization level. The logarithmic
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quantizerg,(-) is defined as

u?, e < y<s><t ) < u”
as(y (tr)) = < 0, (tk)
_QS(_y(S)(tk))v y(s)(tk) < 0

wheres, = hX(S; It can be easily observed from the above definition ghat' (t;)) = (1+A®(.))y® ()
holds for certainA®)(t;) satisfying A®)(¢;,) < 4.

According to the above transformation, the quantizatideot$ have been transformed into sector-
bounded uncertainties [12]. Definingy(t;) = diag{ AW (t), AP (t),---, A (t,)}, the measurement

after quantization can be expressed as

y(te) = (I + A))y(te) 4)
Denoting A £ diag{6;,8,,---,d,,} and settingF () = A(t;,)A~*, we can know thatF(t;) is a real-
valued time-varying matrix satisfying'(t,)T F(t) = F(ty)F (tx)" < 1.

Note that it is mathematically difficult to handle the vakarconstrained state estimation problem
directly for such kind of MRSD system. In the next section, ave going to convert the resulting MRSD
system into a single-rate system for technical convenience

By applying the relation (1) recursively, one obtains thikofeing equations with time scalg.:

( ZL’(t]H_l) = Abx(tk) + Bl,laj(tk) -+ 327117(15;9)
$(tk+1 — h) = x(tk + (b — 1)h) = Ab_lx(tk) -+ BLQ@(tk) + Bg,gﬁ(tk)

(5)
2(tper — (b—1)h) = z(ty + h) = Ax(ty) + Biyo(ty) + Bayv(ty)
where
w(ty) = col{w(ty),w(ty +h), - ,w(ty+(b—1)h)},
v(ty) = col{v(ty),v(ty +h), -, v(ty + (b—1)h)},
B0 £ [A"'B; A"’B; --- AB; By,
Big = [Ab—sz Ab‘3Bj - B; 0],---,
Bjyn = [AB; B; 0 ---0], By =[B; 0:---0,(j=1,2).

b—2 b—1

Based on the quantized measurement sig(ia) and system (5), the following estimator is constructed:

' #ltin) = A"3(t) + Hy (wk) ~2Ci(1))

: (6)
#(tesr = (b= 1)h) = Ad(t) + Hy (5(te) — ECa(te))
\ 2(tk—ih):L£(tk—ih) (i=0,1,2,---,b—1)

wherez(t,—ih) € R" (i =0,1,2,---,b—1) are the estimated stat&t,—ih) € R™ (i =0,1,2,--- ,b—
1) are the estimated output, ard], ( =1,2,---,b) are the estimator gains to be designed.
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Denoting
n(ty) = col{x(ty),z(ty —h), - ,x(tpy — (b—1)h)}, e(ty, —ih) 2 w(ty — ih) — &(ty — ih),
en(ty) = col{e(ty),e(ty —h), - ety — (b— 1))}, e.(ty — ih) = 2(ty —ih) — 2(ty — ih),
() 2 colfeu(ty) ex(ty —h),- - ety — (b= D)}, By(t) 2 Bu(ti) — B,
d(ty) = col{é(ty),w(tr)}, Ay £ col{A" A" .. A}, A2[4 ( bl 0],
H % col{Hy, Hy,--- H)}, T2[1 Q- 0], A2 A— HZCT, C £ —HF(t;)AZCT,
b—1
A, 2 —HCTI, C, 2 —HF(t,)ACI, B; 2 col{B;1,Bj2, -, Bjs1, Bjs},
B £ [ —HD Bl }, B, & [ —HF(t;)AD 0 ], B, 2 B,, L2diag{L,L, -, L},

b
(120’172’7b_17 j:172; 5:1,2,-..7771),

and using the lifting technique, the dynamics of estimatoror can be obtained from (5) and (6) as
follows:

m

en(tirr) = Aen(t) + {c + 3 Bult) (A, + CS)}n(tk) 4 (B + B)d(ty) + Bair(ty) -

Zo(tr) = Ley(ty)
and(t;,) satisfies the following relationship:
_ _ = V5T ()1 - 5+, —di £
E{o(te)} = 0, E{v(t)7" ()} = 0 (k #3), E(p(te)7" (4)} = diag{ B, -, R} 2R (8)
b
By denotingé(t,) 2 col{e,. n(t,)}, H 2 col{—H,0}, ' 2 [0 AZCT } o, 2 [o cz} D2
[ AD 0 ] , (s=1,2,---,m), we have the following augmented system:

e(tir) = {(«527 +6)+ > Bulte) (A + cé)}é(tk) + (B + F)d(t) + Bov(ty) ©)

Ze(ty) = Lé(ty)
where

o 2 diag{A, A}, € 2 HF(t)C, o, 2 HC, G, 2 HFt)AC, (s = 1,2, ,m),
@ 8 [ _HD B, B2

4
5 =

N @ HFth 0 --- 0]
0 B ) 1 = HE(ty) L ]

Remark 2:So far, by using the lifting technique, the model (9) for NM&s/e been obtained. Com-
paring with the models of NMSs in [20], [37], model (9) exh#iwo distinguished features: i) both
the quantization and probabilistic sensor failures aresictemed and therefore the model (9) is quite
comprehensive to better reflect the networked environm@rtie coefficients in model (3) are governed
by individual random variables taking value @n 1] and such representations include the widely studied
Bernoulli distribution (see e.g. [20], [37]) as a speciatea

Before proceeding further, we introduce the following diftom.
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Definition 1: [36] The augmented system (9) is said to be exponentiallynrsgaare stable if, with
d(tx) = 0 and(t;) = 0, there exist constants > 1 and# € (0, 1) such that

E{[le(to)[I”} < ah*E{|e(to)[1*}
The main purpose of this paper is to design the estimatorenfahm of (6) such that the following

requirements are satisfied simultaneously:

(&) the augmented system (9) is exponentially mean-squaiées
(b) under zero-initial condition, the estimation erm@it;) with respect to the energy bounded distur-
banced(t,) satisfies

iE{Hze(tkW} <72§:E{||d(tk)||2} (10)

where~ is a given disturbance attenuation level;
(c) the individual steady-state estimation error variafife satisfies

e 2 lim B{en(ti)el ()} < 0f (r=1,2,-+ ,n,) (11)

k—00

wheree,(t;) is the rth entry of the vector(t;) , 56(” stands for the steady-state variance of the
rth state estimation error angf > 0 denotes the prespecified variance constraint on steatty-sta
estimation erroke,.(tx) (r =1,2,--- ,n,).

[1l. M AIN RESULTS

A. H., Performance

The following theorem gives a sufficient condition for thgperential mean-square stability as well as
H,, performance constraint of the augmented system (9).

Theorem 1:For the given disturbance attenuation leyel 0 and estimator gairf{, the augmented
system (9) is exponentially mean-square stable and sinedtssly satisfies thH, performance constraint
(10) if there exists a positive definite matr such that the following matrix inequality

T+ 2T (o +C)P(B +B)

o £ _ _
* (%1 + %1)TP(%1 + %1) - ’}/21

<0 (12)
holds, wherel' 2 (o7 + €)TP(o +€) + S, B2 + €) P (A, + C.) — P.
Proof: Choose the following Lyapunov function:
V(e(ty)) = €' (tx) Pe(ty). (13)

By calculating the difference df (é(¢x)) along the trajectory of the augmented system (9) with) = 0
andr(t;) = 0, and taking the mathematical expectation, one has

E{AV(é(tk))} - E{éT(tkH)Pé(tkH) —éT<tk>7>é<tk>}

- E{éT(tk) [((% +6) + f: Bi(tr) (e + €,)"P
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x ((@% + )+ > Bulte) (A + Cé)) — 73} é(tk)}
= éT(tk){(szf +E)P(A +C) + i B2y + ) Py + C) — P}é(tk)

= & (tp)Te(ty). (14)
We can obtain from (12) thdt < 0 and, subsequently,
E{AV(e(t) b < —Ain (D)t

Hence, by following the similar analysis in [38], the augreehsystem (9) is exponentially mean-square
stable.

Next, based on the zero initial condition, let us establishA ., performance constraint of augmented
system (9) with(¢;) = 0 by the following derivation:

B{AV(E®)} + E{E ()% ()} — BT (0)d(5) )
= (Wl + LT LYe(ty) + 28" (1) {(o +€)P(%1 + %) }d(1)
+d" () { (B, + B P (B, + B.) — v 1}d(ty,)
= 9T () DV(ty) (15)

whered(t;) = col{é(t;),d(t;)}. Furthermore, by using the Schur Complement Lemma to (12)have
® < 0 implying
E{AV(é(tx)} + B{2 (te)Ze(tr)} — vE{d" (tx)d(t)} <O

for all nonzerod(ty).
By considering the zero initial condition, the above indiyandicates that

Y EE(t)Z(t)} <27 Y E{d" (t)d(t)}

which is equivalent to (10). The proof of this theorem is haywnplete. [ |
B. Variance Analysis

The following theorem presents sufficient conditions thetrgntee the exponential mean-square stability
of the augmented system (9) and, at the same time, enforcedhedual steady-state estimation error
variance constraints.

Theorem 2:For the given steady-state variance upper bourfds = 1,2, --- ,n,) and estimator gain
H, the augmented system (9) is exponentially mean-squastesaad simultaneously satisfies the steady-
state variance constraint (11) if there exists a positivitndle matrix @ such that the following matrix
inequalities

m

(o + ) + )+ B2+ C)A,+C) — Q+ BRAL < 0 (16)

s=1

erzgfglffgf (T:17277n$7€:17277b> (17)
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hold, whereZ, =0 --- 0 I 0 ---0landZ,=1[0 ---0 1 0 --- 0]

r—1 Ngp—T

{—1 2b—¢
Proof: First of all, it follows from (16) that

(o +6)QA +6)" + Y B2+ C) Qs +C) — Q < ~ BRI <0 (18)
s=1
Based on (18, it can be inferred from [35] that the augmenystes (9) is exponentially mean-square
stable and, subsequently, the steady-state covari@ndefined by
02 lim E{é(tk)éT(tk)}. (19)

k—00

exists and satisfies the following discrete-time modifiedpynov equation:

(o +C)O(A +C) + Y B2+ C) O, +C)" — O+ BRI = 0. (20)
s=1

Subtracting (20) from (18) gives

m

~ _ _ ~ _ _ ~

(7 +E)NQ— QT +E) + ) BUA+E)Q— QA+ %) —(Q-Q) <0 (21)
s=1
which indicates from [35] tha® — Q > 0.
Finally, considering the definitions of (11) and (19), we adotain that

EMW 2 lim E{e, (tr)el (ty)} £ lim E{Z,e(ty)e” (tx) I}
k—o0 k—o0
& { lim B{Ze(t)e" (4)T] } }IT
—00
2 LILOLII! <I,7,07]T) (22)

Therefore, matrix inequality (17) indicates that the reguoient (c) is also met and the proof is now
complete. [ |

To conclude the above analysis, we present a theorem whiehds to take both thél, performance
and the variance constraint into consideration in a unifrachéwork. Before giving our main result, we
introduce the following well-known lemma.

Lemma 1: [2] Let Q = QT, S andU be real matrices with appropriate dimensions, and mafiix
satisfiesF'(-)F*(-) < I, then

Q+UF()M + MTFT()UT <0 (23)
if and only if there exists a positive scalarsuch that
1
Q+ gUUT +eMTM <0 (24)
or equivalently
QO U eMT
x —el 0 | <0 (25)
* * —el

For convenience of later development, we denote

p 2 diag{Pl,P2,-~-,P2b}, P L diag{P, -, P}, W2 diag{W, W, -, W},
—— ~————

m b
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W A diag{W, WY, H 2 col{Hy,- -, Hp}, H, 2 col{0,---,0,—H,0,---,0},
N—— ——

s—1 m—s
R o . , —HC.T
H 'y col{0,0,0, —H}, Wﬂ:diag{WA H=CT WA}, W ot = [8 HOC )
[ —HD WEB | irs iy ey 5 (W
VB = S XTE B A Bo(W ) e Bu(W ),
0 WBhB
R 'i i R _75 0 D%T .
52 [T T s s 2 0 | S 2 cl{(# ) (W B)", 0},
x P =20
L * * —1
S5 2 col{X7,0,0 0}, B2 [H e’CT H VD7), 52 (S5 Bse oo Ssml,
i5,s = [O Egl QzL [26 1 262 to iﬁ,m]v iﬁ,s = [Esﬂs 0]7 Wv £ dlag{Wu e 7W}7
N——
Poow Wd Y VB
s, . -P 0 0 T N g ;
I, = y , Y= [BJWah) Bo(Wata) - Bu(W ),
* * 4 0
* * * —R!
M £ C01{076707"' 70}7 MséCOI{(],"' 707ACS707"' 70}7 QéCOl{_,}:LO"” 70}’
—— —— —— —
m+1 s+1 m+1—s m+2
I, 2 [U 5§2)MT] H4 [H41 H42 o Ty m] .2 [B.0 ?MT),
£V 2 diag{el" eV el &f}, P £ diag{el” £V}, €0 £ diag{el, &, &)},
Rl £ d1ag{R 1, e i}, (821,2,"'7”’@;]:172)-
b
Theorem 3:For the given disturbance attenuation leyet 0 and steady-state variance upper bounds
o2 (r=1,2,---,n,), the augmented system (9) is exponentially mean-squabéestsile achieving the

H., performance constraint (10) for any nonzef@,) and the steady-state variance constraint (11) for
v(ty), if there exist matrice$, (0 = 1,2,---.,b), W >0and P, > 0 (h = 1,2,---,2b) such that the
following linear matrix inequalities (LMIs) hold:

5 Sy IR I

* * (1) 0

* * * —eM)
ﬁg ﬁg H4
« _Z® o | <0 (27)
* x  —e?

<0 (r=1,2,-+-,ng £=1,2,---b) (28)
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Furthermore, if above inequalities are feasible, the dds@stimator gains can be determined by
HQ:W_lHQ (921727 7b) (29)
Proof: By using the Schur Complement Lemma, (12) is equivalent éoftiowing inequality:

Y1 2 Y3
B2 s« P10 | <0 (30)
* * — 1

where
-P 0 Z7
12|« =20 0 |, Xy 2 col{ldt + €7, B + AT,0}, 83 = col{X7T,0,0},
* * -1

XL (B + ) Bl + ) e Bl + G0, 27 2 ding{ P P

In order to cope with the uncertainty factéi(e), we rewrite (30) in the form of (23) as follows:

A

S+ HE(t,)C + CTFT(4,)HT + HF (ty)D + DTF7 (1) H”
+ 3 BHF()C + Y BCTFT () HT < 0 (31)
s=1 s=1

where
Z1 22 Z3
S &2 |« =Pt 0 |, Z&col{T, AT, 0}, B3 2 col{XT,0,0},
% * — P!
(BT Bodll - Bunedt), H 2 col{0,0,0,H}, H=2col{H,0,- -0}
N——

&
~
>

— ~

s F S s S
C2[C000,C2[C 0---0, D20 D00, DA[D 00
H, 2 col{0,---,0,H,0,-- .0}, H,2 col{0,0,0,0,H.},

——— ———

s—1 m—s
C, 2 [AC, 000, C,2[C, 0---0], (s=1,2,---,m).

m

Applying Lemma 1 to (31), it follows that (31) holds if and gnif there exist positive scalars

S

e e M (s=1,2,--,m) such that the following matrix inequality holds
)N I IR I
= x —P1 0 iﬁ
= ¥ <0 32
. O (32)
* * * —eD
where

. 5y col{Ss,0), S, 2 [H £CT H D],
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ies = [iﬁ,l i6,2 i6,m]> i&s £ [Esﬂs 0]> (s=1,2,---,m).
After using Schur Complement Lemma to (16), we have
-Q d+€ Yy DBy

N * —Q! 0 0
I, = . . _ g1 0 <0 (33)
* * * —R!
where 2! £ diag{ Q'+ 0 L V2 [Bi(A+G) ol +G) - Bl + G
41
Similarly, by denotingQ = P!, we rewrite (33) in the form of (23) as follows:
My + UF(te) M + MTFT(t,)UT + Y BUF(t) M, + Y BMTFT(t,)UT <0 (34)
s=1 s=1
where
Pt 5/ By
* —7) 0 0 — = — = — = — —
H2£ « « —9 0 73}%[51% BQ% Bm%m]7QéCOI{H7077O}
m—+2

* * x —R7!

By applying Lemma 1 again to (34), we know that (34) holds il amly if there exist positive scalars
e? e (s=1,2,---,m) such that the following LMI holds:

I, Il I14
L2+« —£@ 0 | <0 (35)
x  ox —e?)

where

I3 £ [Q 5§2)MT], 114 £ [H4,1 H4,2 H4,m]7 H4,s £ [BsQ E(Z)M:;FL (3 =1,2,--- ,m).

s

To this end, in order to design the estimator by Matlab LMI lbox to effectively, we assum@ £
diag{ P, Ps,--- , Py} and letH, = WH, (0 = 1,2,---,b). By notingW > 0 and P, > 0 (h =
1,2,---,2b), we have(P, — W)P, (P, — W) > 0, which is equivalent to

~WP'W <P, —-2W (h=1,2,---,2b)

Applying the congruence transformatidmg{],l, Lw, - wW.I,--- ,I} to (32), we get (26). Fur-

m—+1 2m+4
ther applying the congruence transformati@mg{W,I, e ,I} to (35), we obtain (27). At the same
3m+b+2

time, the estimator gain can be expressed as (29).
On the other hand, fron@ = P!, we assumed 2 P! £ diag{P; !, P;’!,---, P;'}, and rewrite
(17) as follows:
LLOTL =LLP 'I/I) =L 'L <o} (r=1,2,--- ,ng; (=12, D) (36)

by using Schur Complement Lemma to (36), we have (28), whaxttlades the proof from Theorems 1
and 2. -



FINAL VERSION 13

Remark 3:In this paper, the variance-constrained state estimatiobl@m is investigated for a class of
NMSs with quantization and probabilistic sensor failurélse main features of our results are twofold: i)
the quantified relationships have been established amanf thperformance level, the upper bounds on
the steady-state variances of the estimation errors, taetqer parameters, the sensor failure probabilities
and the multi-rate multiplé of the sampling period; and ii) the proposed approach has offered much
flexibility in making compromise between the steady-statgances and thé/,, performance, while the
essential multiple objectives can all be achieved simelasly in the framework of NMSs.

In order to show the combined effect of the considered vadanstraints, quantizer parameters, sensor
failure probabilities and the multi-rate sampling, we nagcdss the following two optimization problems

for given quantization density®) (s = 1,2,---,m), multi-rate multipleb, sensor failure parameters
and3?(s = 1,2,--- ,m).
P1: For given steady-state estimation error variancettainged boundsr{, --- 02 , the optimal H

estimator design problem:

. 2 . _
N subject to (26) — (28). (37)

P2: For givenH,, performance level, the minimum weighted variance-constrained estimatoigdes

problem:
. - 2 .
min c,.0% subject to (26) — (28). 38
WHHPP; 7 subject to (26) — (28) (38)
wherec, (r =1,2,---,n,) are given weighting coefficients for variances and saflsfy , ¢, = 1.

IV. A NUMERICAL EXAMPLE

In this section, similar to [20], [37], a maneuvering targreicking system is presented to demonstrate
the effectiveness of the proposed design scheme, and tblvéavsystem has the following state-space
model:

o(Thns) = [0(-)3 0?4] o(T) + | 7 | w(@)+ | e | V(T (39)
ATy) = [0.5 0.4] (T} (40)

whereh is the sampling period:(7},) = col{z,(T}), z,(T})} is the system state;,(7}) andx,(7}) are
the position and velocity of the target at tirfig, respectively.

In a networked maneuvering target tracking system wheresémsor signals are transmitted through
communication networks, it is often the case that the measent outputs are quantized before being
transmitted to the estimator. At the same time, the measmtnreceived by sensors could be neither
completely missing nor completely successful, but onlyt paithe information can go through. Suppose
that only the position of the maneuvering target is meaderakthen, we use the following equation to
model the measurements with quantization effects and piiidiec sensor failures at time,:

(1) = a(B(tx) [1 0] a(t) +0.5 (1)) 1)
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The parameters of the logarithmic quantiz¢r) are chosen as, = 2, x = 0.4, and the probability
density function of sensor failure coefficient is taken as

108(t), 0 < Blt) < 0.20;

F(B(tr) = { —2.50(8(tx) — 1), 0.20 < B(ty) < 1.

then the mathematical expectatigh and the variance§2 can be calculated a8.4000 and 0.0467,
respectively.

Here, the sampling period is set ad).5s and the variance of Gaussian white noigé},) is taken as
R = 0.3. The disturbance input(7;) and the measurement noigg;) are chosen as following:

—0.05ty,

Ti) = 0.1e 2% 6in(T}.), €(ty) = ———.

Actually, the system under consideration is a two-rate sadagata one, that is, the state estimation
for both the position and the velocity is conducted at a fas¢ with the periodh, while the sensor
samples the target position at a slow one with the pebiadWe aim to design the estimator, by using
the quantized measurement, to estimate the state (pgstidhe maneuvering target subject to bounded
energy disturbance and Gaussian white noise. Now, let usieeathe following two cases.

Case 1. The variance constraints on the steady-state estimationae set as; = 0.6 ando, = 0.4. By
using the MATLAB LMI toolbox and considering the optimizati problem (P1), we obtain the minimum
disturbance attenuation leveland corresponding estimator gaifs (0 = 1,2,---,b) in Table | with
different multi-rate multipleb. Take the initial state of (1) and its estimation&9;) = col{—0.1,0.1}
and z(ty) = col{—0.2,0.2}, respectively. The estimated errer(t;) for the position of the maneuvering
target is plotted in Fig.2.

TABLE |
THE PERMITTED MINIMUM ~ AND CORRESPONDING ESTIMATOR GAINSH, (0 =1,2,--- ,b).
Y H,
b—9 0.7734 Hy — 0.0288 Hy — —0.0040
—0.0770 0.0822
.01 . .
b—3 0.8073 H — 0.0105 Hy = 0.0009 Hs— 0.0724
—0.0291 —0.0026 0.0715
b— 4 0.8472 H — 0.0066 Hy = 0.0007 Hs— 0.0428 Hy— 0.0229
—0.0186 —0.0019 —0.0055 0.0346
b—5 0.8728 Hy — 0.0096 Hy — 0.0004 Hy— 0.0266 Hy— 0.0190 Hs— 0.0146
—0.0271 —0.0011 —0.0159 0.0070 0.0121

Case 2. For the givenH, performance levely = 0.95 and weighting coefficients; = 0.4, ¢; = 0.6,
we now deal with the problem (P2). Solving the optimizatiaolgjem (38), we obtain the minimum
individual variance values, (r = 1,2) and corresponding estimator gaifi§ (¢ = 1,2,---,b) in Table
Il. Choosing the same initial values as Case I, the simulatsults are shown in Figs. 3-4, which display
the actual steady-state variance foft,) = x1(tx) — Z1(tx) andes(ty) = x2(tr) — Z2(tx), respectively.

Tables I-Il demonstrate the relationship betwdén performance levely and variance upper bounds
o (r=1,2) as well as the multi-rate multiplie of the sampling period. It can be observed from Table
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T T T T
—&—e,(t) with b=2 | |
— ez(tk) with b=3
—F— e,(t,) with b=4
———— e,(t,) with b=5

0.03

0.02

0.01 %

Estimation error

-0.01

—-0.02
Il Il Il
40 60 80 100
Time t
Fig. 2. Estimation erroe. () for differentb.
TABLE I
THE MINIMUM VARIANCE VALUES o (r = 1,2) AND CORRESPONDING ESTIMATOR GAINSH, (0 = 1,2,---,b).
o1 g2 HQ
b=2| 0.2368 0.0341 oy = | 0084 JHy = —0.0221
—0.2221 0.1561
b—3| 02759 0.0389 Hy — 0.0323 Hy— 0.0018 Hy— 0.0497
—0.0907 —0.0051 0.0913
b—4| 03011 00418 H - 0.0252 Hy— 0.0008 Hs— 0.0254 Hy— 0.0194
—0.0712 —0.0022 0.0245 0.0336
b=5| 03166 0.0436 H, — 0.0223 Hy =107 x 0.2863 Hs = 0.0154 Hi— 0.0135 Hs— 0.0108
—0.0631 —0.8104 0.0083 0.0142 0.0168

| and Table Il that, with increasdd the disturbance attenuation performance deterioratshenvariance
upper bounds become bigger, and these observations cabedsoconfirmed from Figs. 3-4, which are
in agreement with the engineering practice.

V. CONCLUSION

In this paper, the variance-constrainfd, state estimation problem has been investigated for a class
of networked multi-rate systems. The system under coreider involves network-induced probabilistic
sensor failures and measurement quantization. The stiteaés has been designed such that both
H,, performance and variance constraints on steady-stateagin error are achieved. By utilizing the
stochastic analysis techniques, sufficient conditiong lteen established in the form of matrix inequalities
reflecting the relationship amonff,, performance level, variance upper bounds, quantizer peteas)
sensor failure parameters and multi-rate multiple. Thamegor gains matrix have been characterized
by means of the feasibility of certain matrix inequalitidsvo additional optimization problems have
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x 10
T T T T

101 1
o
c
o
L 8r
=
S
o 6r
o
c
8
g 4 -
= —%—— Actual variance of el(tk) with b=2
*;'3, — s Actual variance of e 1(tk) with b=3
@© L .
[0) 2 —+— Actual variance of el(tk) with b=4
<
= Actual variance of el(tk)with b=5

0 al 1 1 1 1 ]
0 20 40 60 80 100

Time tk

Fig. 3. The actual steady-state estimation error variancef(¢;) for differentb.

x 10
12 T T T T
+ — A& Actual variance of e2(tk) with b=2

o
= 10 —— Actual variance of e,(t,) with b=3 | +
% —+— Actual variance of ez(tk) with b=4
=
5 8r A Actual variance of ez(tk)with b=5 | 7
S
8 6f
c
8
S 4}
[
=
s 2f
)
=
|_

0 -

1 1 1 1
0 20 40 60 80 100

Time tk

Fig. 4. The actual steady-state estimation error variancef(¢;) for differentb.

been considered with respect to thle, performance index and the weighted error variances. Finall
simulation example has been provided to show the effea@s®f the proposed estimator design scheme.
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