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PARP14 promotes the Warburg effect in
hepatocellular carcinoma by inhibiting
JNK1-dependent PKM2 phosphorylation and
activation
Valeria Iansante1, Pui Man Choy1, Sze Wai Fung2, Ying Liu3,4, Jian-Guo Chai5, Julian Dyson5, Alberto Del Rio6,

Clive D’Santos7, Roger Williams1,8, Shilpa Chokshi8, Robert A. Anders3, Concetta Bubici2,w,*,** &

Salvatore Papa1,*,**

Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth

and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect

with the suppression of apoptosis are not well understood. In this study, using loss-of-

function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose)

polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC)

by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the

Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated

with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1,

which results in the activation of PKM2 through phosphorylation of Thr365. Moreover,

targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings

indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the

Warburg effect in tumour cells and provide a mechanistic link between apoptosis and

metabolism.
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I
n the presence of sufficient levels of oxygen, normal quiescent
cells metabolize glucose via glycolysis to pyruvate, which
is further metabolized through mitochondrial oxidative

phosphorylation for ATP production, whereas under hypoxic/
anaerobic conditions, cells ferment glucose to lactate1,2. In
contrast, rapidly dividing cells convert much of the glucose into
lactate irrespective of oxygen availability. This cell metabolism,
known as aerobic glycolysis or the Warburg effect1,2, allows
dividing cells to use intermediary glucose metabolites to generate
reducing equivalents (such as NADPH) and macromolecules
(such as nucleotides, proteins and lipids) required for the
doubling of biomass, and to suppress apoptosis3,4. As such,
increased aerobic glycolysis is a widely observed feature in human
cancers and often correlates with tumour aggressiveness and poor
patient prognosis in many tumour types, including human
hepatocellular carcinoma (HCC), the main type of liver cancer5–8.
Accumulating evidences indicate that the Warburg effect occurs
downstream of pro-survival signalling pathways that are altered
by loss of tumour suppressors or activation of oncogenes, such as
p53 and Myc4,9–12. Importantly, interference with altered
metabolism in tumour cells results in reduced tumourigenicity
and increased apoptotic sensitivity to chemotherapeutics3,4,13,14,
suggesting that the aerobic glycolytic metabolism is central to
tumour growth and survival2–4. Thus, a better understanding
of the mechanistic links between cell metabolism and
survival control could be of paramount significance for the
development of new therapeutics particularly in HCC, given the
close association between metabolic alteration and HCC
pathogenesis5–7,14. Poly(ADP-ribose) polymerase (PARP)14, a
member of the PARP family of proteins15, is a well-established
pro-survival protein that has been involved in protecting
lymphocytes against apoptosis16,17. PARP14 has been also
shown to accelerate lymphomagenesis driven by persistent
overexpression of the oncogene c-Myc, and to be vital for
interleukin-4-induced glycolytic flux in mice16,17, indicative of a
potential link between PARP14 and metabolic regulation. In
human fibrosarcoma cells, PARP14 was shown to regulate the
abundance of phosphoglucose isomerase, a glycolytic enzyme
involved in tumour aggressiveness18. In addition, we have
recently shown that PARP14 is essential for survival of human
multiple myeloma cells and that PARP14 levels positively
correlate with disease progression and poor prognosis19. We
have also shown that the pro-survival function of PARP14
depends on the suppression of the apoptotic signalling mediated
by JNK1, a highly conserved serine/threonine protein kinase19,20.
However, whether the survival function of PARP14 contributes to
the Warburg effect in human cancer cells have not been
previously investigated.

A critical mediator of the Warburg effect is pyruvate kinase M2
isoform (PKM2), a tumour-specific isoform of the glycolytic
enzyme pyruvate kinase (PK), which catalyses the synthesis of
pyruvate and ATP, using phosphoenolpyruvate (PEP) and ADP
as substrates21–24. PKM2, but not its spliced variant PKM1, has a
low PK activity that favours the Warburg effect and provides
advantages for cancer cell growth and survival20,24,25. In contrast,
high PK activity or pharmacological activation of PKM2
was shown to inhibit aerobic glycolytic phenotypes and
tumour growth26–28, underscoring the importance of identifying
endogenous regulators of PKM2 activity in cancer.

Here we show that PARP14 is highly expressed in diverse solid
tumours, including HCC, and positively regulates aerobic
glycolysis through effects on PKM2 enzymatic activity, thus
promoting survival in cancer cells. We demonstrate that PARP14
maintains low PKM2 activity by inactivation of JNK1, which,
in turn, mediates the phosphorylation of PKM2 at Thr365;
phosphorylation of PKM2 at this residue increases PKM2 activity.

Thus, this study reveals a molecular link between a regulator of
cell survival and a key enzyme in cancer metabolism with
potential therapeutic implications.

Results
PARP14 is upregulated in HCC and cirrhotic livers. As an
initial attempt to explore whether PARP14 regulates the Warburg
effect, we evaluated the expression of PARP14 transcripts in
highly glycolytic liver samples5–7,29–33 from patients with HCC
and patients with cirrhosis, a liver condition that predisposes
patients to HCC7,29,34, by interrogating public gene expression
databases. We found that in HCC and cirrhotic samples, the
expression of PARP14 was significantly higher than that in
normal quiescent liver samples (GSE6764)34 (Fig. 1a). In a
second, independent data set (GSE36376)35, we also observed
significantly higher expression of PARP14 in HCC samples
compared with their adjacent nontumour tissues (Fig. 1b).
Importantly, the expression levels of PARP14 in HCC and
cirrhotic livers positively correlated with expression of key
glycolytic genes (Fig. 1c), suggesting a possible role for PARP14
in the glycolytic phenotype of highly proliferating cirrhotic and
malignant hepatocytes5–7,29–33. To confirm these observations
experimentally, we carried out western blots (WBs) in a panel of
HCC-derived cell lines (Huh7, Hep3B, Snu-449, PLC5, HepG2
and SK-Hep-1) and tumour lysates obtained from nine patients
with HCC. While only one of five normal livers displayed
PARP14 expression, the expression of PARP14 was higher in
eight of nine HCC samples and in all HCC cell lines examined
(Fig. 1d). Interestingly, nontumoural immortalized human
hepatocyte (IHH) cell line36,37 and three independent primary
normal hepatocytes displayed low to undetectable levels of
PARP14 protein (Fig. 1d). These findings were further
supported by immunohistochemical analyses in primary HCCs
(n¼ 48) and cirrhotic (n¼ 22) livers. Of HCC cases, 32 out of 48
(67%) were strong or moderately positive for PARP14 and 16
(33%) were weak or negative (Fig. 1e). Moderate or strong
immune positivity for PARP14 was also present in 20 out of 22
cirrhotic cases, suggesting that PARP14 is involved in the
tumourigenesis of HCC. In support of this hypothesis, high
PARP14 mRNA expression levels were found to be associated
with a progression of cirrhosis to HCC and reduced survival
rate in a cohort of 115 newly diagnosed cirrhotic patients
(GSE15654)38 (Fig. 1f). Remarkably, PARP14 is overexpressed in
early stages of HCC and, importantly, its high expression is
maintained during cancer progression, indicating that PARP14
upregulation might be required for both the formation and
maintenance of HCC (Supplementary Fig. 1a). To gain additional
clinical insights, we evaluated the expression of PARP14 in
molecular subtypes of HCC with distinct prognoses39 using a
publicly available data set of 156 HCC cases. PARP14 expression
was significantly higher in the poor prognostic hepatic stem cell-
like HCC (HpSC-HCC) subtype than in the mature hepatocyte-
like HCC subtype of HCC (Fig. 1g)39. Consistent with the
hypothesis that PARP14 is involved in hepatocarcinogenesis,
HpSC-HCC subtype has tumour-initiating features39. Finally, the
analysis of additional data sets also showed that PARP14
expression was higher in glioblastoma, breast, gastric and lung
cancers compared with that in their matched normal tissue
(Supplementary Fig. 1b). This is in full agreement with the notion
that the Warburg effect is a common characteristic of human
carcinomas2,8. Collectively, these data suggest that PARP14 may
play an oncogenic role in multiple cancer types.

PARP14 is required for tumour growth. To assess the functional
role of PARP14 in cancer cells, we knocked down expression of
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Figure 1 | PARP14 is upregulated in cirrhotic and HCC livers and associated with glycolytic gene expression and poor patient prognosis.

(a) Gene expression levels of human PARP14 mRNA (NM_017554) in normal quiescent (n¼ 10), cirrhotic (n¼ 13) and HCC (n¼ 35) livers (clinical data set

GSE6764; ref. 34). The horizontal lines indicate mean±s.e.m. P values were calculated by Student’s t-test. (b) Levels of PARP14 mRNA in HCC (n¼ 240)

and adjacent nontumour (n¼ 193) tissue (GSE36376; ref. 35). The horizontal lines indicate mean±s.e.m. P values were calculated by nonparametric

Mann–Whitney tests. (c) Scatterplots showing the positive correlation between PARP14 and GLUT1/HK2/PFKL mRNA expression in HCC (top; GSE36376)

and cirrhotic patients (bottom; GSE15654; ref. 38). Pearson’s coefficient tests were performed to assess statistical significance. (d) Western blots (WBs)

analyses detecting PARP14 in lysates of normal quiescent livers, HCC biopsies, HCC-derived cell lines, primary normal hepatocytes isolated from three

healthy livers and nontumoural immortalized human hepatocytes (IHH) (refs 36,37). a-Actinin was used as loading control. (e) PARP14 immunostaining of

tissue microarray comprising 48 HCC and 22 cirrhotic livers. Shown are representative images of the immunostainings at 20� magnification. Scale bar,

50mm. Graph indicates the percentage of cases displaying strong or low staining intensity of PARP14. (f) Levels of PARP14 transcripts in the clinical data set

GSE15654 consisting of 115 patients with newly diagnosed cirrhosis who were prospectively followed up in an HCC surveillance program and classified as

having good (n¼ 55) and poor (n¼60) prognosis based on the rates of patient survival and incidence of developing HCC. (g) Scatterplots showing PARP14

mRNA expression in two molecular subtypes of HCC, mature hepatocyte-like HCC (MH-HCC; n¼96; EpCAM� and AFP� ) and HpSC-HCC (n¼60;

EpCAMþ and AFPþ ) (ref. 39). (f,g) Table indicates a summary of the clinical parameters associated with each group. The horizontal lines indicate

mean±s.e.m. P values were calculated by nonparametric Mann–Whitney tests.
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PARP14 in HCC cells using two PARP14-specific short hairpin
(sh)RNA lentiviruses (shPARP14 or shPARP14#2). As controls,
we used lentiviruses expressing nonspecific shRNA (shNS)19.
Efficient PARP14 knockdown was confirmed by WB (Fig. 2a).
We found that PARP14 shRNA-expressing cells had a
significantly slower growth rate and a reduced ability to grow
in an anchorage-independent manner compared with control
cells (Fig. 2b–d), indicating that PARP14 depletion confers a
growth disadvantage. By contrast, depletion of PARP14 did not
affect the growth rate of nontumoural IHH cells (Fig. 2b,c). Next,

we subcutaneously injected Huh7 cells bearing PARP14 or NS
shRNAs into NOD/SCID immunodeficient mice to assess the
ability of these cells to form tumours in vivo. Large tumours
developed in every site injected with shNS-transduced cells after a
median time of 36 days (Fig. 2e,f; Supplementary Fig. 2a). Only
one tumour developed from shPARP14-transduced cells was
smaller in size and had partially regained PARP14 expression
(Fig. 2f; Supplementary Fig. 2a,b). Thus, PARP14 is required for
HCC cell growth both in vitro and in vivo. Of clinical relevance,
dose-response analyses revealed that knockdown of PARP14
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Figure 2 | PARP14 knockdown impairs HCC cell growth. (a) WBs showing the PARP14 knockdown efficiency of Huh7, Hep3B and non-malignant IHH

cells stably expressing PARP14, PARP14#2 or control nonspecific (NS) shRNAs. (b) Shown are representative light microscopy images of cultured

cells (days 5 and 7 after shRNA expression). Scale bar, 2 mm. (c) Growth curves of Huh7 (n¼ 6), Hep3B (n¼6) and non-malignant IHH (n¼ 6) cells

stably expressing PARP14, PARP14#2 or control nonspecific (NS) shRNAs. Data are shown as mean±s.e.m. and are representative of three independent

cultures. (d) Time course of anchorage-independent colony formation by Hep3B and HepG2 cells stably expressing shPARP14 or shNS. Representative

images show overall view of colony growth after 3 weeks. Data shown are mean±s.e.m. of three independent cultures. P values were calculated by

Student’s t-test. (e) Kaplan–Meier curve showing tumour formation over time of Huh7 cells expressing shPARP14 and shNS injected subcutaneously in the

right and left flanks of NOD/SCID immunodeficient mice (n¼6), respectively. P value was calculated by Log-rank test. Image of a visible tumour developed

in the flank (framed in a circle) of a representative mouse. The inset shows the size of the tumour explanted from the left flank. (f) Tumour weights were

analysed by scatterplot. The horizontal lines indicate the mean. P value indicates Student’s t-test.
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rendered HCC cells more sensitive to sorafenib or doxorubicin
(Supplementary Fig. 2c), two anti-HCC agents 40, suggesting an
additive effect. Such an effect was also observed when we silenced
PARP14 in other cancer cell types and treated them with
doxorubicin (Supplementary Fig. 2d). Notably, PARP14 depletion
had no significant effect on nontumoural IHH cells treated with
either sorafenib or doxorubicin (Supplementary Fig. 2c).

Knockdown of PARP14 impairs the Warburg effect.
To understand the mechanisms underlying the tumourigenic
function of PARP14, we examined whether PARP14 affected
aerobic glycolysis. Compared with control silencing, knockdown
of PARP14 in multiple HCC cell lines resulted in decreased
glucose consumption and lactate production (Fig. 3a,b;
Supplementary Fig. 3a,b), accompanied by a reduced rate of
extracellular acidification (ECAR) (Fig. 3c; Supplementary
Fig. 3c), indicators of decreased aerobic glycolysis2,4,8. Notably,
PARP14 silencing did not result in a significant change of oxygen
consumption rate (OCR) or activity of the mitochondrial
complex I (Fig. 3d; Supplementary Fig. 3d,e), indicating that
depletion of PARP14 attenuates glycolysis without affecting
mitochondrial oxidative phosphorylation2.

Furthermore, we observed a significant decrease of NADPH,
a crucial metabolite for reductive biosynthesis of macro-
molecules2,27,41, in PARP14 knockdown cells that correlated
with a significant decrease of gluthatione (GSH) and increase in
ATP levels (Fig. 3e–g). Accordingly, compared with control cells,
PARP14-depleted cells accumulated less glucose-6-phosphate and
2-PG, two key glycolytic intermediates involved in nucleotide and
serine synthesis (Fig. 3h)2,4,42. This suggests that PARP14 may

favour biomass generation over energy production, a metabolic
shift consistent with the Warburg effect1,2,4. Importantly,
knocking down PARP14 also impaired aerobic glycolytic
metabolism in other highly glycolytic human cell lines derived
from multiple myeloma (RPMI-8226), brain (U87) and breast
(MCF7) cancers (Supplementary Fig. 3f,g)43–45. By contrast,
PARP14 knockdown in nontumoural IHH cells had no effect on
glucose consumption or lactate production (Fig. 3a,b). Moreover,
levels of PARP14 protein decreased in a time- and dose-
dependent manner when the oncoprotein Myc, one of the
central regulators of aerobic glycolysis in most types of
tumours10–12, was inhibited in hepatoma cells (Supplementary
Fig. 3h). These results suggest that PARP14 may be a universal
regulator of aerobic glycolysis in human cancers.

PARP14 inhibits the metabolic activity of PKM2. As a
constitutively low PKM2 activity is essential for aerobic
glycolysis25,27,28,46, we investigated a possible relationship
between PKM2 and PARP14. First, we examined the effect of
PARP14 on PK activity and found that, compared with control
shNS-infected cells, knockdown of PARP14 in HCC cells
significantly increased PK activity with a corresponding marked
increase in pyruvate levels (Fig. 4a,b). Similarly, activation of
PK was also induced by the pan-PARP inhibitor PJ-34, which
has been previously used to examine PARP14 function
(Fig. 4c)17,19,47. This effect was accompanied with reduced
aerobic glycolysis (Fig. 4d). To determine whether the increase
in PK activity is attributable to PKM2 and responsible
for impaired glycolysis caused by PARP14 knockdown,
we co-expressed PKM2 shRNA (shPKM2) in PARP14-depleted
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cells (Fig. 4e) and determined the possibility of rescuing the
metabolic effects observed in these cells. PK assays confirmed that
total PK activity level was substantially reduced in the double
PARP14/PKM2 knockdown cells compared with control cells,
supporting the hypothesis that intracellular PK activity is mostly
likely due to the predominant expression of PKM2 in HCC cells.
Of note, no compensatory increase in the constitutively
active splice variant PKM1 (refs 1,21,27) was observed in the
shPARP14/shPKM2 cells, although PKM2 expression was almost
completely abolished (Fig. 4e). Depletion of PKM2 was sufficient
to completely reverse decreased aerobic glycolysis caused by
PARP14 depletion (Fig. 4f). The effect of co-silencing PKM2
with PARP14 on glucose consumption and lactate production
was comparable to that of control shNS-infected cells
(Figs 3a,b and 4f; compare shPARP14/shPKM2 with shNS).
These effects were specific, as control silencing did not affect
PARP14-depleted cells. Remarkably, ectopic expression of PKM1
in PKM2-expressing cells was sufficient to increase their total PK
activity, but had no effect on lactate production and cell
proliferation in standard tissue culture conditions (Fig. 4g,h).
Together, these results indicate that the impaired aerobic
glycolysis observed in PARP14-depleted cells is a consequence
of PKM2 activation.

PKM2 can translocate to the nucleus, where it collaborates with
transcription factors, most notably, hypoxia-inducible factor
(HIF)1a and Myc, in inducing glycolytic gene expression that
promotes the aerobic glycolysis in cancer cells10,11,24,48. Thus, we
asked whether PARP14 could also affect the nuclear function of
PKM2. A slight but significant decrease in the nuclear levels of
PKM2 was observed in PARP14-depleted cells compared with the
levels of nuclear PKM2 in control shNS-infected cells
(Supplementary Fig. 4a). In line with this finding, PARP14
knockdown cells also displayed impaired transcriptional
activity of HIF1a and Myc as well as the consequent protein
expression of glycolytic enzymes (Supplementary Fig. 4b–d),
a metabolic signature consistent with an impaired aerobic
glycolysis2,10,11,24,48.

As inactivation of PKM2 has been associated with the growth
and survival of multiple cancer cells21,26–28,46, we next examined
the impact of PARP14 on the survival of HCC cells. A progressive
increase of apoptosis in PARP14 knockdown cells was observed
over time, as shown by a marked increase in the sub-G1
population and caspase-3 and PARP1 cleavage (Fig. 5a,b;
Supplementary Fig. 5a–c). These effects of PARP14 knockdown
were also observed in HCC cells exposed to hypoxia (1% oxygen),
which strongly triggers aerobic glycolysis8,24 (Fig. 5c,d). Electron
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microscopy images also confirmed that PARP14-depleted Hep3B
cells underwent characteristic morphological changes (that is,
shrinking and blebbing) indicative of apoptosis (Fig. 5e).
As expected, in IHH cells, PARP14 depletion did not induce
apoptosis (Supplementary Fig. 5b), confirming that PARP14
is not essential for basal survival of nontumoural IHH
cells. Notably, PARP14 knockdown cells displayed increased
phosphorylation of the pro-apoptotic kinase JNK1 (pre-
dominantly present as p46 isoform) compared with control

shNS cells (Fig. 5b,d; Supplementary Fig. 5c), indicating that
depletion of PARP14 increased the basal activity of JNK1, thereby
resulting in apoptosis. Activation of JNK1 was further confirmed
by in vitro kinase assays (JNK1 KAs; Fig. 5b; Supplementary
Fig. 5c). Similarly, a dose- and time-dependent JNK1 activation
and apoptosis were also induced by PJ-34 (Supplementary
Fig. 5d,e). Of clinical relevance, a significant inverse correlation
between PARP14 and p-JNK levels was observed in patient-
derived lysates of HCC (Supplementary Fig. 5f; see also Fig. 1d),
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strongly suggesting that PARP14-mediated JNK1 suppression
occurs in HCC. To assess whether apoptosis triggered by PARP14
knockdown was mediated by PKM2 activation, we either silenced
or overexpressed PKM2 in PARP14-depleted HCC cells. Whereas
knockdown of PKM2 reversed apoptosis induced by PARP14
depletion, PKM2 ectopic expression increased apoptosis by 50%
(Fig. 5f). Hence, PARP14 promotes the Warburg effect needed for
HCC cell survival by lowering PKM2 activity.

PARP14 inhibits PKM2 activity through inactivation of JNK1.
We then investigated the mechanisms of PKM2 inhibition by
PARP14. The observations that JNK1 is activated by PARP14
inhibition (see Fig. 5b,d; Supplementary Fig. 5c,d) and negatively
regulates hepatic glycolysis49 led us to examine whether activation
of JNK1 mediated the effects of PARP14 on PKM2 activity. For
this purpose, we knocked down JNK1 expression in HCC cells in
combination with PARP14 using JNK1 shRNA (shJNK1) and
assayed for the PKM2 enzyme activity. Knocking down JNK1
prevented the increase in PKM2 activity in PARP14-depleted cells
(Fig. 6a), showing that JNK1 is responsible for PKM2 activation
in these cells. In parallel, we observed that co-depletion of
JNK1 with PARP14 completely rescued the reduced glucose
consumption and lactate production as well as apoptotic
phenotype associated with PARP14 knockdown (Fig. 6b,c).
Remarkably, no significant differences in phosphorylation/
activity levels of JNK1 were observed when PKM2 was silenced
in combination with PARP14 (Fig. 6d), which is consistent with
the hypothesis that JNK1 functions upstream of PKM2. These
results show that, by suppressing JNK1, PARP14 inhibits PKM2
activity.

To further examine the effects of JNK1 on PKM2 activity, we
co-expressed increasing amounts of a constitutively active form of
JNK1 (JNK1CA)50 in HEK293T cells with HA-tagged PKM2 and
measured PKM2 activity in the corresponding cell lysates.
Expression of JNK1CA significantly increased PKM2 activity in
a dose-dependent manner (Fig. 7a). Such an effect was not
observed when we co-expressed a catalytically non-active JNK1
protein (Fig. 7b), suggesting that the kinase activity of JNK1 may

be required for PKM2 activation. Moreover, when JNK1CA was
co-expressed with PKM1 isoform, PKM1 activity was unaffected
(Fig. 7c), indicating that active JNK1 specifically stimulates
PKM2.

JNK1 binds to and activates PKM2 through phosphorylation.
To determine the molecular mechanism of how JNK1 activates
PKM2, we investigated whether JNK1 interacts with PKM2.
FLAG-tagged PKM2 or FLAG-PKM1 was co-expressed in
HEK293T cells with HA-JNK2, HA-JNK1 or HA-empty vector,
and protein associations were assessed by combined immuno-
precipitations (IPs) and WB analyses. HA-JNK1 specifically
bound to FLAG-PKM2, but not to FLAG-PKM1 (Fig. 8a;
Supplementary Fig. 6a). The lack of interaction of the closely
related HA-JNK2 (ref. 19) with PKM2 further confirmed the
specificity of binding (Fig. 8a). Similarly, endogenous JNK1
interacted with endogenous PKM2 in HCC cells (Fig. 8b; IP:JNK1
and WB:PKM2). The binding of JNK1 to PKM2 is direct, as
shown by pull-down analyses with purified recombinant proteins
(Fig. 8c; IP:JNK1 and WB:PKM2). To determine whether JNK1
could phosphorylate PKM2, we performed immune complex
kinase assays and revealed that shPARP14-activated JNK1
markedly phosphorylated both purified His-PKM2 and
endogenous PKM2 in HCC cells (Fig. 8b; JNK1 KA). Similar
results were observed in HEK293T cells ectopically expressing
JNK1CA (Fig. 8d; JNK1 KA). Consistent with their direct
interaction, active recombinant JNK1 phosphorylated purified
His-PKM2, but not His-PKM1 (Fig. 8c; Supplementary Fig. 6b;
in vitro JNK1 KA). Altogether, these data indicate that PKM2 is a
direct substrate of JNK1. Importantly, phosphorylation of
purified His-PKM2 by recombinant active JNK1 paralleled an
increase in PK activity in a dose-dependent manner (Fig. 8e),
which is consistent with the enhanced activity of PKM2 in
PARP14-depleted HCC and JNK1CA-transfected HEK293T cells
(see Fig. 4a and Fig. 7a). Because knockdown of PARP14 did not
affect tyrosine phosphorylation (Tyr105) and acetylation of
PKM2 (Fig. 8f,g), two types of post-translational modifications
of PKM2 known to inhibit PKM2 (refs 46,51,52), these results
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suggest that active JNK1 stimulates PKM2 by a separate and
previously unknown mechanism.

JNK1 phosphorylates PKM2 at Thr365. In support of PKM2
being a JNK1 substrate, two phosphorylation sites were
detected in PKM2, Ser362 and Thr365 by mass spectrometry
(Supplementary Fig. 7a,b). Notably, mutation of Thr365, but not
Ser362, to alanine completely abolished the JNK1-mediated
phosphorylation in vitro (Fig. 9a), indicating that Thr365 is a
residue phosphorylated by JNK1. Moreover, the recombinant
PKM2(T365A) mutant, unlike its wild-type (WT) counterpart,
was not activated by active JNK1 in vitro, and displayed a
markedly lower PK activity than PKM2(WT) even in the absence
of JNK1 (Fig. 9b). This suggests that the Thr365 residue might be
also critical for the basal enzymatic activity of PKM2. Similar
results were observed in HEK293T cells (Fig. 9c). Hence, JNK1
directly binds to and phosphorylates PKM2 at Thr365, which is
required for PKM2 activation. Moreover, we performed kinetic
analyses of PKM2(WT) and PKM2(T365A) in cells and found
that active JNK1 lowered the Michaelis–Menten constant (Km) of
PKM2 for ADP and PEP by 2.1-fold and 1.1-fold, respectively
(Supplementary Fig. 8a,b), thus effectively increasing the affinity
of PKM2 for these substrates. Last, we examined the biological
significance of JNK-mediated PKM2 Thr365 phosphorylation
on PARP14 function in HCC cells. Compared with PKM2(WT)-
expressing PARP14-depleted HCC cells, PKM2(T365A)-
expressing PARP14-depleted HCC cells exhibited reduced levels
of PKM2 activity that correlated with a significant increase of
GSH levels and decrease in apoptosis (Fig. 9d), supporting a

role for PKM2 Thr365 phosphorylation in regulating PARP14-
mediated HCC cell survival.

Discussion
Increased aerobic glycolysis (Warburg effect) is a distinctive
feature of rapidly proliferating cells1,2,4. This metabolic signature
enables dividing cells to satisfy anabolic and energetic needs for
biomass production and to suppress apoptotic signalling3,4,26,41.
Accordingly, many human cancers including HCC display
an aerobic glycolytic phenotype, which often correlates with
tumour progression and worse clinical outcomes in cancer
patients5–8,30–33. Therefore, understanding how the Warburg
effect is regulated in cancer is particularly relevant for identifying
new therapeutic interventions. The low enzymatic activity of
PKM2 was shown to be a prominent driver of the Warburg effect
and cancer cell survival21,25,27,28,46. Nevertheless, the molecular
mechanisms that link the Warburg effect with cell survival
control in cancer cells remain largely unclear.

Here we demonstrate that the pro-survival protein PARP14
promotes the Warburg effect in HCC and reveal a molecular
mechanism underlying this effect: PARP14 maintains low PKM2
activity via inactivation of the pro-apoptotic protein JNK1, which
belongs to the serine/threonine kinase group20. Through this
regulation, PARP14 sustains the survival of hepatoma cells both
in vitro and in vivo and thereby could be an ideal molecular target
in HCC therapy.

Elevated expression levels of PARP14 were found in human
HCC cell lines as well as primary tumours, but were absent in
normal primary hepatocytes and livers, suggesting a pathogenic
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role for PARP14 in this disease. Moreover, the expression of
PARP14 positively correlated with expression of glycolytic genes
in HCC cases, supporting its relevance for the glycolytic
phenotype of HCC cells5,6,14,31–33. PARP14 levels also appear
to have important clinical implications for patients with HCC, as
PARP14 expression increases with disease progression from
normal livers to cirrhosis and then to active stages of HCC.
Remarkably, analysis of cirrhotic livers from patients followed up

during a span of 10 years38 showed that high PARP14 expression
positively correlated with a progression of cirrhosis to HCC and
reduced survival rate, suggesting that PARP14 expression levels
could be a new biomarker for the risk of HCC. These
observations together are consistent with the notion that
progression of cirrhosis into HCC is accompanied with a
progressive metabolic shift from mitochondrial respiration to
aerobic glycolysis that persists into carcinoma7,29. Given the
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positive correlation between PARP14 expression and
progression of cirrhosis to HCC we speculate that during
hepatocarcinogenesis, malignant hepatocytes express PARP14 to
rewire their metabolism. Further supporting this idea, PARP14
levels are elevated in early stages, and high PARP14 expression is
maintained in late stages of HCC. Interestingly, PARP14
expression is significantly higher in the HpSC-HCC subtype,
which has tumour-initiating features with poor prognosis39.
Establishing the role of PARP14 as a pro-survival factor
regulating the Warburg effect, we demonstrate that knockdown
of PARP14 impaired the aerobic glycolytic phenotype and
survival of both cultured and xenografted hepatoma cells. Thus,
although further in vivo studies are required, it is reasonable to
hypothesize that PARP14 may promote both HCC initiation and
maintenance at least in part through upregulation of glycolytic
metabolism. Interestingly, knockdown of PARP14 can cooperate
with anti-HCC agents in inducing more effective cell death,

suggesting that PARP14 could be targeted to improve HCC
therapies. Moreover, it is likely that the effects observed in HCC
may be generalized to other highly glycolytic cancers as high
PARP14 expression was also found in glioblastoma, breast, gastric
and lung cancers, and knocking down PARP14 impaired aerobic
glycolysis in human cell lines derived from these cancers.
Furthermore, in accordance with other studies17, the expression
levels of PARP14 appear to depend on the levels of the
oncoprotein Myc, a key contributor to the Warburg effect in
most cancer types2,10–12.

Recent studies highlight the critical role of the low PK activity
of PKM2 in the promotion of the Warburg effect and tumour cell
survival by sustaining antioxidant responses25–28,41. We indeed
found that PARP14 maintains low PKM2 activity in HCC cells.
This is demonstrated by the enhanced activity of PKM2
and consequent decrease in NADPH and GSH levels in
PARP14-depleted cells that our results show is responsible for
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and promoting apoptosis.
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the metabolic effects and apoptosis triggered by PARP14
knockdown. So how does PARP14 decrease the activity of PKM2?
The enzymatic activity of PKM2 is known to be tightly regulated
by the binding of PEP and ADP substrates, allosteric interactions
and post-translational modifications25,26, which include
phosphorylation46. For instance, tyrosine-phosphorylated
peptides bind to PKM2 and decrease its PK activity favouring
cell growth53. PKM2 itself can be directly phosphorylated by the
oncogenic tyrosine kinase FGFR1 at Tyr105, an event associated
with low PKM2 activity and diversion of glycolytic intermediates
into biosynthetic processes26,46. The inhibition of PKM2 activity
by PARP14 may represent an additional mechanism that
modulates PKM2 activity and subsequent aerobic glycolysis in
cancer cells. PARP14 restricts PKM2 activity through inactivation
of the serine/threonine kinase JNK1, because the enhanced
activity of PKM2 in PARP14-depleted cells was reversed by
knocking down JNK1 in these cells. Consistent with this, the
impaired aerobic glycolytic phenotype and apoptosis caused by
PARP14 knockdown in HCC cells were reversed by JNK1 co-
silencing, indicating JNK1 as a direct mediator of the metabolic
effects and apoptosis triggered by PARP14 knockdown. Thus, in
agreement with our previous findings19 and the well-known
association between glucose metabolism and apoptosis3,9,54,55,
PARP14 inhibits the pro-apoptotic activity of JNK1 to promote
the Warburg effect and consequent survival in HCC cells.
Although we cannot rule out that other JNK1-coupled kinases
could also be responsible for PKM2 phosphorylation in cells, we
show that JNK1 is a PKM2 kinase that directly phosphorylates
PKM2 at Thr365 in vitro resulting in PKM2 activation, thus
expanding the number of kinases that regulates PKM2 activity as
well as contact points between apoptosis and glucose
metabolism26,41,54,55. Moreover, we show that the forced express-
ion of PKM2(T365A) mutant resistant to phosphorylation in
PARP14-depleted cells impaired PKM2 activation and reverted
the GSH levels and apoptosis. Therefore, the suppression of
JNK1-mediated PKM2 Thr365 phosphorylation by PARP14 may
represent an unexpected mechanism by which HCC cells acquire
a survival advantage. Given that JNK1 activity plays instrumental
roles in apoptosis, cell proliferation and metabolism20, our results
underscore the important role of the PARP14-JNK1-PKM2
regulatory axis in a very broad area of cellular processes.

The obvious question that remains to be addressed relates
to the mechanisms of increased PKM2 activity caused by
JNK1-mediated Thr365 phosphorylation. PKM2 activity is also
regulated by complex structural modifications28,53. Our kinetic
analyses of PKM2(WT) and PKM2(T365A) in cells show that
active JNK1 increased affinity of PKM2 for ADP and PEP
substrates. In addition, PKM2 can translocate to the nucleus,
where it serves as a transcriptional co-activator to induce
HIF1a-dependent glycolytic gene expression24. Furthermore,
phosphorylation of PKM2 at Ser37 results in the nuclear
translocation of PKM2 and upregulation of Myc glycolytic
target genes48. Interestingly, we found that, compared with
control cells, cells depleted of PARP14 exhibit reduced levels of
nuclear PKM2 and impaired transcriptional activity of HIF1a and
Myc with a corresponding decrease in expression levels of
glycolytic enzymes, suggesting a role for PARP14 in the nuclear
function of PKM2. Therefore, it is possible that JNK1-mediated
Thr365 phosphorylation may directly cause conformational
changes in ADP- and PEP-binding site and/or modulate the
nuclear translocation/function of PKM2. Future investigations are
warranted to address this question.

In summary, our findings delineate an unexpected pathway
regulating the Warburg effect required for HCC cell survival
whereby PKM2 activity is negatively regulated by the PARP14-
JNK1 axis (Fig. 9e), thus constituting an additional paradigm of

how cell metabolism and evasion of apoptosis are inextricably
linked3,9,54,55. These results may lead to design new therapeutic
strategies for human HCCs.

Methods
Gene expression profiling and immunohistochemistry. Gene expression
profiling studies involving multiple clinical samples were performed analysing the
expression of specific transcripts in different data sets available through Gene
Expression Omnibus. Formalin-fixed paraffin-embedded HCC and cirrhotic
specimens used in tissue microarrays were commercially obtained from US Biomax
(TMA no. BC03117). All human tissues were collected in accordance with
the Anatomical Gift Act as for Sample Collection Policy by US Biomax.
Immunohistochemical staining of paraffin sections was carried out using a
two-step protocol. After antigen retrieval, the slices were incubated with anti-
human PARP14 antibody (HPA012063, Sigma-Aldrich; 1:50). According to the
intensity and total area of the staining, the expression of PARP14 was scored as
either strong expression (expressed 450% of cells) or low expression (o50% of
cells). A qualified liver pathologist (R.A.A.) performed the immunohistochemical
scoring without knowledge of samples identity.

Antibodies and reagents. The antibodies used for WBs were as follows:
PARP14 (HPA012063, Sigma-Aldrich, 1:2,000), a-actinin (sc-7454R, 1:1,500) and
b-actin (sc-1616R; 1:1,000; Santa Cruz Biotechnology); phospho-JNK (#9251),
phospho-PKM2(Tyr105) (#3827), pan-K-acetylated (#9814), HK2 (#2867), PFK
(#8164), LDHA (#3582), PDK1 (#3205), Myc (#5605), GAPDH (#5174; Cell
Signaling, 1:1,000); JNK1 (BD-51-1570R, BD Bioscience; 1:1,000); PARP1 (AM30,
Calbiochem; 1:1,000); Caspase-3 (#9665, Cell Signaling; 1:800); PKM2 (#3827,
Cell Signaling; 1:1,000 for WB; 1:50 for IP); PKM1/2 (#3190, Cell Signaling,
1:1,500); PKM1 (SAB4200094, Sigma; 1:1,000); HA-probe (sc-2362, Santa Cruz
Biotechnology; 1:800); FLAG-probe (F1804, Sigma-Aldrich; 1:2,000); His-probe
(#34698, Qiagen; 1:2,000); Histone-H3 (Active motif; 1:3,000); donkey anti-rabbit
HRP conjugated (NA9340V; GE Healthcare; 1:3,000); and goat anti-mouse HRP
conjugated (sc-2031, Santa Cruz Biotechnology; 1:1,000). The antibodies used
for IP were as follows: FLAG M2-affinity gel (A2220, Sigma-Aldrich; 20 ml per
reaction) and JNK1 (0.5 mg per reaction).

The following reagents were purchased from Sigma-Aldrich: PK from rabbit
muscle, crystal violet, Coomassie blue, propidium iodide, oligomycin, carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone, antimycin A, 2-deoxyglucose,
PJ-34 and Myc-inhibitor 10058-F4. Sorafenib (BAY43-9006) and doxorubicin
were purchased from Enzo Life Sciences and Abcam, respectively.

Cell culture and shRNA lentiviral infections. Human SK-Hep-1, Snu-449 and
MCF7 cell lines were obtained from ATCC. Hep3B, Huh7, PLC5 and HepG2 cell
lines were kindly supplied by H. Walczak and described elsewhere56,57. RPMI-8226
cell line is from our lab stock and previously described19. Human U87 glioma cells
were generously provided by P. Salomoni (UCL Cancer Institute). Huh7, Hep3B,
HepG2, PLC5, MCF7 and U87 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, 25 mM glucose; Life Technologies); Snu-449 and RPMI-8226
were cultured in RPMI1640 medium (11.11 mM glucose; Life Technologies).
Nontumoural IHHs were maintained in DMEM-F12 as described36,37. All
mediums were supplemented with 10% fetal bovine serum, antibiotics (100 U ml� l

penicillin and 100 mg ml� l streptomycin) and 2 mM glutamine (Life
Technologies). Cells were maintained at 37 �C in a humidified cell incubator
containing 20% O2, 5% CO2 in air (referred as normoxia). For hypoxia treatments,
cultured cells were sealed in a humidified modular incubator chamber (Billupus-
Rothemberg Inc.), flushed with a gas mixture of 1% O2, 5% CO2 and 94% N2 for
15 min and incubated at 37 �C for the time indicated. Transient transfections of
DNA plasmids, production of high-titer lentiviral preparations in HEK293T cells
and lentiviral infections were carried out as described previously19.

Expression plasmids and mutagenesis. Expression plasmids for shRNAs were
made in a pLL3.7 vector19. The targeted sequences were: human PARP14,
50-GGAAAGGGCTCACTCACAA-30 (ref. 19); human PARP14#2, 50-GAAAGCA
TGTGTATTATGT-30; human PKM2, 50-ctgtggctctagacactaa-30; and human JNK1,
50-GGAGCTCATGGATGCAAAT-30 ref. 19. Expression plasmids for HA-JNK1
and HA-JNK2 were previously described19. Expression plasmid of JNK1
constitutive active (JNK1CA; LZRS-FLAG-MKK7-JNK1a1) was a gift from J. Zhang
(Duke University)50. The full-length complementary DNAs of human PKM2 and
PKM1 were obtained from pWZL-FLAG-PKM2 (Addgene plasmid 20585)58 and
pET28-hPKM1 (Addgene plasmid 44241)28, respectively, and then cloned between
BamHI and XhoI sites of either pcDNA-HA- or pcDNA-FLAG-expressing vectors.
pcDNA-HA-PKM2 mutant forms (S362A and T365A) were generated using the
QuickChange XL site-directed mutagenesis kit (Stratagene). FLAG-PKM1,
HA-PKM2 WT and T365A were then cloned in pWPI lentiviral vector between
PmeI site59. For bacterial expression, PKM1, PKM2(WT) and PKM2 mutants were
cloned between BamHI and XhoI sites of pET28b vector (Novagen). pGEX-c-Jun
was previously described19.
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Soft agar colony assays. Hep3B and HepG2 cells expressing nonspecific (shNS)
or PARP14 (shPARP14) shRNAs were collected at day 4 post-infection and mixed
at a density of 3� 104 cells with 0.6% low melting point agarose (Sigma-Aldrich) in
complete DMEM phenol red-free medium containing growth medium for a final
concentration of 0.3% agarose. The cell mixture was plated on top of a solidified
layer of 0.6% agarose in growth medium. Cells were fed every 3–4 days with growth
medium. The number of colonies was automatically counted at the indicated time
using the open-source software OpenCFU60.

In vivo xenograft tumour model. Exponentially growing Huh7 cells expressing
nonspecific (shNS) or PARP14 (shPARP14) shRNAs were collected, washed
and resuspended in sterile PBS. Equal numbers (2.3� 106) of Huh7-shNS or
Huh7-shPARP14 cells were inoculated subcutaneously into the left and right
flanks of 6-week-old female NOD/SCID (Charles River) immunodeficient mice,
respectively. Tumour growth was monitored twice a week and mice were killed at
the time indicated when the tumour was early detectable (B1 cm) on either flank.
Tumours were removed, weighed and photographed. Tumour volume was
determined using the formula: L�W2� 0.5, where L is the longest diameter and
W is the shortest diameter of the excised tumour. All experiments were carried out
with UK Home Office Authority and Imperial College Ethical Review Process
Committee approval (PPL 70/6874).

Cell-based assays and microscopy analyses. For viability and death assays, cells
were seeded onto six-multiwell plates and collected at the time indicated in each
experiment. Cell number was determined by manual counting of adherent cells.
Viability assay was assessed using alamarBlue (Life Technologies) according to the
manufacturer’s protocol. Apoptosis was detected using propidium iodide nuclear
staining of pooled, detached and adherent cells as previously reported19. Light
microscopy images were acquired using either an Optika XDS microscope with a
10� objective adapted with a 3.0-MP camera (Moticam). For electron microscopy,
Hep3B cells expressing nonspecific (shNS) or PARP14 (shPARP14) shRNAs were
fixed with 2% paraformaldehyde, 1.5% glutaraldehyde in cacodylate buffer (0.1 M,
pH 7.3). Cells were post-fixed in 1% aqueous osmium tetroxide (OsO4) and 1.5%
potassium ferrocyanide (Sigma-Aldrich) in cacodylate buffer, dehydrated in a
graded ethanol–water series, cleared in propylene oxide and infiltrated with Agar
100 resin. Ultrathin sections (70 nm) were cut using a diamond knife on a Reichert
ultramicrotome, collected on 300 Ni mesh grids and stained with uranyl acetate
and lead citrate. Cells were observed in a Jeol 1010 transition electron microscope
(Jeol USA Inc.) and the images were recorded using an Orius CDD camera
(Gatan Inc).

Analysis of glucose metabolism and mitochondrial activity. Cells were seeded
onto 35-mm culture dishes, and after 6 h the culture medium was replaced with
fresh complete medium and incubated for additional 48 h. The media were then
collected for measurement of glucose and lactate concentration and cells harvested
for protein lysates. Glucose levels were determined using a glucose assay kit
(Sigma-Aldrich). Glucose consumption was calculated by deducting the measured
glucose concentration in the media from the original glucose concentration. Lactate
levels were determined using a lactate assay kit (Trinity Biotech) according to the
manufacturer’s instruction. All values were normalized on the basis of the Bradford
protein assay. In vivo cells real-time ECAR and OCR were monitored with
the Seahorse XF24 Flux Analyser (Seahorse Bioscience), according to the
manufacturer’s instructions. Cells (37,500 or 50,000) were seeded in a XF24-well
plate containing complete medium. For assessment of the real-time glycolytic rate
(ECAR), cells were incubated with unbuffered media followed by a sequential
injection of 10 mM glucose, 1 mM (Huh7) or 2 mM (Hep3B) oligomycin and 80 mM
2-deoxyglucose. The mitochondrial respiration (OCR) was assessed using
sequential injection of 1 mM (Huh7) or 2 mM (Hep3B) oligomycin, 0.2 mM carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone and 2 mM antimycin A. Both ECAR
and OCR measurements were normalized to cell number. Activity of mitochondrial
respiratory chain complex I in cellular lysates was assessed using Complex I
Enzyme activity microplate assay kit (Abcam) according to the manufacturer’s
protocol. All values were normalized on the basis of the Bradford protein assay.

Quantification of glycolytic intermediates. Levels of pyruvate, reduced GSH,
in lysates of HCC cells were analysed using Pyruvate Assay Kit (Abcam) and GSH-
Glo glutathione assay (Promega), respectively, according to the manufacturer’s
protocol. NADPH levels were determined using the NADPþ /NADPH quantifi-
cation kit (Biovision). Intracellular ATP levels were determined in cell lysates using
the Luminescence ATP Detection Assay System (Perkin-Elmer) according to the
manufacturer’s protocol. Levels of glucose-6-phosphate and 2-phosphoglycerate
were analysed using Glucose-6-Phosphate (Biovision) and 2-Phosphoglycerate
(Abcam) Assay Kit, respectively, according to the manufacturer’s protocol.
All values were normalized on the basis of the Bradford protein assay.

Western blot and co-immunoprecipitation. Tumour cells or xenografted tumour
tissues were homogenized in modified lysis buffer (50 mM Tris-HCl pH 7.5,
100 mM NaCI, 50 mM NaF, 1 mM Na3VO4, 30 mM sodium pyrophosphate,

0.5% NP-40 and 0.5 mM PMSF (Sigma-Aldrich) supplemented with EDTA-free
protease inhibitor cocktail (Roche)). Healthy and HCC human liver lysates were
commercially obtained from OriGene Technologies. Primary human hepatocytes
from normal livers were obtained from Life Technologies. Once thawed, cryo-
preserved hepatocytes were lysed in modified lysis buffer and processed for WBs
analyses. WB and co-IP were performed as described previously19. Briefly, for IP,
lysates were incubated with either 20 ml of FLAG M2-affinity gel (Sigma-Aldrich or
30 ml of a 1:1 slurry of protein A/G Plus-agarose (Santa Cruz Biotechnology) in
presence of a specific antibody for at least 4 h at 4 �C. The beads were washed four
times with 1 ml of lysis buffer and then subjected to SDS–polyacrylamide gel
electrophoresis analysis. Where indicated densitometry analyses were performed
using Image J analysis software (National Institutes of Health, USA), as previously
described19. Uncropped scans of WBs are provided in Supplementary Fig. 9.

Kinase assays. JNK1 KAs were performed as described previously19. Briefly,
in vitro JNK1 KA was performed using purified glutathione S-transferase
c-Jun(1–79), His-PKM2 WT or mutants forms (S362A and T365A) as substrates.
The in vitro phosphorylation was performed in the presence of [g32P]ATP
(Perkin-Elmer) for 40 min at 30 �C. Reactions were stopped by the addition of
SDS sample buffer, boiled and the phosphorylated proteins were resolved by
10% SDS–polyacrylamide gel electrophoresis. The gel was dried and subjected to
radiography.

Subcellular fractionation and transcriptional activity. Fractioning of nuclear
and cytosolic extracts was performed using NE-PER nuclear and cytoplasmic
extraction kit (Thermo Scientific) according to the manufacturer’s protocol.
Transcriptional activity of Myc and HIF1a was analysed using TransAm Myc and
TransAm HIF1 Activation Assay (Active Motif) according to the manufacturer’s
protocol. Briefly, for Myc activity, lysates were prepared from nuclear and
cytoplasmic fractions of shPARP14- and shNS-expressing Hep3B cells cultured
in normal standard conditions. For HIF1a, nuclear lysates were prepared from
shPARP14- and shNS-expressing Hep3B cells cultured in normal standard
conditions (normoxia) and in hypoxic conditions for 12 h (hypoxia).

Pyruvate kinase enzymatic activity. PK activity in cells was measured by
monitoring the conversion of pyruvate to lactate coupled with the conversion of
NADH to NADþ by the lactate dehydrogenase, as reported28. Briefly, the assay
was carried out using an optimal concentration of cell lysates combined with a 1�
PK reaction buffer (50 mM Tris-HCl pH 7.5, 100 mM KCl and 5 mM MgCl2
containing 0.5 mM PEP (Sigma), 0.6 mM ADP (Sigma), 660mM NADH (Sigma)
and 8 units lactate dehydrogenase (Sigma)). The final reaction volume was 100 ml
in 96-well plates. The decrease in absorbance at 340 nm from the oxidation of
NADH was measured as PK activity by a FLUOstar Omega spectofotometer
(BMGH Labtech). PK activity of purified proteins was measured using 0.15–2 mg of
recombinant human His-PKM2(WT) or His-PKM2(T365A) pre-incubated with
recombinant active JNK1 for 15 min at room temperature. The mixture was then
assessed with 1� PK reaction buffer. To cross-validate the results, in most cases,
the PK activity was also assessed using an alternative PK Assay method (Biovision)
according to the manufacturer’s protocol.

Purification of recombinant proteins. Recombinant active JNK1 was purchased
from Abcam. pET28-PKM1, pET28-PKM2(WT) and mutants forms (S362A and
T365A) were expressed in bacteria and purified as previously reported61. Briefly,
transformed Escherichia coli BL21(DE3) cells were grown in LB broth containing
2 mM MgCl2 and 0.05 mg ml� l kanamycin at 37 �C and induced with 0.5 mM
isopropyl-b-D-thiogalactoside for 6 h. Recombinant His-tagged proteins were
purified using the Ni-NTA spin columns (Qiagen) according to manufacturer’s
protocol. Purified recombinant proteins were dialysed against 0.1 M phosphate
buffer (pH 7.4) and visualized with Coomassie blue staining method61.

Phosphorylation of PKM2 and mass spectrometry. In vitro phosphorylation of
PKM2 was performed incubating purified active JNK1 (0.5 mg per reaction) with
recombinant His-PKM2 for 40 min at 30 �C in kinase buffer (20 mM HEPES pH
7.6, 20 mM MgCl2, 20 mM b-glycerophosphate disodium salt, 2 mM dithiothreitol,
0.1 mM Na3VO4 and 50mM cold ATP). Proteins were resolved on a 8% poly-
acrylamide gel and stained with Coomassie brilliant blue (R250) and subjected to
mass spectrometry, as previously reported62. Briefly, stained bands corresponding
to protein of molecular weight 58 kDa were excised, cut into small (o1 mm3)
pieces and washed three times by repetitive dehydration and hydration using,
respectively, 100% acetonitrile (MeCN) and 100 mM ammonium bicarbonate
(Ambic). Proteins were in-gel reduced in the presence of 10 mM dithiothreitol for
1 h at 56 �C and immediately alkylated using 55 mM iodoacetamide, and digested
overnight at 37 �C with 100 ng trypsin. Digested peptides were recovered, dried and
resuspended in Ambic/0.1% formic acid. Twenty per cent of the peptide mixture
was analysed by nano-liquid chromatography–tandem mass spectrometry using an
LTQ Velos-Orbitrap MS (Thermo Scientific) coupled with an Ultimate
RSLCnano-LC system (Dionex). Briefly, RawMSdata files were processed using
Proteome Discoverer v.1.3 (Thermo Scientific). Processed files were searched
against the SwissProt human database using the Mascot search engine version
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2.3.0. Using a reversed decoy database, false discovery rate was o1%. Searches
were done with tryptic specificity allowing up to one miscleavage and a tolerance
on mass measurement of 10 p.p.m. in mass spectrometry mode and 0.6 Da for
tandem mass spectrometry ions. Structure modifications allowed were oxidized
methionine, deamidation of asparagine and glutamine residues and phosphorylated
serine, threonine and tyrosine residues all of which were searched as variable
modifications. Carbamidomethylated cysteine residues were searched as a fixed
modification.

Statistical analysis. Statistical analyses were performed with GraphPad
Prism (Graphpad Software Inc). Unpaired Student’s t-test (two tailed) and
Mann–Whitney test were performed between two groups and one-way analysis
of variance followed by Bonferroni’s multiple comparison tests were used for
statistical comparison between three or more groups. Data in graphs are shown
as mean±s.e.m.
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