
APPROXIMATIONS FOR THE BESSEL AND AIRY FUNCTIONS

WITH AN EXPLICIT ERROR TERM

ILIA KRASIKOV

Abstract. We show how one can obtain an asymptotic expression for some
special functions with a very explicit error term starting from appropriate

upper bounds. We will work out the details for the Bessel function Jν(x) and
the Airy function Ai(x). In particular, we answer a question raised by Olenko
and find a sharp bound on the difference between Jν(x) and its standard

asymptotics. We also give a very simple and surprisingly precise approximation
for the zeros Ai(x).
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1. Introduction and Results

All basic formulas and asymptotic expressions for special functions we use with-
out references can be found in [9]. To write down error terms in a compact form
we will use θ, θ1, θ2, ..., to denote quantities with the absolute value not exceeding
one.

In most of the cases error terms of asymptotics of special functions are either not
known or, at best, valid for a rather restricted range of parameters. The following
is a typical example of that kind (see e.g. [9, Ch. 10]).

The Bessel function Jν(x) is defined by the series

(1) Jν(x) =
(x
2

)ν ∞∑
j=0

(−1)j
(x2/4)j

j! Γ(j + ν + 1)
,

and is a solution of the following ODE:

(2) x2J ′′
ν (x) + xJ ′

ν(x) + (x2 − ν2)Jν(x) = 0.

Theorem 1. Suppose that ν ≥ 0, x > 0, ων = (2ν + 1)π/4 , and let

ℓ1 ≥ max(
ν

2
− 1

4
, 1), ℓ2 ≥ max(

ν

2
− 3

4
, 1), ai(ν) =

( 12 − ν)i(
1
2 + ν)i

2ii!
,

then

(3)

√
πx

2
Jν(x) = cos (x− ων)

(
ℓ1−1∑
i=0

a2i(ν)

x2i
+ θ21

a2ℓ1(ν)

x2ℓ1

)
−

sin (x− ων)

(
ℓ2−1∑
i=0

a2i+1(ν)

x2i+1
+ θ22

a2ℓ2+1(ν)

x2ℓ2+1

)
.
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2 I. KRASIKOV

The assumption ν ≥ 0 is not really restrictive and can be surmount by, say,
applying the three term recurrence for Jν . However, if ν is large or depends on x,
estimating the error term in (3) seems at least as difficult as the original task to
find a convenient approximation of the Bessel functions.

In this paper we show how to circumvent this problem and find an explicit
expression for error terms, which is uniform in the parameters, provided one has
an a priory upper bound on the absolute value of the considered function. In turn,
in many cases, such a bound may be obtained by using so-called Sonin’s function.
For Bessel and Airy functions, as well as for Hermite polynomials (see [2]), the
details of this program can be worked out in a quite routine way. For Jacobi and
Laguerre polynomials it is a much more involved problem and the result is known
only for oscillatory and transition regions [5], [6], [7]. It is worth noticing that
despite the fact that it is rather a technical problem and we do have appropriate
tools to tackle it (see e.g. Lemmas 11 and Remark 1 below), one still needs a
good deal of calculations to extend the bounds to the monotonicity region. Thus,
although the underlying idea of the method we use here is quite simple and can
be applied to other special functions satisfying a second order differential equation,
it is not utterly straightforward to work out the details. Here we will consider
the Bessel function Jν(x) as an important example to illustrate this approach.
We provide asymptotic expressions with an explicit error term for the oscillatory
region and also give some new estimates in the monotonicity region. In particular,
we answer a question raised by Olenko [8] and find a sharp bound on the difference
between Jν(x) and its standard asymptotics. We also apply the derived results to
obtain sharp bounds for the Airy function Ai(−x), x > 0. As a corollary we give a
surprisingly accurate approximation for its positive zeros.

In what follows it will be convenient to use the following parameters:

µ = |ν2 − 1/4|, ων = (2ν + 1)π/4 .

Let us summarize the main results. First, we will establish a new bound in the
monotonicity region which improves the inequality

Jν(tν) < Jν(ν)t
νe(1−t)ν , ν > 0, 0 < t < 1,

given in [10] and is also stronger than the classical inequality [16, p.16],

Jν(x) <
xν

2νΓ(ν + 1)
e−x2/4(ν+1),

provided x >
√
ln 16− 2 ν ≈ 0.88ν, and ν is large enough.

Theorem 2. For ν > 0, 0 < x ≤ ν + 1/2,

(4) Jν(x) <
21/3xν

32/3Γ(2/3)νν+1/3
exp

(
ν2 − x2

2ν + 1

)
.

The following sharp inequality improves a result obtained in [2] and is crucial
for our purposes.

Theorem 3. Let ν ≥ 1/2, then for x ≥ 0,

(5) |x2 − µ|1/4|Jν(x)| <
√
2/π ,

and the constant
√
2/π is best possible.
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The following theorem provides a bound on the difference between Jν(x) and its
standard asymptotics.

Theorem 4. For x > 0,

(6) Jν(x) =

√
2

πx
cos(x− ων) + θcµx−3/2,

where

c =


(2/π)

3/2
, x ≥ 0, |ν| ≤ 1/2,

4/5, 0 < x <
√
µ, ν > 1/2,

2/π, x ≥ √
µ, ν > 1/2.

Moreover, up to the numerical factor c, the error term is sharp. In particular, c
cannot be taken less than 1/

√
2π .

In [8] Olenko proved the inequalities which for ν > 0 can be written as

c1ν
7/6 ≤ sup

x≥0
x3/2

∣∣∣∣∣Jν(x)−
√

2

πx
cos(x− ων)

∣∣∣∣∣ ≤ c2ν
13/6,

with some explicit constants c1, c2, and raised the question what is the best possible
exponent α of ν in these inequalities. The answer α = 2 is an immediate corollary
of (6) and for ν ≥ −1/2 we obtain

(7)
1√
2π

µ ≤ sup
x≥0

x3/2

∣∣∣∣∣Jν(x)−
√

2

πx
cos (x− ων)

∣∣∣∣∣ < 4

5
µ .

The next theorem gives a more complicated yet much sharper approximation for
the Bessel function Jν(x).

Theorem 5. For |ν| ≤ 1/2 and x > 0,

(8) Jν(x) =

√
2

π
(x2 + µ)−1/4 cos (B(x)− ων) + θ

µ√
2πx (x2 + µ)3/2

,

and for |ν| > 1/2 and x >
√
µ,

(9) Jν(x) =

√
2

π
(x2 − µ)−1/4 cos (B(x)− ων) + θ

13µ

12
√
2π (x2 − µ)7/4

,

where

(10) B(x) =


√

x2 + µ+
√
µ ln

x
√
µ+

√
x2 + µ

, |ν| ≤ 1/2,

√
x2 − µ+

√
µ arcsin

√
µ

x
, ν ≥ 1/2,

Notice that (9) remains reasonably accurate even in the transition region when
x = ν + const · ν1/3.

Formula (9) can be rewritten in a slightly simpler way by setting x =
√
µ/ sin t,

(11) Jν(
√
µ/ sin t) =

√
2

π
µ−1/4 tan t cos

(
(t+ cot t)

√
µ− ων

)
+ θ

13 tan7/2 t

12
√
2π µ3/4

.
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The argument of the cosine in (8) can be simplified at the cost of a weaker
numerical constant at the error term.

Theorem 6. For |ν| ≤ 1/2 and x > 0,

(12) Jν(x) =

√
2

π

cos
(
x− µ

2x − ων

)
(x2 + µ)1/4

+ θ
25µ

24
√
2π x3(x2 + µ)1/4

.

Let jνs is the sth zero of Jν(x). One can readily derive sharp approximations for
jνs using formulas (8), (9) and (12), and imposing some restrictions on the rate of
growth of ν and s to be able to solve arising transcendental equations. To illustrate
this approach, we derive an error term in the asymptotic McMahon’s expansion
(see [16, p.506])

jνs = r/4 + 2µ/r +O(s−3), r = (4s+ 2ν − 1)π → ∞,

Corollary 1. For |ν| ≤ 1/2,

(13) jνs = r/4 + 2µ/r + 18πθ µr−3.

Let us notice that in fact for |ν| ≤ 1/2 a stronger result, yet with a much more
involved proof, is known [3]:

jνs = r/4 + 2µ/r − 8µ(7µ+ 6)

3r3
+ 81θ2r−5.

Bounds and asymptotics for the Bessel function lead directly to approximation
of the Airy function

Ai(−x) =

√
x

3

(
J−1/3(ζ) + J1/3(ζ)

)
, ζ =

2x3/2

3
.

In this paper we prove the following.

Theorem 7. For x > 0,

(14) x1/4|Ai(−x)| < 1/
√
π .

Theorem 8. For x > 0,

(15) Ai(−x) =
cos(ζ − π/4 )√

π x1/4
+ θ

5

24π3/2x7/4
.

Applying (8) to the Airy function readily yields much more accurate result.

Corollary 2. For x > 0,

Ai(−x) =

2
√
x cos

(√
16x3 + 5

6
−

√
5

6
ln

√
16x3 + 5 +

√
5

4x3/2
− π

4

)
√
π (16x3 + 5)1/4

+

θ
10
√
3√

π x1/4(16x3 + 5)3/2
.

(16)

With a slightly less precise numerical constant at the error term this expression
can be written in a much simpler form:

Theorem 9. For x > 0,

(17) Ai(−x) =
2
√
x cos

(
2
3 x

3/2 − 5
48 x

−3/2 − π
4

)
√
π (16x3 + 5)1/4

+ θ
5

9
√
π x4(16x3 + 5)1/4

.
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Let as be the sth positive zero of Ai(−x). In [1] Breen established the following

bounds as = 1
4π

2/3 (12s− 3α)
2/3

, where α ∈ (2.895, 4.2). Here we will strengthen
this bound and show that formula (17) yields a sharper and also very simple ap-
proximation to as, e.g. already for the first zero the error is less than 4/3 · 10−3.

Theorem 10.

(18) as =
1

4
(m2 + 20)1/3 + θ

457

m3(m2 + 40)1/6
, m = (12s− 3)π.

The paper is organized as follows. In the next section we describe the idea of the
method. In section 3 we establish upper bounds on Bessel and Airy functions, in
particular, we prove Theorems 2, 3 and 7. In section 4 we consider the error term of
the standard asymptotics and prove Theorem 4, thus answering Olenko’s question.
The rest of the results will be obtained in section 5, where using the approach of
section 2, we establish sharper approximations for Bessel and Airy functions and
in section 6, where we prove Corollary 1 and Theorem 10.

2. Preliminaries

Our main tool for bounding functions satisfying a second order ODE is based on
so-called Sonin’s function, which is defined as follows. Let y(x) be a solution of

y′′(x) + a(x)y′(x) + b(x)y(x) = 0, b(x) > 0.

Then S(x) = y2 + y′2/b is just an envelope of y2, coinciding with it in all maxima.
The sign of S′ =

(
2ab + b′

)
y′2/b2 depends only on a and b, what in many cases

enables one to find the global maximum of |y|. The following approach was shortly
described in [7]. We want to find an approximation of a solution of the differential
equation

(19) f ′′ + b2(x)f(x) = 0,

in terms of some standard function F (x), which also satisfies a second order ODE

D1(F ) = p2(x)F
′′ + p1(x)F

′ + p0(x)F = 0.

We seek for a multiplier function z(x) such that the differential operator

D2(g) = q2(x)g
′′ + q1(x)g

′ + q0(x)g,

for g = g(x) = z(x)f(x), is in some sense close to the operator D1. In fact, in what
follows we choose F to be just cosϕ(x) with an appropriate function ϕ.

To be more specific, consider a WKB-type approximation where one chooses
g(x) =

√
b(x) f(x), transforming (19) into

(20) g′′ − b′

b
g′ + b2g (1 + ϵ(x)) = 0, ϵ(x) =

3b′2 − 2bb′′

4b4
.

If ϵ is small we can expect that g(x) is close to the solution of the equation

g′′0 − b′

b
g′0 + b2g0 = 0,

which is just g0 = M cosB(x), where B(x) =
∫
b(x)dx.

Assume now that we have an a priori bound, say, |g(x)| ≤ C. Then we can readily
estimate the error term |g − g0| by solving (20) as an inhomogeneous equation,

(21) g(x) = g0 −
∫ x

ϵ(t)b(t) sin (B(x)− B(t)) g(t)dt,
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thus obtaining

g = g0 + θC

∫ x

ϵ(t)b(t)dt.

To derive an upper bound on |g(x)| we consider Sonin’s function

S(x) = S(g;x) = g2 +
g′2

(1 + ϵ)b2
= g2 +

4b2

4b4 + 3b′2 − 2bb′′
g′2.

Applying (20) to get rid of g′′, one finds

S′(x) =
8b(6b′3 − 6bb′b′′ + b2b′′′)

(4b4 + 3b′2 − 2bb′′)2
g′2.

Let us assume now that 4b4 + 3b′2 − 2bb′′ > 0 and 6b′3 − 6bb′b′′ + b2b′′′ > 0, then
S′ > 0 and we obtain g2(x) < S(∞). Moreover, one can also get an upper bound
on S in the following way:

S − b(4b4 + 3b′2 − 2bb′′)

2(6b′3 − 6bb′b′′ + b′2b′′′)
S′ = g2 ≥ 0,

that is

S′/S ≤ 2(6b′3 − 6bb′b′′ + b′2b′′′)

b(4b4 + 3b′2 − 2bb′′)
=

d

dx
ln

b4

4b4 + 3b′2 − 2bb′′
,

provided the last expression is nonnegative. Integrating from x to y, we find

S(y)

S(x)
≤ 1 + ϵ(x)

1 + ϵ(y)
, x < y.

Thus, the envelope of g2(x) given by S(x) is almost constant as far as ϵ(x) = o(1).
In practically important examples the situation is somewhat more subtle as the

coefficient b(x) may vanish. For instance, for the Bessel function the coefficient

b(x) = x−1
√

x2 − ν2 + 1/4 , and Sonin’s function does not provide any information

for the monotonicity region 0 ≤ x ≤
√
ν2 − 1/4 . Thus, one needs some supplemen-

tary estimates to extend the bounds on |g(x)| to this interval. Let us notice that
although the behaviour of the solutions of (19) looks less complicate in the mono-
tonicity region, it probably allows only a piecewise approximation in reasonably
simple elementary functions.

Another rather technical problem is how to find the constants of integration in
g0. Here one either has to know the value of g(x) at some points, e.g. at infinity,
or to be able to match asymptotics in the oscillatory and transition regions.

3. Upper bounds

First we we will establish a new upper bound on Jν(x) in the monotonicity region.
The simplest inequality of this type [16] states that for x real and ν ≥ −1/2,

(22) |Jν(x)| ≤
|x|ν

2νΓ(ν + 1)
.

For our purposes we need much more accurate estimates. We will use the following
inequality established in [4] . We sketch a proof for self-completeness.

Lemma 11. Let Jν(x) = x−νJν(x), ν ≥ −1/2, then for 0 < x ≤ ν + 1/2 ,

(23)
J ′
ν(x)

Jν(x)
≥
√
(2ν + 1)2 − 4x2 − 2ν − 1

2x
≥ − 2x

2ν + 1
.
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Proof. For ν ≥ −1/2 the Bessel function Jν(x) is an entire function with only real
zeros satisfying the Laguerre inequality J ′2

ν −JνJ ′′
ν ≥ 0. Substituting here J ′′

ν from
the differential equation

xJ ′′
ν + (2ν + 1)J ′

ν + xJν = 0,

and dividing by J 2
ν we obtain xt2(x) + (2ν + 1)t(x) + x ≥ 0, where t(x) = J ′

ν/Jν .
Hence for 0 < x ≤ ν + 1/2,

t(x) /∈

(
−
√
(2ν + 1)2 − 4x2 + 2ν + 1

2x
,− 2x√

(2ν + 1)2 − 4x2 + 2ν + 1

)
.

Since lim
x→0+

t(x) = 0, whereas lim
x→0+

(
−
√

(2ν+1)2−4x2+2ν+1

2x

)
= −∞, we get

t(x) ≥ − 2x√
(2ν + 1)2 − 4x2 + 2ν + 1

≥ − 2x

2ν + 1
.

�

Proof of Theorem 2. By the previous lemma we have

ln
Jν(ν)

Jν(x)
≥ −

∫ ν

x

2z

2ν + 1
dz = −ν2 − x2

2ν + 1
,

hence

Jν(tν) ≤ Jν(ν) exp

(
ν2(1− t2)

2ν + 1

)
.

This, together with the inequality Jν(ν) < 21/3

32/3Γ(2/3)ν1/3 (see [9, eqn. 10.14.2]),

yields the required result. �

Remark 1. The function Jν(x) = x−νJν(x) of Lemma 11 belongs to so-called
Pólya-Laguerre class and satisfies the infinite series of inequalities:

(24) Lm(Jν) =

2m∑
j=0

(−1)m+j

(
2m
j

)
(2m)!

J (j)
ν J (2m−j)

ν ≥ 0,

where L1(Jν) ≥ 0 is the usual Laguerre inequality J ′2
ν − JνJ ′′

ν ≥ 0 (see e.g. [11],
[12]). Using Lm(Jν) ≥ 0 for m > 1 leads to much more precise yet more complicated
bounds on J ′

ν/Jν and consequently on Jν . Alternatively, one can use the inequality
L1(Jν + λJ ′

ν) ≥ 0, λ ∈ R, then optimizing in λ. It is worth noticing that both
methods give an inequality similar to (23) but in the opposite direction. Thus, at
least in principal, one can use the known value of Jν(0) instead of Jν(ν).

Our main tool for bounding solutions of the second order differential equations
will be Sonin’s function. In particular, it was used by Szegö to prove that

(25) |Jν(x)| ≤
√

2

πx
, |ν| ≤ 1/2, x > 0.

Although he did not state this explicitly, his proof of Theorem 7.31.2 from [15]
immediately implies

(26) |Yν(x)| ≤
√

2

πx
, |ν| ≤ 1/2, x > 0.
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His arguments go as follows: let y be a solution of the Bessel differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0,

the normal form of which is given by

f ′′ +

(
1− ν2 − 1/4

x2

)
f = 0, f =

√
x y.

Then for |ν| ≤ 1/2 and x > 0 the derivative of Sonin’s function is positive

S′(x) =
2µx

(µ+ x2)2
f ′2(x) > 0,

hence S is increasing and inequalities (25) and (26) follow by calculating S(∞) from
known asymptotics of Jν and Yν . On the other hand, S′(x) < 0 for ν > 1/2 and
x >

√
µ, what does not lead, at least directly, to any explicit inequality.

It turns out that for ν > 1/2 it is more natural to deal with the function

(27) Hν(x) = |x2 − µ|1/4Jν(x),
rather than

√
xJν(x). Here we will refine an inequality for the Bessel function

obtained in [2]. First we need the following claim.

Lemma 12. The first positive maximum of Hν(x), ν ≥ 5/3, is attained at a point
ξ satisfying

ξ > ν
√
1− (2ν)−2/3 .

Proof. Since obviously 0 < ξ < µ, we can restrict ourselves to the interval (0, µ)
and write down

Hν(x) = xν(µ− x2)1/4Jν(x),

where as before Jν(x) = x−νJν(x). Then

0 = H′
ν(ξ) =

ξν−1

2(µ− ξ2)3/4
(
2(µ− ξ2)(ξt(ξ) + ν)− ξ2

)
Jν(ξ),

where t(x) = J ′
ν(x)/Jν(x). Hence

t(ξ) = − (2ν + 1)(2ν2 − ν − 2ξ2)

(4ν2 − 1− 4ξ2)ξ
,

and comparing this with (4) we obtain the inequality

(2ν + 1)(2ν2 − ν − 2ξ2)

4ν2 − 1− 4ξ2
≤

2ν + 1−
√
(2ν + 1)2 − 4ξ2

2
.

Simplifying we get that the last inequality holds if

p(ξ) = (4ν2 − 1)2 − (4ν2 − 1− ξ2)2
(
(2ν + 1)2 − 4ξ2

)
≥ 0.

Observe that for ν ≥ 5/3 this polynomial has the only positive zero ξ0. Indeed, the
discriminant of p(ξ) in ξ, up to an irrelevant numerical factor, is

ν(ν + 1)(2ν − 1)6(2ν + 1)10(108ν2 − 172ν − 5)2.

Thus the number of real and, as it is an even function of ξ, positive zeros does not
change for 108ν2 − 172ν − 5 > 0, in particular for ν > 5/3 . Choosing ν = 5/2 we
obtain the following test equation p(ξ) = ξ6 − 21ξ4 + 144ξ2 − 315 = 0, with the
only positive zero ξ ≈ 2.14. Finally,

p(ν) = ν(4ν3 − 2ν − 1) > 0,
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and using the substitution ν = r3/2, we find

p

(
ν
√

1− (2ν)−2/3

)
= p

(√
r6 − r4/2

)
= −r3(r2 − 1)2(2r4 + 4r2 − r + 2) < 0.

Hence, since r > 1, we get ξ > ν
√
1− (2ν)−2/3 . �

Proof of Theorem 3. For x =
√
µ the result is trivial. Otherwise we shall consider

three (in fact, overlapping) cases.
Case 1: x >

√
µ. The function Hν(x) = (x2−µ)1/4Jν(x), as easy to check, satisfies

the differential equation

(28) H′′
ν (x)−

µ

x(x2 − µ)
H′

ν(x) +
4(x2 − µ)3 + (6x2 − µ)µ

4x2(x2 − µ)2
Hν(x) = 0.

Consider the corresponding Sonin’s function

S(x) = H2
ν(x) +

4x2(x2 − µ)2

4(x2 − µ)3 + (6x2 − µ)µ
H′2

ν(x),

then H2
ν(x) ≤ S(x) for x >

√
µ > 0. On excluding H′′

ν (x) by (28) one finds

S′(x) =
24µx3(x2 − µ)(4x2 + µ)

(4(x2 − µ)3 + (6x2 − µ)µ)
2 H′2

ν(x) ≥ 0,

hence |Hν(x)| <
√

lim
x→∞

S(x) . Using J ′
ν(x) = (Jν−1(x)− Jν+1(x)) /2, and the as-

ymptotic formula

Jν(x) ∼
√

2

πx
cos (x− ων) ,

after some calculations one finds |Hν(x)| <
√
2/π . Since H2

ν(x) = S(x) at all local

maxima the constant
√
2/π is sharp.

Case 2: 0 < x ≤ √
µ, 1/2 ≤ ν ≤ 4.9. By (22) and ν ≥ 1/2 we have

Hν(x) = (µ− x2)1/4Jν(x) ≤
(µ− x2)1/4xν

2νΓ(ν + 1)
.

The maximum of the right hand side is attained for x =
√
ν2 − ν/2 , yielding

Hν(x) ≤
(
1− 1

2ν

)ν/2+1/4
(ν/2)

ν/2+1/4

Γ(ν + 1)
< e−1/4 (ν/2)

ν/2+1/4

√
2πν ννe−ν

=

(e/2)ν−1/4

2
√
π ν1/4

<
√
2/π , 1/2 ≤ ν ≤ 4.9.

Case 3: 0 < x <
√
µ , ν ≥ 19/7. Inequality (4) yields

Hν(x) <
21/3xν(µ− x2)1/4

32/3Γ(2/3)νν+1/3
exp

(
ν2 − x2

2ν + 1

)
.

Let r = (2ν)1/3, by Lemma 12 we can set

x = ν
√
1− (2ν)−2/3z =

r2

2

√
r2 − z , r−4 < z < 1 ≤ r.

This gives Hν(x) < Af(z), where

A =
21/6

32/3Γ(23 )
, f(z) =

(
1− z

r2

)r3/4
(z − 1

r4
)1/4 exp

(
z r4

4r3 + 4

)
.
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We find
f ′(z)

f(z)
=

(1 + r3 + r6 − 2z r4 − z2r5)r3

4(1 + r2)(r2 − z)(z r4 − 1)
.

The denominator here is obviously positive. The numerator is also positive by

1 + r3 + r6 − 2z r4 − z2r5 > (r2 − 1)(1 + r)(r3 − 2r2 + r − 1) > 0,

provided ν ≥ 19/7. Hence f(x) is increasing and

Hν(x) < Af(1) = A

(
1− 1

r2

)r3/4

(r4 − 1)1/4r−1 exp

(
r4

4r3 + 4

)
<

Ae−r/4(1− r−4)1/4 exp

(
r4

4r3 + 4

)
< A <

√
2/π .

This completes the proof. �
Proof of Theorem 7. Set f(x) = x1/4Ai(−x), then

f ′′ − 1

2x
f ′ +

(
x+

5

16x2

)
f = 0,

and the corresponding Sonin’s function is

S(x) = f2 +
16x2

16x3 + 5
f ′2, S′(x) =

240x

(16x3 + 5)2
f ′2 ≥ 0.

Hence f2(x) ≤ S(x) ≤ S(∞). Using the asymptotics [9, eqn. 9.7.9, 9.7.10]

Ai(−x) ∼ cos(ζ − π/4)√
π x1/4

, Ai′(−x) ∼ x1/4 sin(ζ − π/4)√
π

, ζ =
2

3
x3/2,

one obtains S(∞) = 1/π and the result follows. �

4. Error term of the standard asymptotics of Jν(x)

Having at hand an upper bound on |Jν(x)| one can estimate the difference

(29) r(x) =

√
πx

2
Jν(x)− cos(x− ων),

in a rather elementary way. Notice that r(x) satisfies the following equation

r′′ + r =

√
π

2x3

(
ν2 − 1

4

)
Jν(x),

with the general solution of the form

(30) r(x) = c1 cosx+ c2 sinx+

√
π

2

(
1

4
− ν2

)∫ ∞

x

sin(t− x)

t3/2
Jν(t)dt.

Now one has only to estimate the integral and to notice that as far as it is o(1), we
have c1 = c2 = 0 by an obvious limiting argument.

To get better numerical constants the following observation will be useful. Let
f(x) ≥ 0 be a decreasing function for x > 0. Since∫ π(k+1)

πk

(| sin t| − 2/π ) dt = 0, k = 0, 1, ...,

one readily obtains

(31)

∫ ∞

0

f(t)| sin t| dt ≤ 2

π

∫ ∞

0

f(t)dt,
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assuming that the last integral exists.

Proof of Theorem 4. We shall estimate the function r(x) defined by (29). First
notice that asymptotically

Jν(x) =

√
2

πx
cos(x− ων) +O(x−3/2),

that is lim
x→∞

r(x) = 0, hence c1 = c2 = 0 in (30), and therefore

|r(x)| =
√

π

2
µ

∣∣∣∣∫ ∞

x

sin(t− x)

t3/2
Jν(t)dt

∣∣∣∣ :=√π

2
µ Iν(x).

Thus, c = sup
x>0

xIν(x) and for |ν| ≤ 1/2 the result immediately follows by (31),

Iν(x) ≤
√

2

π

∫ ∞

x

| sin(t− x)|
t2

dt ≤ (2/π)
3/2

x
.

For ν > 1/2 and x >
√
µ , applying (5), (31) and the inequality arcsinx ≤ πx/2,

we get

Iν(x) ≤
√

2

π

∫ ∞

x

| sin(t− x)|
t3/2(t2 − µ)1/4

dt ≤
(
2

π

)3/2 ∫ ∞

x

dt

t3/2(t2 − µ)1/4
≤

(
2

π

)3/2
√∫ ∞

x

dt

t2
·
∫ ∞

x

dt

t
√
t2 − µ

=

(
2

π

)3/2
√

arcsin
√
µ

x

x
√
µ

≤ 2

πx
.

Similarly, for ν > 1/2 and 0 < x ≤ √
µ ,

Iν(x) ≤
√

2

π

∫ ∞

√
µ

| sin(t− x)|
t3/2(t2 − µ)1/4

dt+

√
2

π

∫ √
µ

x

| sin(t− x)|
t3/2(µ− t2)1/4

dt ≤

2

π
√
µ
+

√
2

π

∫ √
µ

x

dt

t2
·
∫ √

µ

x

dt

t
√
µ− t2

=
2

π
√
µ
+

√√√√ 2

π

(
1

x
− 1

√
µ

)
ln

√
µ+

√
µ−x2

x√
µ

.

This inequality can be rewritten as

xIν(x) ≤
2z

π
+

√
2

π
(1− z)z ln

1 +
√
1− z2

z
, with z = x/

√
µ.

A routine but rather tedious investigation reveals that the last expression does not
exceed 4/5. We omit the details.

Let us show that up to the numerical factor c the error term in (6) is sharp. By
(30) and (6) we have for the error term

Rν(x) = x3/2

∣∣∣∣∣Jν(x)−
√

2

πx
cos(x− ων)

∣∣∣∣∣ = µx

∣∣∣∣∫ ∞

x

sin(t− x)

t3/2
Jν(t)dt

∣∣∣∣ =√
2

π
µx

∣∣∣∣∫ ∞

x

sin(t− x) cos(t− ων)

t2
dt

∣∣∣∣+θcµx

∣∣∣∣∫ ∞

x

sin(t− x)

t3
dt

∣∣∣∣ :=
√

2

π
µx|I1|+I2.

Here

I2 = θcµx

∫ ∞

x

dt

t3
=

θcµ

2x
.
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To bound I1 we introduce two auxiliary functions f and g defined by

Si(x) =
π

2
− f(x) cosx− g(x) sinx, Ci(x) = f(x) sinx− g(x) cosx,

with the asymptotics (see [9, sec. 6.12 (ii)])

f(x) = x−1 +O(x−3), g(x) = x−2 +O(x−4).

Calculations yield

I1 = Si(2z) sin(x+ ων) + Ci(2z) cos(x+ ων)−
sin t cos(z − ων)

z

∣∣∣∣∞
t=0

= f(2z) sin(2t+ x− ων)− g(2z) cos(2t+ x− ων)−
sin t cos(z − ων)

z

∣∣∣∣∞
t=0

=
sin(ων − x)

2x
+O(x−2), z = x+ t.

Hence

Rν(x) =
µ√
2π

| sin(ων − x)|+O(x−1),

and the result follows. �

Remark 2. Numerical calculations suggest that in fact

sup
x≥0

x3/2

∣∣∣∣∣Jν(x)−
√

2

πx
cos

(
x− π(2ν + 1)

4

)∣∣∣∣∣ = µ√
2π

,

for all ν ≥ −1/2 outside the strip 3/2 < ν > 4.4767. The maximal value of the

function in that strip is approximately equal to 1.06424/
√
2π and is attained at the

point (ν, x) ≈ (2.68729, 2.98219).

5. Sharper asymptotics

The classical asymptotics given by (6) does not make much sense for x = O(µ)
when the main term and the error are of the same order. Here using formula (21)
we derive a different asymptotic expression with much smaller error term. It also
leads to very sharp approximation of the Airy function Ai(−x) and its zeros. We
will need the following lemma given in [7].

Lemma 13. Let f(x) satisfy the differential equation

f ′′(x) + b2(x)f(x) = 0,

where b(x) > 0 and b′′(x) exists on an interval I. Let g(x) =
√

b(x) f(x), then for
x ∈ I, provided the integral exists,

(32) g(x) = c1 cosB(x) + c2 sinB(x) + θ

∫ x

a

∣∣∣∣3b′2(t)− 2b(t)b′′(t)

4b3(t)
g(t)

∣∣∣∣ dt,
where B(x) =

∫ x
b(t)dt and

a ∈ I is arbitrary.

Proof. Observe that g(x) satisfies the equation

(33) g′′ − b′

b
g′ + gb2 (1 + ϵ) = 0, ϵ = ϵ(x) =

3b′2 − 2bb′′

4b4
.
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The solution of the corresponding homogeneous equation

g′′0 − b′

b
g′0 + b2g0 = 0

is g0 = c1 sinB(x)+c2 cosB(x). Solving formally (33) as an inhomogeneous equation
with the right hand side − ϵ(x)g(x) we get

g(x) = g0(x)−
∫ x

a

ϵ(t)b(t)g(t) sin
(
B(x)− B(t)

)
dt =

g0(x) + θ

∫ x

a

∣∣ϵ(t)b(t)g(t) sin (B(x)− B(t)
)∣∣ dt =

g0(x) + θ

∫ x

a

∣∣∣∣3b′2(t)− 2b(t)b′′(t)

4b3(t)
g(t)

∣∣∣∣ dt.
�

The normal form of differential equation (2) is

f ′′ +

(
1− ν2 − 1/4

x2

)
f = 0, f =

√
xJν(x).

Thus, for x >
√

max{0, ν2 − 1/4} we have

b(x) =

√
x2 − ν2 + 1/4

x
,

B(x) =


√
x2 + µ+

√
µ ln x

√
µ+

√
µ+x2

, |ν| ≤ 1/2,

√
x2 − µ+

√
µ arcsin

√
µ

x , ν ≥ 1/2,

and g(x) = (x2 − ν2 + 1/4)1/4 Jν(x).

Proof of Theorem 5. Since |Jν(x)| ≤
√

2
πx for |ν| ≤ 1/2, by (32) we have

g(x) = g0(x) + θ
µ√
8π

∫ ∞

x

6z2 + µ

z3/2 (z2 + µ)9/4
dz = g0(x) + θ

µ√
2πx (x2 + µ)5/4

.

Comparing this with the standard asymptotics

(34) f(x) =
√
xJν(x) =

√
2

π
cos (x− ων) +O(x−3/2),

for large x one finds

c1 =

√
2

π
sinων , c2 =

√
2

π
cosων ,

yielding (8).
Similarly, for ν ≥ 1/2 and x ≥ µ, using (5) instead of (25), we obtain

g(x) = g0(x)+
θµ√
8π

∫ ∞

x

6z2 − µ

z (z2 − µ)5/2
dz = g0+

θ√
8π

∣∣∣∣∣ 3x2 + 2µ

3(x2 − µ)3/2
−

arcsin
√
µ

x√
µ

∣∣∣∣∣ .
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It is easy to check that the expression inside the absolute value bars is positive and

decreasing in x. Therefore, by arcsin
√
µ

x ≥
√
µ

x , x > 0, we get

3x2 + 2µ

3(x2 − µ)3/2
−

arcsin
√
µ

x√
µ

≤ 3x2 + 2µ

3(x2 − µ)3/2
− 1

x
=

13µ

6(x2 − µ)3/2
− (x+ 2

√
x2 − µ )(

√
x2 − µ− x)2

2x(x2 − µ)3/2
<

13µ

6(x2 − µ)3/2
,

and

g(x) = g0(x) + θ
13µ

12
√
2π (x2 − µ)3/2

.

Comparing this with the asymptotics for large x one finds c1 =
√
2/π sinων , c2 =√

2/π cosων , and (9) follows. �

The corresponding results for the Airy function are now almost straightforward.
In particular, Corollary 2 follows directly from (8).

Proof of Theorem 8. Let f(x) = Ai(−x), then f ′′ + xf = 0, that is b(x) =
√
x ,

then (32) together with (14) yield

g(x) = x1/4f(x) = c1 sin ζ + c2 cos ζ +

∫ ∞

x

5

12πx3/2
dx =

c1 sin ζ + c2 cos ζ + θ
5

24πx3/2
, ζ =

2x3/2

3
,

and the result follows by comparing this with the asymptotics

Ai(−x) ∼ 1√
πx1/4

cos (ζ − π/4).

�

Proof of Theorems 6 and 9. It is easy to verify the following Taylor expansions:√
x2 + µ+

√
µ ln

x
√
µ+

√
µ+ x2

= x− µ

2x
+ θ2

µ2

24x3
, x > 0,

√
16x3 + 5

6
−

√
5

6
ln

√
16x3 + 5 +

√
5

4x3/2
=

2

3
x3/2 − 5

48
x−3/2 + θ2

25

9216
x−9/2 .

Now (12) and (17) follow by applying | cos(x+ ϵ)− cosx| ≤ ϵ, ϵ ≥ 0. �

6. Approximation of zeros

In this section we deduce the approximations of Corollary 1 and Theorem 10
from (12) and (17) respectively. Both proofs are based on the following simple
observation: the inequality | sinx| ≤ ϵ implies x = πs+ θπϵ/2, s ∈ Z.

Proof of Corollary 1. Let

x0 =
r +

√
r2 + 32µ

8
, x±

0 =
r +

√
r2 + 32µ± 800πµ

3r2

8
.

We will prove slightly stronger result, namely that x−
0 < jνs < x+

0 . Then (13) will
follow in view of the inequality

|r/4 + 2µ/r − x±
0 | < 18πµr−3.
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First, notice that π/2 ≤ jν1 ≤ π for |ν| ≤ 1/2, thus we will assume x > 1. By (12)
the equation Jν(x) = 0 is equivalent to

sin
(
x− µ

2x
− ων +

π

2

)
= θ

25µ

48x3
.

Hence, for x = jνs we get

x− µ

2x
− ων +

π

2
= πs+ θ

25πµ

96x4
,

giving the equation

(35) V (x) = 96x4 − 24rx3 − 48µx2 − 25θπµ = 0, r = (4s+ 2ν − 1)π.

By Descartes’ rule of signs this equation has only one positive zero for θ > 0 and
maximum two for θ < 0. If θ = 0 then x0 is the only positive root of (35).

Suppose next that θ > 0. One easily checks V (x0) < 0 and V (x+
0 ) > 0, hence

x0 < x < x+
0 .

Let now θ < 0. We find V (0) > 0 and V (1/2) < 0. Hence the equation V (x) = 0
has just one root for x ≥ 1/2. Since V (x0) ≥ 0, whereas

V (x−
0 ) =

25πµ

6r4

(
400πµ− 48µr2 − 3(1 + 2θ)r4 − 3r3

√
r2 + 32µ− 800πµ

3r2

)
≤

25πµ

2r

(
r −

√
r2 + 32µ− 800πµ

3r2

)
≤ 0,

we conclude that in all the cases x−
0 < x < x+

0 . This completes the proof. �
Proof of Theorem 10. By (17) Ai(−x) = 0 means

sin

(
2

3
x3/2 − 5

48
x−3/2 +

π

4

)
= θ

5π

36
x−9/2,

hence for x = as we obtain

(36)
2

3
x3/2 − 5

48
x−3/2 = πs− π

4
+ θ

5π

36
x−9/2, s = 1, 2, ...

First we need a lower bound on x. Since a1 = 2.33..., we may assume x > 2. Then

2

3
x3/2 = πs− π

4
+

5

48
x−3/2 + θ

5π

36
x−9/2 > πs− π

4
,

so x > m2/3/4, m = (12s− 3)π. Substituting this into the term with θ in (36) we
get the equation

2

3
x3/2 − 5

48
x−3/2 = m/12 + δ, δ = θ

640π

9m3
,

with the only positive root

x = 16−2/3
(
m+ 12δ +

√
(m+ 12δ)2 + 40

)2/3
.

After some calculations one gets

(37) x = 16−2/3
(
m+

√
m2 + 40

)2/3(
1 + θ

16δ

m+
√
m2 + 40

)
.

Finally, using the inequality

0 <
1

4
(m2 + 20)1/3 − 16−2/3

(
m+

√
m2 + 40

)2/3
<

25

3m3(m2 + 40)1/6
,
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we get

x =
1

4
(m2 + 20)1/3 + θ

457

m3(m2 + 40)1/6
.

This completes the proof. �

Finally, let us notice that the formulas (37) and (18) can be strengthen to

as < 16−2/3
(
m+

√
m2 + 40

)2/3
<

1

4
(m2 + 20)1/3.

This follows from rather involved estimates given in [13] of the error term of Miller’s
asymptotic expansion for as,

as ∼ m2/3

(
1

4
+

5

3m2
− 1280

9m4
+

4936000

81m6
− ...

)
.

In particular, in [13] it is shown that

as < m2/3

(
1

4
+

5

3m2
− 1280

9m4
+

4936000

81m6

)
,

and by straightforward calculations we convince that the last expression does not

exceed 16−2/3
(
m+

√
m2 + 40

)2/3
.
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