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Abstract- In this paper, detection method and classification 
technique of power quality disturbances is presented. Due to the 
increase of nonlinear load recently, it becomes an essential 
requirement to insure high level of power supply and efficient 
commotional consuming. Wavelet Transform represents a 
powerful mathematical platform which is needed especially at 
non-stationary situations. Disturbances are fed into wavelets to 
filter, detect and extract its features at different frequencies. 
Training of features extracted by WT is done using artificial 
neural networks ANN to classify power quality disturbances.  

Index Terms--Power Quality, Disturbances, Feature 
Extraction, Discrete Wavelet Transform, Classification, 
Artificial Neural Networks. 

I. INTRODUCTION

The increasing applications of nonlinear loads which come 
from power electronics devices have made the power quality 
problems a critical issue more than ever. Power delivery is 
expected to be received at rated sinusoidal voltage and 
current without distortion to customers. An efficient control 
of power quality problems is highly dependent on their 
accurate measurements and effective detection in time which 
makes challenging issues for researchers and engineers [1]. 
The definitions of power components in IEEE standard 1459-
2010 are based on Fourier Transform (FT)[2]. Unfortunately, 
FT and is not a sufficient method for non-stationary situations 
[3]. FT is unable to resolve fluctuated information when the 
time is limited [4]. Moreover, Fast Fourier Transform FFT 
can give accurate results for stationary waveforms but, it 
produces large errors for power systems for non-stationary 
waveforms [5]. Therefore, it is essential to develop an 
alternative approach for measuring power quantities and 
evaluating power quality. 

One of the powerful methods to quantify and analyse 
power quantities is wavelet transform (WT). It gives a 
representation for power signals in both time and frequency 
domain. WT has been involved in this field for disturbances 

associated with power quality [6]. Originally, WT has two 
categories called discrete wavelet transform (DWT) and 
continuous wavelet transform (CWT) [7]. Recently, WT has 
anther derivative has been implemented successfully for the 
definitions of power quantities according to IEEE std 1459-
2010 which is called stationary wavelet transform SWT [8]. 
Nevertheless, Wavelet Packet Transform (WPT) has been 
introduced for Power Quality Indices in [9]. The key factor 
related to the use of wavelet mother is choosing the suitable 
wavelet where it helps with the increase of computational 
cost. 

For solid understanding, it is required to classify features 
extracted from power signal disturbances to enhance power 
quality. To ensure better performance of any detection 
method, it is essential to develop classification techniques 
[10]. Artificial intelligent techniques have proved its ability 
for classifications purposes where it include training, 
learning, prediction and problem solving as defined in [11]. 

Fig. 1. The Structure of the classification system technique 
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Artificial Neural Networks (ANN) represents a capable 
technique especially in classification, pattern matching and 
data analysis [12]. It is implemented primarily for classifying 
power quality events as proposed in [13]. Authors have 
proposed an automatic localisation method for various power 
quality faults in [14]. An approach of identification of 
harmonics source is presented in [15]. A method has been 
proposed for fault detection in transmission lines using ANN 
based on wavelet in [16]. A proposed classification system 
for power quality events based on S-transform and 
probabilistic neural networks in [17].  

II. DISCRETE WAVELET TRANSFORM

The choice of detecting and identifying power quality 
disturbances using wavelet transform is an appropriate due its 
capability to handle non-stationary situations [18]. It proves 
effectively analysing the distorted signals in time-frequency 
domain as it is defined in [19]. It can be describers 
mathematically as in [20] as follows: 

𝑓(𝑥) =&𝑎!,#𝜓!,#(𝑥)
!#

	 	(1) 

where i and j represent the integer values and 𝜓!,#(𝑥) stands 
for wavelet expansion functions. 𝑎!# Stands for the two 
coefficients of discrete wavelet transform (DWT) of  𝑓(𝑥). 
These coefficients have the formula: 

𝑎!,# = + 𝑓(𝑥)𝜓!,#(𝑥)	 	(2)
$%

&%
 

where ψ𝜓',((x) represent the mother wavelet and can gain its 
parameters through: 

𝜓!,#(𝑥) = 2&! )* 𝜓(2&#𝑥 − 𝑗)								(3) 

where i represent the scaling parameter in wavelet and j for 
the translation one. For multiresolution satisfaction, the 
different of two scale equation is given as: 

𝜙(x) = √2&h(k)𝜙(2x − k)	 	(4)
+

 

where ℎ(𝑘) gives the wavelet function a unique value by 
satisfying wavelet conditions and 𝜙(𝑥) is scaling function 
which has a relation with mother of wavelet as follows: 

𝜓(𝑥) = √2&𝑔(𝑘)𝜙(2𝑥 − 𝑘)	 	(5)
,

 

where h in (4) and g in (5) can be considered as filters of 
wavelet of low-pass filter and high pass filter respectively. 
From all the above equation, the j wavelet value can be 
determined as: 

𝑓!(𝑥) =&𝑎!,#𝜙!,#(𝑘) =&𝑎$%&,#𝜙$%&,#(𝑥)
##

+&𝑑'%&,#𝜓'%&,#(𝑥)				(6)
$

'(!

where 𝑎!,#, 𝑎$%&,#, 𝑑'%&,# are the coefficients at scale j+1 and can 
be determined under the condition of the availability of scale j 
as follow:  

𝑎#$-,. =&𝑎#,,ℎ(𝑘 − 2𝑛)	 	(7)
,

 

𝑑#$-,. =&𝑎#,,𝑔(𝑘 − 2𝑛)	 	(8)
,

 

where 𝑎#$-,.is the approximation coefficient and  𝑑#$-,. is the 
detailed one at scale j+1 and they are defined. 

Figure 2 shows the decompensation analysis of power 
quality disturbances using discrete wavelet transform DWT in 
this work for each disturbance  

Fig. 2. Decomposition of distorted signal based on DWT. 

III. DETECTION AND IDENTIFICATION

In this section, a normal sine wave with frequency of 50 Hz 
is generated as well as nine power quality disturbances (sag, 
swell, harmonics, interruption, flicker, high frequency 
transient, low frequency transient, sag with harmonics and 
swell with harmonics). These disturbances are generated 
according to their parametric equations [21] as shown in 
Table I and Figure 3 shows the output of generated models. 

TABLE I 
MODELLING OF POWER QUALITY AND ITS PARAMETERS 

PQDs Equations Models Parameters 

Pure Sine 𝑓(𝑡) = 𝐴 sin(𝜔𝑡) A=1.0 f=50 Hz 

Sag 𝑓(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡!) − 𝑢(𝑡 − 𝑡"))) sin(𝜔𝑡) 0.1 < 𝛼 < 0.9 

Swell 𝑓(𝑡) = 𝐴(1 + 𝛼(𝑢(𝑡 − 𝑡!) − 𝑢(𝑡 − 𝑡"))) sin(𝜔𝑡) 0.1 < 𝛼 < 0.8 

Harmonics 𝑓(𝑡) = 𝐴 sin(𝜔𝑡) + 𝛼# sin(3𝜔𝑡) + 𝛼$ sin(5𝜔𝑡) 
0.1 < 𝛼# < 0.9 

0.1 < 𝛼$ < 0.9 

Interruption 𝑓(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡!) − 𝑢(𝑡 − 𝑡"))) sin(𝜔𝑡) 0.9 < 𝛼 < 1.0 

Flicker 𝑓(𝑡) = 𝐴 sin(𝜔𝑡) (1 + 𝛽 sin(𝛾𝜔𝑡)) 0.1 ≤ 𝛽 ≤ 0.2 

0.1 ≤ 𝛾 ≤ 0.2 

High frequency 
transient 

𝑓(𝑡) = 𝐴 sin(𝜔𝑡) + α𝑒%&/( sin(𝑏𝜔𝑡)) 

20 ≤ 𝑏 ≤ 80 

0.1 ≤ 𝜆 ≤ 0.2 

0.1 ≤ α ≤ 0.9 

Low frequency 𝑓(𝑡) = 𝐴 sin(𝜔𝑡) + α𝑒%&/( sin(𝑏𝜔𝑡)) 5 ≤ 𝑏 ≤ 20 
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transient 0.1 ≤ 𝜆 ≤ 0.2 

0.1 ≤ α ≤ 0.9 

Sag with 
harmonics 

𝑓(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡 − 𝑡!) − 𝑢(𝑡 − 𝑡"))) 
												(sin(𝜔𝑡) + 𝛼# sin(3𝜔𝑡) + 𝛼$ sin(5𝜔𝑡))) 

0.1 < 𝛼 < 0.9 

0.05 < 𝛼# < 0.15 

0.05 < 𝛼$ < 0.15 

Swell with 
harmonics 

𝑓(𝑡) = 𝐴(1 + 𝛼(𝑢(𝑡 − 𝑡!) − 𝑢(𝑡 − 𝑡"))) 
											(sin(𝜔𝑡) + 𝛼# sin(3𝜔𝑡) + 𝛼$ sin(5𝜔𝑡))) 

0.1 < 𝛼 < 0.8 

0.05 < 𝛼# < 0.15 

0.05 < 𝛼$ < 0.15 

 
 

 
Fig. 3. Signals generated of power quality disturbances. 

IV. FEATURE EXTRACTION 

The goal of extraction for each of power quality 
disturbances is to transform the original distorted signal from 
its time domain into its energy form. The energy of any type 
of these events is the key factor for classification. Each one 
PQDs generated are decomposed into 8 levels and the results 
for selected PQDs as shown in Figures 4, 5, 6, 7, 8, and 9.  

 

 
Fig. 4. Pure voltage signal and Features Extraction based on DWT. 

 
Fig. 5. Voltage sag signal and Features Extraction based on DWT. 
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Fig. 6. Voltage swell signal and Features Extraction based on DWT. 

 
Fig. 7. Voltage Harmonics signal and Features Extraction based on DWT. 

 

 
Fig. 8. Voltage interruption signal and Features Extraction based on DWT. 

 
Fig. 9. Voltage flicker signal and Features Extraction based on DWT. 

V.  CLASSIFICATION SYSTEM TECHNIQUE 

In order to evaluate the performance of the extraction 
method, a classification system is needed. Classification 
techniques measure the efficiency by training and testing the 
data extracted from power quality disturbances generated. In 
this study artificial neural networks (ANN) was implemented 
to classify power quality disturbances where each one of 
these events has a classification neural. 

The major advantage of this technique is network learning. 
Hence, results of features extracted of disturbances are fed to 
ANN as inputs. Then, through learning phenomena process 
for results, it can solve problems attached to data and then 
solve other learned results. The operational principle of ANN 
stands on manipulating the inputs with weights and then 
computing results by mathematical model to determine the 
activation of the neural as shown in Figure 10. The outputs of 
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are then calculated by anther mathematical model to initiate a 
structure if rules to classify different new inputs.   

 

 
Fig. 10. The Scheme of ANN. 

In this study, three stages of training the data through ANN 
facilities. First, data of disturbances features are fed to ANN 
for essential training according to pattern recognition of 
inputs. Second, data validation by measuring the network 
efficiency. Third, testing the accuracy to ensure the best 
performance of the neural.  

VI. RESULTS AND DISCUSSIONS  

In order to prove the accuracy and the efficiency of the 
classifier, various power quality disturbances signals were 
generated by their parametrical equations. Features 
extractions have been done using discrete wavelet transform 
DWT as discussed in IV power quality problems.  

Thereafter, each of these disturbances has been investigated 
by 8 multi-level of DWT decompensation. 10 types of power 
quality disturbances were studied with taking into account 
their characteristics: magnitude and frequency according to 
IEEE standard requirements [22]. 

Signals are then used for training and classification by 
ANN. 40 variables results of 10 types of disturbances (normal 
and others PQDs) were implemented in the neural taking into 
account that each of these data has 8 multi-level of extraction 
which gave a database of 3200 inputs. 

One and two hidden layers from 5 to 50 neurons were used 
to investigate the best performance of training. Table II shows 
the accuracy of one hidden layer the success percentage of 
each disturbance. Table III shows the accuracy of two hidden 
layers. 

TABLE II 
CLASSIFICATION ACCURACY OF ANN WITH ONE HIDDEN LAYER 

Neural PQDs Accuracy Rate (%) 
C1 Normal 90.786 
C2 Voltage Sag 90.800 
C3 Voltage Swell 90.657 
C4 harmonics 91.157 
C5 interruption 91.104 
C6 flicker 90.786 
C7 high frequency transient 90.714 
C8 low frequency transient 90.914 

C9 sag with harmonics 90.801 
C10 swell with harmonics 90.314 

 
 

TABLE III 
CLASSIFICATION ACCURACY OF ANN WITH TWO HIDDEN LAYERS 
Neural PQDs  Accuracy Rate (%) 

C11 Normal 91.271 
C12 Voltage Sag 91.071 
C13 Voltage Swell 90.829 
C14 harmonics 91.114 
C15 interruption 91.057 
C16 flicker 90.771 
C17 high frequency transient 90.414 
C18 low frequency transient 90.603 
C19 sag with harmonics 90.657 
C20 swell with harmonics 90.671 

VII. CONCLUSIONS  

Detection and identification of power quality disturbances 
methods was generated successfully. Based on discrete 
wavelet transform DWT it has been ensured that wavelet 
transform can overcome Fourier transform limits with non-
stationary disturbances which are mentioned in this paper. 
Thereafter, Features of these disturbances were extracted to 8 
levels and energy of each level was calculated and used for 
building the data needed for the classifier. 

Training of ANN was implemented and database of 3200 
signals were randomly generated with different variation. 
Results were investigated, trained and tested to evaluate the 
classification system technique. As a result, the accuracy of 
the  power quality disturbances classification were more than 
90% for all the cases which indicate the performance 
efficiency of ANN classifier for power quality disturbances.   
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